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Abstract. We investigate the spread of innovations on a social network. The network consists of

agents that are exposed to the introduction of a new product. Consumers decide whether or not to

buy the product based on their own preferences and the decisions of their neighbors in the social

network. We use and extend concepts from the literature on epidemics and herd behavior to study this

problem. The central question of this paper is whether firms can learn about the network structure

and consumer characteristics when only limited information is available, and use this information to

evolve a successful directed-advertising strategy. In order to do so, we extend existing models to allow

for heterogeneous agents and both positive and negative externalities. The firm can learn a directed-

advertising strategy that takes into account both the topology of the social consumer network and the

characteristics of the consumer. Such directed-advertising strategies outperform random advertising.
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1. Introduction

Network economics holds the view that individual actions and, in turn, aggregate

outcomes, are in large part determined by the interaction structure between hetero-

geneous economic agents. The central question of this paper is whether firms can

learn about social network structure and consumer characteristics when only limited

information is available, and use this information to evolve a successful marketing

strategy. We consider the decision problem of a firm that wishes to choose an adver-

tising strategy to successfully introduce a new product in a network of consumers.

There are in fact situations, which we discuss below, when consumers base their

purchase decision on the behavior of other consumers. Under these circumstances,

it may be of critical importance for a firm to get insights into the structure of the so-

cial network. However, marketing research charting consumer relations is typically

expensive and difficult to perform (Scott, 2000; Wasserman and Faust, 1994). We

investigate whether firms can learn targeted-advertising strategies, taking the social

network structure into account, if only aggregate sales data are available. Is such a

strategy of targeted advertising more effective than a random advertising strategy?
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And does the best strategy change with respect to different topologies of networks?

To address these questions we use insights from the existing literature on diffusion

phenomena in networks, both in economics and epidemiology. We extend existing

models to allow for more realistic modeling of consumer behavior and we study

the diffusion of the innovation through agent-based simulation.

The simulation model allows us to study how word of mouth about an innovation

(a new product or idea) spreads throughout a social network. More specifically, we

look at the situation where the decisions of the consumers are strongly determined

by the decisions of their neighbors in the network (cf. Cowan and Jonard, 2004

for a discussion of various empirical examples). There are two major situations

in which this type of behavior can be considered a good strategy for consumers.

First, when agents possess no reliable information about the new good, they look

to the consumers around them as a way to extract information. Some of the other

consumers may hold private information about the new good or, in the case of

a dynamic setting, they may simply have purchased the good already and then

inform the people to whom they are connected. Second, consumers may in fact

assign a relatively low weight to the actual characteristics of the good itself and

instead attach a higher value to the number of people purchasing the good. A good

example is so-called ‘fashion goods’. Firms operating in such a market need to take

the properties of the social network between consumers into account when they

make their marketing decisions.

The rest of this paper discusses the details of our model and a discussion of

the results. Section 2 provides an overview of the relevant literature. Section 3

describes the model used for our agent-based simulations. The experimental setup

is described in Section 4. Results are given in Section 5, and Section 6 presents

conclusions.

2. Models of Consumer Behavior in Social Networks

The literature on social interactions has studied thoroughly how a preference for

conformity can explain herd behavior in consumers or the emergence of fashion,

fads, and customs (see Banerjee, 1992; Brock and Durlauf, 1997; Bikhchandani,

Hirshleifer and Welch, 1992; Bernheim, 1994). The diffusion of a new product,

or innovation in a network, often follows a gradual pattern. In the first stage a

few consumers (the innovators or early adopters) adopt, then consumers in contact

with them adopt, then consumers in contact with those consumers adopt, and so

forth until the innovation possibly spreads throughout the network reaching also

the more conservative consumers (or ‘followers’). When the diffusion reaches the

majority of the network, we call this a cascade. Such a cascade is associated with

the commercial success of the new product. If innovation does not succeed in

completely taking off, the firm may decide to file the product as a failure.

Thus, we explore whether or not the new product diffuses to the largest part of

the network together with the time actually needed for the critical diffusion.



STRATEGIES FOR THE DIFFUSION OF INNOVATIONS ON SOCIAL NETWORKS 5

The initial positive feedback mechanism described above may be offset by a

tendency of some consumers to distinguish themselves from the dominant trend.

A form of negative externality may then make a few individuals revise their pur-

chasing decision with the effect of limiting the diffusion of the innovation to the

entire system. In this paper we will study both positive and negative feedback. We

explicitly take into account that the consumption behavior of other people can have

a positive externality (‘people like to imitate other people’), but also negative feed-

back (‘people like to be special’). One way for these two opposing forces to co-exist

is to have ‘imitation effects’ being replaced by a tendency towards heterogeneity

as soon as some critical level of diffusion of the product is attained.

A further useful distinction in the study of consumption behavior concerns the

intrinsic purchasing attitude of consumers. Some may be considered ‘innovative’

consumers. They are the ones who first choose a new product and are responsible

for its initial diffusion. Innovators usually represent a small portion of the set of

consumers. Most people are instead simply ‘followers’, in that their strategy is to

choose the novel good only after someone else has already tried it. Their strategy is

a more conservative one and they are usually responsible for the actual spread of the

innovation. These two consumption attitudes have both been shown to play a role

in the diffusion processes of many products. One example is new software products

(von Hippel, 1988), which are usually tried by a restricted group of experimental

users and later, eventually, chosen by a higher number of more conservative

consumers. In our model we allow for different consumer purchasing attitudes.

Next, we relate our model to the recent literature on diffusion in networks.

Models of informational cascades analyze how the decisions of first movers in a

sequential decision problem can lead to herd behavior (a cascade) of the whole

system of agents, see Banerjee (1992). Herd behavior occurs when agents do not

use any private information but instead only value the information provided by

the decisions taken by the other agents. It should be noted that, in these models,

decisions are made sequentially, so that agents look at the actions taken by the

agents who decided before them. In this paper we take a different perspective

and analyze the diffusion of information in networks of consumers, as in Watts

(2002). A number of economic models exist that investigate how various diffusion

processes in social networks (Ellison, 1993; Brock and Durlauf, 1997; Young,

2003). The focus is on local interactions and, in particular, on positive feedbacks.

An exception is Cowan, Cowan and Swann (1997) where negative externalities are

also considered, but in their model the influence of the topology of the social network

is not investigated. Famous studies have been concerned with studying the choice

between competing technologies, the specific properties of ‘network technologies’

entailing compatibility issues and the local self-reinforcement processes that allow

rapid dominance of some new standard or product or institution (Arthur, 1994;

David, 1985; Katz and Shapiro, 1985).

Most of the cited theoretical contributions consider regular lattices, defined

as symmetric structures where all nodes have the same ‘degree’, that is, the same
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number of links departing from each node. Instead, empirical evidence suggests that

the degree distribution in social networks is highly right skewed. Specifically, social

networks often display the properties of small-world graphs. As originally defined

in Watts and Strogatz (1998), these networks are obtained from regular lattices by

rewiring randomly chosen edges. In another version (Newman and Watts, 1999),

they are graphs whose vertices are connected together in a regular lattice with

the addition of a small number of connections bridging randomly chosen vertices.

Small-world graphs show a higher level of clustering than random graphs. Their

pattern is not as ordered as in a regular lattice, but they preserve short average

path lengths proportional to the logarithm of system size. Small-world networks

are thought to be a good model for many types of real social networks.

Many analytical results for diffusion phenomena on networks are available from

the epidemiological literature that studies the influence of the topology of the un-

derlying network of individuals on the dynamics of disease propagation, see for

example Strogatz (2001). These models actually correspond to percolation prob-

lems on graphs. Specifically, they investigate threshold values for actual epidemic

outbursts as opposed to limited localized spreading. Some models (Callaway et al.,

2000) also explore the effectiveness of vaccination strategies that try to inactivate

some of the nodes in the network. One limitation to the application of these ex-

act solutions is that they are valid for very large networks, but they do not hold

for small networks. They also require rather strict assumptions, see Moore and

Newman (2000) for a definition of the general site and bond percolation prob-

lem. There are some analytical results on models of diffusion on networks, see

for example Newman (2000). However, as the agents become more complex and

we introduce a firm with a slightly more sophisticated advertising strategy, results

soon become intractable. Therefore, we use an agent-based model to simulate the

information and product diffusion process.

The cited literature also analyzes how an external agent can limit or enhance

the diffusion process on a network. In the case of a network of consumers, one can

envisage different advertising strategies for companies for diffusing a new product

in a network of potential buyers. Advertising campaigns are costly and different

strategies can be employed by the firms. Firms are boundedly rational and are not

fully aware of the structure of the communication channels among consumers. We

consider the situation where firms only have aggregate sales data. This can apply to

products that are sold over the Internet (for example ring-tones), where the firms do

not have information about the characteristics of the consumers. Figure 1 illustrates

how the topology of the network may influence marketing strategies. A so-called

‘Star Network’ (see Figure 1) is easiest to penetrate for the firm. If the firm targets the

center of the star, word of mouth about the product reaches all agents in the network

very fast. The most difficult network for the firm is the regular network, where path

lengths are very long (Figure 1). However, if consumers differ in their tendency to

adopt new products, there is a trade-off between targeting consumers that are well

connected (such as the center of a star) versus targeting consumers that have certain
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Figure 1. A Star Network (left) and a Regular Network (right).

characteristics, such as the ‘opinion leaders’ in Valente and Davis (1999). Our model

allows us to investigate this trade-off and analyze good advertising strategies for

the firm under different circumstances relative to both the social network topology

and consumer characteristics.

3. The Diffusion Model

We consider the diffusion of an innovation over a network of consumers. The

goal of this research is to investigate whether a firm can learn directed-advertising

strategies that increase the size and speed of the diffusion. Consumer evaluation

for the product depends only on the fraction of its neighbors that have already

purchased the innovation. The consumers are connected through a social network

and the innovation spreads through this consumer network. Furthermore, the firm

that is pushing the product can advertise and thus inform consumers about the ex-

istence of the product. However, advertising is costly and firms can only target a

limited number of consumers. Therefore the firm has to learn advertising strate-

gies that produce the most effective diffusion of the product. Figure 2 gives an

overview of the simulation model; the components are discussed in more detail

below.

3.1. CONSUMERS

As already mentioned, we wish to look at products for which the consumer value de-

pends strongly on the number of other consumers that use the product. If consumer

value increases when the number of other consumers who have adopted the inno-

vation becomes larger we call this positive (network) externalities, see for example

Katz and Shapiro (1985), Farrel and Saloner (1986). Negative (network) externali-

ties occur if consumer value decreases as the number of adopters becomes larger.

In this paper we investigate both positive and negative externalities. For example,
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Figure 2. Outline of the simulation model. In this example the consumers are connected through

a small-world network structure.

if we consider fashion goods, it might be unrealistic to assume that the positive

externality continues to grow until all consumers use the product. Consumers may

have a desire to be fashionable on the one hand, while they also want to be special

on the other hand. This is particularly true for the innovator who always adopts the

latest fashion or fad. These innovators may move on to the next fashion while more

conservative consumers are still following a previous one. To be more precise, we

also investigate the situation where the innovation is no longer attractive once it

becomes adopted by too many people.

A consumer is characterized by her exposure threshold (et) and by her

neighbors. The threshold and the structure of the social network are exogenously

given at the start of the simulation. Consumers that have already adopted the

innovation talk about it to their neighbors, so consumers are aware of the purchase

decisions of other consumers they are linked to. The exposure threshold models

the tendency of a consumer to adopt the new product. A consumer with an

exposure threshold of 0.5 will buy the product if and only if at least half of its

neighbors have also bought the product. Note that this threshold is more easily

reached in sparse (but connected) networks than in dense networks. In Section 5.4

we also consider negative externalities, where consumers want to be fashionable

but still special. In this case consumers have both an exposure threshold (et) and

an over-exposure threshold (oet) threshold. Consumers stop using the product

if the fraction of their neighbors who have adopted the product exceeds their

over-exposure threshold. This over-exposure threshold is used by the agents to

discriminate between innovations that are attractive and innovations that are no

longer fashionable because their user-base has become too large. The decision rule

for the consumer can be characterized as follows:
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Each trade period consumers take the following steps:

1. Consumers who have already adopted the innovation

talk about the product to their neighbors

2. A Consumer decides to adopt the product if:

Word of mouth received from its neighbors

exceeds its Exposure Threshold.

and (in case of negative externalities)

Word of mouth received from its neighbors

does not exceed its Over-Exposure Threshold.

3.2. THE FIRM

The firm can engage in an advertising campaign to try to increase the size and

the speed of the diffusion of its product (the innovation). Firms do not have any

a priori knowledge about the structure of the consumer network and have to learn

which advertising strategies are best. They have to choose which consumers to

target to ensure fast diffusion of their new product. Advertising campaigns are

costly and different strategies can be employed. Firms are boundedly rational

and are not fully aware of the structure of the communication channels among

consumers. As a result, they are likely to explore a range of targeted-advertising

strategies. To model this search and learning process of the firm we use a simple

genetic algorithm that is described in more detail below. An advertising strategy

specifies which consumers are targeted at time 0. The success of an advertising

strategy depends on (1) the number of consumers that have adopted the innovation

after a specified period of time when that strategy was used, and (2) the cost of the

advertising campaign. The number of products sold is the only information coming

from the market that the firm obtains at the end of each period. The algorithm used

by the firm can be summarized as follows:

The firm takes the following steps:

1. Select an advertising strategy

2. Calculate fitness of the strategy:

Fitness = Sales − Advertising costs

3. Update Strategies:

Update strategy base using a GA

4. Go to 1.

We investigate the learning capabilities of the firm. We examine whether firms can

learn the best directed-advertising strategy when a fixed number of consumers is
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targeted, that is, the firm has a fixed advertising budget. This allows us to com-

pare the results to a random advertising strategy targeting the same number of

consumers.

3.3. THE GENETIC ALGORITHM USED BY THE FIRMS

We use a genetic algorithm (GA) to model the strategy search and learning behav-

ior of the firm. Genetic algorithms were first developed by Holland (1975) and are

based on the principle of “survival of the fittest” from nature. A typical genetic

algorithm can be described as follows (Mitchell, 1996): first, a population of ran-

domly initialized strategies is generated. This is the population of chromosomes or

genotypes. The behavior that is encoded in these chromosomes, that is, the behavior

exhibited by an agent using that particular strategy can be seen as the phenotype.

This population is improved in a number of generations by means of selection,

recombination (crossover), and mutation. Selection chooses the better strategies

to serve as parents for the next generation of strategies. This corresponds to the

concept of survival of the fittest in nature. Offspring is then formed by pairwise re-

combination of the parents (crossover). Finally, the offspring strategies are slightly

changed, with a small probability (mutation) and the new population replaces the

old one.

A strategy is represented by a bit string of length l, whereas in this case, l is

the number of consumers in the network. If the i th bit on the chromosome equals

1 this means that the strategy represented by the chromosome targets consumer i

(if the bit equals 0 the consumer is not targeted). We use a simple genetic algo-

rithm to update the strategies for the firm. However, using standard crossover and

mutation operators, the number of bits set to 1 in each strategy (in our case the

number of targeted consumers) may vary from generation to generation. Since we

consider firms with a fixed budget, however, we use adapted mutation and crossover

operators (see below) to ensure that a strategy targets exactly m consumers,

where

m =

[

Budget b

Marginal cost of advertising

]

.

The fitness of a strategy is determined solely by the sales after t time steps, where t

is the training time. High fitness strategies have a higher chance of being selected as

parents for the next generation. The training time t is taken between 10 and 50 time

steps. We have adapted the crossover and the mutation operator in order to ensure

that a chromosome contains exactly m ones. Each chromosome thus consists of

l bits representing the consumers, m of those bits are set to 1 and are called the

1-bits. Similarly, 0-bits are the l − m bits that are set to 0. The algorithms for

the adapted operators, which we call the one-preserving mutation and the one-

preserving crossover, respectively, are given below.
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One-preserving mutation:

For each chromosome that is selected for mutation:

1. Randomly select one of the 1-bits

(one of the currently targeted consumers)

2. Change this bit to 0
3. Randomly select one of the old 0-bits

4. Change this bit to 1
One-preserving crossover:

For two parent chromosomes (parent1 and parent2) we create

two offspring chromosomes (offspring1 and offspring2):

0. Set all offspring bits to zero.

First we consider the k 1-bits that the two parents have in common

1. (Both strategies agree on those 1-bits)

These k 1-bits are copied onto the offspring chromosomes

(as would be the case with a regular crossover operator)

Second we consider the m − k remaining 1-bits

2. Select a random number Ccross between [0 . . . m − k − 1]

Ccross is the crossover counter

3. Copy the first Ccross 1-bits from parent1 to offspring1

Copy the remaining bits from parent1 to offspring2

4. Copy the first Ccross 1-bits from parent2 to offspring2

Copy the remaining bits from parent2 to offspring1

In words, the one-preserving mutation replaces a currently targeted consumer

with a consumer that is currently not targeted. Note that the one-preserving muta-

tion thus works on the entire chromosome instead of on a single bit. An example

illustrating both operators is given in Figure 3 for a chromosome of length 6. The

first parent chromosome thus specifies that consumers 1, 3 and 5 receive targeted

advertising (for example in the form of a free sample product).

Figure 3. Example of one-preserving crossover and mutation.
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3.4. THE SOCIAL NETWORK

We investigate three types of social network architectures: (i) the k-regular network,

where all consumers have exactly k neighbors (here we restrict ourselves to regular

networks that are modeled as a one-dimensional ring lattice, where each agent is

connected to its k nearest neighbors by undirected edges); (ii) the random network,

where links between consumers are constructed randomly; and (iii) the small-world

network. A small-world network is constructed by taking a regular network and then

rewiring a small fraction of the links (usually between 1 and 10 percent of all links

Watts and Strogatz, 1998). This fraction of links is called the rewiring constant (rc).

The degree of a network is defined as the (average) number of neighbors of a

given consumer in the network. For k-regular networks the degree thus corresponds

to k. For small-world and random networks, the number of links per consumer may

vary and the degree of such networks describes the average number of neighbors

of a consumer.

We consider a social network of 1000 consumers. This is sufficiently large

to observe the dynamics that occur for different network topologies (Cowan and

Jonard, 2004). A cascade on the network occurs if, starting from a small fraction

of the consumers (the initially targeted consumers), the diffusion spreads out to

a large part of the population. In this work, we define a cascade as a diffusion

that reaches at least 80% of all consumers, starting from a small initial number

of targeted consumers. When the diffusion reaches all consumers in the network

we call this a global cascade. Note that such a global cascade may not always be

possible since random and small-world networks can be disconnected.

3.5. DIFFUSION DYNAMICS

Diffusion dynamics are driven by the topology of the network, the advertising

strategy that is used by the firms, and the consumer characteristics. At each time

step in the model, the agent actions described above are executed, resulting in the

model cycle described below. Initially, the number of consumers as well as their

characteristics, the network topology, and the advertising strategy used by the firm

are exogenously given. The outcome of the agent-based simulations now depends

on those initial conditions and the agent interactions.

Each cycle:

1. Firms choose an advertising strategy

(from their strategy base)

2. Consumers who have already bought the product

talk about the product to their neighbors

3. Consumers decide whether to (still) adopt the product

Go to 2. (Repeat for a given number of time steps)
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4. Firms calculate their profits

5. Firms update their strategies for the next period

We are especially interested in two aspects of the diffusion dynamics: (1) the size

of the diffusion, that is how many consumers eventually adopt the innovation, and

(2) the speed of the diffusion, that is, how long it takes to reach this diffusion level.

An important measure in assessing the properties of the diffusion is the critical

diffusion threshold. The critical diffusion threshold in a network of homogeneous

consumers is the highest exposure threshold for which a cascade is observed. All

thresholds below this critical threshold will lead to cascades on the network.

4. Experimental Setup

The goal of the experiments is to investigate whether firms can learn directed-

advertising strategies to increase the diffusion of their products. Furthermore, we

want to investigate the properties of such strategies. The social network and the

consumer thresholds are exogenously given at the start of the simulation. We vary

the topology of the network with respect to degree and network architecture, as well

as the exposure thresholds of the consumers, and study the diffusion process over

time. We thus perform an agent-based computational study of the diffusion of an

innovation over a social network. The diffusion dynamics are a result of the local

interactions of autonomous agents over time. The model described above allows

us to investigate the speed and the size of the innovation diffusion under different

initial conditions. Table I gives an overview of the parameter values that are used in

the simulations. We have chosen for a setup where learning is difficult, that is, only

a few out of 1000 consumers are targeted by the firm and the firm is allowed only

Table I. Parameter values used in the simulations.

Parameter Value

Number of consumers 1000

Degree 1–20

Rewiring constant (rc) (small-world network) 0.05

Exposure threshold 0.0–0.5

Number of initially targeted consumers 10

Diffusion time (during learning) 10–50

Generations 20

Number of strategies 50

Pone-mut 0.1

Pone-cross 1.0
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very short time to learn. This allows for fast learning and strategies that can be used

in an online setting. The rewiring constant is generally set at 0.05 for small-world

networks (Watts and Strogatz, 1998). We have also chosen generally recommended

values for the GA parameters (Back, Fogel and Michalewicz, 1997).

5. Results and Discussion

5.1. HOMOGENEOUS CONSUMERS

Here we consider the diffusion of information over the network when consumers

are homogeneous with respect to their exposure threshold. Figure 4 shows critical

diffusion thresholds for the different types of networks when consumers are homo-

geneous with respect to their exposure thresholds and firms have a fixed budget.

Each network consists of 1000 consumers. The degree of the network specifies the

(average) number of neighbors each consumer has. Points signify the maximum

threshold for which an informational cascade is achieved after 1000 time steps

starting from 10 nodes. The averages are over 20 runs; that is 20 different networks

Figure 4. Critical diffusion thresholds for the different types of networks. Points signify the

maximum threshold for which an informational cascade was achieved after 1000 time steps

starting from 10 nodes. (Averages over 20 runs). The learning time is 50 time steps.
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are tested. The consumers that are initially targeted can be different in each run,

due to the use of a randomly selected advertising strategy. The learning time is 50

time steps. In the fixed budget experiments we use the one-preserving operators

discussed in the previous section. Note that under these conditions the advertising

strategy only has to be optimized with respect to the network topology. If we look

at Figure 4, we see that firms are able to learn effective advertising strategies. In the

case of the regular networks such a strategy has to target consumers that are evenly

spread out over the network in order to ensure maximum diffusion. Using such a

strategy, firms are able to achieve informational cascades even if consumers have a

low tendency to buy the product (a high exposure threshold).
If we restrict our attention to the random strategies, we can observe two different

regimes. In a sparse network, diffusion of information is limited by the global degree

of the network, but cascades occur even when consumers are quite ‘resistant’ to

being convinced by their neighbors, that is when their exposure threshold is high.

On the other hand, if the network is sufficiently dense, the propagation is limited

by the stability of individual nodes. In this case the critical exposure threshold is

significantly smaller. Most nodes have a large number of neighbors, but with a

random strategy it is unlikely that all these neighbors are buying the product at

time 1, so the initial perturbation may not be able to diffuse at all. Note that critical

thresholds are similar for small-world and regular networks. We can observe that

there are no cascades on the random network for low degree. This results from

the fact that the network may not be connected and the diffusion cannot reach all

the components of the network. Notice that, as the degree increases, it becomes

more difficult for a cascade to occur. Cascades are only observed in networks

where the agents have a low exposure threshold. In a network of degree 2, only one

neighbor needs to purchase the product to start the cascade, so a threshold of 0.5 is

immediately obtained. Starting from one initial consumer, it becomes much more

unlikely that a large fraction of neighbors has bought the good if the degree is high.

Furthermore, we also observe cascades for some runs above the critical threshold.

Figure 4 shows that in order for a cascade to occur it is necessary that the network is

connected, that is, that there are not too many components. Furthermore, we see that

as long as the network is connected, a cascade spreads more easily over less regular

networks. This is in accordance with the literature, for example, Watts (2002).
With directed advertising, however, this effect disappears and cascades are

achieved most often on regular networks. This can be explained by the fact that, on

a regular network, firms only have to take into account the position of a consumer in

the network. In small-world networks and random networks, however, not only the

position of the consumer is important, but also the number of links a consumer has

as well as the type of links (cross-network or only to close neighbors). Summariz-

ing, we can say that firms are able to learn effective directed-advertising strategies

in a network with homogeneous consumers. Using these strategies, cascades can

be achieved in situations where random strategies lead only to limited diffusion. In

the next section, we consider networks of heterogeneous consumers.
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Figure 5. Directed and Random advertising when consumers are heterogeneous: Size of the

diffusion as a function of the degree of the network for different types of networks. Each

data-point represents the average over 50 runs. The learning time is 50 time steps.

5.2. HETEROGENEOUS CONSUMERS

In this section we consider the diffusion of information over the static network when

consumers are heterogeneous with respect to their exposure threshold. Figure 5

shows the difference between random and directed advertising when consumer

exposure thresholds are drawn from a normal N (0.3, 0.1) distribution (based on

results from the fixed threshold experiments this is the region where cascades are

possible but sometimes difficult to achieve, and where firms may thus profit from

learning behavior). Each point in the graph represents the average diffusion after

50 runs of 1000 time steps. In each run, a different consumer network is generated.

Note that the learned strategies outperform the random-advertising strategies

with respect to the size of the maximum diffusion. Looking at Figure 6, we also

notice that (1) directed-advertising strategies are able to achieve cascades when

the random strategies are not, (2) the size of the diffusion is larger for directed-

advertising strategies (even if no cascade is achieved), and (3) the speed of the

diffusion is larger for directed-advertising strategies of networks. Each network

consisted of 1000 consumers with a degree of 10. Initially 10 consumers were
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Figure 6. Directed versus Random advertising when consumers are heterogeneous: diffusion

as a function of time for different types of networks.

perturbed. In these simulations we consider a homogeneous consumer population

with exposure threshold of 0.0 and 0.3 respectively. We can observe that in the no

threshold case, the cascade happens fastest for the random network and slowest for

the regular network again this is in accordance with the existing theory. If we look

at the case of a homogeneous population with an exposure threshold of 0.3, i.e., a

consumer decides to adopt the innovation if the fraction of its neighbors that has

already adopted the product is larger than 0.3, we see a similar pattern. However,

initially the diffusion is slower for the random network, this is caused by the effect

that not all consumers have an equal amount of neighbors in the random network.

In both cases the small-world network exhibits both the fast start of the diffusion

(due to the high regularity of the network) and the fast occurrence of a cascade (due

to short average path lengths).

5.3. DYNAMICS

To gain more insight in the nature of the directed-advertising strategies, Figure 7

shows three evolved strategies for a smaller network. We see evolved strategies

for three types of networks, with twelve heterogeneous consumers and an average

degree of three. The experiments are conducted for a budget of 4. The numbers

at the nodes represent the exposure thresholds of the consumers. Black nodes are

targeted by the evolved strategies. All three strategies lead to a cascade within 10
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Figure 7. Learned directed-advertising strategies. Black nodes are targeted by the learned

strategy. Numbers at the nodes state the exposure thresholds of the individual consumers.

time steps. As we examine the evolved strategies more closely, we notice several

interesting features. First, the firms target consumers with a high exposure threshold,

that is, the most conservative consumers. Second, they target consumers with a high

number of neighbors, and third they target isolated consumers (these consumers

can otherwise never be reached by the cascade). Furthermore, we notice that in the

case of the small-world network, both nodes that have a “rewired” link are targeted,

ensuring a short path length for the diffusion. In the case of random networks, the

disconnected nodes (or components) have to be targeted individually.

Most of these effects were also observed in the simulations with the large, 1000

consumer network. More specifically, we found that (1) in case of small-world and

random networks, 79% of the targeted nodes had a higher number of neighbors than

the average degree of the network. Furthermore, we found that (2) in all three types

of networks 92% of the targeted nodes had exposure thresholds greater than 0.5. In

contrast with the results for small networks, we found that (3) isolated consumers

were not often targeted in the 1000 consumer setting. This can be explained by the

fact that if total diffusion is not possible within the limited learning time it is not

always profitable to target a single isolated consumer, which only increases the size

of the diffusion by only one. In other words, isolated consumers are only relevant

when a cascade is possible.

5.4. INTRODUCING NEGATIVE EXTERNALITIES

This section describes the network dynamics when negative as well as positive

externalities are present in the model. We consider two scenarios. In the first we

assume that the attractiveness of the product depends on the number of other

consumers that have adopted it. A consumer decides to adopt the product if this

number exceeds its exposure threshold, but discontinues using the product if its

over-exposure threshold is exceeded. However, once the number of other users
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decreases, the user may decide to use the product again. In the second scenario, a

consumer never returns to the product once he has abandoned it. This models a

situation where the consumers abandon a fashion or fad and move on to the next

trendy product.

Scenario 1: Figure 8 shows results for heterogeneous agents when negative

externalities are also present. In these experiments, the exposure threshold is drawn

from uniform [0, 0.5]. The exposure threshold (et) and the over-exposure threshold

(oet) are related, namely oet = et + 0.5. This reflects the fact that the innovators

may also be the first consumers who abandon the product if the next innovation

reaches the market or if they no longer consider the item fashionable once too

many consumers are using it. Again, we have used a network of 1000 consumers

and look at the size of the diffusion after 100 periods (the size of the diffusion

remained constant if we consider 1000 time steps). First, we note that the learned

strategy performs much better than the random strategy in regular networks. This

can be explained by looking at the path of the diffusion. In networks with high

clustering (such as regular networks and small-world networks with a low rewiring

Figure 8. Diffusion of the product when negative as well as positive externalities are present.

Averages over 20 runs.
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Table II. Average number of consumers that have adopted the

innovation, when negative externalities are present, averaged

over 20 runs and taken over time step 100–1000.

Average size of the diffusion

Network topology Learned/random strategy

Regular networks 535/337

Small-world networks 623/610

Random networks 589/586

constant), the diffusion progresses from neighbor to neighbor. But since, in such

networks, most neighbors of one consumer are also neighbors of each other, the

over-exposure threshold is reached sooner than in networks with low clustering.

This explains why the average size of the diffusion is lower in regular networks

than for less clustered networks. Table II gives the average size of the diffusion

for the different types of networks. Figure 9 shows a typical run for a small-world

network. Note that the average size of the diffusion is a little higher for the

learned strategy. The oscillating behavior is caused by a small group of consumers

who continually switch between using and not using the product. Note that

Figure 9. Diffusion of the product in a small-world network when negative as well as positive

externalities are present. Two typical runs.
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Figure 10. Diffusion patterns when negative externalities are present: scenario 2.

the oscillating behavior also occurs in the random scenario but the fluctuations

are much smaller. The group of ‘switching’ consumers is larger when strategies

are learned. If we look at the second scenario, we see that the fluctuations disappear.

Scenario 2: Under this scenario, the negative externality has a permanent effect

and a consumer who decides to discontinue using the product never resume using it.

Figure 10 gives results for different types of networks under these conditions. First,

we notice that the fluctuating behavior disappears. Furthermore, we can observe

that the total size of the diffusion is smaller than in the first scenario. This results

from the fact that the diffusion dies off because of the negative externality, before

all potential consumers have been reached. This effect is stronger for the more

regular networks than for the random network. Moreover, the effect of learning is

also much clearer for the regular and the small-world network. This reflects the fact

that the diffusion goes very fast in random networks.

6. Conclusions

This paper investigates the spread of information in a social network. The network

consists of agents that are exposed to the introduction of a new product. Consumers
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decide whether or not to buy the product based on their own preferences and the

decisions of their neighbors in the social network. We use and extend concepts from

the literature on epidemics and herd behavior to study this problem. The central

question of this paper is whether firms can learn about the network structure and

consumer characteristics when only limited information is available, and use this

information to evolve a successful directed-advertising strategy. To do this, we

have extended existing models to allow for heterogeneous agents and positive as

well as negative externalities. The firm can learn a directed-advertising strategy

that takes into account both the topology of the social consumer network and the

characteristics of the consumer. Such directed-advertising strategies outperform

random advertising.

These results are a first step towards enabling online strategic learning with

sparse information by the firms. Currently we are extending our model to allow for

non-static consumer networks which complicates learning even further.
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