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Abstract. Parallel implementations of metaheuristics appear quite naturally as an effective
alternative to speed up the search for approximate solutions of combinatorial optimization problems.
They not only allow solving larger problems or finding improved solutions with respect to their
sequential counterparts, but they also lead to more robust algorithms. We review some trends in
parallel computing and report recent results about linear speedups that can be obtained with parallel
implementations using multiple independent processors. Parallel implementations of tabu search,
GRASP, genetic algorithms, simulated annealing, and ant colonies are reviewed and discussed to
illustrate the main strategies used in the parallelization of different metaheuristics and their hybrids.

1. Introduction. Although metaheuristics provide quite effective strategies for
finding approximate solutions to combinatorial optimization problems, the computa-
tion times associated with the exploration of the solution space may be very large.
With the proliferation of parallel computers, powerful workstations, and fast commu-
nication networks, parallel implementations of metaheuristics appear quite naturally
as an alternative to speedup the search for approximate solutions. Several strategies
have been proposed and applied to different problems. Moreover, parallel implemen-
tations also allow solving larger problems or finding improved solutions, with respect
to their sequential counterparts, due to the partitioning of the search space and to
more possibilities for search intensification and diversification.

Therefore, parallelism is a possible way not only to reduce the running time of
local search algorithms and metaheuristics, but also to improve their effectiveness and
robustness. The latter are likely to be the most important contribution of parallelism
to metaheuristics. Robust implementations can be obtained by the use of different
combinations of strategies and parameter settings at each processor, leading to high
quality solutions for different classes of instances of the same problem, without too
much effort in parameter tuning. We present in the next section some current trends
in parallel computing, concerning in particular architectural developments, parallel
programming environments, and types of parallelism and parallel programming mod-
els. In Section 3, we draw some considerations about speedup and efficiency in parallel
systems. We discuss some recent results showing that it is possible to achieve linear
speedups in the time to find a solution within some target value, using parallel imple-
mentations of different metaheuristics based on multiple independent processors, such
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as simulated annealing, iterated local search, tabu search (under some conditions),
and GRASP. Next, we present in Section 4 a classification of parallel implementa-
tions of metaheuristics, considering the underlying parallel local search strategy and
using the notion of search threads. Different parallelization strategies are discussed
and compared. Parallel implementations of tabu search, GRASP, genetic algorithms,
simulated annealing, and ant colonies are reviewed in Section 5. Some concluding
remarks are drawn in the last section.

2. Current trends in parallel computing. In this section, we review some
trends and fundamental issues in parallel computing, which interfere in the design
and in the efficiency of parallel algorithms.

2.1. Architectures. The architectures of parallel machines have considerably
diversified in the nineties [18, 34, 64]. In shared-memory machines, all processors
are able to address the whole memory space and communication between tasks is
achieved through read and write operations on the shared memory. Distributed-
memory machines have their memory physically distributed among the processors.
Each processor can only address its own memory and communication among processes
executing on different processors is performed by messages passed through the com-
munication network. The MIMD family (Multiple Instruction Stream, Multiple Data
Streammachines, according with Flynn’s taxonomy [84]) evolved from shared-memory
machines with a few processors (Sequent Balance, Encore Multimax) to distributed-
memory machines with hundreds or even thousands of processors interconnected by
networks with different topologies, such as the hierarchical ring for the KSR, the
two-dimensional grid for the Intel Paragon, the three-dimensional tore for the CRAY
T3D/E, and multi-stage switches for the IBM-SP systems, among many others. Syn-
chronous SIMD (Single Instruction Stream, Multiple Data Stream) massively parallel
machines with up to 65536 4- or 8-bit processors such as MasPar MP-1 and MP-2,
and the popular Connection Machines CM-1 and CM-2 have also been developed.
Their processors had a small memory capacity (e.g. 16Kbytes on the MasPar MP-1)
and were interconnected by specific networks such as the two-dimensional toric grid
for the MasPar machines and the hypercube for CM-1 and CM-2.

Since development costs and commercial prices turned out to be extremely high,
only large and well established companies such as IBM, SGI-Cray, and Intel still
propose parallel machines with the same fundamental characteristics of the above.
Several companies have even disappeared, as it was the case for Thinking Machines
Corporation which developed and commercialized CM-1 and CM-2.

The end of the nineties has witnessed the resurgence of shared memory multi-
processor machines (Symmetric MP or, simply, SMP), ranging from two to a few
hundred processors (SGI Origin). However, the most important innovation in recent
years is the connection of SMP machines through fast local networks (Myrinet, SCI,
ATM, GigaEthernet) and the connection of general purpose parallel machines through
national or international very high speed networks. Besides allowing for scalability
and fault-tolerance, networks of computers present good cost/performance ratios when
compared to other parallel machines. This has led to an explosion in the use of clus-
ters of computers, which account for one of the leading tendencies among the current
trends in parallel processing [34, 158]. Basically, a cluster is a collection of PCs or
workstations connected via a network and using off-the-shelf components. The sig-
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nificant improvements in performance and reliability of workstations and high-speed
networks strongly contributed to turn the use of clusters into an appealing, low-cost
alternative for parallel applications. Clusters can be put together very easily, using
operating systems such as public domain Linux, networks such as Ethernet, SCI,
or Myrinet, and software environments such as MPI or PVM. Some cluster systems
are currently among those with the best cost/performance ratios, ranking among the
fastest and most powerful machines.

2.2. Parallel programming environments. The architecture of a parallel
machine has a strong influence in the degree of parallelism or granularity of the ap-
plications it can run, i.e., the ratio between computation time and communication
time. The granularity may also be seen as the amount of computation performed
between two communication steps. If the architecture of the target machine allows
for fast communication (high speed network or shared memory), then fine-grained ap-
plications are more suitable to be parallelized; otherwise medium- or coarse-grained
applications should be envisioned for parallel implementation.

Parallelism leads to the need for new algorithms designed to exploit concurrency,
because many times the best parallel strategy cannot be achieved by just adapting a
sequential algorithm [85, 121]. In contrast to sequential programs, parallel algorithms
are strongly dependent on the computer architecture for which they are designed.
Programs implementing these algorithms are developed with parallel programming
tools, which typically provide support for developing programs composed by several
processes that exchange information during their execution. Many programming tools
are available for the implementation of parallel programs, each of them being more
suitable for some specific problem type or machine architecture. The choice of the
programming tool to be used depends on the characteristics of the problem to be
solved and should match the programming model underlying the parallel algorithm
to be implemented. For instance, some tools might be more suitable for numerical
algorithms based on regular domain decomposition, while others are more appropriate
for applications that need dynamic spawning of tasks or that make use of irregular
data structures.

There are basically three strategies for the development of parallel programs. The
first one consists in using parallel programming languages, which are essentially se-
quential languages augmented by a set of special system calls. These calls provide
low-level primitives for message passing, process synchronization, process creation,
mutual exclusion, and other functions. Among them, we may cite HPF (High Per-
formance Fortran) [105, 117, 118, 139, 140] and OpenMP [66], which explore inher-
ent data parallelism (the same instruction set is applied to multiple items of a data
structure) appearing for instance in do-loops. FORTRAN 90 provides constructs for
specifying concurrent execution based on data parallelism. HPF extends FORTRAN
90 with additional parallel constructs and data placement directives. A data parallel
program developed using both languages is a sequence of operations that are applied
to some or all elements of an array. Besides inserting parallelisation directives, the
programmer does not explicitely handle communication primitives. Parallelisation
directives are activate along compilation. Such parallel programming languages are
well adapted to fine-grained synchronous numerical applications.

In the second and currently most used strategy, tasks communicate by exchanging
messages using communication libraries such as PVM (Parallel Virtual Machine) [104]
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or MPI (Message-Passing Interface) [85, 102, 103, 145, 146, 147, 206]. To increase ef-
ficiency and avoid context swapping, each processor usually runs one single process
(from now on, we do not make any difference between a process and the proces-
sor where it runs) in charge of computations and communication. This program-
ming mode is particularly suited to coarse-grained applications running on clusters
or networks of workstations. PVM is a pioneer, widely used message passing library,
created to support the development of distributed and parallel programs executed
on a set of interconnected heterogeneous machines. A PVM program consists of
a set of tasks that communicate within a parallel virtual machine by exchanging
messages. A configuration file created by the user defines the physical machines
that comprise the virtual machine. The application programmer writes a parallel
program by embedding these routines into a C, C++, or FORTRAN code. Sev-
eral parallel implementations of metaheuristics have been developped in PVM, see
e.g. [6, 9, 15, 20, 36, 58, 68, 81, 89, 151, 161, 162, 163, 164, 196, 197, 199, 200]. MPI
is a proposal for the standardization of a message passing interface for distributed
memory parallel machines, with the aim of enabling program portability among dif-
ferent parallel machines. It just defines a message passing programming interface,
not a complete parallel programming environment. It does not provide any definition
for fault tolerance support and assumes that the computing environment is reliable.
Many implementations of the MPI standard are available, all based on a parallel vir-
tual machine composed by several connected heterogeneous computers. Each of these
computers executes a process used to control the exchange of messages among them.
Again, several parallel implementations of metaheuristics have been developed using
MPI, see e.g. [7, 23, 41, 76, 116, 132, 134, 136, 178, 183].

Finally, the increasing use of SMP clusters is leading to the generalized use of
programming with lightweight processes such as POSIX threads [33, 110] or Java
threads [150]. Threads are a general operating systems concept, not specifically re-
lated to parallel programming. However, due to their importance in providing support
for concurrent programming, and to their extensive use in many of the tools discussed
in other sections, their understanding is essential to a parallel programmer. Threads
communicate using the global memory allocated to the associated processes. Pro-
gramming with threads is specially useful in shared-memory machines, since in this
case the global variables model the shared memory to which all processors have access.
Smaller creation times and context swapping times lead to an improved superposi-
tion of communication and computation tasks along the execution time. The use of
threads is particularly suited to medium- and coarse-grained parallel applications. Re-
cently, the concept of threads has been extended to distributed-memory machines with
programming tools such as Cilk [167, 190], Charm++/Converse [30, 111, 112, 113],
Athapascan [49], PM2 [159], and Java threads [128], among others.

2.3. Types of parallelism and parallel programing models. There are two
basic types of parallelism that can be explored in the development of parallel programs:
data parallelism and functional parallelism [85, 121, 135, 144]. In the case of data
parallelism, the same instruction set is applied to multiple items of a data structure.
This type of parallelism can be easily implemented in shared memory machines. Data
locality is a major issue to be considered, regarding the efficiency of implementations
in distributed memory machines. In the case of functional parallelism, the program
is partitioned into cooperative tasks. Each task can execute a different code and all
tasks can run asynchronously. Data locality and the amount of processing within each
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task are important concerns for efficient implementations.

Independently from machine architecture and programming environment consid-
erations, we may distinguish two main parallel programming models: centralized and
distributed. In the centralized model, also called master-slave or client-server, data
are either handled by a specialized processor (the master) or stored in a shared mem-
ory. In the first case, the slaves communicate with the master to get work to be
done and to send results. The master is in charge of load balancing and may also
eventually perform computations. In the second case, the processors obtain the work
to be done from the shared memory, where they also store the results they obtain.
The distributed model is characterized by the absence of global data, either shared
or centralized. All data is local to each processor. Information is shared or made
global by the exchange of messages among the processors. SPMD (Single Program,
Multiple Data) is a model used for parallel programming on MIMD machines, based
on the distributed programming model, where the same code is executed on different
processors over distinct data. It has been widely used due to the ease of designing a
program that consists of a single code running on different processors [137, 160, 166].

The choice of the appropriate programming model strongly depends on the archi-
tecture of the target parallel machine where the implementation will run. With the
advent of clusters of SMP machines, we see an increase in the number of implementa-
tions based on a hybrid model, i.e., implementations using a centralized model within
each SMP machine, running under a distributed model with respect to the machines
in the cluster. We will see in the forthcoming sections that parallel implementations
of metaheuristics are usually based on either one of these models.

3. Speedup and efficiency. Given some problem P, a parallel algorithm Ap,
and a parallel machine M with q identical processors, we denote by TAp,M(p) the
elapsed time taken by algorithm Ap to solve problem P on machine M using p ≤ q
processors. We also denote by TAs

the time taken by the best (i.e., the fastest)
known sequential algorithm As to solve the same problem P on a sequential machine
whose processor is equivalent to those in the parallel machine M. Then, we define
the speedup sAp,M(p) of the parallel system defined by algorithm Ap and machine M
when p processors are used as the ratio

sAp,M(p) =
TAs

TAp,M(p)
.

We note that if the above definition is to be precise, then both the sequential al-
gorithm As and the parallel algorithm Ap are supposed to always find exactly the
same solution to problem P. Although this will not necessarily be the case for most
parallel implementations of metaheuristics, as discussed in Section 4, this definition
will also be used in this context on a less formal basis. We also notice that due to the
hardness of establishing the best sequential algorithm for general instances of some
problem, the value of TAs

in the above formula is often replaced and approximated by
TAp,M(1), i.e., the time taken by the parallel algorithm Ap using only one processor
of the parallel machine M.

The speedup measures the acceleration observed for the parallel algorithm running
on p processors, with respect to the best sequential algorithm. The efficiency ηAp,M(p)
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of the above parallel system is given by

ηAp,M(p) =
sAp,M(p)

p
.

It measures the average fraction of the time along which each processor is effectively
used. Ideal efficiency values are as much close to one as possible, i.e., each processor
should be used for as much time as possible in effective computations. However, some
anomalies characterized by efficiency values larger than one are observed in some
problem instances, usually due to wrong decisions taken by the sequential algorithm
(see Porto and Ribeiro [161] for some illustrative results in the case of a single-walk
parallel tabu search implementation, as well as e.g. [123, 124, 130, 131] for results and
discussions in the context of parallel branch-and-bound algorithms).

Several authors have recently addressed the efficiency of parallel implementations
of metaheuristics based on running multiple copies of the same sequential algorithm,
classified as independent multi-thread strategies in Section 4.2.1. A given target value
τ for the objective function is broadcasted to all processors which independently ex-
ecute the sequential algorithm. All processors halt immediately after one of them
finds a solution with value at least as good as τ . The speedup is given by the ratio
between the times needed to find a solution with value at least as good as τ , using
respectively the sequential algorithm and the parallel implementation with p proces-
sors. Some care is needed to ensure that no two iterations start with identical random
number generator seeds. These speedups are linear for many parallel implementations
of metaheuristics reported in the literature, i.e., they are proportional to the number
of processors. A typical example is described in [155], for a PVM implementation of
a parallel GRASP for the MAX-SAT problem. This observation can be explained if
the random variable time to find a solution within some target value is exponentially
distributed, as indicated by the following proposition [203]:

Proposition 1: Let Pρ(t) be the probability of not having found a given target solution
value in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ IR+,
corresponding to an exponential distribution, then Pρ(t) = e−ρt/λ.

This proposition follows from the definition of the exponential distribution. It
implies that the probability 1 − e−ρt/λ of finding a solution within a given target
value in time ρt with a sequential algorithm is equal to the probability of finding a
solution at least as good as that in time t using ρ independent parallel processors.
Hence, it is possible to achieve linear speedups in the time to find a solution within
a target value by multiple independent processors. An analogous proposition can be
stated for a two parameter (shifted) exponential distribution:

Proposition 2: Let Pρ(t) be the probability of not having found a given target solution
value in t time units with ρ independent processors. If P1(t) = e−(t−µ)/λ with λ ∈
IR+ and µ ∈ IR+, corresponding to a two parameter exponential distribution, then
Pρ(t) = e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two-parameter
exponential distribution. It implies that the probability of finding a solution within
a given target value in time ρt with a sequential algorithm is equal to 1− e−(ρt−µ)/λ,
while the probability of finding a solution at least as good as that in time t using ρ
independent parallel processors is 1 − e−ρ(t−µ)/λ. If µ = 0, then both probabilities
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Fig. 3.1. Superimposed empirical and theoretical distributions (times to target values measured
in seconds on a SGI Challenge computer with 28 processors)

are equal and correspond to the non-shifted exponential distribution. Furthermore,
if ρµ � λ, then the two probabilities are approximately equal and it is possible to
approximately achieve linear speedups in the time to find a solution within a target
value using multiple independent processors [8].

This behavior has been noticed in a number of metaheuristics. These include sim-
ulated annealing [70, 152]; iterated local search algorithms for the traveling salesman
problem [75], where it is shown that the probability of finding a sub-optimal solution
is given by a shifted exponential distribution, allowing for the time to find the first
local optimum; tabu search, provided that the search starts from a local optimum
[24, 191]; and WalkSAT [186] on hard random 3-SAT problems [108]. Recently, Aiex
et al. [8] have shown experimentally that the solution times for GRASP also have
this property, showing that they fit a two-parameter exponential distribution. Fig-
ure 3.1 illustrates this result, depicting the superimposed empirical and theoretical
distributions observed for one of the cases studied along the computational experi-
ments reported by the authors, which involved GRASP procedures applied to 2400
instances of five different problems: maximum independent set [80, 171], quadratic
assignment [129, 172], graph planarization [175, 177], maximum weighted satisfiabil-
ity [173, 174], and maximum covering [170]. The same result still holds when GRASP
is implemented in conjunction with a post-optimization path-relinking procedure [7].

4. Parallelization strategies. Even though parallelism is not yet systemati-
cally used to speed up or to improve the effectiveness of metaheuristics, parallel im-
plementations abound in the literature. Parallelization strategies considerably differ
from one technique to another. Although much of the initial efforts have been con-
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centrated on the parallelization of simulated annealing [2, 19, 100], they were quickly
followed by parallel implementations of genetic algorithms and tabu search. The first
classification of parallel tabu search algorithms was proposed by Voss [205], based on
the use of different search strategies and initial solutions. It was later generalized by
Crainic et al. [60, 63], by taking into account additional aspects such as communica-
tion organization and information handling. We describe an architecture-independent
classification considering the underlying parallel local search strategy, inspired from
that proposed in [203]. We also discuss in details some applications of these strate-
gies. Due to the high number of applications, we have chosen a few examples for each
strategy, among those we are more familiar with.

Metaheuristics based on local search may be seen as the exploration of the neigh-
borhood graph (or state space graph) associated with a problem instance, in which
nodes correspond to solutions and edges connect neighbor solutions. Each iteration
consists basically in the evaluation of the solutions in the neighborhood of the current
solution, followed by a move towards one of them, avoiding as much as possible to pre-
maturely stop in a local optimum and until no further improvement of the best known
solution can be achieved. The solutions visited along the search define a walk (or a
trajectory) in the neighborhood graph. Parallel implementations of metaheuristics
use several processors to concurrently generate or explore the neighborhood graph.
Since this graph is not known beforehand, parallelizations of metaheuristics are irreg-
ular applications, whose efficiency strongly depends on the appropriate choice of the
granularity of the algorithm and on the use of load balancing techniques.

We distinguish between two approaches for the parallelization of the local search,
according with the number of trajectories investigated in the neighborhood graph:

(1) Single walk: fine- to medium-grained tasks
(2) Multiple walks: medium- to coarse-grained tasks

a. independent search threads
b. cooperative search threads

In the case of a single-walk parallelization, one unique trajectory is traversed
in the neighborhood graph. The search for the best neighbor at each iteration is
performed in parallel, either by the parallelization of the cost function evaluation or by
domain decomposition (the neighborhood evaluation or the problem instance itself are
decomposed and distributed over different processors). A multiple-walk parallelization
is characterized by the investigation in parallel of multiple trajectories, each of which
by a different processor. We call by a search thread the process running in each
processor traversing a walk in the neighborhood graph. These threads can be either
independent (the search threads do not exchange any information they collect) or
cooperative (the information collected along each trajectory is disseminated and used
by the other threads).

4.1. Single-walk parallelizations. The goal of this strategy is basically to
speed up the sequential traversal of the neighborhood graph. The task whose execu-
tion is distributed among the processors may be the evaluation of the cost function at
each neighbor of the current solution or the construction of the neighborhood itself.
In the first case, speedups may be obtained without any modification in the trajec-
tory followed by the sequential implementation. In the second case, the neighborhood
decomposition and its distribution over several processors often allow more deeply
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examining a larger portion of the neighborhood than that examined by a sequential
implementation, which often uses neighborhood reduction techniques. Thus, the tra-
jectory followed in the neighborhood graph may be better guided in parallel than
in sequential mode, possibly leading to improved solutions. This approach may also
be useful whenever one wants to explore extended neighborhoods obtained by move
composition techniques such as ejection chains [93, 98].

The idea of distributed neighborhoods may be used to formalize parallelization
strategies based on domain decomposition. A strategy based on distributed neighbor-
hoods consists of two parts. Each iteration of the local search starts by broadcasting
the current solution to all processors, together with a domain decomposition which
defines the local neighborhoods (i.e., the portions of the complete neighborhood which
will be investigated by each processor). This decomposition is temporary and may
change from an iteration to another. In the second part, each processor finds and
proposes a move within its local neighborhood. These moves are combined or the
best move found within the local neighborhoods is selected, so that a new feasible
solution is generated. This process is repeated until the current solution cannot be
further improved.

Single-walk parallelizations have small or medium granularity and need frequent
synchronizations. They are extremely dependent on the application, in terms of neigh-
borhood structure and cost function definition. Their first applications appeared in
the context of simulated annealing and genetic algorithms. They preserve conver-
gence properties and are used in most parallel implementations of simulated anneal-
ing [2, 19]. Although domain decomposition strategies do not always provide sig-
nificant reductions in computation times, they are often used due to the need to
investigate large neighborhoods.

A single-walk parallelization based on neighborhood decomposition of a tabu
search algorithm for solving a task scheduling problem on heterogeneous processors
was proposed and discussed by Porto and Ribeiro [161, 162, 163]. The objective func-
tion to be minimized is the makespan of the parallel application, i.e., the time needed
for the last processor to halt. Each solution has O(n2) neighbors, which can be ob-
tained by reassigning each of its tasks to any other processor. Due to the precedence
constraints, the evaluation of the makespan of each solution has time complexity
O(n2), where n is the number of tasks. As mentioned by Fiechter [83], synchronous
parallelizations usually require extensive communication and therefore are only worth
applying to problems in which the computations performed at each iteration are com-
plex and time consuming. This is exactly the case for this problem, in which the
search for the best move at each iteration is a computationally intensive task running
in time O(n4). Thus, from this point of view, this sequential tabu search algorithm
is suitable for parallelization. Supposing p processors are available, the neighborhood
is partitioned by distributing to each processor k = 1, . . . , p− 1 the moves defined by
the transfer of the tasks numbered from (k − 1)�n/p	 + 1 to (k − 1)�n/p	 + �n/p	,
and to processor p the remaining ones. Some computational results obtained on an
IBM SP-1 system for problems with up to 400 tasks are reported in [161]. Different
PVM implementations, using either the master-slave or the SPMD parallel program-
ing models, showed that efficiencies close to the peak unit value (i.e., speedups of the
same order of the number of processors used in the parallel implementation) can be
obtained for large problems with up to p = 16 processors. Additional results reported
in [164] for larger task graphs modeling typical program structures (such as diamonds,
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divide-and-conquer, fast Fourier transform, Gauss decomposition, and partial differ-
ential equations) further illustrated the robustness of the best parallel strategy, which
uses the master-slave model with a dynamic load balancing strategy.

Parallelizations of tabu search based on neighborhood decomposition and exhaus-
tively searching for the best improving neighbor always find the same solution obtained
by the sequential algorithm. They allow for efficient load balancing strategies, since
the work to be done at each iteration is known beforehand and may be easily and
evenly distributed among the processors, leading to efficient parallel implementations
as that described in the above paragraph. However, if the parallelization involves a
local search algorithm in which we seek the first improving move at each iteration,
then load imbalance is more likely to deteriorate the implementation (because in this
case the overall computational effort associated with the investigation of the neigh-
borhood is not known beforehand). On the other hand, better solutions than those
obtained by the sequential algorithm can be found, since in this case the application
of several local searches based on finding the best solution over subsets of the neigh-
borhood may lead to a better solution than a single local search applied to the whole
neighborhood.

In the case of vehicle routing problems, parallel implementations of heuristics
based on domain decomposition, such as that proposed by Fiechter [83] for the trav-
eling salesman problem, start by partitioning the clients into subsets or clusters (ac-
cording with some criteria such as proximity measures or polar coordinates), under
the rationale that they should be part of the same route. Different processors acting
in parallel may construct sets of different routes appropriate for each subset of clients,
using constructive algorithms or metaheuristics. After synchronization, these routes
are combined to yield a full solution to the routing problem. Since the combination
requirements strongly limit the search for partial solutions and the quality of the final
solution, the latter can be further ameliorated by a diversification procedure running
at a higher level.

Aarts and Verhoeven [4, 203] make the distinction between single-step and multi-
ple-step parallelism within this class. In the case of single-step implementations, neigh-
bors are searched and evaluated in parallel after neighborhood partitioning. The al-
gorithm subsequently selects and performs one single move, as for the above described
parallelization of tabu search for task scheduling. In multiple-step parallelizations, a
sequence of consecutive moves in the neighborhood graph is made simultaneously.

4.2. Multiple-walk parallelizations. Most parallel implementations of meta-
heuristics other than simulated annealing follow multiple-walk strategies. Tasks exe-
cuted in parallel have a larger grain. Besides the search for speedups, improvements
in solution quality are also sought. The search threads can be independent or coop-
erative.

4.2.1. Independent search threads. We distinguish between two basic ap-
proaches:

• Exploration in parallel of multiple trajectories originating from different nodes
of the neighborhood graph: each walk starts from a different solution (or
with a different population, in the case of population methods). The search
threads may use the same local search algorithm or different ones, with the
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same parameter values or not. The trajectories may intersect at one or more
nodes of the neighborhood graph. If p processors are used, this strategy
corresponds to the successive execution of p sequential independent searches.

• Exploration in parallel of subgraphs of the neighborhood graph, obtained
by problem decomposition (e.g. by variable fixation): several subgraphs of
the neighborhood graph are explored in parallel, without intersection of the
corresponding trajectories. We have a total and permanent decomposition of
the neighborhood graph formed by complete solutions.

The first parallel implementations of tabu search based on this type of strategy
seem to concern the quadratic assignment problem and job shop scheduling [191, 192].
A parallel implementation of reactive tabu search [25] applied to the Steiner problem
in graphs appears in this book [23]. Each slave processor independently performs the
reactive tabu search algorithm, with a different parameter setting and from a differ-
ent initial solution generated by a randomized version of the shortest-path heuristic
of Takahashi and Matsuyama [195]. The master processor also handles a pool of
elite solutions, which is used by a post-optimization intensification procedure based
on path-relinking [94, 96] once all processors have finished their searches. Computa-
tional experiments have been performed on a cluster of 32 Pentium II-400 processors,
running under Linux and using the LAM implementation of MPI. The parallel imple-
mentation found optimal solutions for all OR-Library instances [26] in series C, and
for respectively 18 and 14 out of the 20 instances in each of series D and E. The maxi-
mum and the average relative errors with respect to the optimum among all instances
of this type were respectively 0.14% and 0.06%. For the incidence problems [72], this
strategy found optimal solutions for all instances with 80 nodes, and for respectively
96 and 82 out of each set of 100 instances with 160 and 320 nodes. The maximum and
the average relative errors with respect to the optimum among all instances of this
type were respectively 3.91% and 0.07%. The comparison of the results obtained by
the parallel implementation with those reported for the original sequential algorithm
shows that the former found improved results for all problem series and sizes, in par-
ticular for the largest instances. The main advantage of the parallel implementation
is due not only to solution improvements, but mainly to its robustness, since high
quality solutions are obtained without almost any effort in parameter tuning.

Rego and Roucairol [168] developed a parallel implementation of an ejection chain
procedure for the vehicle routing problem with bounds on vehicle capacities and route
lengths. To build an ejection chain with k levels, we first choose k clients not consec-
utively visited in the current solution. The first client takes the place of the second,
the second that of the third, and so on. The k-th client takes either the place of the
first (circular permutation) or is inserted into the best possible position between two
clients. The chain is initialized by the choice of the client in the first level. Next, one
computes iteratively for k ranging from one to a maximum level kmax the cost vari-
ation associated with the k-th level ejection chain and the best one is selected. This
move is performed in the context of a tabu search procedure, which visits infeasible so-
lutions using different strategic oscillation [95, 96] schemes. The authors implemented
an independent-thread strategy within a centralized algorithm on a network of four
Sun SPARC IPC workstations. Starting from the same initial solution communicated
by the master, each slave runs a tabu search algorithm with different parameters.
This strategy is combined with two single-walk parallelizations. The first one is based
on neighborhood decomposition. All possible closing moves of the ejection chain are
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evaluated in parallel by different processors, which search for the best position where
the last client ejected from the chain should be inserted. The second one is a natural
problem decomposition strategy based on a post-optimization procedure, which is ac-
tivated whenever tabu search cannot improve the current solution after some number
of iterations. Both single-walk parallelizations of the neighborhood search are quite
effective and allow for approximately halving the computation time of the multiple
independent-thread parallel algorithm. The latter, combining these different paral-
lelization strategies, improved the best known solutions by 0.22% in the average, over
15 classical examples with up to 199 clients.

Typical parallelizations of GRASP make use of multiple independent threads.
Basically, they consist in distributing over the p processors acting in parallel the total
number of iterations to be performed. Since the GRASP iterations are completely in-
dependent and very few information is exchanged, linear speedups are easily obtained
provided that no major load imbalance problems occur. The iterations may be evenly
distributed over the processors or according with their demands, to improve load bal-
ancing. This strategy was applied first to the quadratic assignment problem [154]
on a shared virtual memory KSR-1 machine. Parallel GRASP implementations of
independent-thread strategies for the Steiner problem in graphs [134, 136] and for a
matrix decomposition problem arising in the context of traffic assignment in satellite
systems [13, 14, 165, 176] are reported farther in Section 5.2.

Parallelizations of genetic algorithms using multiple independent search threads
correspond to the so called island model, without exchanges among the subpopulations
in each island [31, 119]. This approach was also applied in the parallelization of a
scatter search procedure for the quadratic assignment problem [65] on a small cluster
of PCs. Different scatter search algorithms using different parameter settings are
launched on the processors. Although some speedup has been observed, there was no
improvement in the solutions obtained by the sequential algorithm. This is explained
by the fact that small subpopulations within each processor freeze very soon, due to
the absence of communication among the processors.

Multiple-walk strategies based on independent search threads can be very easily
implemented. They lead to good speedups, provided the problem to be solved satisfies
the conditions of Propositions 1 and 2 in Section 3. Very robust implementations can
be obtained by using different parameter settings at each processor. Moreover, an
appropriate partitioning of the search space allows for its good coverage and avoids
redundant work. On the other hand, this model is quite poor and can be very easily
simulated in sequential mode, by several successive executions with different initializa-
tions, as a multistart algorithm. The lack of cooperation between the search threads
does not allow for the use of the information collected by different processors along
their trajectories. Since the trajectories may be quite long, load imbalance problems
are very likely to occur. Redundant work may be done if the search space is not
appropriately partitioned.

4.2.2. Cooperative search threads. This is the most general and also the
most promising type of strategy, demanding more programming efforts and imple-
mentation skills. The search threads exchange and share information collected along
the trajectories they investigate. This shared information is implemented either as
global variables stored in a shared memory, or as a pool in the local memory of a
dedicated central processor which can be accessed by all other processors. In this
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model, in which the search threads cooperate and the information collected along
each trajectory is used to improve the other trajectories, one expects not only to
speed up the convergence to the best solution but, also, to find better solutions than
independent-thread strategies within the same computation time. The most difficult
aspect to be set up is the determination of the nature of the information to be shared
or exchanged to improve the search, without taking too much additional memory
or time to be collected. We may cite elite solutions and their costs, best solutions
found, move frequencies, tabu lists, and population sizes, among others. This data
can give a broader view of the search space and may be used to drive diversification
and intensification procedures.

The multicommodity location-allocation problem with balancing requirements
[61] was one of the first applications addressed by cooperative-thread implementations
of tabu search. The algorithm is centralized, as in most parallelizations of this type.
The trajectories start from different initial solutions and communicate through a
central pool of elite solutions. In a similar domain, another application to the design
of capacitated multi-resource networks is described in [59]. Improved solutions and
smaller computation times are obtained for both applications, with respect to the
sequential algorithms.

The same approach was used by Aiex et al. [6] in the parallelization of a tabu
search algorithm for circuit partitioning, in the context of the pseudo-exhaustive log-
ical test of VLSI combinational circuits. Each search thread runs a variant of the
original sequential tabu search algorithm developed for this problem [16], using differ-
ent initial solutions and move attributes. The search threads communicate through
a central pool of elite solutions, implemented on a dedicated master processor which
handles pool management. An elite solution is defined as a local optimum which im-
proves the best solution already visited by the search trajectory in the same processor.
Each processor performing the search sends to the pool the elite solutions it has found.
A newly received solution is inserted into the pool or not, according with some crite-
ria based on the quality of the solutions already in the pool. A processor requests a
solution from the pool to restart its search whenever it is not able to improve its best
solution after some number of iterations. Numerical results using nine search proces-
sors on an IBM SP-2 machine are reported for benchmark circuits with up to 207
inputs, 3405 gates, 140 outputs, and 7552 links. Significant reductions of up to 30%
in the number of circuits in the partition illustrate the effectiveness of the parallel tabu
search procedure. Comparative results illustrating the efficiency of implementations
in PVM and Linda [43, 50, 185] are also discussed.

Parallelizations of GRASP using multiple cooperative search threads may be im-
plemented with a similar use of a pool of elite solutions and are described in Sec-
tion 5.2. The search threads cooperate through a path-relinking procedure [94, 96, 97],
combining elite solutions from the pool with the local optima found at the end of each
iteration (see also [7, 41, 42] for details).

Software packages such as EBSA [86] and ASA [109] with implementations of
simulated anealing may run on parallel machines. ParSA is a library developped
in C++ [116], containing multiple-walk strategies that allow the exchange of some
statistics. Some numerical results obtained for a scheduling problem in aerial trans-
portation with 4,000 flight segments and 130 aircrafts of ten different types lead to
improved solutions and speedups of 5.4 on eight nodes of an ATM cluster and of 17.5
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on a GC/PowerPlus machine with 32 nodes.

Cooperative strategies are also the most successful ones for the parallel imple-
mentation of genetic algorithms, in terms of both the number of applications and the
improvements in solution quality. Several libraries are also available, such as POO-
GAL [31] and PGAPack [17]. This type of parallelization is defined by an additional
operator of migration, which establishes the policy for solution exchanges: processors
involved in the exchanges, frequency of exchanges, and solutions exchanged, among
other information. Most cooperative parallel implementations of genetic algorithms
are based on the island model with communication. Each processor has its own sub-
population and solutions are exchanged with neighbor processors according with its
migration policy [31, 60]. Another variant consists for each solution to select a mate
in another processor within a specified neighborhood to perform a crossover. The
selection strategy may even involve another heuristic in the determination of the best
possible mate. Bubak and Sowa [31] used the island model in the implementation
of a parallel procedure for the traveling salesman problem on an HP/Convex Ex-
emplar SPP1600 machine with 16 processors and on a heterogeneous cluster formed
by Hewlett Packard (D-370/2 and 712/60) and IBM (RS6000/520 and RS6000/320)
machines.

Since ant system optimization can be viewed as the application of an iterated
greedy randomized algorithm, parallelization strategies are similar to those of GRASP.
Cooperation is guided by the pheromone trails. Each thread handles one ant and
the ants communicate through the pheromone trails. Typically, the ants are evenly
distributed over the processors. Since each ant acts independently of the others,
linear speedups can be obtained. In practice, however, the communication incurred
by the management of the pheromone trails as global information is an important
overhead. Since all ants use and update the pheromone trails, access to the latter is
clearly the key point for efficient parallel implementations. Taillard [193] dedicated the
management of the pheromone trails to a queen process, which is a very convenient way
to implement a parallel ant system following a master-slave scheme [199, 200]. The
bottleneck at the master can be dealt with by a hierarchical approach (i.e., a hierarchy
of masters) or by a colony approach similar to the island model in genetic algorithms.
Each colony is handled by a master processor, who manages its pheromone trails. The
information exchanged between the colonies can be either ants finding good solutions
or parts of the local pheromone trails to influence the searches performed by the other
colonies.

5. Applications. We review in this section parallel implementations of algo-
rithms derived from tabu search, GRASP, genetic algorithms, simulated annealing,
and ant colonies. This review is not intended to be either exhaustive, or comprehen-
sive, due to the enormous amount of work and publications in the area in recent times.
Instead, we try to give a broad view of applications and implementation studies of
parallel metaheuristics, referring the reader to the original references for additional
details and publications.

5.1. Tabu search. Tabu search is an adaptive procedure for solving combi-
natorial optimization problems, which guides an improvement heuristic to continue
exploration without being confounded by an absence of improving moves (see e.g. [91,
92, 96]). Tabu search goes beyond local search by employing a memory-based strat-
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egy for modifying the neighborhood of the current solution as the search progresses.
Depending on the search stage, this modified neighborhood may be an extension or a
restriction of the regular one. As a consequence, and contrary to the basic local search
scheme, moves towards solutions which deteriorate the cost function are permitted
under certain conditions.

Single-walk parallelizations of tabu search based on neighborhood decomposition
are reported in [51, 52, 62, 87, 161, 162, 163, 164, 191]. An interesting application in
chemistry to determine the best energy minimum for oligopeptides is reported in [143].
Different systems such as the Connection Machine CM-2, a network of transputers, an
IBM SP-1 machine, a SGI Origin 2000, a Meiko computer with 16 T-800 transputers,
and a network of Sun SPARC workstations have been used for these implementa-
tions. Computation times are smaller than those of their sequential counterparts and
almost-linear speedups are often obtained, but only minor improvements in solution
quality are observed for some instances. A parallel tabu search algorithm for the trav-
eling salesman problem based on domain decomposition [83] was already discussed in
Section 4.1.

Badeau et al. [20] implemented a parallel algorithm for vehicle routing with time
windows, combining single- and multiple-walk strategies. First, the master processor
distributes the problem data to slaves running initialization processes. Each of these
slave processors builds a different initial solution and returns it to the master. The
master combines the solutions (i.e., the routes) it received, so as to generate a unique
initial solution (formed by a set of routes) which is sent to slaves running decom-
position processes. Each of the latter decomposes its current solution into several
subproblems, which are then solved by variants of the same sequential tabu search
algorithm [194]. The solutions to the subproblems are merged into a complete solu-
tion and sent to the master, which combines the new routes to obtain an improved
solution. A new iteration of this procedure resumes, until some stopping criterion is
attained. Computational results for an implementation on a network of Sun SPARC
5 workstations are reported. Gendreau et al. [89] implemented a parallel tabu search
algorithm for real-time vehicle routing and dispatching following a similar master-
slave scheme. The master processor manages the adaptive memory, decomposes the
original problem into subproblems, and creates new starting solutions for the slaves.
The latter apply tabu search to improve their initial solutions. Although the threads
run independently, they communicate implicitly through the adaptive memory, which
stores good solutions and distributes them as new starting solutions. Computational
experiments have been performed on a network of 17 Sun UltraSPARC worksta-
tions, with communications between the processes being handled by PVM. As for
the first application described in this paragraph, the authors report that the paral-
lel tabu search implementation is competitive with the original sequential algorithm,
in terms of solution quality for the same amount of computational work, however
with much smaller elapsed times. A multiple-walk tabu search implementation for
job-shop scheduling using independent search threads is reported in [192]. Talbi et
al. [196] described an independent-thread multiple-walk parallel implementation of
tabu search applied to the solution of the quadratic assignment problem on a network
of heterogeneous workstations, based on the idea of adaptive parallelism to take into
account and explore variations in machine load and availability.

A multiple-walk parallel implementation of an ejection chain procedure [168] for
a vehicle routing problem with bounds on vehicle capacities and route lengths was
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already described in Section 4.2.1. Another parallel implementation of a tabu search
algorithm for vehicle routing is reported in [184]. The neighborhood structure is based
on simple customer shifts. All routes generated by independent search threads running
a tabu search heuristic are collected in a distributed pool. New initial solutions are
periodically obtained by a fast set covering heuristic applied to the routes in the pool.
Computational results on a Parsytec CC system with eight Motorola PowerPC 604
nodes are reported. We have already reported in Setion 4.2.1 the results obtained by
Bastos and Ribeiro [23] with an independent-thread multiple-walk parallel reactive
tabu search strategy, which is among the most effective and robust heuristics for the
Steiner problem in graphs. In the last two cases, we notice that although the threads
are independent, they cooperate either periodically or at a post-optimization phase
using a pool of good solutions.

Cooperative multiple-walk implementations are among the most promising tabu
search parallelization strategies, due to their effectiveness and robustness. In most im-
plementations, the processors start from different initial solutions and their searches
follow paths generated by different sequential tabu search algorithms. Communication
is performed exclusively through a central pool of elite solutions. Crainic et al. [61]
implemented several parallelizations of tabu search for the multicommodity location-
allocation problem with balancing requirements and discussed the impact on perfor-
mance and solution quality of several parameters. Crainic and Gendreau [59] have
also implemented a cooperative multiple-walk parallel tabu search for the fixed charge,
capacitated, multicommodity network design problem, which is shown to outperform
both the sequential algorithm and independent-thread multiple-walk strategies. A
similar approach was used by Aiex et al. [6] in the parallelization of a tabu search
algorithm for circuit partitioning, as described in Section 4.2.2. The same strategy
was recently applied in the solution of a labor constrained scheduling problem on a
Sun SPARC 1000 workstation with eight processors [46], which significantly improved
not only the solutions found by different sequential algorithms [47, 48], but also those
obtained by a parallel asynchronous team [201] for most of the benchmark instances.
Another possibility for cooperation could also consist in applying path-relinking to
solutions newly found by the search threads, using those in the pool of elite solutions
as targets, as in some parallel implementations of GRASP [7, 41, 42] described in
Section 5.2.

5.2. GRASP. A greedy randomized adaptive search procedure (GRASP) [78,
79, 82] is a multi-start algorithm, in which each iteration consists of two phases. In a
construction phase, a feasible solution is iteratively constructed, one element at a time,
by a greedy randomized procedure. Next, in a local search phase, a local optimum
in the neighborhood of the constructed solution is sought. The best solution over all
iterations is kept as the result.

A multiple-step single-walk parallelization of a GRASP for the maximum inde-
pendent set problem is described in [80], based on the decomposition of the solution
space. The problem to be solved is divided into several subproblems, which are dis-
tributed over the processors. Each processor performs a sequential GRASP on a
different subproblem, defined by conditioning the vertices appearing in the solution.
Almost-linear speedups are reported.

Most parallel implementations of GRASP are independent-thread multiple-walk
strategies, based on the distribution of the iterations over the processors. In gen-
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eral, each search thread has to perform Max Iterations/p iterations, where p and
Max Iterations are, respectively, the number of processors and the total number of
iterations. Each processor has a copy of the sequential algorithm and a copy of the
problem data. So as to avoid that the processors find the same solutions, each of them
must use a different sequence of pseudorandom numbers. One of the processors acts
as the master, reading and distributing problem data, generating the seeds which will
be used by the pseudorandom number generators at each processor, distributing the
iterations, and collecting the best solution found by each processor.

The parallelization of the GRASP developed by Prais and Ribeiro [165] for the
problem of traffic assignment in communication satellites is discussed in [13]. The au-
thor also described the implementation of another independent multiple-walk strat-
egy, in which each processor uses a different parameter value. Li et al. [129] re-
ported almost-linear speedups of approximately 62 using 64 processors for a parallel
GRASP for quadratic assignment. Other parallel implementations are described e.g.
in [149, 154, 155].

Martins et al. [134] implemented a parallel GRASP for the Steiner problem in
graphs. The construction phase is based on a probabilistic version of the distance
network heuristic [138]. A hybrid local search procedure is applied only to new, pre-
viously unexplored solutions. First, a local optimum with respect to a neighborhood
defined by insertions and eliminations of Steiner nodes is sought. This solution is
then submitted to another local search procedure, based on the exchange of key-
paths (i.e., paths connecting terminals or Steiner nodes with degree larger than two;
see also [133, 136, 204] for additional details). Parallelization is achieved by the dis-
tribution of 512 iterations over the processors, with the value of the parameter α
randomly chosen in the interval [0.0, 0.3] at each iteration. The algorithm was imple-
mented in C on an IBM SP-2 machine with 32 processors, using the MPI library for
communication. The 60 problems from series C, D, and E from the OR-Library [26]
have been used for the computational experiments, with respectively 500, 1000, and
2500 nodes. The parallel implementation obtained 45 optimal solutions over the 60
test instances and the relative deviation with respect to the optimal value was never
larger than 4%. Average elapsed times in seconds (measured in exclusive mode, i.e.,
with no other application simultaneously running in the same machine) for both the
sequential and parallel versions are reported in Table 5.1, while the speedups obtained
with 2, 4, 8, and 16 processeurs are illustrated in Figure 5.1.

Processors (times in seconds)
Series 1 2 4 8 16
C 32.77 17.77 10.12 6.10 4.08
D 154.12 85.19 50.36 31.68 22.08
E 1379.90 828.19 485.97 307.44 216.86

Table 5.1

Elapsed times in seconds for 2, 4, 8, and 16 processors (512 iterations)

Alvim and Ribeiro [13, 14] have shown that multiple-walk independent-thread
approaches for parallelization may benefit a lot from load balance techniques, when-
ever heterogeneous processors are used or if the parallel machine is simultaneously
shared by several users. In this case, almost-linear speedups may be obtained with a
heterogeneous distribution of the iterations over p processors in q ≥ p packets. Each
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Fig. 5.1. Average speedups on 2, 4, 8, and 16 processors

processor starts performing one packet of �Max Iterations/q iterations. Each slave
processor informs the master when it finishes its packet of iterations. The master
stops the execution of each slave processor when there are no more iterations to be
performed and collects the best solution found. Faster or less loaded processors will
perform more iterations than the others. In the case of the parallel GRASP imple-
mented for the problem of traffic assignment, this dynamic load balancing strategy
allowed reductions in elapsed times of up to 15% with respect to the times observed for
the static strategy, in which the iterations were uniformly distribued over the proces-
sors. The same approach was used in [136] for a preliminar parallel implementation
of the above described GRASP for the Steiner problem in graphs.

Canuto et al. [41, 42] used path-relinking as a post-optimization step to imple-
ment a multiple-walk parallel GRASP algorithm for the prize-collecting Steiner tree
problem. A similar approach was recently adopted by Aiex et al. [7] for the 3-index
assignment problem. In both cases, the first phase of the parallel implementation is
an independent multiple-walk strategy. Each processor, upon completing its itera-
tions, applies path-relinking to pairs of elite solutions stored in a pool. In the second
case [7], the parallel implementation globaly follows an independent-thread strategy,
since each processor keeps its own local pool of elite solutions. However, the strategy
used in the first case [41] leads to a cooperative procedure, since pairs of elite solu-
tions from a centralized unique central pool are distributed to the processors which
perform path-relinking in parallel. Computational results obtained with implemen-
tations using MPI and running on a cluster of 32 Pentium II-400 processors [41] and
on a SGI Challenge computer with 28 196-MHz MIPS R10000 processors [7] show
linear speedups and illustrate the effectiveness of path-relinking procedures used in
conjunction with GRASP to improve the quality of the solutions found by the latter.
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5.3. Genetic Algorithms. A genetic algorithm is a basic search procedure,
proposed and developed by Holland [106, 107]. It is based on the process of natural
evolution, following the principles of natural selection and survival of the fittest [141,
169]. First, a population of individuals (solutions) is created. Each individual is
evaluated according to a fitness function. Individuals with higher evaluations (i.e.,
more fitted) are selected to generate a new generation of this population. Crossover
is a genetic operation which combines parts from pairs of individuals to generate
new ones. Mutation is a unary genetic transformation that creates a new individual
by small changes applied to an existing one. New individuals created by crossover or
mutation replace all or part of the initial population. The process of evaluating fitness
and creating a new population generation is repeated until a termination criterion is
achieved.

Many different approaches to the parallelization of genetic algorithms can be
found in literature and they differ in many aspects. Basically, there are three types of
parallelization strategies [35, 37, 40, 56]: global (single-walk parallelization), diffusion
model, and island model (also called migration model by some authors). Fine-grained
(diffusion model) and coarse-grained (island model) parallelizations characterize co-
operative multiple-walk strategies.

Global (single-walk) parallelization strategies manipulate a single population, but
the individuals are distributed among several processors for fitness evaluation. The
trajectory followed by the parallel implementation is the same followed by the se-
quential algorithm. Almost-linear speedups may be obtained whenever the evalua-
tion of the objective function is significantly more computationally expensive than the
other steps (i.e., the genetic operators) of the algorithm. This approach was used by
Chalermwat et al. [53] in the context of an application to image registration, in which
parallelism is exploited for fitness evaluation. The authors reported very accurate
registration results for LandSat/Thematic Mapper images and the parallel algorithm
seemed to scale quite well on a 50-node Beowulf parallel cluster of Pentium Pro 200
MHz processors with a fat-tree network topology. Abramson and Abela [5] imple-
mented a global master-slave parallelization to solve a school timetabling problem
on a shared-memory Encore Max computer with 16 processors, in which the master
distributes the individuals to be evaluated by each slave processor. The master also
performs crossover and mutation operations to obtain a new generation. They re-
ported limited speedups, due to critical sections of the code not being parallelized.
Grefenstette [101] presented a master-slave parallel genetic algorithm for a system
that learns strategies. The master maintains a population of competing strategies.
At each iteration it generates a new population of strategies that are evaluated by the
workers. Each worker evaluates a strategy by simulating the execution of the assigned
strategy in a determined task environment. Observed speedups were closer to linear
for tasks requiring larger times for evaluating the strategies. Mühlenbein [148] de-
veloped a parallel genetic algorithm where each individual performs hill-climbing and
selects a partner for mating within its neighborhood. The author claimed better or
comparable solutions for very large instances of both the traveling salesman problem
and the graph partitioning problem, with respect to those found by other heuristics
such as multi-start hill-climbing and iterated hill-climbing.

Fine-grained parallelizations using the diffusion model are developed to take ad-
vantage of massively parallel computers. The population is divided into many small
subpopulations, usually formed by a single individual. Each subpopulation is mapped
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onto the processing elements. Selection and mating are only possible within a small,
restricted neighborhood defined by the topology of the massively parallel computer.
The use of local selection and reproduction rules leads to a continuous diffusion of indi-
viduals over the population [56]. Talbi and Muntean [198] proposed and implemented
a fine-grained algorithm on a T-800 transputer to solve a task mapping problem.
Near-linear speedups have been observed and solution quality improved when the size
of population was increased. Hill-climbing and a parallel simulated annealing algo-
rithm were also implemented to be compared with the parallel genetic algorithm. The
latter outperformed hill-climbing in terms of solution quality, with similar execution
times. Simulated annealing obtained similar results concerning solution quality, but
much greater elapsed times than the genetic algorithm. Kohlmorgern et al. [119]
presented some results concerning fine-grained parallel versions of both the island
and the diffusion models, applied to four problems: traveling salesman, flow shop
scheduling, scheduling with resource constraints, and uncapacitated facility location.
The initial population was partitioned into 1, 4, 16, 64, 256, and 1024 islands on a
MasPar MP-1 parallel machine with 16K processors organized as a two-dimensional
grid, one individual per processor. In the island model implementation, the processing
elements were partitioned into arrays forming the islands. Solutions are exchanged
with neighbor islands in one, two, three, or four directions, after every 15, 30, or 50
generations. The authors noticed that using a high number of islands leads in general
to better solutions, but with the burden of slower convergence. Good speedups in
terms of the number of processors have been observed. They have also implemented
another procedure, based on considering neighbors at different distances in the eight
possible directions of the MasPar MP-1’s X-net. The elitist strategy, where the very
best neighbor is always selected, found the best solutions.

Coarse-grained or island model algorithms are based on dividing the population
into a few subpopulations. Each subpopulation is assigned to a different proces-
sor, which performs a sequential genetic algorithm starting from this subpopulation.
Mating involves only individuals within the same subpopulation. Ocasionally, the
processors exchange individuals through a migration operator. Some important tech-
nical issues influence the implementation of this strategy, such as the size of the
subpopulations, the topology of the interprocessor connection network that defines
the exchange of individuals, and the migration rate (i.e, the number of individuals to
be exchanged during a migration phase and the frequency in which migration takes
place), see e.g. [35, 36, 157]. Some libraries to support the development of parallel ge-
netic algorithms based on the island model were already cited in Section 4.2.2. Bubak
and Sowa [31] developed an implementation for the traveling salesman problem us-
ing the island model, as described in Section 4.2.2. Belding [27] extended previous
work on distributed genetic algorithms [202], focusing migration rates and intervals.
A coarse-grained algorithm was developed and tested using the Royal Road class of
fitness functions. For the easiest functions, the sequential algorithm performed better,
while for the hardest functions the parallel algorithm was able to find better solutions.
Levine [127] implemented a genetic algorithm based on the island model for solving
the set partitioning problem. Tests were carried out on 128 nodes of an IBM SP-
1 and showed that additional subpopulations, which increase the global population
size, contributed to improve solution quality. Andre and Koza [15] described a coarse-
grained parallel implementation in C and PVM of a genetic algorithm on a network of
transputers. Experiments were made considering the problem of symbolic regression
of the Boolean even-5-parity function and using different migration rates. Paral-
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lelization delivered super-linear speedups and best results in terms of computation
times have been observed with an 8% migration rate. Another coarse-grained parallel
implementation of a genetic algorithm is described by Falco et al. [68], concerning
transonic airfoil optimization. Solutions are exchanged at the end of each iteration.
The algorithm was implemented using C and PVM. Computational experiments were
performed on a Convex Meta Series machine. Innovative designs of shockless airfoils
were obtained by this algorithm, with the authors reporting convergence within much
lower times than the sequential algorithms.

Cantu-Paz [36] described the implementation of two different parallel genetic al-
gorithms. The first uses a master-slave strategy, while the other uses a coarse-grained
model. The code was written in C++ and the PVM library was used for communi-
cation. The computational experiments were processed on a network of workstations
and the tests were performed using several fitness functions with different degrees of
hardness of the evaluation function. For the master-slave implementation, the results
showed that the efficiency of the parallel implementation increases with the hardness
of the evaluation function (as expected, since coarse-grained applications are more
suitable to overcome the communication overhead introduced by the master-slave
scheme). The same set of tests used for the coarse-grained algorithm showed that
there are not significant gains in terms of speedup when the subpopulations are com-
pletely isolated. They also showed that, when each process is fully connected and
migrations of individuals can occur between any pair of processors, the speedup in-
creases with the hardness of the evaluation function. The reason is that the reduction
in computation time brought by the use of multiple subpopulations is not enough
to overcome the increase in communication time for easy-to-compute functions. The
numerical results obtained for the coarse-grained implementation are quite similar to
the theoretical ones developed in [39] for predicting speedups of idealized bounding
cases of parallel genetic algorithms.

Some hybrid implementations use combinations of multiple subpopulations with
global or fine-grained methods. They form a hierarchy where the lower level consists
of a global or fine-grained parallel genetic algorithm that manipulates the subpopu-
lations, while a higher level implements a coarse-grained algorithm that distributes
subpopulations to the lower level threads and controls solution migration among them.
Bianchini and Brown [28] implemented four parallelization strategies of a genetic al-
gorithm for solving 0-1 integer programming problems: centralized, semi-distributed,
distributed, and totally distributed. These implementations were tested on a dis-
tributed memory environment consisting of a Transputer with eight 25 MHz T-805
processors, connected by 20 Mbits links. In the centralized method, the master sends
some individuals to slave processors, that compute a certain number of generations
and send their results back to the master, which then executes the replication al-
gorithm for the whole population. The semi-distributed method consists of clusters
of processors working with the centralized method and exchanging solutions among
them. The distributed method is the traditional coarse-grained strategy, where each
processor has its own subpopulation and exchanges of the best individuals occur from
time to time. Finally, the totally distributed implementation consists of the dis-
tributed method without any exchange of individuals, each processor executing its
own sequential algorithm over a subpopulation without communication. The authors
compared these four strategies among them and with a sequential algorithm. All
strategies presented similar results in terms of solution quality, with the centralized
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and semi-distributed ones achieving slightly better results. The speedup achieved
by the totally distributed strategy is almost linear, while the centralized and semi-
distributed implementations showed smaller speedups, due to bottlenecks created by
the master process.

Oussaidène et al. [153] presented a hybrid parallel implementation of a genetic
algorithm, in which multiple master-slave instances are associated with the subpopu-
lations. A subpopulation is assigned to each master. The individuals are distributed
over the slaves for the computation of their fitness values. The masters can exchange
individuals from their subpopulations from time to time. Computational experiments
with a parallel genetic algorithm code written in Java are reported in [90] for evolving
pharmaceutical drug molecules and digital circuits. This code runs under a batch
system called Condor, which manages the resources of a network of workstations and
assigns jobs for each workstation according to its load. The initial experiments in-
volved 31 jobs running independently, using the same input parameters but different
random seeds. The results for evolving drug molecules were fairly good, but only
trivial digital circuits were evolved.

The effect on the performance of different parallelization schemes of genetic algo-
rithms induced by variations of parameters such as the number of slaves, population
size, mutation rate, and mutation interval has been addressed by several authors, see
e.g. [10, 11, 37, 40, 187] among others.

5.4. Simulated annealing. Simulated annealing in the context of optimization
methods was introduced by Kirkpatrick et al. [115], see e.g. [3]. As the first meta-
heuristic to be parallelized, several papers describing parallelization efforts appeared
subsequently [1, 21, 22, 44, 45, 67, 77, 182, 208], most of them focusing cell placement
problems in VLSI layout and the convergence property proved by Geman and Ge-
man [88]. Tools such as ProperPLACE [114, 156] have been designed to solve these
problems with parallel implementations of simulated annealing.

Most of the first parallelizations followed the single-walk strategy and were based
on the ideas of move acceleration and parallel moves. In the first case, each move is
evaluated by breaking it up into several subtasks executed in parallel: selection of
a feasible move, evaluation of the associated cost change, acceptance or rejection of
the move, and global information update. Kravitz and Rutenbar [120, 182] described
one of the first examples of this type of parallelization of the simulated annealing
metaheuristic. In the case of parallel moves, each processor generates, evaluates, and
accepts (or not) a different move. Synchronization could be done after only one or after
several steps. However, due to the moves made by other processors, the cost function
evaluation is not error-free regarding the sequential execution. To overcome the risk of
inconsistencies, two approaches are proposed. The first considers only noninteracting
moves (see also [21, 22, 120, 182]), for example by using a master-slave scheme in which
the master monitors the cooling schedule by synchronizing the slaves at each step and
choses the accepted move [180]. In the second case, interacting moves are accepted
and some errors in the evaluation of the cost function are allowed [44, 45, 179]. This
approach is generally used in the framework of domain decomposition. In the case
of the cell placement problem, this corresponds to partitioning the cells into subsets,
handling each subset by one processor, and restricting moves in the same subset. This
decomposition framework is also used for the traveling salesman problem in [12, 77].
Other authors have addressed the impact of errors on the convergence properties, see
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e.g. [19, 73, 74, 100]. This second approach can be viewed as a strong diversification
process with respect to the sequential execution, which could explain the better quality
of the results so obtained. Since the synchronization strategy can be performed more
loosely between the processors, the reported speedups are better than those attained
with the first, error-free synchronous approach. A variant of the single-walk strategy
was proposed in [207] for the task assignment problem. The basic idea consists in doing
speculative computations by evaluating in parallel by two threads both possibilities,
acceptance or rejection, before the decision on the previous move has been completed.
This approach does not seem to yield very promising results.

Other coarse-grained parallelizations of simulated annealing are based on the use
of multiple Markov chains, which is equivalent to the multiple-walk strategy. Unlikely
the previously described parallelizations, each chain is allowed to perform cell moves
on the whole set of cells, and not only within subsets. The synchronous approach
was first introduced by Aarts et al. [1]. Let I denotes the number of iterations (i.e.,
the length of the Markov chain) executed by a simulated annealing process before
reaching equilibrium at temperature T . The parallel strategy consists in executing I/p
iterations at temperature T by each of the p threads, followed by the synchronization of
all threads to choose the best solution for the next temperature. However, this parallel
process presents two main drawbacks: the communication overhead to exchange global
information at each synchronization point and the lack of convergence properties, since
the length of the Markov chain is arbitrarily reduced. Lee and Lee [122, 125, 126]
presented some refinements to this approach, by introducing asynchronous strategies
for the graph partitioning problem. The interaction between threads executing the
traversal of the multiple walks is clearly the key point to efficiency in this approach.

Another implementation of the above approach, based on the execution of several
cooperative threads running simulated annealing at different temperatures of the se-
quential cooling schedule, was proposed by Miki et al. [142]. Solutions are randomly
exchanged between two consecutive temperatures of the cooling schedule. Applied to
the minimization of a standard test function from a continuous optimization prob-
lem, the results reported are better than those obtained by the sequential algorithm
in terms of both solution quality and computation time (speedup of approximately
four in an 8-node PC cluster). However, this approach does not seem to outperform
by too much the previous multiple-walks approaches. An empirical comparison of all
these approaches appears in [54, 55]. The readers are also referred to [19, 60, 100] for
other surveys about parallel simulated annealing and its hybrids.

5.5. Ant colonies. The ant system introduced by Colorni et al. [57] is presented
as yet another evolutionary method inspired from the nature. However, an ant system
applied to some combinatorial optimization problem can be viewed as an iterated
greedy randomized algorithm, guided by the pheromone trails. Indeed, each greedy
process correspons to an ant. The pheromone trails are used by the ants to bias the
choice at each step of the greedy randomized algorithm. Ant systems differ from each
other by the different strategies they use to handle the pheromone trails (updates and
evaporations) [57, 71].

Bolondi and Bondanza [29] and Bullnheimer et al. [32] proposed two very simi-
lar and strongly synchronized parallel ant systems applied to the traveling salesman
problem. At each parallel iteration, a set of ants is generated by the queen process
and each ant explores a tour in parallel. Once every ant has finished its exploration,
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they are synchronized and the pheromone trails are updated by the queen process
with the best tour they have found. Since the amount of computations performed by
each ant is quite small, the ants spent most of their time in synchronizations with
the queen process. For this reason, the authors also proposed in [32] a less synchro-
nized parallel ant system to reduce the synchronization time. The underlying idea
consists in implementing a 2-level hierarchical approach. Each of many first-level
masters handles in parallel but locally its own ant colony and pheromone trails, using
a sequential algorithm. After a given number of sequential iterations, the first-level
masters are synchronized by a second-level master process to globally update the
pheromone trails. Since synchronizations are mainly done at the second-level master,
this strategy showed less synchronization overhead than the previous one. The lo-
cal/global iteration ratio is crucial for this strategy, since load imbalance is very likely
to occur between the different first-level masters if this ratio is not correctly tuned.

Stützle [188] proposed a very simple parallel implementation, based on parallel
independent runs of the MAX-MIN ant system. The main interest of this work is to
check the property of Proposition 1, announced in Section 3. Since the execution time
taken by the sequential algorithm for solving the traveling salesman problem seems
to follow an exponential distribution, the relative good empirical results obtained in
terms of speedups and average solution quality seem to confirm the prediction of the
proposition.

The quadratic assignment problem is yet another application of parallel ant sys-
tems. Talbi et al. [199, 200] applied the master-slave approach to their ANTabu
system. The master handles the pheromone matrix and the best solution found. At
each iteration, the master broadcasts the pheromone matrix to all the slave ants.
Each slave constructs a complete solution, improves it using tabu search, and sends
the improved solution back to the master. Computational experiments on a network
of ten SGI Indy workstations running PVM are reported.

In addition to these applications to the more common traveling salesman and
quadratic assignment problems, we mention that ant systems have also been adapted
to the distributed dynamic routing problem [69] and, more recently, to automatic
programming [181].

6. Concluding remarks. The development of portable, efficient, and easy-to-
use software tools, together with the availability of a wide range of faster parallel ma-
chines with increasing reliability and decreasing costs, has brought parallel processing
into reality as an effective strategy for the implementation of computationally efficient
techniques for the solution of large, difficult optimization problems.

Parallel implementations of metaheuristics are a quite effective alternative for the
approximate solution of combinatorial optimization problems. They are usually ap-
plied in the context of complex applications, often allowing reductions in computation
times. Good speedups can be obtained with parallel non-cooperative strategies. How-
ever, parallel metaheuristics not only allow solving larger problems or finding improved
solutions with respect to their sequential counterparts, but parallelizations based on
cooperative multiple search threads also lead to more robust implementations, which
are likely to be the most important contribution of parallelism to metaheuristics. The
use of multiple processors involved in a broader search of the solution space, using
different srategies and parameter values, allows for larger diversity and deeper inves-



25

tigation of the solution space. As a consequence, improved solutions may be found,
very often even faster than in sequential mode. To summarize, parallelism often leads
to speedups for complex applications and to more robust algorithms, due to improved
mechanisms for search intensification and diversification.

We reviewed several applications of parallel implementations of metaheuristics
such as tabu search, GRASP, genetic algorithms, simulated annealing, and ant colonies
to a wide variety of hard combinatorial problems. Successful implementations of meta-
heuristics are often based on the appropriate combination of components of different
methods. In the same vein, the hybridization of different metaheuristics in the frame-
work of a cooperative parallel implementation (such as a genetic algorithm and several
tabu search threads cooperating by means of a pool of elite solutions generated by
the latter and improved by the former, or the construction phase of a GRASP pro-
cedure being used to create initial subpopulations for a parallel implementation of a
genetic algorithm based on an island model, among many other possibilities) is a very
promising research avenue.

The judicious choice of a programming environment is essential to the implemen-
tation of a parallel metaheuristic. Implementation issues may lead to programs that
perform very poorly, independently of the quality of the underlying parallel algorithm.
One possible source of problems is a mismatch between the proposed algorithm and
the programming model supported by a parallel machine or a development tool. It is
also common for the program, once implemented, to have a different behavior from
what was expected due to unforeseen communication and processing bottlenecks. Per-
formance evaluation tools have a fundamental role in solving this kind of problem,
since they can help the programmer in identifying the origin of such bottlenecks.
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