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Abstract: Total laryngectomy, a surgical treatment for extensive cancer of larynx, which

alters swallowing and respiration in patients, is followed up with a surgical voice restoration

procedure comprising tracheoesophageal puncture techniques with insertion of a ‘‘voice

prosthesis’’ to improve successful voice rehabilitation. However, microbial colonization is a

major drawback of these devices. Antimicrobials are usually used to prevent the colonization

of silicone rubber voice prostheses by microorganisms. However, long-term medication

induces the development of resistant strains with all associated risks and the development of

alternative prophylactic and therapeutic agents, including probiotics and biosurfactants, have

been suggested. The inhibition of microbial growth on surfaces can also be achieved by several

other techniques involving the modification of physicochemical properties of the biomaterial

surface or the covalently binding of antimicrobial agents to the biomaterial surface. An

overview of the different approaches investigated to date and future perspectives to reduce the

frequent replacements of voice prostheses in laryngectomized patients through microbial

biofilm retardation is presented and discussed. ' 2006 Wiley Periodicals, Inc. J Biomed Mater Res

Part B: Appl Biomater 81B: 358–370, 2007

Keywords: voice prosthesis; biofilm; prophylactic treatment; surface modifications; bio-

surfactants

INTRODUCTION

Different methods of rehabilitating the lost voice of laryngec-

tomized patients have been developed as the inability to speak

is the most disabling consequence of total laryngectomy. The

main procedure for speech rehabilitation of patients is the

insertion of silicone rubber voice prosthesis in a surgically

created tracheoesophageal fistula. Since the introduction of

the first reliable voice prosthesis by Singer and Blom in 1980,

the success rate of vocal rehabilitation after total laryngec-

tomy has improved considerably.1,2 There are different types

of voice prostheses: nonindwelling (removable) devices,

which have to be removed regularly for cleaning purposes,

such as the Blom and Singer1 and Panje,3 and the indwelling

devices, which remain in the stand for a longer period of

time, such as the Groningen button,4 Traissac et al.,5 Nijdam

et al.,6 Provox17 and Staffieri and Staffieri.8 Indwelling voice

prostheses are generally preferred by laryngectomees, as many

patients are inept due to lack of manual dexterity or reluc-

tance to handle the prosthesis. Therefore, nonindwelling voice

prostheses are especially allocated to motivated patients will-

ing to be autonomous. Moreover, in the United States, for

example where health service is expensive and patients have

to overcome large distances to reach a laryngologist, non-

indwelling voice prostheses are more frequently used than in

Western Europe.

The self-retaining low resistance Provox voice prosthesis,

developed in the Netherlands Cancer Institute in 19889 to-

gether with the Groningen button voice prosthesis are the

most commonly used devices in Europe at present. Table I

summarizes a comparison of the features, advantages, and

disadvantages for the most common Dutch voice prostheses.

All indwelling silicone rubber voice prostheses suffer

from microbial biofilm formation along the time, leading to

dysfunction and, eventually, replacement. Therefore, micro-

bial colonization and biofilm formation have been reported

to lead to salivary leakage through the prosthesis valve, sal-

ivary leakage around the prosthesis, deterioration of the

prosthesis, and increased airflow resistance due to valve

mechanism blocking.10,12

The aim of this paper is to review the current know-

ledge on such biofilm formation and the different appro-

aches developed so far to inhibit or minimize its formation
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through interference with microbial adhesion, growth, or

survival.

BIOFILM FORMATION ON VOICE PROSTHESES

Several strategies seem useful to prevent biofilm formation

on voice prostheses. In general, the main goal is to modify

the physicochemical properties of the surface in order to

reduce the force of attraction between microorganisms and

the surface of the biomaterial. For example, bacterial adhe-

sion on highly negatively charged biomaterials is low.15

Keogh and Eaton16 have shown that albumin and heparin

coatings decrease the adhesiveness of biomaterials. How-

ever, microorganisms always seem to be able to adhere to

some extent to solid materials. Moreover, when proteins

are present they can cover an antiadhesive biomaterial and

become the anchors for the adhesion of microorganisms.

Another approach to prevent biofilm formation is to in-

hibit the growth of the adhering microorganisms. This can

be achieved through the design of antibiotic releasing bio-

materials. A disadvantage of such an application is that it

only works for a few days to weeks, as the amount of anti-

biotic that is actually released is limited and does not

exceed 15% of the total amount incorporated.17 Moreover,

there is a serious problem with antibiotic releasing materi-

als, namely related to the low dose actually released, which

leads to the development of antibiotic resistant microbial

strains.18 Also, the use of new techniques for covalently

binding an active antimicrobial agent onto the biomaterial

surface has been reported as alternative. For example, poly-

mers with incorporated quaternary ammonium groups have

shown such antimicrobial activity in vitro.19–21

Characteristics of Biofilms on Silicone Rubber
Voice Prostheses

Microorganisms can colonize on surfaces of biomedical

devices in vivo, resulting in damage of the devices and

sometimes in infection. Voice prostheses are nonimplanted

devices in contact with the open air, thus in a nonsterile

environment and consequently prone to microbial coloniza-

tion. Voice prostheses are mainly made of medical grade

silicone rubber because of its excellent mechanical and

moulding properties. Although silicone rubber has long

been considered as an inert biomaterial, this notion has

been questioned22 because of the problems arising with sili-

cone-filled breast implants. Since then, it has been estab-

lished that silicone rubber devices have the tendency to

become quickly colonized by microorganisms,23,24 most

notably Candida species,25–29 resulting for example in fre-

quent replacement of indwelling voice prostheses.10,27,30

Neu et al.24 studied the biodeterioration of medical-

grade silicone used for voice prostheses. The yeasts in the

mixed biofilm formed on the prostheses were found to be

directly responsible for the material defects. The same

authors27 also investigated the taxonomy of the microflora

on explanted silicone rubber voice prostheses and reported

that most of the bacteria were mainly streptococci and the

yeasts were mainly Candida species.

Van der Mei et al.31 carried out an electron microscopy

investigation for the ingrowth features as seen in vivo for

Candida strains using a modified Robbins device. The

onset of the ingrowth features observed in vivo were shown

by all strains: sometimes in the form of a small group of

yeasts growing into a hole-like defect or, at other times, in

the form of clearly visible imprints on the silicone rubber,

left after detachment of adhering yeasts during preparation

of the samples for electron microscopy. Although Candida
species are believed to be responsible for microbial over-

growth on the voice prostheses, the role of bacteria has also

been emphasized.30,32–35

Ell et al.32 studied the microflora of 55 failed Groningen

buttons. In those where valve failure occurred due to leak-

age (n ¼ 25), there was a positive correlation between bio-

fouling in the lumen of the valve and the number of

streptococci cultured. In valves failing due to increased air

flow resistance, enterococci were particularly found on the

esophageal side of the voice prostheses. In another study,

Van Weissenbruch et al.30 identified 14 different yeast spe-

cies in association with other commensals of the oral flora.

The yeast strains were the most distinctive colonizers of

the prostheses representing 72.9% of the total number of

microorganisms, among which Candida albicans and Can-
dida glabrata were predominant. Staphylococcus aureus
was also found to be another predominant microorganism

in all cultures and it was often isolated in association with

Candida strains.30,34 Others, such as Rothia dentocariosa,
have been suggested as causative organisms for prosthesis

failure by Elving et al.36,37 Only R. dentocariosa and

S. aureus appear to positively influence adhesion to silicone

rubber of yeast species from saliva, especially of C. albi-
cans.35 Interestingly, this observation coincides with clini-

cal findings that the malfunctioning of silicone rubber

voice prostheses occurs more rapidly when either R. dento-
cariosa or S. aureus are present in the biofilm in combina-

tion with C. albicans, a form of positive synergistic

interactive relationship.

MODIFICATIONS OF SILICONE
RUBBER SURFACES

Voice prostheses are continuously exposed to saliva, food,

and drinks that together with the oropharyngeal microflora

contribute to valve failure and frequent exchange of the

implant.25 Therefore, the antifouling improvement of the

silicone rubber material is desirable. In case of laryngec-

tomized patients with voice prostheses (average lifetimes

less than two months) it is necessary to employ ‘‘anti-

biofilm’’ therapy from the time of insertion of the prosthe-

ses, preferably without using antimycotics or antibiotics

due to the risk of inducing resistant strains.38,39 Different

approaches have been undertaken to modify the silicone
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rubber surface as an obvious strategy to inhibit biofilm for-

mation and consequently to prolong the lifetime of voice

prostheses. Although voice prostheses will become covered

by a conditioning film of adsorbed salivary components

prior to adhesion of bacteria or yeasts, experiments in the

human oral cavity have demonstrated that the properties

of this conditioning film are determined by the material

itself.40,41 As a consequence, biofilm formation can be

influenced by adjusting the properties of the voice prosthe-

ses material or by surface modification.

A brief description of several methods used for silicone

rubber surface modifications is listed in Table II.

Metal Coating Techniques

Arweiler-Harbeck et al.42 aimed at creating a Candida-
resistant surface by either gold or titanium coating of

silicone voice prostheses using a new method of surface

modification by anodic vacuum arc coating. Although no

functional change in the properties of the prostheses and no

difference in the quality of speech were reported by

patients as a result of metal coating, further studies are

needed to show that metal coating with gold or titanium

lead to a retardation of Candida growth.

Balazs et al.43 reported that silver impregnation of poly-

vinyl chloride completely inhibited P. aeruginosa adhesion

and efficiently prevented colonization over a longer period.

However, despite the high antimicrobial activity of silver

coatings, silver is toxic if ingested, which is an obvious

drawback as a voice prosthesis is nothing more than a tra-

cheoesophageal shunt. Furthermore, silver produces a

rough, high-energy surface, which can promote plaque for-

mation and maturation.55

Dijk et al.44 treated Groningen button voice prostheses

with a colloidal palladium/tin solution to form a thin metal

coat and showed significant biofilm reduction on the heav-

ily palladium/tin-treated prostheses in comparision to the

untreated prostheses. Therefore, palladium/tin-treated sili-

cone rubber may potentially extend the lifetime of indwell-

ing voice prostheses.

Plasma Surface Treatment Technique

Polymeric surfaces can be efficiently modified by a glow-

discharge plasma treatment, in which a nonpolymer form-

ing plasma (i.e. plasma of argon, oxygen or nitrogen) is

used. Plasma treatment essentially modifies the composition

and structure of a few molecular layers at or near the sur-

face of the material without affecting the bulk properties.49

Everaert et al.45 investigated the effects of repeated ar-

gon plasma treatment of medical grade hydrophobic sili-

cone rubber on in vitro adhesion and growth of selected

bacteria and yeasts isolated from voice prostheses, as well

as in vivo biofilm formation. The results obtained for

in vivo experiments showed a reduction in microbial adhe-

sion and growth on silicone rubber. However, in vivo bio-

film formation on silicone rubber voice prostheses was

oppositely enhanced by hydrophilizing the silicone rubber

surface. Several reasons may explain such contradictory

results for in vitro and in vivo evaluation of the fouling

properties including the wide variability of strains occur-

ring in vivo, the different cell surface properties, and the

coadhesion phenomena between bacteria or yeasts in vivo,
which make in vitro evaluations difficult. Finally, the con-

ditions in the oropharyngeal cavity (in vivo) are highly

dynamic with regard to nutrient availability, temperature,

humidity, and shear forces.

Perfluoro-Alkylsiloxane Surface Treatment

Everaert et al.45 demonstrated that biofilm formation on

voice prostheses surfaces in vivo is governed by substratum

hydrophobicity. Therefore, the improved antifouling per-

formance of voice prostheses may be achieved through

increasing the hydrophobicity of the silicone rubber such as

by adsorption of fluorocarbons (Teflon) to the surface. Flu-

orocarbon surfaces are slightly more hydrophobic than sili-

cone rubber and were reported to hardly attract any dental

plaque during nine days of exposure to the dynamic condi-

tions of the human oral cavity.56 Additionally, the same

authors46 prepared reactive surfaces by argon plasma glow

discharge prior to anchoring fluoro-alkyltrichlorosilanes. A

promising aspect of chemisorbed long chain fluoro-alkylsi-

loxanes to silicone rubber is that they were found to reduce

microbial adhesion and to increase the percentage of

detachment of adhering microorganisms. Finally, these

authors47 also reported significant reductions over an evalu-

ation period of approximately two to eight weeks when

using chemisorption of long (8 fluorocarbon units) per-

fluoro-alkylsiloxane (PA) polymer chains due to the high

hydrophobicity and mobility of these chains.

Covalently Coupled Quaternary Ammonium
Silane Coatings

Another possible strategy to prevent voice prostheses micro-

bial colonization is by functionalization of the silicone rub-

ber surface with quaternary ammonium groups, widely

known as antimicrobial agents (disinfectants). Poly(metha-

crylates) with methyl or ethyl quaternary ammonium chlo-

ride side groups showed antimicrobial activity48,57,58 against

Gram-negative strains, although Gram-positive staphylococci

were little affected by these polymers.

Gottenbos et al.20 determined the antimicrobial activity of

3-(trimethoxysilyl)-propyldimethyloctadecylammonium chlo-

ride (QAS) coating on silicone rubber. Antimicrobial activity

of QAS-coated silicone rubber was demonstrated both

in vitro and in vivo. The application of positively charged

biomaterial surfaces to prevent infection is unusual as cur-

rent research has been mainly focused on designing nonad-

hesive surfaces. Positively charged surfaces are strongly

adhesive to the negatively charged bacteria; however, the

positive charge inhibited biofilm progression from the initial

adhesion stage toward growth stage since immobilized QAS
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molecules interact with the cell membranes of adhering bac-

teria, presumably causing membrane leakage and cell death.

Bulk Surface Modification Techniques

Bulk surface modification methods can be achieved through

blending, copolymerization, interpenetrating polymer net-

works, and functionalization. Among these mentioned bulk

modification techniques, laser-induced surface grafting and

sequential method for interpenetrating polymer network

preparation have the potential for local modification of a

specific section on a polymeric sample.

A simple procedure for synthesizing dense and homoge-

neous poly(methyl methacrylate) brushes on silicon sub-

strates is by atom-transfer radical polymerization process

starting from self-assemble monolayers of covalently anch-

ored initiators as described by Ramakrishnan et al.50 An

advantage of the system described in comparison to similar

systems on gold surfaces is that the polymers are anchored

very strongly to the SiO2 surfaces and survive even drastic

extraction conditions without loss of chains, thus enabling

its use in biomedical applications.

The Use of Surface Active Molecules (Biosurfactants)

Biosurfactants are microbial amphiphilic and polyphilic

polymers that tend to interact with the phase boundary

between two phases in a heterogeneous system, defined as

interface, interfering with the microbial adhesion and

detachment process. Biosurfactants may be oriented in dif-

ferent ways at the microbial cell surface. However, regard-

less of their orientation, if they are released from the cell

surface or excreted into the area between the cell surface

and interface, they will probably lead to detachment of bac-

teria from the interface.

Biosurfactants have become an important biotechnologi-

cal product for industrial and medical applications.59,60 Their

popularity as high value microbial products is related to their

specific action, low toxicity, relative ease of preparation, and

widespread applicability.61 They can be used as emulsifiers,

de-emulsifiers, wetting agents, spreading agents, foaming

agents, functional food ingredients, and detergents in various

industrial sectors.62 Several studies concerning the applica-

tions, production methods, and characterization of biosurfac-

tants are described in the literature.63,64

The role of biosurfactants as defense weapons in postad-

hesion competition with other strains or species has been

suggested for biosurfactants released by Streptococcus mitis
strains against Streptococcus mutans adhesion.65–67 Studies

have also shown that certain strains of bacteria, such as Lac-
tobacillus strains, commonly found in healthy urogenital

microflora, can protect the host against infection by inhibi-

ting uropathogens68–70 and biosurfactant production is one of

the mechanisms by which they are speculated to achieve

this.67,71 Velraeds et al.67,72 determined the role of these bio-

surfactants as anti-adhesive, nonantibiotic coatings on cathe-

ter surfaces. However, only one pathogen (E. faecalis) was

studied and various degrees of inhibition were observed with

the various Lactobacillus strains. Therefore, it should not be

expected that biosurfactants of different Lactobacillus strains
will produce equivalent results for any given pathogen.

Another well-known group of biosurfactant producers

are S. thermophilus strains isolated from heat exchanger

plates in the dairy industry.73 Busscher et al.51 examined

whether biosurfactant release by S. thermophilus might pro-

long the lifetime of indwelling silicone rubber voice pros-

theses. To this end, the adhesion of different yeast strains,

isolated from Groningen button voice prostheses, to sili-

cone rubber in the presence and absence of biosurfactant-

releasing S. thermophilus B cells was studied. The results

obtained provide evidence in support of the belief among

laryngectomized patients and some ear–nose–throat clini-

cians that dairy products containing active bacteria may

prolong the lifetime of indwelling silicone rubber voice

prostheses. A later study extended into microbial growth

phase also indicated a positive effect of the biosurfactant

released by streptococci on biofilm formation.52

Recently, we investigated the effect of biosurfactants

obtained from probiotic bacteria, L. lactis 53 and S. ther-
mophilus A, and also a rhamnolipid obtained from P. aeru-
ginosa DS10–129, on the adhesion of microbial strains

isolated from explanted voice prostheses to silicone rubber

with and without an adsorbed biosurfactant layer in a paral-

lel plate flow chamber.53,74,75 The results obtained showed

that the biosurfactants obtained from probiotic bacteria

were more effective in decreasing both the initial de-

position rates and the number of microorganisms adhering

after 4 h for all microorganisms, as compared to the rham-

nolipid. The biosurfactant obtained from L. lactis 53 was

effective in decreasing the initial deposition rates of S. epi-
dermidis GB 9/6, Streptococcus salivarius GB 24/9, and

S. aureus GB 2/1, allowing for a 90% reduction of the dep-

osition rates (j0, Figure 1). The deposition rates of R. den-
tocariosa GBJ 52/2B, C. albicans GBJ 13/4A, and

C. tropicalis GB 9/9 were far less reduced than other

strains tested. Interestingly, the biosurfactant from S. thermo-
philus A was more effective in decreasing the initial depo-

sition rate of R. dentocariosa GBJ 52/2B, which is one of

the bacterial strains commonly associated with premature

voice prostheses failure. Both biosurfactants reduced the

numbers of microorganisms adhering to silicone rubber

after 4 h by approximately 90% (n4h, Figure 2), except for

C. albicans GBJ 13/4A, C. tropicalis GB 9/9 and R. dento-
cariosa GBJ 52/2B that showed less reductions ranging

between 56 and 70%. Further work was developed54 to

assess the influence of these biosurfactants in the biofilm

formation on voice prostheses (Figure 3). Both biosurfac-

tants greatly reduced microbial numbers on prostheses and

also induced a reduction in the airflow resistance of voice

prostheses after biofilm formation. The use of biosurfactants

obtained from probiotic bacteria may represent a promising

strategy to prevent microbial colonization of silicone rubber

voice prostheses, thus prolonging their lifetime.
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PROPHYLATIC TREATMENT ON SILICONE
RUBBER VOICE PROSTHESES

It is well-known that biofilms are resistant to a range of anti-

fungal agents currently in clinical use, including amphotericin

B and fluconazole, and there appear to be multiple resistance

mechanisms and thus alternative prophylactic treatments are

being explored to prolong voice prostheses lifetime.

The Use of Probiotics

As antimicrobial resistance is becoming a source of con-

cern in modern medicine and health-improving functional

foods are gaining in popularity, the development of alterna-

tive prophylactic and therapeutic agents, including probiot-

ics, has been investigated.76 Lactobacilli are one of the

most well-known probiotic bacterial genera and play an im-

portant role in the maintenance of a healthy intestinal and

Figure 1. The initial deposition rates (j0) of the bacterial strains (Staphylococcus epidermidis GB 9/6,

Streptococcus salivarius GB 24/9, Staphylococcus aureus GB 2/1, and Rothia dentocariosa GBJ 52/
2B) and yeast (Candida albicans GBJ 13/4A and Candida tropicalis GB 9/9) isolated from explanted

voice prostheses on silicone rubber with and without an adsorbed biosurfactant layer. Biosurfactant

1, 2, and 3 were obtained from L. lactis 53, S. thermophilus A, and P. aeruginosa DS10–129, respec-
tively. Results are averages of triplicate experiments varying within 10–15% (ANOVA) and the stand-

ard deviation represented by error bars. Adapted from Rodrigues et al.53,74,75

Figure 2. The number of microorganisms adhering after 4 h (n4h) on silicone rubber with and without
an adsorbed biosurfactant layer. Biosurfactant 1, 2, and 3 were obtained from L. lactis 53, S. thermo-

philus A, and P. aeruginosa DS10–129, respectively. The codification of the microorganisms is pre-

sented in Figure 1. Results are averages of triplicate experiments varying within 10–15% (ANOVA)

and the standard deviation represented by error bars. Adapted from Rodrigues et al.53,74,75
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urogenital tract.71 Other bacterial genera known to have

probiotic effects are lactococci, enterococci, and strepto-

cocci. The mechanisms by which probiotic bacteria exert

their beneficial effects are not yet entirely understood.

Competitive adhesion,77,78 activation of the immune sys-

tem,79 and nutrient competition76 have all been suggested

as such mechanisms. Some strains are able to release bio-

surfactants, while others are known to have antimycotic

effects, produce lactic acid, or hydrogen peroxide.

Wagner et al.80 demonstrated that probiotic bacteria

have biotherapeutic potential for prophylaxis and therapy

against candidiasis. Free et al.76 assessed the influence of

probiotic bacteria (L. lactis 53 and S. thermophilus B) on

biofilm formation on both Groningen and Provox voice

prostheses in an artificial throat model. It was found that

the strains affect the biofilm formation on both types of

voice prostheses and increased lifetimes can be expected

from carefully designed food supplements containing these

bacteria. Alternatives for bacteria administration were pro-

posed, such as freeze-dried in sachets or in a dairy product.

The Effects of Dairy Products

Several studies were carried out to assess the beneficial

effect of different dairy products on the lifetime of voice

prostheses, as patient support groups for laryngectomy

patients have suggested that buttermilk consumption not only

prolongs the clinical usefulness of indwelling silicone rubber

voice prostheses but can also resolve early leakage of dys-

functioning valves.51,81–85 Busscher et al.81 simulated the

consumption of buttermilk in an artificial throat model and

found that it almost completely prevented biofilm formation

during the experimental period. The mechanism by which

the consumption of buttermilk interferes with biofilm forma-

tion can only be speculated. Buttermilk is a mildly acidic

dairy product with a pH of 4.5 due to the presence of lactic

acid produced by L. lactis and Streptococcus cremoris, and
contains a number of enzymes in addition to high calcium

content (110–120 mg per 100 g). L. lactis strains are known

to release antimycotic substances, while the proteins present

in buttermilk include casein, lactoglobulin, and immunoglo-

bulins, which may have detergent properties. Clearly, the

combined effect of all properties of buttermilk contributes to

the referred prevention of biofilm formation. Moreover, Free

et al.85 demonstrated that it is feasible to formulate a dairy

product based on probiotics that will strongly inhibit biofilm

formation on voice prostheses.

The Effects of Caffeinated Soft Drinks

The influence of caffeinated soft drinks on biofilm forma-

tion on silicone rubber voice prostheses was also investi-

gated in an artificial throat model34 and a reduced bacterial

prevalence in the biofilms to 1–5% of the control was

observed, while yeasts thrived in the biofilms. Free et al.34

suggested caffeine or a combination of a low pH and high

sugar content as possible causes. The relevance of the

results achieved for laryngectomized patients has to be

established in a clinical trial, which might be difficult

because of the multiple factors influencing biofilm forma-

tion on voice prostheses in vivo.

The Use of Antifungal Agents

A strategy frequently applied by otolaryngologists to solve

the rapid colonization of voice prostheses is oropharyngeal

yeast decontamination by using antifungal agents, despite

the fact that there is no compelling evidence that prescrip-

tion of antifungal agents will prolong the lifetime of voice

prostheses. Moreover, the prophylactic use of antifungal

agents contributes to the development of resistant strains.

Many efforts have been made to develop new antifungal

drugs, as well as to clarify their effects on the lifetime of

voice prostheses.14,25,39,86–91 Oropharyngeal yeast decon-

tamination using amphotericin B lozenges and buccal adhe-

sive slow-release tablets containing miconazole nitrate has

been applied by otolaryngologists25,39 to increase the life-

time of voice prostheses. In studies25 with Groningen but-

ton voice prostheses, the successful decontamination of the

oropharynx with amphotericin B lozenges (10 mg) four

times daily was also associated with a prolonged device life

and lower airflow resistances. One of the drawbacks found

in using this agent is the need for daily applications, lead-

ing to poor compliance by the patients. Bodey87 reviewed

the available antifungal drugs and described new imida-

zoles, such as itraconazole and fluconazole. Also, liposomal

preparations of amphotericin B were described as substan-

tially less toxic and more effective, clinical trials however

have yet to be carried out. Weissenbruch et al.39 conducted

a double-blind randomized trial among 36 laryngectomees

Figure 3. The percentage of viable bacteria and yeasts isolated

from the voice prostheses, with and without adsorbed biosurfac-

tants, after biofilm formation in the artificial throat. Both for bacteria
and yeasts, the number of organisms found after using PBS as a

control was set at 100%. Also included are the decreases in airflow

resistance caused by biofilms influenced by biosurfactants, com-

pared with the effects of PBS as a control. Biosurfactant 1 was
obtained from L. lactis 53 and biosurfactant 2 from S. thermophilus

A. All experiments were carried out in triplicate with separately cul-

tured strains. Adapted from Rodrigues et al.54
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to assess the influence of a buccal bioadhesive slow-release

tablet (10 mg) containing miconazole nitrate on the lifetime

of the Provox voice prosthesis. All patients colonized with

Candida strains and treated with miconazole showed a sig-

nificant decrease of colonization at the end of the study.

The airflow resistances were remarkably higher after two

months of follow-up in the placebo group. No local or

systemic adverse reactions to miconazole were observed

during this study. Patient compliance was acceptable ac-

cording to regular miconazole determination in saliva sam-

ples. The prostheses lifetime was significantly higher in

patients treated with miconazole even after one year of fol-

low-up. The use of a buccal bioadhesive slow-release tablet

containing an antimycotic agent proves to be an adequate

method of preventing fungal colonization and deterioration

of silicone voice prostheses.

The Use of Synthetic Salivary Peptides

Salivary dysfunction as a result of surgical therapy, radiation

therapy, aging, or medication is frequently a problem for

many laryngectomees. The low salivary secretion reduces the

amount of histatins in saliva, yielding better chances for

opportunistic microorganisms such as C. albicans, as histatins
contains fungicidal activity.92 Artificial salivary substitutes,

commonly used by xerostomic patients and sometimes by

laryngectomy patients, now mainly contain carboxymethyl-

cellulose, animal mucins, or xanthan, and such substances

constitute an excellent vehicle for antifungal agents.93 Syn-

thetic salivary peptides are promising antimicrobial agents,

which can possess bactericidal and fungicidal activities.94

These salivary peptides have not so far been associated with

the development of microbial resistance. Helmerhorst et al.94

reported a number of basic antifungal peptides, including

human salivary histatin 5, a designed histatin analog desig-

nated dhvar4, and a peptide from frog skin, PGLa, that are

active against amphotericin B-resistant C. albicans, C. krusei,
and Aspergillus fumigatus strains and against a fluconazole-

resistant C. glabrata. In addition, Elving et al.95 studied the

antimicrobial activity of different synthetic salivary peptides

derived from histatin against a variety of oropharyngeal

microorganisms isolated from explanted voice prostheses.

Designed histatin analogs designated dhvar4 and dhvar5 were

the only synthetic peptides with an antimicrobial spectrum

broad enough to cover the variety of oropharyngeal micro-

organisms found on voice prostheses.

Recently, Oosterhof et al.96 carried out experiments in

an artificial throat to determine the effectiveness of dhvar4

and dhvar5 on oropharyngeal biofilm formation. The

dhvar4 had no effect on mixed biofilms, while dhvar5 sig-

nificanly reduced the number of both bacteria and yeasts in

mixed biofilms. However, this reduction was not accompa-

nied by a reduction in airflow resistance, suggesting that

the integrity of the biofilm was not affected. This may be

due to the remaining exopolysaccharide (EPS) and connect-

ing slime threads within the biofilm, as the integrity of a

biofilm is determined by the EPS matrix rather than by the

number of organisms within. This was confirmed by the

observation that both ascorbic acid and N-acetylcysteine
induced similar reduction in the number of bacteria and

yeasts, probably due to their antioxidant natures. Treatment

with ascorbic acid did not result in a decrease in airflow re-

sistance, whereas treatment with the mucolytic N-acetylcys-
teine did. Perez-Giraldo et al.97 studied the influence of

various concentrations of N-acetylcysteine on the formation

of biofilms of different strains of S. epidermidis and found

a dose-related decrease in biofilm and slime formation. N-
acetylcysteine, therefore, is a promising chemical to disrupt

the integrity of voice prostheses biofilms, especially since it

can be swallowed and used over a long period without

adverse effects.

CONCLUDING REMARKS

The insertion of silicone rubber voice prostheses in a tra-

cheoesophageal shunt is generally considered to be the

main procedure for speech rehabilitation of laryngectom-

ized patients. These implants need to be replaced when

leakage through or around the prosthesis occurs, or when it

becomes difficult to produce tracheoesophageal speech due

to increased airflow resistance. A continuous exposure to

saliva, food, drinks, and oropharyngeal microflora contrib-

ute to rapid colonization of the prostheses by biofilms of

mixed bacteria and yeasts strains leading to failure and fre-

quent replacement. Achieving an antifouling improvement

for the silicone rubber material by the development of new

biomaterials or new antimicrobial agents is highly desira-

ble. This review describes the different approaches avail-

able to date and discusses future perspectives on solving

the voice prostheses drawbacks. When designing new bio-

materials, inhibition of microbial adhesion and growth

should be achieved by changing the physicochemical prop-

erties of the biomaterial surface or by covalently binding

antimicrobial agents to the biomaterial surface. Techniques

used to modify silicone rubber surfaces and prophylactic

treatments for silicone rubber voice prostheses have shown

varying effects in the inhibition of biofilm formation and

therefore in the lifetime of these prostheses. As antimicro-

bial resistance is a growing source of concern in modern

medicine, the development of novel alternative prophylactic

and therapeutic agents, including probiotics and other sur-

face active compounds such as biosurfactants are expected

to gain prominence in the future antifouling strategies.
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