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Abstract. In [17] we have shown how time-dependent optimal control for
partial di�erential equations can be realized in a modern high-level modeling
and simulation package. In this article we extend our approach to (state)
constrained problems. �Pure� state constraints in a function space setting
lead to non-regular Lagrange multipliers (if they exist), i.e. the Lagrange
multipliers are in general Borel measures. This will be overcome by di�erent
regularization techniques.

To implement inequality constraints, active set methods and barrier meth-
ods are widely in use. We show how these techniques can be realized in a
modeling and simulation package.

We implement a projection method based on active sets as well as a barrier
method and a Moreau Yosida regularization, and compare these methods by
a program that optimizes the discrete version of the given problem.

1. Introduction

In this paper we show how time-dependent optimal control problems (OCP) sub-
ject to point-wise state constraints can be solved using an equation based integrated
modeling and simulation environment (IMSE) like e.g. Comsol Multiphysics,
Pdetool, or OpenFoam.

We extend the approach from [17] where we considered time-dependent OCPs
without inequality constraints. There we focused on two possible methods to deal
with reverse time directions appearing in the optimality systems: A somehow �clas-
sical� iterative approach based on subsequently solving the forward state and the
backward adjoint equation and an alternative approach transforming the complete
optimality system into a coupled elliptic system by interpreting time as an addi-
tional space dimension. In this paper we focus on the latter approach.

Throughout this paper we consider optimal control problems

min j(y, u) =
θΩ

2
‖y(T )− yΩ‖2L2(Ω) +

θQ

2
‖y − yQ‖2L2(Q)(1)

+
κΣ

2
‖uΣ‖2L2(Σ) +

κQ

2
‖uQ‖2L2(Q)
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subject to the parabolic PDE

yt −∇ · (∇y) = βQuQ + f in Q

~n · ∇y + αy = βΣuΣ + g on Σ(2)

y(0) = y0 in Ω

and to the (lower) unilateral constraints1

(3) ya ≤ τy + λuQ a.e. in Q.

In the following, we refer to the parabolic PDE (2) as the state equation. We
consider only the case τ ≥ 0, λ ≥ 0 and τ + λ > 0. The setting τ > 0, λ > 0
implements mixed control-state constraints. For this class of problems, the existence
of Lagrange multipliers is often shown by Slater point arguments. Therefore, the
state is considered in the space of continuous functions. Due to parabolic regularity
theory this can only be expected in the case of one dimensional distributed controls
unless higher regularity of controls can be assumed. Even then, caused by the
fact that for �pure� state constraints the associated Lagrange multipliers are i.g.
Borel measures, regularization techniques can improve the behavior of numerical
algorithms, cf. [13], [8], or [1]. For constraints given on the same domain as the
control we can use the well investigated Lavrentiev-type regularization, see e.g. the
works [14] or [19]. In the case of boundary control and constraints given on the
space-time domain the Lavrentiev regularization cannot be applied. Here, some
di�erent regularization concepts have been developed, examples can be found in
[24] and [9] for elliptic problems and [18] for parabolic PDE control. Alternatively,
for distributed as well as for boundary controlled problems, the Moreau-Yosida
regularization suggested in [8] may be applied.

The structure and underlying theory of the optimal control problem should be
kept in mind when considering appropriate discretization schemes. In most FEM
packages and IMSEs an adequate implementation of regular measures is not possi-
ble. Of course, one can try to approximate measures by �nite elements or discretize
them by point-wise evaluations [5], but our aim is to implement optimality condi-
tions (and solve optimal control problems) without additional programming e�ort.
Therefore, measures should be avoided, and we will mainly consider regularized
problem formulations in our experiments, that o�er the additional bene�t that
Lagrange multipliers exist without any further restrictions.

In this paper, we investigate some methods to handle state constraints.
First, we use the regularization suggested in [18] in the parabolic boundary con-

trolled case and the classical Lavrentiev-type regularization as discussed in [14] in
the case of distributed control. The optimality system can in this case be imple-
mented via a projection formula by the max-function.

Secondly, we test some barrier methods to eliminate the point-wise state con-
straints. In [21], it is shown that under certain assumptions barrier methods do not
need any additional regularization if their order is su�ciently high and the solu-
tions of the state equations are su�ciently smooth. In this sense, barrier methods
regularize the problem �by default�. The integration of a path-following algorithm
into the framework established in [17] needs only minor changes in comparison to
the solution of problems without inequality constraints.

Another possible way to overcome the lack of regularity of Lagrange multipliers
is the Moreau-Yosida approximation of the Lagrange multipliers, cf. [8], which we
also apply to some examples.

1In this paper, we only consider unilateral constraints of lower type ya ≤ βy + γu. The theory
for upper constraints βy + γu ≤ yb is completely analogous.
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This paper is organized as follows: In Section 2 we specify the optimality condi-
tions and quote some results concerning the existence and uniqueness of a minimizer
for the given class of problems.

In the following Section 3 we introduce regularization techniques to avoid mea-
sures as Lagrange multipliers and ensure the existence of multipliers. In Section
4 we describe di�erent methods to handle inequality constraints algorithmically,
followed by the implementation of these algorithms in Section 5 using Comsol

Multiphysics as a concrete example for an IMSE.
In Section 6 some examples illustrate the properties of our approach.

2. Optimality conditions for problems with inequality constraints

Assumption 2.1. Let Ω ⊂ RN , N ∈ N, be a bounded domain with C0,1-
boundary ∂Ω if N ≥ 2, and a bounded interval in R if N = 1. Moreover, for
Q = Ω × (0, T ), Σ = ∂Ω × (0, T ) let functions f ∈ L2(Q), g ∈ L2(Σ), y0 ∈ C(Ω̄),
yQ ∈ L2(Q), and yΩ ∈ L2(Ω) be given. Further, we have real numbers α, βQ, βΣ,
and non-negative numbers θQ, θΩ, κQ, and κΣ. The constraint is a function in
C(Q̄) with y0(x) > ya(x, 0).

Note, that the following assertions hold valid if we replace the −∇ · ∇-operator
in (2) by a more general elliptic operator −∇ ·A∇y + a0y, where a0 ∈ L∞(Q), and
A = (aij(x)), i, j = 1, ..., N is a symmetric matrix with aij ∈ C1,γ(Ω), γ ∈ (0, 1),
that satis�es the following condition of uniform ellipticity: There is an m > 0 such
that

ξ>A(x)ξ ≥ m|ξ|2 for all ξ ∈ RN and all x ∈ Ω̄.

In the following we give a brief survey on known results concerning existence and
regularity of solutions of parabolic PDEs as well as on the existence of an opti-
mal solution of the control problem. Further, we specify the necessary optimality
conditions for the considered cases.
De�nition 2.2 We de�ne the solution space for the state equation (2) by

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) | yt ∈ L2(0, T, H1(Ω)∗)}.

Theorem 2.3. For any triple (βQuQ + f, βΣuΣ + g, y0) ∈ L2(Q)×L2(Σ)×L2(Ω)
the initial value problem (2) admits a unique solution y ∈ W (0, T ). There exists a
c > 0 such that

‖y‖W (0,T ) ≤ c
(
‖βQuQ + f‖L2(Q) + ‖βΣuΣ + g‖L2(Σ) + ‖y0‖L2(Ω)

)
holds true.

For the proof we refer to [26], [11], or [12].
Theorem 2.4. Let Ω be a bounded domain with C1,1-boundary. Further let

(βQuQ +f, βΣuΣ+g, y0) ∈ Lp(Q)×Lq(Σ)×L∞(Ω) be given. For every p > N/2+1
and s > N + 1, the weak solution of (2) belongs to L∞(Q) ∩ C([δ, T ] × Ω̄) for all
δ > 0. There is a constant c not depending on (uQ, uΣ, f, g), such that

‖y‖L∞(Q) ≤ c‖βQuQ + f‖Lp(Q) + ‖βΣuΣ + g‖Lq(Σ) + ‖y0‖L∞(Ω)

holds true. If y0 ∈ C(Ω̄), then y ∈ C(Q̄).
For a proof we refer to [20, Prop. 3.3] or [4]
Depending on the choice of the parameters κQ, κΣ, βQ, and βΣ the following

meaningful constellations are possible:

(1) distributed control: Let κΣ = 0, βΣ = 0, κQ > 0, βQ 6= 0, then u := uQ,
U := L2(Q)

(2) boundary control: Let κQ = 0, βQ = 0, κΣ > 0, βΣ 6= 0, then u := uΣ,
U := L2(Σ)
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(3) boundary and distributed control: Let κQ > 0, βQ 6= 0, κΣ > 0, βΣ 6= 0,
then u = (uQ, uΣ). U := L2(Q)× L2(Σ),

where U denotes the space of controls.
In our numerical experiments we will consider either distributed or boundary

controlled problems.
Theorem 2.5. Let Assumption 2.1. hold. For each of the cases 1�3, Problem

(1)�(3) has a unique solution u∗ ∈ U with associated state y∗ ∈ W (0, T ).
For a proof we refer to [23].
In order to formulate �rst order necessary optimality conditions, we rely on the

continuity of the optimal state. In contrast to elliptic PDEs here the necessity of
continuous states is a stronger restriction. In the case of boundary control, we have
only βΣuΣ + g ∈ L2(Σ), so that the assumption q > N + 1 of Theorem 2.5 is not
ful�lled for q = 2. In the case of distributed control, for space dimension N > 1 the
assumption p > N/2+1 is not ful�lled for p = 2. In both cases, we do not have the
necessary regularity of the state y. To obtain optimality conditions or Lagrange
multipliers at all, we have to claim that the optimal state belongs to C(Q̄), hence
we rely on the following assumption.
Assumption 2.6. Let �pure� state constraints be given. Then we demand:

Either N = 1 or the control is su�ciently regular, i.e. uQ ∈ Lp and uΣ ∈ Lq with
p and q su�ciently large.

Later we will see that regularization techniques will help to avoid this regularity
problem.

2.1. Control constraints. Setting τ = 0 and λ = 1, the mixed control-state
constraint (3) becomes a control constraint ya ≤ u.
Theorem 2.7. Let u∗ be the optimal solution to problem (1)�(3) with associated

optimal state y∗. The adjoint state p is the solution of the adjoint equation

−pt −∇ · (∇p) = θQ(y∗ − yQ) in Q

~n · ∇p + αp = 0 on Σ
p(T ) = θΩ(y∗(T )− yΩ) in Ω.

Further, u∗ satis�es the projection formula

u∗ =

 max{ya,−βQ

κQ
p} in Q if κQ > 0

max{ya,−βΣ
κΣ

p} on Σ if κΣ > 0.

The proof of this theorem can be found e.g. in the monograph [23]. The numerical
treatment of control constrained problems is widely discussed in the literature, cf.
[6], [2], [10], so we abstain from giving examples.

Although we do not speci�cally deal with purely control constrained problems,
these optimality conditions are the basis of the derivation of optimality systems in
the case of Lavrentiev-type regularized problems. cf. [15].

2.2. Pure state constraints. Setting λ = 0 and τ = 1, the constraint becomes a
pure state constraint ya ≤ y.
Theorem 2.8. Let u∗ be the optimal solution of problem (1)�(3) that ful�lls

the Assumption 2.6. with associated optimal state y∗ ∈ C(Q̄). Then there exist an
adjoint state p and a regular Borel measure µ = µQ + µΣ + µΩ, µ ∈ B(Ω̄× (0, T ]),
that together with u∗ and y∗ ful�ll the adjoint equation

−pt −∇ · (∇p) = θQ(y∗ − yQ)− µQ in Q

~n · ∇p + αp = −µΣ on Σ
p(T ) = θΩ(y∗(T )− yΩ)− µΩ in Ω,
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the gradient equation

0 =

{
κQu∗ + βQp in Q if κQ > 0

κΣu∗ + βΣp on Σ if κΣ > 0

and the complementary slackness conditions∫
Q̄

∫
(y∗ − ya) dµ(x, t) = 0

µ ≥ 0
y∗(x, t)− ya(x, t) ≥ 0 ∀ (x, t) ∈ Q̄.

For a proof we refer to e.g. [20, 4]. Note, that due to Assumption 2.1 we have
µ|Ω̄×{0} = 0 since y0(x) > ya(x, 0). Note again, that without assumptions on the
dimension N or the regularity of the optimal control, optimality conditions can-
not generally be shown. This can be overcome for instance by the regularization
techniques presented in the following sections. We will also see that then the regu-
larity of the multipliers can be improved so that the use of standard discretization
schemes in an IMSE is justi�ed.

3. Regularization of state constraints

3.1. Mixed control-state constraint. Let λ > 0 and τ > 0 be given. This mixed
control-state constraint can be seen as model-given or in the case of τ � λ > 0 as
regularization of pure state constraints by perturbation of the state constraint by a
small quantity of the control. This technique is known under the term Lavrentiev-

type regularization, cf. [14]. Without loss of generality, we scale the constraints
such that τ = 1, λ > 0.
Theorem 3.1. Let u∗ be the optimal solution of problem (1)�(3) with associated

optimal state y∗ ∈ W (0, T ). Then there exist an adjoint state p ∈ W (0, T ) and a
Lagrange multiplier µ = µQ ∈ L2(Q) such that the adjoint equation

−pt −∇ · (∇p) = θQ(y∗ − yQ)− µQ in Q

~n · ∇p + αp = θΣ(y∗ − yΣ) on Σ
p(T ) = θΩ(y∗(T )− yΩ) in Ω,

the gradient equation

0 =

{
κQu∗ + βQp in Q if κQ > 0

κΣu∗ + βΣp on Σ if κΣ > 0,

and the complementary slackness conditions∫
Q̄

∫
(y∗ + λu∗ − ya) µQ dxdt = 0

µQ ≥ 0 a.e. in Q

y∗ + λu∗ − ya ≥ 0 a.e. in Q

are satis�ed.

For a proof we refer to [15]. Note, that no additional assumptions on the control
or dimensions are necessary.
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3.2. Problem case: state constraints in the domain and boundary control.

One standard problem belonging to this class is the following:

min j(y, u) =
θQ

2
‖y − yQ‖2L2(Q) +

κΣ

2
‖uΣ‖2L2(Σ)(4)

subject to the boundary controlled PDE

yt −∇ · (∇y) = 0 in Q

~n · ∇y + αy = αuΣ on Σ(5)

y(0) = y0 in Ω

and to the point-wise constraints in the interior of the space-time domain

(6) ya ≤ y a.e. in Q

In that case we cannot generally expect existence of a Lagrange multiplier, not
even in the space of regular Borel measures. The standard Lavrentiev regularization
cannot be applied because the control u is not de�ned in Q. Here, the new approach
in [24] (for an elliptic PDE) or [18] (for a parabolic PDE) will help to overcome
this problem.
The source-term representation

The idea behind this regularization is to introduce an auxiliary distributed con-
trol v which is coupled with u by an adjoint equation, u = S∗v, where S denotes the
solution operator of the state equation and S∗ its adjoint. Here, w is the solution
of the adjoint equation and u its trace, cf. [18].

We replace (4)�(6) by the problem

min j(y, w, v) =
θQ

2
‖y − yQ‖2L2(Q) +

κΣ

2
‖αw‖2L2(Σ) +

ε

2
‖v‖2L2(Q)(7)

subject to the state equation

yt −∇ · (∇y) = 0 in Q

~n · ∇y + αy = α2w on Σ(8)

y(0) = y0 in Ω,

to the additional equation

−wt −∇ · (∇w) = v in Q

~n · ∇w + αw = 0 on Σ(9)

w(T ) = 0 in Ω

and to the state constraints with modi�ed Lavrentiev-type regularization

(10) ya ≤ y + λv a.e. in Q.

In [18] convergence for vanishing Lavrentiev parameters is shown if ε is chosen
according to ε = c0λ

1+c1 , c0 > 0 and 0 ≤ c1 < 1.
Theorem 3.2. Let (y∗, v∗, w∗) be the optimal solution of (7)�(10). Then there

exist adjoint states p, q ∈ W (0, T ), and a Lagrange multiplier µQ ∈ L2(Q) such
that the state and the adjoint equation

yt −∇ · (∇y∗) = 0 in Q

~n · ∇y∗ + αy∗ = α2w∗Σ on Σ
y∗(0) = y0 in Ω

−pt −∇ · (∇p) = θQ (y∗ − yQ)− µQ in Q

~n · ∇p + αp = 0 on Σ(11)

p(T ) = 0 in Ω,
6



the control and the second adjoint equation

−wt −∇ · (∇w∗) = −1
ε
q +

λ

ε
µQ in Q

~n · ∇w∗ + αw∗ = 0 on Σ
w∗(T ) = 0 in Ω

qt −∇ · (∇q) = 0 in Q

~n · ∇q + αq = α2 (κΣw∗Σ + p) on Σ(12)

q(0) = 0 in Ω,

the gradient equation

εv∗ + q − λµQ = 0 a.e. in Q,(13)

and the complementary slackness conditions

(14)

∫
Q

∫
(y∗ + λv − ya) µQ dxdt = 0

µQ ≥ 0 a.e. in Q
y∗ + λv∗ − ya ≥ 0 a.e. in Q

hold.
The proof is given in [18]. Here, the Lagrange multiplier is a regular L2-function

without additional assumptions. Note, that the equations (9) and (12) are of the
same type as the state equation (8) and the adjoint equation (11).

3.3. Moreau-Yosida regularization. The Moreau Yosida regularization, cf. e.g.
[8], replaces the state constraint by a modi�ed objective functional. We consider
only the case with state constraints given on the space-time domain Q. The problem
reads now

minj(y, u) =
θΩ

2
‖y(T )− yΩ‖2L2(Ω) +

θQ

2
‖y − yQ‖2L2(Q)

+
κQ

2
‖u‖2L2(Q) +

κΣ

2
‖u‖2L2(Σ)(15)

+
1
2γ

∫
Q

∫
(γ (ya − y) + µ̄Q)2+ dxdt

subject to the state equation (2). This method is referred as penalization, the last
integral in (15) is called a penalty term.

Here, µ̄Q is an arbitrary function that belongs to L2(Q) and γ ∈ R, γ � 1 is a
regularization parameter. We obtain the Moreau-Yosida regularized multiplier

µQ = max{0, µ̄Q + γ (ya − y)},
which is an object from L2(Q). Note that this regularization approach works with-
out additional PDEs even for boundary control problems.

4. Algorithms to handle state constraints

4.1. The projection method. The projection method replaces the complemen-
tary slackness conditions by a projection. This can be viewed as an implementation
of the well known active set strategy as a semi-smooth newton method, cf. [7]. In
this sense it is possible to show that the complementary slackness conditions (14)
are equivalent to

µQ = max {0, µQ + c (ya − λv∗ − y∗)} ,
7



for an arbitrarily chosen �xed c > 0. Equation (13) yields µQ = 1
λ (εv∗ + q) in the

boundary-controlled case. Choosing c = ε
λ2 > 0 as in [24], we obtain a projection

formula for the Lagrange multiplier

µQ = max
{

0,
1
λ

q +
ε

λ2
(ya − y∗)

}
a.e. in Q.(16)

Now, we have to solve an optimality system consisting of the PDEs (8), (11),
(9), and (12), and the projection equation (16). In Section 5.1 we present some
details of the implementation of this method in a Comsol Multiphysics-script.
Note, that for distributed control the approach leads to

(17) µQ = max
{

0,
1
λ

p +
κ

λ2
(ya − y∗)

}
a.e. in Q.

4.2. The Moreau Yosida regularization by Ito and Kunisch. From Section
3.3 we obtain the optimality system

yt −∇ · (∇y) = βQuQ + f in Q

~n · ∇y + αy = βΣuΣ + g on Σ
y(0) = y0 in Ω

−pt −∇ · (∇p) = θQ(y − yQ)− µQ in Q

~n · ∇y + αy = 0 on Σ
y(T ) = θΩ(y(T )− yΩ) in Ω

µQ = max{0, γ(ya − y)} in Q

0 =

{
κQu∗ + βQp in Q if κQ > 0

κΣu∗ + βΣp on Σ if κΣ > 0

where we choose µ̄Q ≡ 0. For a proof of the validity of the optimality system
and for further details see [8] for the elliptic case. We implement this method by a
semi-smooth Newton method in Section 5.1.

4.3. The barrier method. Barrier methods replace the inequality constraints by
adding an arbitrary barrier (or penalty) term to the objective functional.
De�nition 4.1.

For all q ≥ 1 and ν > 0 the function g(z; ν; q) : R+ → R ∪ {+∞} de�ned by

g(y; ν; q) :=

 −ν ln(y − ya) : q = 1
νq

(q − 1)(y − ya)q−1
: q > 1

is called barrier function of order q. The barrier functional is de�ned by

b(y; ν, q) :=
∫

Q

g(y; ν, q) dxdt.

We can now rede�ne our basic problems without any constraints. Let gi(zi; ν; q)
be barrier functions to the given inequality constraints. Then we eliminate all
constraints by de�ning the new problem

(18) min f(y, u) = j(y, u) + b(y; ν, q)

subject to (2) and (3). The presence of (3) is necessary because:

• if q = 1, the barrier function is not de�ned if y − ya < 0 on a subset of Ω
with measure greater zero.
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• if q > 1, g has �nite values on infeasible points, hence it is not a barrier
function.

Another way to handle this problem is introducing an indicator function with re-
spect to the feasible set, cf. [21].

First we observe that every pair (y, u) that holds f(y, u) < ∞ is feasible with
respect to the inequality constraints. The functional f is coercive, convex, and
lower semi-continuous. For ν → 0 this optimal control problem is equivalent to the
problem (1) with pure state constraints.

In our numerical tests we will use logarithmic barrier functionals. This choice is
based on [21, Lemma 6.1.] and the following remarks. By the assumed regularity
of the optimal state [21, Lemma 6.1.] provides the strict feasibility of the solution
(yν , uν) of (18). Then the objective is directional di�erentiable at (yν , uν) and the
following theorem holds:
Theorem 4.2. For �xed ν > 0 let uν be the optimal solution of Problem (18)

with associated optimal state yν . Then there exists an adjoint state p such that
the �rst order optimality conditions

−pt −∇ · (∇p) = θQ(yν − yQ)− ν

yν − ya
in Q

~n · ∇p + αp = 0 on Σ
p(T ) = θΩ(yν(T )− yΩ) in Ω,

and

0 =

{
κQuν + βQp in Q if κQ > 0

κΣuν + βΣp on Σ if κΣ > 0

hold. We use the last theorem to implement the path-following Algorithm 1.

Algorithm 1 Path-following

Choose ν0, 0 < σ < 1, and δ > 0.
Set k = 0.

Choose some initial values for yk, uk pk

while νk > eps
solve the optimality system

by Newton's method with initial value
(yk, uk, pk) up to an accuracy δ.

set νk+1 = νk · σ,
set k = k + 1;
end

Remark 4.3. For �xed νk [21, Theorem 4.1] provides a unique solution. To
�nd that solution, we have to solve the optimality conditions given by Theorem
4.2. In the spirit of [17], we want to do this by using an IMSE to solve the opti-
mality conditions, i.e. a system of non-linear coupled PDEs, by Newton's method.
Unfortunately, we have no information concerning the convergence radius of New-
ton's method, so we cannot ensure the convergence of the path-following method.
However, if we �nd a solution for some ν0, we can decrease the path parameter ν
by setting νk = σνk−1. In the worst case, this σ will be almost one. For further
details we refer to [25, 19], and [21].

4.4. Pros and cons of regularization. The Lavrentiev-type regularization dis-
cussed in Section 3.1, the regularization for boundary controlled problems with
distributed state constraints from Section 3.2, as well as the Moreau-Yosida regu-
larization lead to well-posed problems in numerous ways.
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• First of all, only functions of at least L2-regularity are involved in the
optimality systems. Therefore, we do not need special techniques to handle
measures in discrete systems.

• This may lead to an improvement of the numerical treatment, i.e. the
Lagrange multipliers can be discretized without additional e�ort.

• Moreover, Lagrange multipliers exist for arbitrary spatial dimensions with-
out additional assumptions on the optimal control.

On the other hand, some disadvantages have to be mentioned:

• Feasible solutions with respect to the mixed control state constraints ya ≤
y +λu are in general infeasible with respect to the original state constraint
ya ≤ y. This behavior is known under the term �relaxation of the state
constraints�.

• For boundary controlled systems, the source-term representation leads to a
system that contains two additional PDEs, hence the numerical e�ort grows
signi�cantly. The Moreau-Yosida regularization avoids this disadvantage.

• The choice of parameters is di�cult for all methods. One has to �nd a
balance between good smoothing of the Lagrange multiplier, an acceptable
violation of feasibility, and an improvement of the properties of the nu-
merical problems, e.g. the condition numbers of matrices, the number of
iterations, etc. For the Lavrentiev-type regularization, the results in [13]
suggest that the regularization parameter λ should be chosen between 10−5

and 10−3. Di�erent choices for parameters for the source-term representa-
tion and for the Moreau-Yosida regularization have been considered in [18]
for speci�c examples. The Robin-parameter α is chosen as suggested in [22],
the Tikhonov parameter κ is a �xed problem constant. We point out that
in our numerical experiments we do not study convergence with respect to
regularization parameters numerically. Instead we use �xed parameters.

5. Implementing the optimality systems

In this section we show how the optimality systems collected in the last section
can be implemented using an IMSE. We use the (commercial) program Comsol

Multiphysics. Our choice is mainly based on the fact that Comsol Multi-

physics provides both, a graphical user interface (GUI) and a scripting language
(Comsol script), which is very similar to Matlab. If required, it should be easy
to translate our programs into e.g. OpenFoam C++ codes.

Although the methods considered in the previous sections are applicable to a
wide range of problems, we will carry out our numerical tests on three speci�c
cases: A distributed control problem with observation of the state in the whole
space-time domain Q, a distributed control problem with observation at �nal time
T , and a boundary control problem with observation in Q.

Therefore we describe the codes for these speci�c problems with speci�cally given
data.

5.1. Distributed control. We begin by showing how distributed control problems
can be solved.
Projection method

For a Lavrentiev-type regularized state constrained OCP with distributed control
and βQ = θQ = 1, βΣ = θΩ = 0, κΣ = 0, we obtain the optimality system
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yt −∇ · (∇y∗) = u + f in Q

~n · ∇y∗ + αy∗ = g on Σ
y∗(0) = y0 in Ω

−pt −∇ · (∇p) = y∗ − yQ − µQ in Q

~n · ∇p + αp = 0 on Σ
p(T ) = 0 in Ω

κQu∗ + p− λµQ = 0 a.e. in Q(19)

(20)

∫
Q

∫
(y∗ + λu− ya) µQ dxdt = 0

µQ ≥ 0 a.e. in Q
y∗ + λu∗ − ya ≥ 0 a.e. in Q.

We solve this system using the projection method described in Section 4.1 as
one elliptic boundary value problem by interpreting the time as an additional space
dimension, for details cf. [17]. Note, that we eliminate the control by u = − 1

κQ
p +

λ
κQ

µQ. Also, (19) and (20) are equivalent to (17), cf. Section 4.1.

COMSOL script (as well as most other IMSEs) is based mainly on one data
structure here called fem which is an object of class structure. It contains all
necessary information about the geometry of the domain, the coe�cients of the
PDE, etc. If one has completely de�ned the fem structure, the problem can be
solved by one call of a PDE solver, e.g. by calling the solver for non-linear problems,
femnlin. The COMSOL script in Listing 1 solves a Lavrentiev-type regularized
state constrained problem by the projection method.

We now brie�y explain the script line by line since it will serve as the basis for
the following scripts. All codes of this section can also be found on the web-page

www.math.tu-berlin.de/Strategies-for-time-dependent-PDE-control.html

Remark 5.1.

In the following we will explain the code for Example 1, cf. Section 6. This means
in particular that not all functions from the general problem de�nition appear in
the programs. For instance, in our second example we have g = 0 in contrast to the
problem explained here. To avoid unnecessary function de�nitions we disregard all
functions and parameters that are identically zero.

First, we de�ne the geometry Q = (0, π)2 (line 1). To obtain a structured mesh
we initialize the mesh by meshinit(fem,'hmax',inf), line 2. It will be re�ned by
applying meshrefine �ve times, cf. lines 3�5.

For readability, we change the names of the independent variables to x and time

instead of the defaults x1 and x2 (line 6). We will describe the PDE in divergence
form (fem.form = 'general', cf. line 7).

The unknowns are renamed into y, p, mu, (defaults would be u1 u2 etc.), (line
8). We discretize y and p by quadratic �nite elements, whereas we use linear �nite
elements for mu, line 9.

In line 10, we set the Robin parameter alpha, the Lavrentiev parameter lambda,
and the Tikhonov parameter kappa. To formulate the PDE in an easy way we specify
the inline functions, y_a, y_d, g, and y0 containing the code that describes the
lower bound ya, the desired state yQ, the function g(t), and the initial value y0

(lines 11�26). Next, we assign the de�nition of the inlines to the fem.function

structure (line 27). In fact, this could also be done directly, e.g. by the assigments
11



fem . f unc t i on s {1} . type = ' i n l i n e ' ;
fem . f unc t i on s {1} .name = 'y_a(x , time ) ' ;
fem . f unc t i on s {1} . expr = 'min(− s i n ( x )∗ s i n ( time ) , −0 .5) '

Now we describe the PDE system given in divergence form ∇ · Γ = F , Γ =
(Γl,k)l=1...NU,k=1,...NE where NE is the number of partial di�erential equations
contained in the system . Note, that here NU = N + 1 and the operator ∇ is

de�ned by
(

∂
∂x1

, ..., ∂
∂xN

∂
∂t

)
. Further, F is a column vector of length NE.

Then, the boundary conditions read

−~n ·Gal = Gl +
M∑

m=1

∂Rm

∂yl
µm

Rm = 0.

The notation fem.equ.ga and fem.equ.f in Listing 1 refers to Γ and F , respec-
tively, and fem.bnd.r and fem.bnd.g correspond to Gl and Rm when de�ning the
PDEs and the boundary conditions.

In lines 28�29 we implement the PDEs. We de�ne Γ as cell array. Formal
multiplication of Γ by ∇ yields the Laplacian of y and p. Note, that the derivative
with respect to time is shifted into F . To complete the de�nition of the PDEs we
de�ne the RHS F including the derivative with respect to time, ytime and ptime.
ytime as well as yx and px are prede�ned operators. This is a major feature of an
IMSE.

In lines 30�32 we incorporate the boundary conditions. Note, that on Σ we
have the same boundary conditions for all PDEs, which is why we collect them
in boundary group number two, cf. line 30. On the (temporal) boundaries at
time=0 and time=pi we have di�erent conditions that we de�ne as di�erent Dirich-
let boundary conditions in group one (�rst column in the de�nition of fem.bnd.r
and fem.bnd.g) and in group three (third column in the de�nition of fem.bnd.r
and fem.bnd.g).

In case of true Robin boundary conditions

~n · (∇y) + αy = g

fem.bnd changes to g(time)-alpha*y.
At last, we have to build the structure fem.xmesh that contains all necessary

data to solve the PDEs (line 33). To obtain an initial solution for the adaptive
nonlinear solver adaption we call the linear solver femlin, cf. line 34.

We solve the problem by one call of the adaptive solver adaption supplying the
solution

12



of femlin as an initial solution (line 35). Finally, in line 36 we visualize the solution
y.

1 fem . geom = rec t2 (0 , pi , 0 , p i ) ;
2 fem . mesh = meshin i t ( fem , ' hmax ' , i n f ) ;
3 f o r k = 1 : 5 ,
4 fem . mesh = meshre f ine ( fem , ' Rmethod ' , ' r egu la r ' ) ;
5 end
6 fem . sdim={'x ' ' time ' } ;
7 fem . form = ' genera l ' ;
8 fem . dim={'y ' 'p ' 'mu' } ;
9 fem . shape=[2 2 1 ] ;
10 fem . const={'alpha ' ' 0 ' ' kappa ' ' 1 e−3 ' ' lambda ' ' 1 e−3 '};
11 f cn s {1} . type=' i n l i n e ' ; f c n s {1} .name='y_a(x , time ) ' ;
12 f cn s {1} . expr='min(− s i n ( x ) ∗ s i n ( time ) ,−0.5) ' ;
13 f cn s {2} . type=' i n l i n e ' ; f c n s {2} .name='y0 (x ) ' ;
14 f cn s {2} . expr = '0 ' ;
15 f cn s {3} . type=' i n l i n e ' ; f c n s {3} .name='g ( time ) ' ;
16 f cn s {3} . expr=' s i n ( time ) ' ;
17 f cn s {4} . type=' i n l i n e ' ; f c n s {4} .name='yd (x , time ) ' ;
18 f cn s {4} . expr='−(1+pi−time ) ∗ cos ( x )−max(0 , s i n (x ) ∗ s i n ( time ) −0.5)−s i n ( x ) ∗

s i n ( time ) ' ;
19 f cn s {5} . type=' i n l i n e ' ; f c n s {5} .name='ud(x , time ) ' ;
20 f cn s {5} . expr='− s i n ( x ) ∗( cos ( time )+s i n ( time ) )+1000∗( pi−time ) ∗ cos ( x ) ' ;
21 f cn s {6} . type=' i n l i n e ' ; f c n s {6} .name='y_ex(x , time ) ' ;
22 f cn s {6} . expr='− s i n ( x ) ∗ s i n ( time ) ' ;
23 f cn s {7} . type=' i n l i n e ' ; f c n s {7} .name='u_ex(x , time ) ' ;
24 f cn s {7} . expr='− s i n ( x ) ∗( cos ( time )+s i n ( time ) ) ' ;
25 f cn s {8} . type=' i n l i n e ' ; f c n s {8} .name='p_ex(x , time ) ' ;
26 f cn s {8} . expr= '( pi−time ) ∗ cos ( x ) ' ;
27 fem . f unc t i on s=f cn s ;
28 fem . equ . ga={ { {'−yx ' '0 '}{ '−px ' ' 0 ' } { ' 0 ' ' 0 ' } } } ;
29 fem . equ . f={{'−ytime−1/kappa∗p+ud(x , time )+lambda/kappa∗mu' ' ptime+y−yd (x

, time )−mu' ' lambda∗mu−max(0 ,1∗p−kappa∗ud(x , time )+kappa/lambda ∗(y_a(
x , time )−y ) ) ' } } ;

30 fem . bnd . ind = [1 2 3 2 ] ;
31 fem . bnd . r = { { 'y−y0 (x ) ' ' 0 ' 'mu' } ; { ' 0 ' ' 0 ' 'mu' } ; { ' 0 ' ' p ' 'mu' } } ;
32 fem . bnd . g = { { '0 ' ' 0 ' ' 0 '} ;{ ' − alpha ∗y+g ( time ) ' '− alpha ∗p

' ' 0 ' } ; { ' 0 ' ' 0 ' ' 0 ' } } ;
33 fem . xmesh = meshextend ( fem ) ;
34 fem . s o l = feml in ( fem ) ;
35 fem = adaption ( fem , ' out ' , ' fem ' , ' i n i t ' , fem . so l , ' ngen ' , 1 , ' Maxiter

' , 5 0 0 , ' Hnlin ' , ' o f f ' , ' Ntol ' , 1 e−6 ) ;
36 po s tp l o t ( fem , ' t r i da ta ' , ' y ' , ' t r i z ' , ' y ' , ' t i t l e ' , ' y ' )

Listing 1

A distributed control problem with observation in Ω at time T can be realized
by the same code if the de�nition of the adjoint equation is changed as follows:

fem . eqn . f ={ {'−ytime−1/lambda∗p ' . . .
' ptime−mu ' . . .
'mu−max(0 ,1/ lambda∗p+kappa/lambda^2∗(y_a(x , time )−y ) ) '

}} ;
fem . bnd . r = { { 'y−y0 (x ) ' ' 0 ' 'mu' } ;

{ '0 ' ' 0 ' 'mu' } ;
{ '0 ' 'p−y+y_d(x , time ) ' 'mu' } } ;

Remark 5.2.
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In the de�nition of fem.eqn.f we use the maximum function to implement the
projection. This is not a direct call of the function max, but a symbolic de�nition.
Comsol Multiphysics evaluates these lines as symbolic expressions and they are
also derived symbolically. Comsol Multiphysics handles the non-di�erentiable
max function by approximating it by a smoothed version of max. On the other hand,
a direct implementation of a smooth maximum function is possible, for example by
using the identity

max(x1, x2) =
x1 + x2 + |x1 − x2|

2

=
x1 + x2 + sign(x1 − x2) · (x1 − x2)

2
and replacing sign by a smoothed signum function flsmsign. The de�nition of
fem.eqn.f reads now equivalently

fem . equ . f = { {'−ytime−1/kappa∗p ' . . .
' ptime−mu ' . . .
'mu−0.5∗((1/ lambda∗p+kappa/lambda^2∗(y_a(x , time )−y ) )
+f l sms i gn (1/ lambda∗p+kappa/lambda^2∗(y_a(x , time )−y ) , 0 . 0 01 )
∗(1/ lambda∗p+kappa/lambda^2∗(y_a(x , time )−y ) ) ) ' }} ;

Moreau-Yosida regularization

For implementing the Moreau Yosida regularization for distributed control, cf.
Sections 3.3 and 4.2 , we have to adapt fem.equ.f:

fem . equ . f = { {'−ytime−alpha^2/kappa∗p ' . . .
' ptime−mu+y−y_d(x , time ) ' . . .
'−mu+max(0 ,gamma∗( ya (x , time )−y ) ) ' } } ;

and the de�nition of the boundary conditions in fem.bnd.r and fem.bnd.g:

fem . bnd . r = { { 'y−y0 (x , time ) ' ' 0 ' ' 0 ' } ;
{ '0 ' ' 0 ' ' 0 ' } ;
{ '0 ' 'p ' '0 '}}

fem . bnd . g = { { '0 ' ' 0 ' ' 0 ' } ;
{ '0 ' ' 0 ' ' 0 ' } ;
{ '0 ' ' 0 ' '0 '} } ;

Barrier method

In Theorem 3.3. we obtain: If a control uν is optimal, and yν is the associated
optimal state then the state equation

(yν)t −∇ · (∇yν) = (uν)Q + f in Q

~n · ∇yν + αyν = g on Σ
yν(0) = y0 in Ω

the adjoint equation

−pt −∇ · (∇p) = (yν − yQ)− ν

yν − ya
in Q

~n · ∇p + αp = 0 on Σ
p(T ) = 0 in Ω,

and the gradient equation

p + κQuν = 0 a.e. in Q

are satis�ed.
Again, we can replace the control by the adjoint p using the gradient equation

κQuν + p = 0 a.e. in Q. We introduce an auxiliary unknown as an approximation
14



on the Lagrange multiplier µν =
νq

(yν − ya)q
. Now we have the additional relations

µν(yν−ya)q = νq, µν > 0, and (yν−ya)q > 0 a.e. in Q. In the following excerpts of
the Comsol Multiphysics-script we show how this system is implemented using
a complementary function of Fischer-Burmeister type:

FFB(y, µ) := y − ya + µ−
√

(y − ya)2 + µ2 + 2ν.

fem . equ . ga = { { {'−yx ' '0 '}
{'−px ' '0 '}
{ '0 ' '0 '} } } ;

fem . equ . f = { {'−ytime−1/kappa∗p ' . . .
' ptime−mu+y−y_d(x , time ) ' . . .
' ( y−y_a(x , time ) )+mu−s q r t (mu^2+. . .
(y−y_a(x , time ) )^2+2∗nu) '} } ;

% boundar ies : 1 : t =0 ,2:x=pi , 3 : t =5 ,4:x=0
fem . bnd . ind = [1 2 3 2 ] ;
% boundary cond i t i on s :
fem . bnd . r = { { 'y−y0 (x ) ' ' 0 ' 'mu' } ;

{ '0 ' ' 0 ' 'mu' } ;
{ '0 ' 'p ' 'mu' } } ;

fem . bnd . g = { { '0 ' ' 0 ' ' 0 ' } ;
{ '0 ' ' 0 ' ' 0 ' } ;
{ '0 ' ' 0 ' '0 '} } ;

The implementation of the heart of the program, the path following loop, is given
by

fem = adaption ( fem , ' ngen ' , 1 , ' Maxiter ' , 5 0 , ' Hnlin ' , ' on ' ) ;
nu0=1e−1;
whi l e nu0>0.1e−8,

nu0=nu0 ∗ 0 . 5 ;
fem . const {4} = num2str ( nu0 ) ;
fem . xmesh = meshextend ( fem ) ;
fem = femnl in ( fem , ' i n i t ' , fem . so l , . . .

' out ' , ' fem ' , ' Hnlin ' , ' o f f ' , ' Maxiter ' , 5 0 ) ;
end ;

We choose eps = 10−8 and σ = 1/2.

5.2. Boundary controlled problem. Projection method

For the solution of the boundary controlled problem with state constraints in
the whole domain we have observed the optimality system in Section 3.2., Theorem
3.2. The projection method replaces (13)�(14) by the projection formula

µQ = max
{

0,
1
λ

q +
ε

λ2
(ya − y∗)

}
a.e. in Q.

In order to implement this example, it is su�cient to replace the corresponding
lines in Listing 1 by the following ones. Note, that we choose α = βΣ.

The de�nition of the unknowns and parameters:

fem . dim = { 'y ' 'w' 'p ' ' q ' 'mu' } ;
fem . shape = [2 2 2 2 1 ] ;
% parameters :
fem . const = { ' alpha ' '1 e+3' ' kappa ' '1 e − 3 ' . . .

' lambda ' '1 e−6' ' ep s i l on ' '1 e−9 '};

The de�nition of the PDEs:
15



% c o e f f i c i e n t s + rhd s i d e :
fem . g l oba l expr = { 'v ' '−1/ ep s i l o n ∗q+lambda/ ep s i l o n ∗mu' } ;
fem . equ . ga = {{{'−yx ' '0 '}

{'−wx ' '0 '}
{'−px ' '0 '}
{'−qx ' '0 '}
{ '0 ' ' 0 ' }}} ;

fem . equ . f = { {'−ytime '
' wtime+v '
' ptime+y−mu'
'−qtime ' . . .
'mu−max(0 ,1/ lambda∗q+ep s i l o n /lambda ^ 2 . . .
∗( ya (x , time )−y ) ) ' } } ;

The de�nition of the boundary conditions:

fem . bnd . r = {{ 'y ' '0 ' ' 0 ' ' q ' ' 0 ' } ;
{ '0 ' ' 0 ' ' 0 ' ' 0 ' ' 0 ' } ;
{ '0 ' 'w' 'p ' ' 0 ' '0 '} } ;

fem . bnd . g = {{ '0 ' ' 0 ' ' 0 ' ' 0 ' ' 0 ' } ;
{ ' alpha^2∗w−alpha ∗y ' '−alpha ∗w' '−alpha ∗p ' . . .
'−alpha ∗q+nu∗ alpha^2∗w+alpha^2∗p ' 0} ;
{ '0 ' ' 0 ' ' 0 ' ' 0 ' ' 0 ' } } ;

The main di�erence to Listing 1 is caused by the fact that we have �ve un-
knowns y, p, w, q, mu instead of just y, p, mu. Hence, �ve PDEs with appropriate
boundary conditions have to be implemented. To improve readability we choose to
introduce an expression for the control v, derived from the gradient equation, in
fem.globalexpr. This allows the use of v in the PDE.

Moreau Yosida regularization

Analogously to the other examples, we use the gradient equation to replace the
control uΣ by − α

κΣ
p. Altogether, we have to change only four lines of code. First,

we have to de�ne some parameters α = 10, κ = 10−3, and γ = 103, where γ is the
Moreau-Yosida regularization parameter.

% parameters :
fem . const = { ' alpha ' '1 e+3' ' kappa ' '1 e−3' 'gamma' '1 e+3 '};

The de�nition of the right-hand-side reads now

fem . equ . f = { {'−ytime '
' ptime+y−mu'
'−mu+max(0 ,gamma∗( ya (x , time )−y ) ) '} } ;

Finally, we have to write the boundary conditions as

fem . bnd . r = { { 'y ' ' 0 ' 'mu' } ;
{ '0 ' ' 0 ' 'mu−max(0 ,gamma∗( ya (x , time )−y ) ) ' } ;
{ '0 ' 'p ' '0 '}}

fem . bnd . g = { { '0 ' ' 0 ' ' 0 ' } ;
{'−alpha ∗y−alpha^2/kappa∗p ' '−alpha ∗p ' ' 0 ' } ;
{ '0 ' ' 0 ' '0 '} } ;

Barrier method

Again, very few changes have to be made.
De�nition of the PDE:

fem . equ . ga = { { {'−yx ' '0 '}
{'−px ' '0 '}
{ '0 ' '0 '}} } ;
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fem . equ . f = { {'−ytime ' . . .
' ptime+y−mu ' . . .
' ( y−y_a(x , time ) )+mu . . .
−s q r t (mu^2+(y−y_a(x , time ) )2+2∗nu^2) '} } ;

The implementation of the boundary conditions on Γ reads:

fem . bnd . r = {{ 'y ' '0 ' 'mu' } ;
{ '0 ' ' 0 ' 'mu' } ;
{ '0 ' 'p ' 'mu' } } ;

fem . bnd . g = {{ '0 ' ' 0 ' ' 0 ' } ;
{'−alpha /kappa∗p−alpha ∗y ' '−alpha ∗p ' ' 0 ' } ;
{ '0 ' ' 0 ' '0 '} } ;

The path-following loop from the distributed case completes the program.

6. Numerical tests

6.1. An example with given exact solution. Our �rst example is a distributed
control problem with observation in the whole space-time domain and known ana-
lytic solution in order to demonstrate the level of accuracy to be expected by the
di�erent solution methods. It is given by

min
1
2
‖y − yQ‖2L2(Q) +

κQ

2
‖u− ud‖2L2(Q)

subject to (2) with βQ = 1 and βΣ = 0, and the pointwise state constraint in (3)
with τ = 1 and λ = 0. Due to the linearity of the state equation, the presence of
the control shift ud is covered by our theory. The only di�erence appears in the
gradient equation, which now reads

κQ(u− ud) + p = 0.

Accordingly, all projection formulas change such that ud is incorporated appropri-
ately. Similarly to the example previously considered in [18] we set

ud = − sin(x) (cos(t) + sin(t)) +
π − 1

κ
cos(x),

yQ = −(1 + π − t) cos(x)−max{sin(x) sin(t)− 0.5, 0} − sin(x) sin(t),
ya = min{− sin(x) sin(t),−0.5}.

Further, we have y0 = 0, α = 0, g = sin(t), f ≡ 0, and κQ = 10−3. The space-time
domain is given as Q = (0, π)2. It can easily be veri�ed that

y∗ = − sin(x) sin(t), u∗ = − sin(x)(sin(t) + cos(t))

together with

p∗ = (π − t) cos(x), µ = max(sin(x) sin(t)− 0.5, 0)

solve the optimal control problem. We apply Lavrentiev-type regularization with
λ = 10−3, Moreau-Yosida-regularization with γ = 102, and also solve the problem
with the barrier method without additional regularization, setting the stopping
parameter eps = 10−5. In all our computations we use quadratic �nite elements
for state and adjoint equations and linear elements for the Lagrange multipliers.
We choose a mesh generated by applying the re�nement function meshrefine �ve
times to an initial mesh created by a call of meshinit with hmax set to inf. We
initialize the adaptive solver with the solution obtained by femlin. In adaption

we set the number of new grid generations ngen to one. Moreover, when applying
the projection method and the Moreau Yosida regularization, we use the option
hnlin (�highly nonlinear problem�), which results in a smaller damping factor in
Newton's method.
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The �nal mesh obtained by the projection method is shown in Figure 6.1, we
observe very similar meshes for the other methods. Table 1 lists the L2-errors for
state, adjoint state and control for the di�erent methods. Note that these errors
consist of discretization as well as regularization error, where applicable.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 1. Re�ned mesh to our �rst example.
Inner-circle diameter of the mesh is between hmin=0.0102 and
hmax=0.0204.

‖yh − y∗‖ ‖uh − u∗‖ ‖ph − p‖ jh(yh, uh)
projection method 1.718e-3 1.558e-2 5.297e-4 8.136e3

moreau-yosida approx. 5.253e-3 2.840e-2 2.840e-5 8.136e3
barrier method 1.687e-4 9.568e-3 9.568e-6 8.136e3

Table 1. Errors in y, u, and p measured in the L2-norm, and
values of jh.

‖uh − u∗‖
N=3 N=4 N=5 N=6

projection method 0.6405 0.0975 0.0185 0.0142
moreau-yosida approx. 0.6386 0.0987 0.0301 0.0276

barrier method 0.6416 0.0946 0.0144 0.0035

Table 2. Errors in u measured in the L2-norm, depending on the
number of mesh re�nements.

6.2. Distributed control with state constraints. Our second example is taken
from [19], Example 7.2. There is no given analytic solution so we can only compare
numerically computed solutions. The problem is given by

min j(y, u) :=
1
2
‖y(T )‖2L2(Ω) +

κ

2
‖u‖2L2(Q)
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subject to

yt −∆y = u in Q,

∂ny + 10y = 0 on Σ,

y(0) = y0 in Ω,

and to the state constraint

y ≥ ya := min{−100(t(t− 1) + x(x− 1))− 49.0, 0.5} a.e. in Q.

We choose Ω = (0, 1) ⊂ R1, T = 1. Further, let y0 = sin(πx) be given and set
κ = 10−3. Obviously, this problem �ts into our general setting with θΩ = 1,
θΣ = 0, κQ = κ, κΣ = 0, βQ = 1, βΣ = 0, as well as α = 10.

For comparison of the solutions, we use the quadratic programming solver from
theMosek2 package to compute a reference solution. Mosek o�ers an interface to
Matlab's quadprog function (from the optimization toolbox). For that, we have
to formulate our problem as a discrete optimization problem of the form

min z>
(

1
2
H

)
z + b>z

subject to

Aeqz = beq

Ainz ≤ bin.

In contrast to quadprog fromMatlab's optimization toolbox, MOSEK can handle
sparse matrices so that the limitation of the number of unknowns is lifted.
Results

We compare the solution of all methods with a solution computed by the function
quadprog provided by the package MOSEK. Note, that the solution computed by
quadprog belongs to the unregularized discrete problem formulation, hence mea-
sures do not appear in the optimality system of the problem.

In this example, we re�ne the initial grid once. The option hnlin on is used for
all methods. In Table 1 we present the values of j computed by the barrier method,
the projection method, and the Moreau Yosida regularization. For comparison, we
give results computed by quadprog. In the quadprog-solver we choose the time
step-size as half of the space mesh-size. We set λ = 10−3, γ = 103, and eps = 10−5.

Barrier method Projection method Moreau Yosida regularization quadprog
jh(yh, uh) jh(yh, uh) jh(yh, uh) jh(yh, uh)
0.0012427 0.0012430 0.0012703 0.0012899

Table 3. Values of jh for the di�erent solution methods.

6.3. A boundary controlled problem. Our third example was taken from [3].
Let Ω = [0, 1] and the time interval I = (0, 5) be given. The problem formulation

reads as follows:

min j(y, u) =
1
2
‖y‖2L2(Q) +

κ

2
‖u‖2L2(Σ)

2MOSEK uses an interior point solver. It is an implementation of the homogeneous and
self-dual algorithm. For details see the MOSEK manual [16] and the referred literature there.
Incontrast to our approch, MOSEK solves a discrete optimization problem (��rst discretize, then
optimize approach�). See the discussion of the di�erent approaches e.g. in [3].
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subject to

yt −∆y = 0 in Q

y = u on Σ(21)

y(0) = 0 in Ω

and the point-wise state constraints

ya ≤ y a.e. in Q.

The state constraint is given by ya(x, t) = sin(x)(sin(πt/5)) − 0.7, and κ is set to
10−3.

The Dirichlet-boundary condition is di�cult in two ways: Neither can it be
handled by �nite element methods in the usual way, since the usual technique to
substitute the boundary integral of the outer normal derivative of the state by the
boundary conditions is not applicable, nor are optimality conditions derived easily,
cf. [4].

A possible way to overcome this problem is to approximate the Dirichlet-boundary
conditions by Robin boundary conditions: For some α � 1 arbitrarily chosen, we
replace (21) by ~n · ∇y + αy = αu on Σ. 3 We use Robin boundary conditions for a
correct �nite element implementation of the state equation as well as for a correct
implementation of the adjoint equation. We choose α = 103. In the following,
we assume that there is a continuous optimal state which ensures the existence of
optimality conditions wherever we consider an unregularized problem.
Results

There is no analytically given solution for the Betts-Campbell problem, so we
can only compare solutions computed by di�erent numerical methods as in the last
example. In the barrier method, we compute a solution for ν0 on an adaptively
re�ned mesh before we enter the path following loop and twice within the path-
following loop. Obviously, the adaption process leads to very small mesh sizes near
the boundaries at time t0 and where the distance between the state y and the
bound ya is small, i.e. the bound ya is almost active. In the projection method,
the grid-adaption process is done in the same call of the function adaption with
ngen set to two, that solves the complete problem. Figure 2 shows the adaptively
re�ned meshes.

Figure 3 shows the control u(π, t) computed by di�erent numerical methods.
In Table 4 we present the values of j computed by the barrier method, the

projection method and the Moreau Yosida regularization. For comparison, we give
results computed by quadprog.

Barrier method. Projection method Moreau Yosida regularization quadprog
jh(yh, uh) jh(yh, uh) jh(yh, uh) jh(yh, uh)
0.2327 0.2261 0.2212 0.2346

Table 4. Values of jh for the di�erent solution methods.

7. Conclusion and outlook

As shown in [17] for the unconstrained case, IMSEs (here tested Comsol Mul-

tiphysics) can be used also for solving optimal control problems with state con-
straints. Again, a knowledge about the optimality system for the given problem is

3Some IMSE like PDETOOL or Comsol Multiphysics use this technique for solving Dirich-
let boundary problems by default. In this way it is possible to implement the boundary conditions
directly in Comsol Multiphysics, where it will be corrected internally by using a Robin formu-
lation with a well-chosen parameter α, cf. [22].
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Figure 2. Adaptive meshes: barrier method (left), projection
method (center), and Moreau Yosida regularization (right). All
meshes computed by Comsol Multiphysics' adaption method
with two new grid generations.
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Figure 3. Solutions of the Betts-Campbell problem. Controls
uh computed by the Moreau Yosida regularization (solid line), by
the projection method (dashed), by the MOSEK solver quadprog
(dash-cross), and by the barrier method (dotted). An analytic
solution is not known. Obviously, the Betts-Campbell problem is
symmetric so we show only the control on the boundary with x = π.

necessary. From the theoretical point of view, the handling of the state constraints
and their associated Lagrange multipliers is the most di�cult problem. To guaran-
tee the existence of Lagrange multipliers and to avoid measures in the optimality
systems, we apply di�erent regularization techniques in order to justify the use of
standard FEM discretizations. To handle (state)-constraints algorithmically, three
approaches are considered.

Via Lavrentiev-type regularization and source-term representation we arrived at
a projection formula for the Lagrange multiplier which leads to an interpretation of
the active set strategy as a (semi-smooth) Newton method. The resulting algorithm
solved the problem by calls of the solvers adaption or femnlin, respectively.

Next, we applied a Moreau-Yosida regularization method which can be inter-
preted as a penalization method and easily implemented with the help of the max-
imum function. We point out that we used �xed regularization parameters since
we do not study the convergence behavior of these methods. It is beyond the scope
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of this paper to analyze the choice of regularization parameters in more detail.
Instead, our main point was to show the implementability of the regularization
techniques in IMSEs.

At last, we implemented a barrier method by adding a barrier term to the ob-
jective functional. The resulting algorithm is a classical (iterative) path following
method. Here, in every step a call of a PDE solver is necessary. On the other hand,
the regularity of barrier methods permits to pass additional regularization if the
order of the rational barrier function is high enough and the solution of the PDEs
are su�ciently smooth, cf. [21, Lemma 6.1].

We �rst tested our methods on an example with known exact solution. Then, we
applied them to model problems where the solutions are not given. To con�rm our
results, we computed reference-solutions by a well-proven program. All methods
produced similar results in a variety up to ten percent. The di�erence in the results
are a combination of discretization and regularization e�ects. Therefore we cannot
directly compare the controls de�ned on di�erent grids, but we may expect that
a well chosen combination of discretization parameters and parameters inherent to
the solution technique such as Lavrentiev parameter, the penalty parameter, or the
path parameter in the interior point method, results in a closer approximation of
the �real� solution.

All together, IMSEs have the capability of solving optimal control problems with
inequality constraints and o�er an easily implementable alternative for solving such
problems if optimality conditions in PDE formulation are known.

Website

WWW.math.tu-berlin.de/Strategies-for-time-dependent-PDE-control.html
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