Strategies for Training Large Scale Neural Network
Language Models

Tomas Mikolov#!, Anoop Deoras?, Daniel Povey?, Lukas Burget*, Jan “Honza”(vternock)’f*@*5

Brno University of Technology, Speech@FIT, Brno, Czech Republic
Yim kol ov@it.vutbr.cz, *burget@it.vutbr.cz, ®cernocky@it.vutbr.cz

* HLT-COE, CLSP, Johns Hopkins University, Baltimore, MD, USA
2adeor as@ hu. edu

t Microsoft Research, Redmond, WA, USA
3 dpovey@ri crosoft. com

Abstract—We describe how to effectively train neural network Attila decoder [3] that uses state-of-the-art discrimively
based language models on large data sets. Fast convergencgrained acoustic models. The language models for this task
during training and better overall performance is observedwhen are trained on about 400M tokens. This highly competitive

the training data are sorted by their relevance. We introdu@ .
hash-based implementation of a maximum entropy model, that setup has been used in the recent summer workshop at Johns

can be trained as a part of the neural network model. This Hopkins University [4]. In our experiments, we work with
leads to significant reduction of computational complexity We the Recurrent neural network language model [5] (RNN LM),

achieved around 10% relative reduction of word error rate on as we have recently shown that RNN LMs can outperform

English Broadcast News speech recognition task, againstrige
4-gram model trained on 400M tokens. standard feedforward NN LMs [6].

l. INTRODUCTION II. MODEL DESCRIPTION

Statistical language models are important part of many” Maximum entropy model has the following form:
applications that work with natural language, such as nmechi ey i fi(how)
translation and automatic speech recognition. Backoff eted P(wlh) = S Aifi(hw)’
based on n-gram statistics have been dominating the laerguag Dy i
modeling field for almost three decades, mainly due to theiheref is a set of features) is a set of weights and is a
simplicity and low computational complexity. history. Training maximum entropy model consists of leagi
In recent years, some other types of language models h&lve set of weights\. Usual features are n-grams, but it is easy
also attracted a lot of attention. The most successful elesnpto integrate any information source, for example triggers o
of such models are Maximum entropy language model [gyntactic features [1]. The choice of features is usuallpedo
(ME LM) and Neural network based language model [2] (NManually, and significantly affects the overall performaind
LM). The main reason for their attractiveness is their &pili the model.
to model natural language more precisely than the backoffThe standard neural network language model has a very
models. Their important drawback is their huge computationsimilar form. The main difference is that the features fasth
complexity. Thus, a lot of research effort has been devotspdel are automatically learned as a function of the history
towards making these models more computationally efficiedlso, the usual features for the ME model are binary, while
In this paper, we briefly mention existing approaches fd&dN models use continuous-valued features. We can describe
reducing the computational complexity of NN LMs (most ofhe NN LM as follows:
these approaches are applicable to ME LMs). We propose new ey Aifi(sw)
simple techniques that can be used to reduce computational P(w|h) =
cost of the training and test phases. We show that these new
techniques are complementary to existing approaches. wheres is a state of the hidden layer. For the feedforward NN
Most interestingly, we show that a standard neural netwokiM architecture introduced by Bengio et al. in [2], the stafe
language model can be trained together with a maximutime hidden layer depends on a projection layer, that is fdrme
entropy model, which can be seen as a part of the the newsala projection ofV — 1 recent words into low-dimensional
network. We introduce a hash-based implementation of aclaspace. After the model is trained, similar words have simila
based maximum entropy model, that allows us to easily cbnttow-dimensional representations.
the trade-off between memory complexity and computational Alternatively, the state of hidden layer can depend on the
complexity. most recent word and the state in the previous time step., Thus
We report results on the NIST RT04 Broadcast Newthe time is not represented explicitly. This recurrencevadi
speech recognition task. We use lattices generated from IBNe hidden layer to represent low-dimensional represimtat

(1)

2
Zw ety Nifi(sw)’ (2)

P(wt| context) P(wt| context)

is trained using on-line stochastic gradient descent irsétme
way as neural network models, its computational complexity
is

IxWx(NxV) (5)

A. Reduction of Training Epochs

Training of NN LMs is usually performed by stochastic
L] L | gradient descent with on-line update of weights. Usualis i

Fig. 1. Feedforward neural network 4-gram model (on thg it Recurrent reported that 10-50 training epochs are needed to obtain con
neural network language model (on the right). vergence, although there are exceptions (in [9], it is regmbr
that thousands of epochs were needed). In the next section,

we will show that good performance can be achieved while

of the entire history (or in other words, it provides the mbdeperforming as few as 7 training epochs, if the training data
with a memory). The architecture is called the Recurreile sorted by their complexity.

neural network based language model (RNN LM), and we
have described it in [7] and [5]. We have recently showB. Reduction of Number of Training Tokens
that RNN LM achieves state of the art performance on the | ysyal circumstances, backoff n-gram language models

well-known Penn Treebank Corpus, and that it outperformge trained on as much data as are available. However, for
standard feedforward NN LM architectures, as well as maymmon speech recognition tasks, only small part of thia dat
other advanced language modeling techniques [6]. is in-domain. Out-of-domain data usually occupy more than
It is interesting to see that ME models trained with jusyoos size of the training corpora, but their weight in the final
n-gram features have almost the same performance as UsHghel is relatively low. Thus, NN LMs are usually trained
backoff models with modified Kneser-Ney smoothing [8]. Ognly on the in-domain corpora. In [10], NN LMs are trained
the other hand, neural network models, due to their abiligp, in-domain data plus some randomly subsampled part of

to cluster similar words (or similar histories), outperfor he out-of-domain data that is randomly chosen at the sfart o
the state-of-the-art backoff models. Moreover, NN LMs argsch training epoch.

complementary to backoff models, and further gains can bejn 5 yast majority of cases, NN LMs for LVCSR tasks are
obtained by linearly interpolating them. trained on 5-30M tokens. Although the subsampling trick can
We can view ME models as NN models with no hiddeRe ysed to claim that the neural network model has seen all
layer, with the input layer directly connected to the outpufaining data at least once, simple subsampling technilgaes
layer. Such a model has been already described in [9], whegesevere performance degradation, against a model that is

it was shown that it can be trained to perform similarly to gained on all data - a more advanced subsampling technique
Kneser-Ney smoothed n-gram model. has been recently introduced in [11].

TV
VT

1. COMPUTATIONAL COMPLEXITY C. Reduction of Vocabulary Sze

The computational complexity of a neural network language It can be seen that most of the computational complexity
model is high for several reasons, and there have been @demyd NN LM in Eqg. 3 is caused by the huge terid x V.
to deal with almost all of them. The training time of N-granFor LVCSR tasks, the size of the hidden layéris usually
neural network LM is proportional to between 100 and 500 neurons, and the size of the vocabulary
V is between 50k and 300k words. Thus, many attempts
have been made to reduce the size of the vocabulary. The

where[is the number of training epochs before convergengéOSt simple technique is to compute probability distriont

is achieved}V is the number of tokens in the training sé, (r):sl,{ :)?rt:;e th) d]\s/[V;Zrizg(;#en_nigﬁl nrit;v;t:}?'trggdilﬁéhfst
is the N-gram orderD is the dimensionality of words in the words u gram p HHUES. '
: : L . of top M words is then called shortlist. However, it was
low-dimensional spacell is size of the hidden layer and .) : .
. : shown in [12] that this technique causes severe degradation
size of the vocabulary (see Figure 1). The tgfivi— 1) x D)
. . - erformance for small values @f, and even with\/ = 2000,
is equal to size of the projection layer. The recurrent NN L . A
has computational complexity: e complexity of theH x V' term is still significant.
' More successful approaches are based on Goodman'’s trick
I x W x (H % H + H x V). (4) for speeding up maximum entropy models [13]. Each word
from the vocabulary is assigned to a class, and only the
It can be seen that for increasing ord®T, the complexity probability distribution over classes is computed. In theand
of the feedforward architecture increases linearly, while step, we compute the probability distribution over wordatth
remains constant for the recurrent one (actualy,has no are members of a particular class (we know this class from the
meaning in RNN LM). Assuming that the maximum entropyredicted word whose probability we are trying to compute).
model uses feature sétwith full N-gram features and that it As the number of classes can be very small (several hundreds)

IxWxQN_nxDxH+HxV) 3)

this is a more effective solution than using shortlists, and 1600
the performance degradation is smaller. We have recently
shown that meaningful classes can be formed very easily, by
considering only unigram frequencies of words [5]. Similar 1200
approaches have been described in [12] and [14].

Dev set
1400 Eval set | |

1000

D. Reduction of Sze of the Hidden Layer

Another way to reducéf x V is to choose a small value of
H. For example, in [15H = 100 is used when the amount of 600
the training data is over 600M words. However, we will show
that H = 100 is insufficient to obtain good performance when
the amount of training data is large, as long as usual NN LM 200
architecture is used.

In Section VI, we show what is to our knowledge the first
technique that allows small hidden layers to be used for iisode
that are trained on huge amounts of data, while having goodwe followed IBM’s multi-pass decoding recipe using the
final performancé we train the computationally complex4.7M n-gram LM in the first pass followed by rescoring
neural network model together with maximum entropy modelising the larger LM. The development data consisted of

o DEV04f+RT03 data (25K tokens). For evaluation, we used the

E. Parallelization RTO04 evaluation set (47K tokens). The size of the vocabulary

Artificial neural networks are naturally simple to paraitel. is 84K words.
It is possible to either divide the matrix times vector cornapu
tion between several CPUs, or to process several examples at
once, which allows going to matrix times matrix computation Usually, stochastic gradient descent is used for training
that can be optimized by existing libraries such as BLAS. Ieural networks. This assumes randomization of the order of
the context of NN LMs, Schwenk [16] has reported a speedtfpe training data before start of each epoch. In the context
of several times from parallelization. of NN LMs, the randomization is usually performed on the

It might seem that recurrent networks are much harder lgvel of sentences. However, an alternative view can bentake
parallelize, as the state of the hidden layer depends on #{gen it comes to training deep neural network architectures
previous state. However, one can parallelize just the cemptich as recurrent neural networks: we hope that the model
tation between hidden and output layers. It is also possibleWill be able to find complex patterns in the data, that are
parallelize the whole network by training from multiple pts based on simpler patterns. These simple patterns need to be
in the training data simultaneously. However, parall¢izma !earned before complex patterns can be learned. Such concep
is highly architecture-specific optimization problem, awe is usually called ‘incremental learning’. In the context of
will deal in this paper only with algorithmic approaches fofimple RNN based language models, it has previously been
reducing computational complexity. investigated by Elman [18]. _ _

Another approach is to divide the training data info In the context of NN LMs, it was described and fo_rma_llzed
subsets and train a single NN model on each of them. HoweV8r[15]. It is assumed that the training should start with sien
neural network models profit from clustering of similar eteen Patterns, so that the network can initialize its internaresen-
thus such an approach would lead to suboptimal results., Al§ation, and the additional knowledge should be added during

in the test phase, we would end up wikh models, instead of training, in the form of gradually more complex patterns.
one. Inspired by these approaches, we have decided to change the

order of the training data, so that the training starts wit- o
IV. EXPERIMENTAL SETUP of-domain data, and ends with the most important in-domain
ta. Another motivation for this approach is even simpfer:
e most useful data are processed at the end of the training,
ey will have higher weights, as the update of parameters is
one on-line.

Perplexity

®
o
=]

400

0 100 200 300 400 500 600
Fig. 2. Perplexity of sorted data chunks.

V. AUTOMATIC DATA SELECTION AND SORTING

We performed recognition on the English Broadcast Ne
(BN) NIST RT04 task using state-of-the-art acoustic modeﬁ
trained on the English Broadcast News (BN) corpus (430 hoJ

of audio) provided to us by IBM [17]. IBM also provided us its We divided the full training set into 560 equally-sized

state-of-the-art speech recognizer, Attila [3] and two are hunk h taining 40K i Next ted
Ney smoothed backoff 4-gram LMs containing 4.7M N-gram% unks (each containing sentences). Next, we compute

and 54M N-grams, both trained on about 400M word tokenggrplexity on the development data given a 2-gram model

We refer readers to [17] for more details of the recognizet aljiralned on each chunk. We sorted all chunks by their perfor-
corpora used for training the models mance on the development set. We observed that although we

use very standard LDC data, some chunks contain noisy data

1By good performance, we mean that the resulting NN LM hasebettO" repeating articles, resultlng 'n_ h'gh perplexny.of mixde
perplexity than normal n-gram model. based on these parts of the training data. In Figure 2, we

TABLE I

360 PERPLEXITY OF MODELS WITH INCREASING SIZE OF THE HIDDEN LAYER
e
— 5 Reduced-Sorted Model Dev PPL | Eval PPL
320 +KN4 +KN4
300 backoff 4-gram| 144 | 144 | 140 | 140
- RNN-10 394 140 | 347 140
3 20 RNN-20 311 137 | 280 137
S 260 RNN-40 247 133 | 228 134
* RNN-80 197 126 183 127
240 RNN-160 163 119 160 122
220 RNN-240 148 114 149 118
RNN-320 138 110 138 113
200 RNN-480 122 103 125 107
180 RNN-640 114 99 116 102
0 2 4 6 8 10 12 14
Epoch
Fig. 3. Perplexity on the dev set during training RNN modelghw80 9 T
neurons. - | —%—RNN
—k—— RNN + KN4
TABLE | 85 Kna

PERPLEXITY ON THEEVALUATION SET WITH DIFFERENTLY ORDERED
TRAINING DATA, FORRNN MODELS WITH VARIOUS SIZES OF THE
HIDDEN LAYER.

©

Model Hidden layer size
10 [20 [40 |80
ALL-Natural 357 | 285 | 237 | 193

ALL-Stochastic | 371 | 297 | 247 | 204 . : \
Reduced-Sorted 347 | 280 | 228 | 183 :

6.5

~N
n

Entropy per word

1 2 3
plot the performance on the development set, as well as 10 e e < 10
idden layer size

performance on the evaluation set, to show that the coiwelatrig 4. Entropy per word on the dev set with increasing sizaiotlen layer.
of performance on different, but similar test sets is veryhhi

We decided to discard the data chunks with perplexity above
600 to obtain the Reduced-Sorted training set, that is edletthe first three epochs, we used constant learning rate 0.1,
as shown in Figure 2. This set contains about 318M tokengind halved it at start of each new epoch). These results are
In Figure 3, we show three variants of training the RNNummarized in Table Il. We denote RNN model with 80
LM: training on all concatenated training corpora with th@eurons as RNN-80 etc.
natural order, standard stochastic gradient descent wing |n Figure 4, we show that the performance of RNN models
data (randomized order of sentences), and training with tkestrongly correlated with the size of the hidden layer. We
reduced and sorted set. needed about 320 neurons for the RNN model to match

We can conclude that stochastic gradient descent hefpg performance of the baseline backoff model. However,
to reduce the number of required training epochs befoggen small models are useful when linearly interpolatedh wit
convergence is achieved, against training on all data Wiéh tthe baseline KN4 model. It should be noted that training
natural order of sentences. However, sorting the datateesul models with more than 500 neurons on this data set becomes
significantly lower final perplexity on the dev set - we obgervcomputationally very complex: the computational comgiexi
around 10% reduction of perplexity. In Table I, we show thasf RNN model as given by Eq. 4 depends on the recurrent
these improvements carry over to the evaluation set. part of the network with complexity? x H, and the output
VI. EXPERIMENTS WITH LARGERNN MODELS part with complexityH x C'+H x Wf whereC' is the number

)) of classes (in our case 400) afd is the number of words

The perplexny of the large 4-gram model with Kneser-Ney, ¢ belong to a specific class. Thus, the increase is quedrat
smoothing (denoted later as KN4) is 144 on the developmepty, e size of the hidden layer for the first term, and linear
set, and 140 on the_ evaluation set. We can see in TabI(FOII the second term.
that RNN models with 80 neurons are still far away from We rescore the word lattices using the iterative decoding

th|sdp:erforr:]1§1nce. In_further eli(pherlrrrsgts, ;/ve have_usg;iﬂ?l\mlethod previously described in [19], as it is much less
models with increasing size of the hidden layer, traine tcomputationally intensive than basic N-best list resaprifss

Redgc;d-Sor;egl datahset. We have usgd Juit_ ! trgmln_g kepo DWN in Figure 5, RNN models perform very well for lattice
as with sorted data, the convergence is achieved quickly (scoring; we can see that even the stand-alone RNN-80 model
2Training a standard n-gram model on the reduced set resuliout the S pet_te.r than the baseline 4-gram model. As the weights
same perplexity as with the n-gram model that is trained odath. of individual models are tuned on the development set, we

TABLE Il
PERPLEXITY ON THE EVALUATION SET WITH INCREASING SIZE OF HASH

X Emmm ARRAY, FORRNN MODEL WITH 80 NEURONS

KN4

145

14

— + — RNNME Model Hash size
—(O— - RNNME+KN4 s 7 3 9
13.5 0 10 10 10 10
RNNME-80 183 | 176 | 160 | 136 | 123

N3

RNNME-80 + KN4 | 127 | 126 | 125 | 118 | 113

WER on eval [%)]
=
w

-
N
o

use L2 regularization). Using classes also helps to avoat-ov
fitting, as the direct parameters that connect input andsclas
: layers already perform ad-hoc clustering.
s p 3 We have used bigram and trigram features for the direct
10 Hiddenll‘;yersize 10 part of the RNN model, and we denote this architecture as
RNNME. As only two features are active in the input layer
at any given time, the computational complexity of the model
increases about the same as if two neurons were added to the
have observed a small degradation for the RNN-10 modatden layer.
interpolated with baseline 4-gram model. On the other hand,Representing the direct connections in memory is however
the RNN-640 model provides quite an impressive reduction af problem: on our setup witly = 84K, the full set of all
WER, from 13.11% to 12.0%. possible trigram features would be impractically largeugh
It is intersting to notice that the RNN-80 model outpeformiistead of having full weight matrix, we use hash function to
already the large backoff model in terms of WER, although itwap the huge sparse matrix into one-dimensional array. This
perplexity is much higher, as shown in Figure 4. This suggesixploits the fact that most of the weights are almost never
that even limited RNN models are able to discriminate wellsed. This approach has an obvious advantage: we can easily
between correct and ambiguous sentences. control size of the model by choosing a single parameter,
By using three large RNN models and a backoff modd#he size of the hash array. In Table Ill, we show how the
combined together, we achieved the best result so far on thash size affects the overall performance of the model. én th
data set - 11.70% WER. The model combination was carrifallowing experiments, we have used a hash size03f as it
out using the technique described in [20]. The models @ives reasonable performance (using a larger hash woutll lea
combination were: RNN-480, RNN-640 and RNN-640 modeainly to marginal improvements and would increase memory
trained on 58M subset of the training data. demands considerably). If we train just the ME part of the
model (RNNME-0) with hash siz&0°, we obtain perplexity
157 on the evaluation set.
The achieved perplexity of 123 on the evaluation set with
We have already mentioned in the introduction that maxRNNME-80 model is significantly better than the baseline
mum entropy models are very close to neural network modejgrplexity 140 of the KN4 model. After interpolation of
with no hidden layer. In fact, it has previously been showpoth models, the perplexity drops further to 113. This is
that a neural network model with no hidden layer can leagjgnificantly better than the interpolation of RNN-80 and &N
a bigram language model [9], which is similar to what waghich gives perplexity 127. Such result already proves the
shown for the maximum entropy models. However, in [9], thgsefulness of training the RNN model with direct parameters

12

Fig. 5. WER on the eval set with increasing size of hiddenraye

VII. HASH-BASED IMPLEMENTATION OF CLASS-BASED
MAXIMUM ENTROPY MODEL

memory complexity for bigram model wak®, whereV is Most importantly, we have observed good performance
size of the vocabulary. For a trigram model akdaround when we used the RNNME model for rescoring experiments.
100k, it would be infeasible to train such model. Reductions of word error rate on the RT04 evaluation set are

The maximum entropy model can be seen in the context Qimmarized in Table IV. The model with direct parameters
neural network models as a weight matrix that directly cofwith 40 neurons in the hidden layer performs almost as well
nects the input and output layers. Direct connections b&twegs model without direct parameters and with 320 neurons
projection layer and the output layer were previously itives
gated in the context of NNLMs in [2], with no improvements VIII. CONCLUSION AND FUTURE WORK
reported on a small task. We have shown that neural network models, in our case with

In our work, we have added direct connections to the claggcurrent architecture, can provide significant improvetae
based RNN architecture that we have proposed earlier [5]. Wa state-of-the-art setup for Broadcast News speech recog-
use direct parameters that connect input and output lageds, nition. The models we built are probably the largest neural
input and class layers. We learn direct parameters as partnetwork based language models ever trained. We have used
the whole network - the update of weights is performed ombout 400M tokens (318M in the reduced version). Size of
line. We found that it is important to use regularization whethe hidden layer of the largest model was 640 neurons, and
learning the direct parameters on small data sets (we diyrerthe vocabulary size 84K words.

TABLE IV
WORD ERROR RATE ON THERTO4EVALUATION SET AFTER LATTICE ACKNOWLEDGMENTS

RESCORING WITH VARIOUS MODELSWITH AND WITHOUT We are grateful to Bhuvana Ramabhadran and Brian Kings-

INTERPOLATION WITH THE BASELINE4-GRAM MODEL.

bury for sharing with us state-of-the-art IBM speech redegn

Model WER[%] tion system (Attila) and relevant statistical models. Wantk

_ Single | Interpolated Karel Vesely and Stefan Kombrink for discussions about
KN4 (baseline)| 13.11 13.11 parallel training of neural networks. This work was partly
RNN-40 13.36 12.90 supported by Technology Agency of the Czech Republic grant
RNN-80 12.98 12.70
RNN-160 12.69 1258 No. TA01011328, Czech Ministry of Education prqject No.
RNN-320 12.38 12.31 MSM0021630528, Grant Agency of Czech Republic project
RNN-480 12.21 12.04 No. 102/08/0707, and by Czech Ministry of Trade and Com-
Smml'\?éoo ggi ggg merce project No. FR-TI1/034. Anoop Deoras was partly
RNNME-40 1242 1237 funded by the HLT-COE, Johns Hopkins University.
RNNME-80 12.35 12.22 REFERENCES
RNNME-160 12.17 12.16
RNNME-320 11.91 11.90 [1] R. Rosenfeld, “A maximum entropy approach to adaptivatistical
3XRNN N 11.70 language modeling,Computer, Speech and Language, vol. 10, pp. 187—

228, 1996.
[2] Y. Bengio, R. Ducharme, P. Vincerdt al., “A neural probabilistic

language model,Journal of Machine Learning Research, vol. 3, pp.
. . - 1137-1155, 2003.

We have shown that by discarding parts of the training datg) H. soltau, G. Saon, and B. Kingsbury, “The IBM Attila spaerecogni-
and by sorting them, we can achieve about 10% reduction of tion toolkit,” in Proc. IEEE Workshop on Spoken Language Technology,

; ; ; : ; ; 2010.
perplexity, against classical stochastic gradient descens G. Zweig, P. Nguyeret al., “Speech recognition with segmental condi-

: 4]
Improvement W?Uld be probably even Igrger for ta}SkS Wh(_aré tional random fields: A summary of the JHU CLSP summer worksho
only some training corpora can be considered as in-domain. in Proceedings of ICASSP, 2011.

. . 0] T. Mikolov, S. Kombrink, L. Burget, JCernocky, and S. Khudanpur,
The relative word error rate reduction was almost 11%, ove[t5 “Extensions of recurrent neural network language model,Pioceec

a large 4-gram model with Kneser-Ney smoothing - absolutely ings of ICASSP, 2011. }
we reduced WER from 13.11% to 11.70%. We are aware dfl T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and Lermocky,

. . . - “Empirical evaluation and combination of advanced languagpdeling
- 0,
slightly better baseline for this setup - in [17], 13.0% was techniques,” inProceedings of Interspeech, 2011,

reported as baseline, and 12.3% after rescoring with “modet] 1. Mikolov, M. Karafiat, L. Burget, JCernocky, and S. Khudanpur,
M” [21] (while in our experiments, rescoring with model M “Recurrent neural network based language model,Pioceedings of

. - . Interspeech, 2010.
0, R ’
resulted in 12.5% WER). We suspect that if we used WIdeS T. Alumae and M. Kurimo, “Efficient estimation of maximuentropy

lattices, we would be able to observe further improvemeants i ~ |anguage models with N-gram features: an SRILM extensiomPro-

our experiments. ceedings of Interspeech, 2010.

. . . [9] W. Xu and A. Rudnicky, “Can artificial neural networks fealanguage
We have shown that training RNN model with direct con- models?” inInternational Conference on Statistical Language Process-

nections can lead to good performance both on perplexity and ing, 2000.

word error rate, even if very small hidden layers are usef0 H- Schwenk and J.-L. Gauvain, “Training neural netwdanguage

. . models on very large corpora,” iRroceedings of EMNLP, 2005.
The model RNNME-40 with Only 40 neurons has aChqugl] P. Xu, A. Gunawardana, and S. Khudanpur, “Efficient smsling for

almost as good performance as RNN-320 model that uses 320 training complex language models,” Proceedings of EMNLP, 2011.

neurons. We have shown that direct connections in NN mod#f] H--S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and Rofi, *Structured
output layer neural network language model, Firoceedings of ICASSP,

can be seen as a maximum entropy model, and we have also 5q71
verified that it is important to train the RNN and ME model$13] J. Goodman, “Classes for fast maximum entropy traipiiing Proceed-

jointly. Roughly speaking, we can reduce training timesrfro _ ingsof ICASS, 2001. . .
ks to d b . th | RNN hitect We h §/14] F. Morin and Y. Bengio, Hierarchical probabilistic neal network
weeks 10 days by using the nove arcnitecture. Vwe nave” |anguage model,” inAlSTATS, 2005, pp. 246-252.

performed additional experiments on a Wall Street Journab] Y. Bengio, J. Louradour, R. Collobert, and J. Westonufi@ulum

setup that we have used previously [6], and we were able to learning,” in Proceedings of ICML, 2009.
. H. Schwenk, “Cont | deBimput. h
reduce WER from 17.2% to 14.9% with RNNME-100 mode[fL] Lang.c,: vvc\:fnZL pp?n4g12u—0g158,S[J)SI;eZOa(??quage moddBITRL Spess

that was trained in a single day, on 36M training tokens. [17] S. F. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, an®eihy,

In the future, we plan to extend our results even further. It “2%%2‘)"”9 shrinkage-based language models, Phoceedings of ASRU,

would be interesting to see if the RNN model would benefits) j. L. Elman, “Learning and development in neural netsor The
from training together with a more refined maximum entrop?/ | importance of starting smallCognition, vol. 48, pp. 71-99, 1993.
19

; A. Deoras, T. Mikolov, and K. Church, “A fast re-scorirgrategy to

model, for example Wlt_h model M.) . capture long-distance dependencies,Piceedings of EMNLP, 2011.

The presented techniques can also be easily applied to mpog A. Deoras, D. Filimonov, M. Harper, and F. Jelinek, “Ma¢ombination

traditional feedforward NN LMs. We extended our publicly ‘;?f SpefelthEée\?\gggon Usgjngmf"ica' Ba%’ef] fi|5k ”}g'_f%ﬂ'goig

. p . roc. of rkshop on Spoken Language Technology) .

available toolkit to support training of RNNME models. [21] S. F. Chen, “Shrinking exponential language models Pioc. NAACL
HLT, 2009.

SAvailable athtt p: //ww. fit.vutbr.cz/~im kol ov/rnnl nf

