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Abstract

Training neural network language mod-

els over large vocabularies is computa-

tionally costly compared to count-based

models such as Kneser-Ney. We present

a systematic comparison of neural strate-

gies to represent and train large vocabular-

ies, including softmax, hierarchical soft-

max, target sampling, noise contrastive es-

timation and self normalization. We ex-

tend self normalization to be a proper esti-

mator of likelihood and introduce an effi-

cient variant of softmax. We evaluate each

method on three popular benchmarks, ex-

amining performance on rare words, the

speed/accuracy trade-off and complemen-

tarity to Kneser-Ney.

1 Introduction

Neural network language models (Bengio et al.,

2003; Mikolov et al., 2010) have gained popular-

ity for tasks such as automatic speech recognition

(Arisoy et al., 2012) and statistical machine trans-

lation (Schwenk et al., 2012; Vaswani et al., 2013;

Baltescu and Blunsom, 2014). Similar models are

also developed for translation (Le et al., 2012; De-

vlin et al., 2014; Bahdanau et al., 2015), summa-

rization (Chopra et al., 2015) and language gener-

ation (Sordoni et al., 2015).

Language models assign a probability to a word

given a context of preceding, and possibly sub-

sequent, words. The model architecture deter-

mines how the context is represented and there

are several choices including recurrent neural net-

works (Mikolov et al., 2010; Jozefowicz et al.,

2016), or log-bilinear models (Mnih and Hinton,

2010). This paper does not focus on architec-

ture or context representation but rather on how to

efficiently deal with large output vocabularies, a

problem common to all approaches to neural lan-

guage modeling and related tasks (machine trans-

lation, language generation). We therefore experi-

ment with a classical feed-forward neural network

model similar to Bengio et al. (2003).

Practical training speed for these models quickly

decreases as the vocabulary grows. This is due

to three combined factors: (i) model evaluation

and gradient computation become more time con-

suming, mainly due to the need of computing nor-

malized probabilities over a large vocabulary; (ii)

large vocabularies require more training data in

order to observe enough instances of infrequent

words which increases training times; (iii) a larger

training set often allows for larger models which

requires more training iterations.

This paper provides an overview of popular

strategies to model large vocabularies for language

modeling. This includes the classical softmax over

all output classes, hierarchical softmax which in-

troduces latent variables, or clusters, to simplify

normalization, target sampling which only con-

siders a random subset of classes for normaliza-

tion, noise contrastive estimation which discrim-

inates between genuine data points and samples

from a noise distribution, and infrequent normal-

ization, also referred as self-normalization, which

computes the partition function at an infrequent

rate. We also extend self-normalization to be a

proper estimator of likelihood. Furthermore, we

introduce differentiated softmax, a novel variation

of softmax which assigns more parameters, or ca-

pacity, to frequent words and which we show to be

faster and more accurate than softmax (§2).

Our comparison assumes a reasonable budget of

one week for training models on a high end GPU

(Nvidia K40). We evaluate on three benchmarks

differing in the amount of training data and vocab-

ulary size, that is Penn Treebank, Gigaword and

the Billion Word benchmark (§3).

Our results show that conclusions drawn from

small datasets do not always generalize to larger

settings. For instance, hierarchical softmax is less

accurate than softmax on the small vocabulary

Penn Treebank task but performs best on the very

large vocabulary Billion Word benchmark. This is

because hierarchical softmax is the fastest method

for training and can perform more training updates

in the same period of time. Furthermore, our re-
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sults with differentiated softmax demonstrate that

assigning capacity where it has the most impact

allows to train better models in our time budget

(§4). Our analysis also shows clearly that tradi-

tional Kneser-Ney models are competitive on rare

words, contrary to the common belief that neural

models are better on infrequent words (§5).

2 Modeling Large Vocabularies

We first introduce our model architecture with a

classical softmax and then describe various other

methods including a novel variation of softmax.

2.1 Softmax Neural Language Model

Our feed-forward neural network implements an

n-gram language model, i.e., it is a parametric

function estimating the probability of the next

word wt given n − 1 previous context words,

wt−1, . . . , wt−n+1. Formally, we take as input a

sequence of discrete indexes representing the n−1
previous words and output a vocabulary-sized vec-

tor of probability estimates, i.e.,

f : {1, . . . , V }n−1 → [0, 1]V ,

where V is the vocabulary size. This function re-

sults from the composition of simple differentiable

functions or layers.

Specifically, f composes an input mapping from

discrete word indexes to continuous vectors, a suc-

cession of linear operations followed by hyper-

bolic tangent non-linearities, plus one final linear

operation, followed by a softmax normalization.

The input layer maps each context word index to

a continuous d′0-dimensional vector. It relies on a

matrix W 0 ∈ R
V ×d′

0 to convert the input

x = [wt−1, . . . , wt−n+1] ∈ {1, . . . , V }n−1

to n − 1 vectors of dimension d′0. These vectors

are concatenated into a single (n−1)×d′0 matrix,

h0 = [W 0
wt−1 ; . . . ;W

0
wt−n+1 ] ∈ R

n−1×d′
0 .

This state h0 is considered as a d0 = (n − 1) ×
d′0 vector by the next layer. The subsequent states

are computed through k layers of linear mappings

followed by hyperbolic tangents, i.e.

∀i = 1, . . . , k, hi = tanh(W ihi−1 + bi) ∈ R
di

where W i ∈ R
di×di−1 , b ∈ R

di are learn-

able weights and biases and tanh denotes the

component-wise hyperbolic tangent.

Finally, the last layer performs a linear operation

followed by a softmax normalization, i.e.,

hk+1 = W k+1hk + bk+1 ∈ R
V

and y = 1
Z

exp(hk+1) ∈ [0, 1]V
(1)

where Z =
∑V

j=1 exp(hk+1
j ) and exp denotes the

component-wise exponential. The network output

y is therefore a vocabulary-sized vector of proba-

bility estimates. We use the standard cross-entropy

loss with respect to the computed log probabilities

∂ log yi

∂hk+1
j

= δij − yj

where δij = 1 if i = j and 0 otherwise The gra-

dient update therefore increases the score of the

correct output hk+1
i and decreases the score of all

other outputs hk+1
j for j 6= i.

A downside of the classical softmax formulation

is that it requires computation of the activations for

all output words, Eq. (1). The output layer with

V activations is much larger than any other layer

in the network and its matrix multiplication domi-

nates the complexity of the entire network.

2.2 Hierarchical Softmax

Hierarchical Softmax (HSM) organizes the out-

put vocabulary into a tree where the leaves are

the words and the intermediate nodes are latent

variables, or classes (Morin and Bengio, 2005).

The tree has potentially many levels and there is a

unique path from the root to each word. The prob-

ability of a word is the product of the probabilities

of the latent variables along the path from the root

to the leaf, including the probability of the leaf.

We follow Goodman (2001) and Mikolov et al.

(2011b) and model a two-level tree. Given context

x, HSM predicts the class of the next word ct and

the actual word wt

p(wt|x) = p(ct|x) p(wt|ct, x) (2)

If the number of classes is O(
√

V ) and classes are

balanced, then we only need to compute O(2
√

V )
outputs. In practice, this strategy results in weight

matrices whose largest dimension is < 1, 000, a

setting for which GPU hardware is fast.

A popular strategy is frequency clustering. It

sorts the vocabulary by frequency and then forms

clusters of words with similar frequency. Each

cluster contains an equal share of the total unigram

probability. We compare this strategy to random

class assignment and to clustering based on word
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Figure 1: Output weight matrix W k+1 and hid-

den layer hk for differentiated softmax for vocab-

ulary partitions A, B,C with embedding dimen-

sions dA, dB, dC ; non-shaded areas are zero.

contexts, relying on PCA (Lebret and Collobert,

2014). A full comparison of context-based clus-

tering is beyond the scope of this work (Brown et

al., 1992; Mikolov et al., 2013).

2.3 Differentiated Softmax

This section introduces a novel variation of soft-

max that assigns a variable number of parameters

to each word in the output layer. The weight ma-

trix of the final layer W k+1 ∈ R
dk×V stores out-

put embeddings of size dk for the V words the

language model may predict: W k+1
1 ; . . . ; W k+1

V .

Differentiated softmax (D-Softmax) varies the di-

mension of the output embeddings dk across

words depending on how much model capacity, or

parameters, are deemed suitable for a given word.

We assign more parameters to frequent words than

to rare words since more training occurrences al-

low for fitting more parameters.

We partition the output vocabulary based on

word frequency and the words in each partition

share the same embedding size. Partitioning the

vocabulary in this way results in a sparse final

weight matrix W k+1 which arranges the embed-

dings of the output words in blocks, each block

corresponding to a separate partition (Figure 1).

The size of the final hidden layer hk is the sum

of the embedding sizes of the partitions. The fi-

nal hidden layer is effectively a concatenation of

separate features for each partition which are used

to compute the dot product with the correspond-

ing embedding type in W k+1. In practice, we effi-

ciently compute separate matrix-vector products,

or in batched form, matrix-matrix products, for

each partition in W k+1 and hk.

Overall, differentiated softmax can lead to large

speed-ups as well as accuracy gains since we

can greatly reduce the complexity of computing

the output layer. Most significantly, this strategy

speeds up both training and inference. This is

in contrast to hierarchical softmax which is fast

during training but requires even more effort than

softmax for computing the most likely next word.

2.4 Target Sampling

Sampling-based methods approximate the soft-

max normalization, Eq. (1), by summing over a

sub-sample of impostor classes. This can signif-

icantly speed-up each training iteration, depend-

ing on the size of the impostor set. Target sam-

pling builds upon the importance sampling work

of Bengio and Senécal (2008). We follow Jean et

al. (2014) who choose as impostors all positive

examples in a mini-batch as well as a subset of

the remaining words. This subset is sampled uni-

formly and its size is chosen by validation.

2.5 Noise Contrastive Estimation

Noise contrastive estimation (NCE) is another

sampling-based technique (Hyvärinen, 2010;

Mnih and Teh, 2012; Chen et al., 2015). Contrary

to target sampling, it does not maximize the train-

ing data likelihood directly. Instead, it solves a

two-class problem of distinguishing genuine data

from noise samples. The training algorithm sam-

ples a word w given the preceding context x from

a mixture

p(w|x) =
1

k + 1
ptrain(w|x) +

k

k + 1
pnoise(w|x)

where ptrain is the empirical distribution of the

training set and pnoise is a known noise distri-

bution which is typically a context-independent

unigram distribution. The training algorithm fits

the model p̂(w|x) to recover whether a mixture

sample came from the data or the noise distribu-

tion, this amounts to minimizing the binary cross-

entropy −y log p̂(y = 1|w, x)−(1−y) log p̂(y =
0|w, x) where y is a binary variable indicating

where the current sample originates from
{

p̂(y = 1|w, x) = p̂(w|x)
p̂(w|x)+kpnoise(w|x) (data)

p̂(y = 0|w, x) = 1 − p̂(y = 1|w, x) (noise).

This formulation still involves a softmax over the

vocabulary to compute p̂(w|x). However, Mnih

and Teh (2012) suggest to forego normalization

and replace p̂(w|x) with unnormalized exponen-

tiated scores. This makes the training complex-

ity independent of the vocabulary size. At test

time, softmax normalization is reintroduced to get

a proper distribution. We also follow Mnih and

Teh (2012) recommendations for pnoise and rely

on a unigram distribution of the training set.
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2.6 Infrequent Normalization

Devlin et al. (2014), followed by Andreas

and Klein (2015), proposed to relax score nor-

malization. Their strategy (here referred to

as WeaknormSQ) associates unnormalized likeli-

hood maximization with a penalty term that favors

normalized predictions. This yields the following

loss over the training set T

L(2)
α = −

∑

(w,x)∈T

s(w|x) + α
∑

(w,x)∈T

(log Z(x))2

where s(w|x) refers to the unnormalized score

of word w given context x and Z(x) =
∑

w exp(s(w|x)) refers to the partition function

for context x. This strategy therefore pushes the

log partition towards zero. For efficient training,

the second term can be down-sampled

L(2)
α,γ = −

∑

(w,x)∈T

s(w|x)+
α

γ

∑

(w,x)∈Tγ

(log Z(x))2

where Tγ is the training set sampled at rate γ. A

small rate implies computing the partition function

only for a small fraction of the training data.

We extend this strategy to the case where the log

partition term is not squared (Weaknorm), i.e.,

L(1)
α,γ = −

∑

(w,x)∈T

s(w|x) +
α

γ

∑

(w,x)∈Tγ

log Z(x)

For α = 1, this loss is an unbiased estimator of the

negative log-likelihood of the training data L
(2)
1 =

−∑

(w,x)∈T s(w|x) + log Z(x).

3 Experimental Setup

Datasets We run experiments over three news

datasets of different sizes: Penn Treebank (PTB),

WMT11-lm (billionW) and English Gigaword,

version 5 (gigaword). Penn Treebank (Marcus et

al., 1993) is the smallest corpus with 1M tokens

and we use a vocabulary size of 10k (Mikolov et

al., 2011a). The billion word benchmark (Chelba

et al., 2013) comprises almost one billion tokens

and a vocabulary of about 800k words1. Giga-

word (Parker et al., 2011) is even larger with 5 bil-

lion tokens and was previously used for language

modeling (Heafield, 2011) but there is no standard

train/test split or vocabulary for this set. We split

according to time: training covers 1994–2009 and

test covers 2010. The vocabulary comprises the

100k most frequent words in train. Table 1 sum-

marizes the data statistics.
1T. Robinson version http://tiny.cc/1billionLM .

Dataset Train Test Vocab OOV

PTB 1M 0.08M 10k 5.8%

gigaword 4,631M 279M 100k 5.6%

billionW 799M 8.1M 793k 0.3%

Table 1: Dataset statistics. Number of tokens for

train and test, vocabulary size, fraction of OOV.

Evaluation We measure perplexity on the test set.

For PTB and billionW, we report results on a per

sentence basis, i.e., models do not use context

words across sentence boundaries and we score

end-of-sentence markers. This is the standard set-

ting for these benchmarks and allows comparison

with other work. On gigaword, we use contexts

across sentence boundaries and evaluation does

not include end-of-sentence markers.

Our baseline is an interpolated Kneser-Ney (KN)

model. We use KenLM (Heafield, 2011) to train

5-gram models without pruning. For neural mod-

els, we train 11-gram models for gigaword and bil-

lionW; for PTB we train a 6-gram model. The

model parameters (weights W i and biases bi for

i = 0, . . . , k + 1) are learned to maximize the

training log-likelihood relying on stochastic gra-

dient descent (SGD; LeCun et al.. 1998).

Validation Hyper-parameters are the number of

layers k and the dimension of each layer di,∀i =
0, . . . , k. We tune the following settings for each

technique on the validation set: the number of

clusters, the clustering technique for hierarchi-

cal softmax, the number of frequency bands and

their allocated capacity for differentiated softmax,

the number of distractors for target sampling, the

noise/data ratio for NCE, as well as the regular-

ization rate and strength for infrequent normaliza-

tion. Similarly, SGD parameters (learning rate and

mini-batch size) are set to maximize validation

likelihood. We also tune the dropout rate (Srivas-

tava et al., 2014); dropout is employed after each

tanh non-linearity.2

Training Time We train for 168 hours (one week)

on the large datasets (billionW, gigaword) and 24

hours (one day) for Penn Treebank. All exper-

iments are performed on the same hardware, a

single K40 GPU. We select the hyper-parameters

which yield the best validation perplexity after the

allocated time and report the perplexity of the re-

sulting model on the test set. This training time

2More parameter settings are available
in an extended version of the paper at
http://arxiv.org/abs/1512.04906.
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is a trade-off between being able to do a compre-

hensive exploration of the various settings for each

method and good accuracy. The chosen training

times are not long enough to observe over-fitting,

i.e. validation performance is still improving – al-

beit very slowly – at the end of the training session.

As a general observation, even on the small PTB

where 24 hours is rather long, we always found

better results using the full training time, possibly

increasing the dropout rate.

A concern may be that a fixing the training time

favors models with better implementations. How-

ever, all models are very similar and their core

computations are always matrix/matrix products.

Training differs mostly in the size and frequency

of large matrix/matrix products. Matrix products

rely on CuBLAS3, using torch4. For the matrix

sizes involved (> 500×1, 000), the time complex-

ity of matrix product is linear in each dimension,

both on CPU (Intel MKL5) and GPU (CuBLAS),

with a 10X speedup for GPU (Nvidia K40) com-

pared to CPU (Intel Xeon E5-2680). Therefore,

the speed trade-off applies to both CPU and GPU

hardware, albeit with a different time scale.

4 Results

The test perplexities (Table 2) and validation

learning curves (Figures 2, 3, and 4) show that the

competitiveness of softmax diminishes with larger

vocabularies. Softmax does well on the small vo-

cabulary PTB but poorly on the large vocabulary

billionW corpus. Faster methods such as sam-

pling, hierarchical softmax, and infrequent nor-

malization (Weaknorm, WeaknormSQ) are much

better in the large vocabulary setting of billionW.

D-Softmax is performing well on all sets and

shows that assigning higher capacity where it ben-

efits most results in better models. Target sam-

pling performs worse than softmax on gigaword

but better on billionW. Hierarchical softmax per-

forms poorly on Penn Treebank which is in stark

contrast to billionW where it does well. Noise

contrastive estimation has good accuracy on bil-

lionW, where speed is essential to achieving good

accuracy.

Of all the methods, hierarchical softmax pro-

cesses most training examples in a given time

frame (Table 3). Our test time speed compari-

son assumes that we would like to find the highest

3http://docs.nvidia.com/cuda/cublas/
4http://torch.ch
5https://software.intel.com/en-us/intel-mkl

PTB gigaW billionW

KN 141.2 57.1 70.26

Softmax 123.8 56.5 108.3

D-Softmax 121.1 52.0 91.2

Sampling 124.2 57.6 101.0

HSM 138.2 57.1 85.2

NCE 143.1 78.4 104.7

Weaknorm 124.4 56.9 98.7

WeaknormSQ 122.1 56.1 94.9

KN+Softmax 108.5 43.6 59.4

KN+D-Softmax 107.0 42.0 56.3

KN+Sampling 109.4 43.8 58.1

KN+HSM 115.0 43.9 55.6

KN+NCE 114.6 49.0 58.8

KN+Weaknorm 109.2 43.8 58.1

KN+WeaknormSQ 108.8 43.8 57.7

Table 2: Test perplexity of individual models and

interpolation with Kneser-Ney.
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Figure 2: PTB validation learning curve.

scoring next word rather than rescoring an exist-

ing string. This scenario requires scoring all out-

put words and D-Softmax can process nearly twice

as many tokens per second than the other methods

whose complexity is similar to softmax.

4.1 Softmax

Despite being our baseline, softmax ranks among

the most accurate methods on PTB and it is sec-

ond best on gigaword after D-Softmax (with Wea-

knormSQ performing similarly). For billionW,

the extremely large vocabulary makes softmax

training too slow to compete with faster alterna-

6This perplexity is higher than reported in (Chelba et al.,
2013), in which Kneser Ney is not trained on the 800m token
training set, but on a larger corpus of 1.1B tokens.
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Figure 3: Gigaword validation learning curve.
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Figure 4: Billion Word validation learning curve.

train test

Softmax 510 510

D-Softmax 960 960

Sampling 1,060 510

HSM 12,650 510

NCE 4,520 510

Weaknorm 1,680 510

WeaknormSQ 2,870 510

Table 3: Training and test speed on billionW in to-

kens per second for generation of the next word.

Most techniques are identical to softmax at test

time. HSM can be faster for rescoring.
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Figure 5: Number of Distractors versus Perplexity

for Target Sampling over Gigaword

tives. However, of all the methods softmax has the

simplest implementation and it has no additional

hyper-parameters compared to other methods.

4.2 Target Sampling

Figure 5 shows that target sampling is most accu-

rate for distractor sets that amount to a large frac-

tion of the vocabulary, i.e. > 30% on gigaword

(billionW best setting > 50% is even higher). Tar-

get sampling is faster and performs more itera-

tions than softmax in the same time. However, its

perplexity reduction per iteration is less than soft-

max. Overall, it is not much better than softmax.

A reason might be that sampling chooses distrac-

tors independently from context and current model

performance. This does not favor distractors the

model incorrectly considers likely for the current

context. These distractors would yield higher gra-

dients that could update the model faster.

4.3 Hierarchical Softmax

Hierarchical softmax is very efficient for large vo-

cabularies and it is the best method on billionW.

On the other hand, HSM does poorly on small vo-

cabularies as seen on PTB. We found that a good

word clustering structure is crucial: when clusters

gather words occurring in similar contexts, clus-

ter likelihoods are easier to learn; when the cluster

structure is uninformative, cluster likelihoods con-

verge to the uniform distribution. This affects ac-

curacy since words cannot have higher probability

than their clusters, Eq. (2).

Our experiments organize words into a two

level hierarchy and compare four clustering strate-

gies on billionW and gigaword (§2.2). Random

clustering shuffles the vocabulary and splits it

into equally sized partitions. Frequency-based

clustering first orders words based on their fre-

quency and assigns words to clusters such that

each cluster represents an equal share of the

total frequency (Mikolov et al., 2011b). K-

means runs the well-known clustering algorithm

on Hellinger PCA word embeddings. Weighted k-

means weights each word by its frequency.7

Random clusters perform worst (Table 4) fol-

lowed by frequency-based clustering but k-means

does best; weighted k-means performs similarly

to its unweighted version. In earlier experiments,

plain k-means performed very poorly since the

most frequent cluster captured up to 40% of the

7The time to compute the clustering (multi-threaded word
co-occurrence counts, PCA and k-means) is under one hour,
which is negligible given a one week training budget.
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billionW gigaword

random 98.51 62,27

frequency-based 92.02 59.47

k-means 85.70 57.52

weighted k-means 85.24 57.09

Table 4: HSM with different clustering.

token occurrences. We then explicitly capped the

frequency budget of each cluster to 10% which

brought k-means on par with weighted k-means.

4.4 Differentiated Softmax

D-Softmax is the best technique on gigaword and

second best on billionW after HSM. On PTB

it ranks among the best techniques whose per-

plexities cannot be reliably distinguished. The

variable-capacity scheme of D-Softmax can as-

sign large embeddings to frequent words, while

keeping computational complexity manageable

through small embeddings for rare words.

Unlike for hierarchical softmax, NCE or Wea-

knorm, the computational advantage of D-

Softmax is preserved at test time (Table 3). D-

Softmax is the fastest technique at test time, while

ranking among the most accurate methods. This

speed advantage is due to the low dimensional rep-

resentation of rare words which negatively affects

the model accuracy on these words (Table 5).

4.5 Noise Contrastive Estimation

Although we report better perplexities than the

original NCE paper on PTB (Mnih and Teh, 2012),

we found NCE difficult to use for large vocabular-

ies. In order to work in this setting where mod-

els are larger, we had to dissociate the number of

noise samples from the data to noise ratio in the

modeled mixture. For instance, a data/noise ra-

tio of 1/50 gives good performance in our exper-

iments but estimating only 50 noise sample pos-

teriors per data point is wasteful given the cost of

network evaluation. Moreover, 50 samples do not

allow frequent sampling of every word in a large

vocabulary. Our setting considers more noise sam-

ples and up-weights the data sample. This allows

to set the data/noise ratio independently from the

number of noise samples.

Overall, NCE results are better than softmax

only for billionW, a setting for which softmax is

very slow due to the very large vocabulary. Why

does NCE perform so poorly? Figure 6 shows en-

tropy on the validation set versus the NCE loss for

several models. The results clearly show that sim-
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Figure 6: Validation entropy versus NCE loss on

gigaword for experiments differing only in learn-

ing rates and initial weights. Each color corre-

sponds to one experiment, with one point per hour.

ilar NCE loss values can result in very different

validation entropy. Although NCE might make

sense for other metrics such as BLEU (Baltescu

and Blunsom, 2014), it is not among the best tech-

niques for minimizing perplexity. Jozefowicz et

al. (2016) recently drew similar conclusions.

4.6 Infrequent Normalization

Infrequent normalization (Weaknorm and Wea-

knormSQ) performs better than softmax on bil-

lionW and comparably to softmax on Penn Tree-

bank and gigaword (Table 2). The speedup from

skipping partition function computations is sub-

stantial. For instance, WeaknormSQ on billionW

evaluates the partition only on 10% of the exam-

ples. In one week, the model is evaluated and up-

dated on 868M tokens (with 86.8M partition eval-

uations) compared to 156M tokens for softmax.

Although referred to as self-normalizing (An-

dreas and Klein, 2015), the trained models still

need normalization after training. The partition

varies greatly between data samples. On billionW,

the partition ranges between 9.4 to 10.3 in log

scale for 10th to 90th percentile, i.e. a ratio of 2.5.

We observed the squared version (Wea-

knormSQ) to be unstable at times. Regularization

strength could be found too low (collapse) or

too high (blow-up) after a few days of training.

We added an extra unit to bound unnormalized

predictions x → 10 tanh(x/5), which yields

stable training and better generalization. For

the non-squared Weaknorm, stability was not an

issue. A regularization strength of 1 was the best

setting for Weaknorm. This choice makes the loss

an unbiased estimator of the data likelihood.
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1-4K 4-20K 20-40K 40-70K 70-100K

Kneser-Ney 3.48 7.85 9.76 10.76 11.57

Softmax 3.46 7.87 9.76 11.09 12.39

D-Softmax 3.35 7.79 10.13 12.22 12.69

Target sampling 3.51 7.62 9.51 10.81 12.06

HSM 3.49 7.86 9.38 10.30 11.24

NCE 3.74 8.48 10.60 12.06 13.37

Weaknorm 3.46 7.86 9.77 11.12 12.40

WeaknormSQ 3.46 7.79 9.67 10.98 12.32

Table 5: Test entropy on gigaword over subsets of the frequency ranked vocabulary; rank 1 is the most

frequent word.

5 Analysis

5.1 Model Capacity

Training neural language models over large cor-

pora highlights that training time, not training

data, is the main factor limiting performance. The

learning curves on gigaword and billionW indicate

that most models are still making progress after

one week. Training time has therefore to be taken

into account when considering increasing capac-

ity. Figure 7 shows validation perplexity versus

the number of iterations for a week of training.

This figure shows that a softmax model with 1024
hidden units in the last layer could perform bet-

ter than the 512-hidden unit model with a longer

training horizon. However, in the allocated time,

512 hidden units yield the best validation perfor-

mance. D-softmax shows that it is possible to se-

lectively increase capacity, i.e., to allocate more

hidden units to the most frequent words at the ex-

pense of rarer words. This captures most of the

benefit of a larger softmax model while staying

within a reasonable training budget.

5.2 Effect of Initialization

We consider initializing both the input word em-

beddings and the output matrix from Hellinger

PCA embeddings. Several alternative tech-

niques for pre-training embeddings have been pro-

posed (Mikolov et al., 2013; Lebret and Collobert,

2014; Pennington et al., 2014). Our experiment

highlights the advantage of initialization and do

not aim to compare embedding techniques.

Figure 8 shows that PCA is better than random

for initializing both input and output word rep-

resentations; initializing both from PCA is even

better. We see that even after long training ses-

sions, the initial conditions still impact the valida-

tion perplexity. We observed this trend also with
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Figure 7: Validation perplexity per iteration on

billionW for softmax and D-softmax. Softmax

uses the same number of units for all words. The

first D-Softmax experiment uses 1024 units for the

50K most frequent words, 512 for the next 100K,

and 64 units for the rest; similarly for the second

experiment. All experiments end after one week.

other strategies than softmax. After one week of

training, HSM is the only method which can reach

comparable accuracy to PCA initialization when

the output matrix is randomly initialized.

5.3 Training Set Size

Large training sets and a fixed training time in-

troduce competition between slower models with

more capacity and observing more training data.

This trade-off only applies to iterative SGD op-

timization and does not apply to classical count-

based models, which visit the training set once and

then solve training in closed form.

We compare Kneser-Ney and softmax, trained

for one week, with gigaword on differently sized

subsets of the training data. For each setting we

take care to include all data from the smaller sub-

sets. Figure 9 shows that the performance of the

neural model improves very little on more than
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Figure 9: Effect of training set size measured on

test of gigaword for Softmax and Kneser-Ney.

500M tokens. In order to benefit from the full

training set we would require a much higher train-

ing budget, faster hardware, or parallelization.

Scaling training to large datasets can have a sig-

nificant impact on perplexity, even when data from

the distribution of interest is limited. As an illus-

tration, we adapted a softmax model trained on bil-

lionW to Penn Treebank and achieved a perplexity

of 96 - a far better result than with any model we

trained from scratch on PTB (cf. Table 2).

5.4 Rare Words

How well do neural models perform on rare

words? To answer this question, we computed

entropy across word frequency bands for Kneser-

Ney and neural models. Table 5 reports entropy

for the 4, 000 most frequent words, then the next

most frequent 16, 000 words, etc. For frequent

words, neural models are on par or better than

Kneser-Ney. For rare words, Kneser-Ney is very

competitive. Although neural models might even-

tually close this gap with much longer training,

one should consider that Kneser-Ney trains on gi-

gaword in only 8 hours on CPU which contrasts

with 168 hours of training for neural models on

high end GPUs. This result highlights the comple-

mentarity of both approaches, as observed in our

interpolation experiments (Table 2).

For neural models, D-Softmax excels on fre-

quent words but performs poorly on rare ones.

This is because D-Softmax assigns more capacity

to frequent words at the expense of rare words.

Overall, hierarchical softmax is the best neural

technique for rare words. HSM does more itera-

tions than any other technique and so it can ob-

serve every rare word more often.

6 Conclusions

This paper presents a comprehensive analysis of

strategies to train neural language models with

large vocabularies. This setting is very challeng-

ing for neural networks as they need to compute

the partition function over the entire vocabulary at

each evaluation.

We compared classical softmax to hierarchical

softmax, target sampling, noise contrastive esti-

mation and infrequent normalization, commonly

referred to as self-normalization. Furthermore, we

extend infrequent normalization to be a proper es-

timator of likelihood and we introduce differenti-

ated softmax, a novel variant of softmax assigning

less capacity to rare words to reduce computation.

Our results show that methods which are ef-

fective on small vocabularies are not necessarily

equally so on large vocabularies. In our setting,

target sampling and noise contrastive estimation

failed to outperform the softmax baseline. Over-

all, differentiated softmax and hierarchical soft-

max are the best strategies for large vocabularies.

Compared to classical Kneser-Ney models, neural

models are better at modeling frequent words, but

are less effective for rare words. A combination of

the two is therefore very effective.

We conclude that there is a lot to explore in train-

ing from a combination of normalized and unnor-

malized objectives. An interesting future direc-

tion is to combine complementary approaches, ei-

ther through combined parameterization (e.g. hi-

erarchical softmax with differentiated capacity per

word) or through a curriculum (e.g. transitioning

from target sampling to regular softmax as training

progresses). Further promising areas are parallel

training as well as better rare word modeling.
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Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On Using Very Large
Target Vocabulary for Neural Machine Translation.
CoRR, abs/1412.2007.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. Technical Report arXiv
1602.02410.

Hai-Son Le, Alexandre Allauzen, and François Yvon.
2012. Continuous Space Translation Models with
Neural Networks. In Proc. of HLT-NAACL, pages
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