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Abstract

Background

The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovalemalar-

ias presents a major challenge for malaria control and elimination in endemic countries.

This study aims to directly determine the contribution of relapses to the burden of P. vivax

and P. ovale infection, illness, and transmission in Papua New Guinean children.

Methods and Findings

From 17 August 2009 to 20 May 2010, 524 children aged 5–10 y from East Sepik Province

in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled

trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3

d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only

(CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and inves-

tigators were blinded to the treatment allocation. Twenty children were excluded during the

treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During

the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary

and secondary outcome measures were time to first P. vivax infection (by qPCR), time to
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first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infec-

tion (by PCR). A basic stochastic transmission model was developed to estimate the poten-

tial effect of mass drug administration (MDA) for the prevention of recurrent P. vivax

infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least

one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ

arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06

versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one

clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the

molecular force of P. vivax blood-stage infection in the first 3 mo of follow-up (PQ arm 1.90/y

versus PL arm 7.75/y, incidence rate ratio [IRR] = 0.21 [95% CI 0.15, 0.28], p < 0.001). Chil-

dren who received PQ were less likely to carry P. vivax gametocytes (IRR = 0.27 [95% CI

0.19, 0.38], p < 0.001). PQ had a comparable effect irrespective of the presence of P. vivax

blood-stage infection at the time of treatment (p = 0.14). Modelling revealed that mass

screening and treatment with highly sensitive quantitative real-time PCR, or MDA with

blood-stage treatment alone, would have only a transient effect on P. vivax transmission lev-

els, while MDA that includes liver-stage treatment is predicted to be a highly effective strat-

egy for P. vivax elimination. The inclusion of a directly observed 20-d treatment regime

maximises the efficiency of hypnozoite clearance but limits the generalisability of results to

real-world MDA programmes.

Conclusions

These results suggest that relapses cause approximately four of every five P. vivax infec-

tions and at least three of every five P. ovale infections in PNG children and are important

in sustaining transmission. MDA campaigns combining blood- and liver-stage treatment

are predicted to be a highly efficacious intervention for reducing P. vivax and P. ovale

transmission.

Trial registration

ClinicalTrials.gov NCT02143934

Introduction

Renewed intensification of global malaria control efforts over the last 15 years have been suc-

cessful in significantly reducing the global burden of malaria, with many countries in the Asia-

Pacific and the Americas seeing a reduction of>90% in the number of clinical cases [1]. As a

consequence, 34 countries are actively attempting to eliminate malaria, and many others are

considering doing so in the near future [2]. In 2013, political leaders in Central American and

East Asian countries, representing>60% of the global population, declared their intention to

eliminate malaria in their regions by 2020 and 2030, respectively [3,4]. In parallel to the reduc-

tion in overall incidence, a pronounced shift in species composition has been observed, with

Plasmodium vivax now the predominant Plasmodium species in the vast majority of countries

outside Africa [2], accounting for 90%–100% of clinical cases in countries such as Guatemala,

Brazil, Solomon Islands, and Vanuatu [1].
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Despite a significant reduction in P. vivaxmalaria in the last 20 years, P. vivax has several

biological characteristics that enable it to evade existing control and elimination efforts, which

are mainly directed against P. falciparum blood stages [5,6]. First and foremost is the ability of

P. vivax to relapse weeks, months, and years after a primary infection, via a poorly understood

reactivation of dormant hypnozoite stages in the liver [7]. These stages cannot be detected with

currently available diagnostic tools and are not cleared upon treatment with routinely adminis-

tered anti-malarial drugs, unless primaquine (PQ)—a drug that requires at least 7–14 d of

administration and can cause severe haemolysis in people with glucose-6-phosphate dehydro-

genase (G6PD) deficiency—is added to the treatment [8].

In P. vivax–endemic regions, hypnozoites constitute a reservoir of diverse P. vivax strains

that will cause blood-stage infections at a later point in time [9,10]. They are therefore likely

not only to account for a high number of P. vivax blood-stage infections but also to contribute

a high number of concurrently circulating parasite clones in the blood. Despite recent advances

in the molecular detection and genotyping of P. vivax parasites [11], it is not yet possible to

determine whether an infection detected in the blood of an individual originated from a new

sporozoite inoculation or is a relapse from a hypnozoite. P. vivax produces gametocytes rapidly

and continuously over the course of an infection [10], and even low-density infections are thus

potentially infectious. If all clones, relapse-derived and newly acquired, produce gametocytes

concurrently, these infections can potentially be transmitted together, and the chance for sex-

ual recombination in the mosquito is greatly increased, thus contributing to the maintenance

of high P. vivax genetic diversity even at low transmission levels [12–14].

P. vivax is thus considered one of the major challenges for elimination of malaria outside

Africa [15]. Better data and tools are urgently required to estimate the P. vivax hypnozoite res-

ervoir, quantify the relapse burden, better understand potential relapse triggers, and develop

the most appropriate public health intervention strategies [15–17].

In malaria-endemic areas of Papua New Guinea (PNG), where four of the five human Plas-

modium species coexist, P. vivax predominates as the cause of infection and illness in young

children [18,19] and is gradually replaced by P. falciparum as the main cause of disease in older

children and adults [20], although P. vivax infections remain common throughout childhood

and into adulthood, with a prevalence of 13%–36% in cross-sectional surveys conducted in

PNG between 2005 and 2010 [21–24]. P. ovale and P.malariae are much less common, with a

2010 survey revealing a prevalence of 0.1% and 1.3%, respectively (by quantitative real-time

PCR [qPCR]), and are mostly observed in mixed-species infections [22,25]. The PNG standard

anti-malarial treatment is artemether-lumefantrine (AL), which acts against the blood stage of

the parasite but does not eliminate hypnozoites. In the absence of a nationwide, cost-effective

strategy of screening for G6PD, PQ treatment for clearing liver stages, although recommended

for G6PD-normal patients, is rarely given. Consequently, relapses are expected to contribute

significantly to the high burden and limited seasonality of P. vivax in PNG children [18,26]. A

previous study in PNG children aged 1–5 y observed that presumptive artesunate (7 d) and PQ

(14 d, partially supervised) mass treatment to clear hypnozoites reduced the risk of P. vivax

clinical episodes by 28% (p = 0.042) compared to only blood-stage treatment and by 33%

(p = 0.015) compared to no treatment [27]. Although the study used a suboptimal treatment

regimen, and thus substantially underestimated the hypnozoite burden, it did highlight the sig-

nificant challenge relapses pose to successful control and eventual elimination of P. vivax

malaria in PNG and provides a strong rationale for conducting a more comprehensive clinical

trial with an in-depth molecular diagnostics component.

Intensified national control efforts have seen the prevalence of light microscopy (LM)–

detectable P. vivaxmalaria parasites in the general population decrease from 17% in 2006 to

8% in 2010 [25] and to 0.5% in 2014 [28]. Despite these gains, a large reservoir of individuals
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infected with submicroscopic P. vivax persists. In a 2010 survey, P. vivax prevalence by qPCR

was 12.8%. Of these infections, 89.6% were asymptomatic, 53.8% were submicroscopic, and

48.9% included P. vivax gametocytes [25]. Similarly high rates of persistent asymptomatic P.

vivax infection and gametocyte carriage were also found in surveys in Thailand [29,30] and

Brazil [31], which have seen substantial recent reductions in transmission.

Mass screening and treatment (MSAT) and mass drug administration (MDA) with artemi-

sinin-based combination therapies have been advocated as important tools to reduce the

asymptomatic P. falciparum reservoir [32,33]. These interventions are also likely to be of great

importance for P. vivax elimination. Significant questions remain, however, none greater than

how to best attack the undetectable hypnozoite reservoir.

To address these critical questions we have conducted a randomised double-blind placebo-

controlled trial of a highly efficacious PQ treatment regimen in PNG children aged 5–10 y,

using detailed molecular diagnostics to directly measure the contribution of relapses to the bur-

den of P. vivax and P. ovale infection, disease, and transmission. By using these data in mathe-

matical models, we further estimate the potential effect of MDA with treatment regimens that

are part of first-line policy and regimens currently under investigation in clinical trials [34,35]

on the prevention of recurrent P. vivax infections, providing critical evidence-based recom-

mendations for policy-makers.

Methods

Ethics Statement

The protocol (S1 Text) received ethical clearance from the PNG Institute of Medical Research

Institutional Review Board (0908), the PNGMedical Advisory Committee (09.11), and the

Ethics Committee of Basel (237/11) and was conducted in full accordance with the Declaration

of Helsinki. The study was retrospectively registered at ClinicalTrials.gov (NCT02143934) on

20 May 2014 due to the fact that it was designed and perceived by the investigating team as a

treatment to re-infection cohort study where randomisation of PQ treatment was being done

in order to modify exposure and allow a detailed investigation of relapses rather than as a trial

to assess the efficacy of this specific treatment schedule. However, following further review, it

was decided that the study did indeed fulfil the generally accepted definitions of a clinical trial,

and the study was then retrospectively registered at ClinicalTrials.gov. All authors affirm that

other trials involving PQ that they are involved in are registered at ClinicalTrials.gov

(NCT01837992; NCT02364583).

Study Site, Design, and Participants

The study was conducted from 17 August 2009 to 20 May 2010 in five village clusters (13 ham-

lets) of the Albinama and Balif areas of Maprik District, East Sepik Province, PNG, where both

P. falciparum and P. vivax are hyperendemic and P. vivax is responsible for the majority of

malaria infection and disease in the first 3 y of life [18,22,36]. Malaria transmission is moder-

ately seasonal, peaking in the early wet season from December to March [26]. Health services

for the area are provided by the Albinama health sub-centre, the Balif aid post, and a system of

village-based health workers operating in all study villages.

Between 17 August and 11 September 2009, 529 children aged 5 to 10 y whose parents pro-

vided written informed consent for their participation were screened for inclusion into this

parallel double-blind placebo-controlled trial. Children were enrolled if they fulfilled the fol-

lowing criteria: (i) aged 5–10 y (± 3 mo in children without known date of birth, (ii) enrolled at

selected elementary schools and permanent residents of the area, (iii) no disability, (iv) no

chronic illness, (v) no known allergy to study drugs, (vi) haemoglobin> 50 g/l, (vii) no severe
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malnutrition (defined by the PNG national guidelines as weight-for-age nutritional Z

score< 60th percentile), and (viii) no G6PD deficiency. The inclusion criteria were amended

during the study to allow children who were aged 5–6 y but who were not yet enrolled in ele-

mentary school to participate in the study. This was necessary to ensure we adequately covered

the desired age range of 5–10 y and reached the required sample size of 525 without expanding

the geographical area. Five children were excluded on the basis of G6PD deficiency, and 524

were block randomised using a 1:1 allocation ratio to receive 20 d of directly observed treat-

ment (DOT) over 4 wk (26 d) of either (i) chloroquine (CQ) (DOTs 1–3), AL (Coartem)

(DOTs 11–13), and PQ (DOTs 1–20; 0.5 mg/kg) or (ii) CQ (DOTs 1–3), AL (DOTs 11–13),

and placebo (PL) (DOTs 1–20) (Fig 1). This treatment regimen was deliberately chosen to

maximise efficacy, and the dose of each drug was timed such that there would be minimal

residual drug by day 0 of the follow-up period (baseline). In order to achieve this, a 4-wk wash-

out period was required for CQ, and the 20 d of PQ DOTs were scheduled Monday to Friday

of these 4 wk (Fig 1), for ease of direct supervision of every dose. AL was administered because

there is documented CQ resistance in PNG, and the PNG national treatment guidelines for P.

vivax are to use AL plus PQ. The administration of AL on DOTs 11–13 (days 15–17) was delib-

erate so that it wouldn’t interfere with CQ and so that drug levels would have reduced to zero

by baseline. The intention was not to trial this unconventional drug regimen as a treatment for

implementation, but rather to devise a maximally effective treatment to ensure radical cure in

half of the cohort and thus allow a detailed investigation of relapses. Participants, field teams,

and investigators were all blinded with respect to treatment allocation.

Randomisation, Blinding, and Treatment Allocation

After enrolment, children were randomly allocated to the PQ or PL treatment group using a

pre-assigned list. Randomisation lists were prepared by an independent statistician using

Microsoft Excel and consisted of ID assignments in blocks of six, each block comprising a list

of the same six letters in random order. The independent statistician assigned three randomly

selected letters to the PQ drug containers and the three other letters to the PL drug containers.

The coding document was held by the statistician until completion of the trial. The PQ and PL

tablets were identical in size, shape, and colour. The entire study team and principal investiga-

tors remained fully blinded for the entire study period.

Clinical Procedures and Follow-Up

Clinical assessment at enrolment included screening for symptoms of febrile illness, a detailed

history of bednet use and recent illness/anti-malarial treatment, and collection of a finger-

prick blood sample for assessment of G6PD deficiency using the visual, tube-based G6PD

assay (Dojindo Laboratories, Japan), haemoglobin measurement, and later immunological

and molecular studies. Children who were febrile were tested using a malaria rapid diagnostic

test (RDT) (CareStart Malaria pLDH/HRP2 Combo; AccessBio, US); children with a positive

test were treated with AL during DOTs 1–3. DOT 1 was administered at the end of the enrol-

ment visit, with the subsequent 19 DOTs administered daily Monday–Friday over the subse-

quent 4 wk (Fig 1). All DOTs were supervised by a member of the clinical field team and were

co-administered with food and well tolerated [37]. Safety monitoring was performed and

reported previously [27]. No specific safety monitoring was conducted during post-interven-

tion follow-up.

Three days after the final DOT (i.e., 4 wk after enrolment), a venous sample was collected

and defined as baseline (time point day 0 of the follow-up period). Children were then actively

monitored for the presence of febrile symptoms every fortnight for 8 mo. To ensure the capture
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of information related to any episodes of illness in the 2 wk between visits, passive surveillance

measures were implemented at local health centres and aid posts and via the village health

worker network. In all symptomatic children, Plasmodium spp. infection was initially con-

firmed using RDT and a 250-μl finger-prick blood sample was collected for confirmation of

infection by LM and qPCR. Only symptomatic children who tested positive by RDT and/or

LM were treated with AL. PQ was not re-administered for RDT- or LM-confirmed P. vivax

malaria episodes during follow-up. All other illness episodes detected were referred to the local

health centre and treated in accordance with PNG treatment guidelines. Finger-prick blood

samples were also collected from all children every 2 wk for the first 12 wk and every 4 wk

thereafter during the follow-up period (Fig 2). Children were considered lost to follow-up if

they permanently relocated outside of the study area or withdrew from the study.

Laboratory Methods

All blood samples collected during active and passive surveillance were examined by LM and

qPCR. Blood films were examined independently by two skilled microscopists, blind to allo-

cated treatment, for 200 thick-film fields (1,000× magnification) before being declared Plasmo-

dium-negative. Parasite density was calculated from the number of parasites per 200–500

leucocytes (depending on parasite density) and an assumed leucocyte density of 8,000/μl [38].

Slides discrepant for positivity/negativity, species determination, or density (>2 log difference)

were adjudicated by a WHO-certified level 1 (expert) microscopist. Slides were scored as LM-

positive for an individual Plasmodium species if the species was detected independently by at

least two microscopists and/or if subsequent qPCR diagnosis confirmed the presence of the

species. Densities were calculated as the geometric mean densities of all positive reads.

Fig 1. Drug administration schedule. The drug regimen for the PQ and PL treatment arms was administered with direct observation on 20 d (Monday to
Friday) over a 4-wk (26-d) period.

doi:10.1371/journal.pmed.1001891.g001
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Venous blood samples were separated into plasma, peripheral blood mononuclear cells and

red cell pellets, which were stored at −80°C, in liquid nitrogen, and at −20°C, respectively. Fin-

ger-prick blood samples were separated into plasma and red cell pellets and stored at −80 and

−20°C, respectively. DNA was extracted using the FavorPrep 96-Well Genomic DNA Extrac-

tion Kit (Favorgen, Taiwan) from the red cell pellet fraction of all samples. Plasmodium spp.

infections were detected using a generic qPCR to detect all four species, after which species-

specific (P. falciparum, P. vivax, P.malariae, and P. ovale) qPCRs were performed on Plasmo-

dium-positive samples [39,40]. The P. ovale PCR detects both P. ovale curtisi and P. ovale walli-

keri. In addition, samples positive for P. vivax by qPCR were tested for gametocytes by Pvs25

quantitative reverse transcription PCR (qRT-PCR) [39], and individual P. vivax clones were

genotyped by capillary electrophoresis using the molecular markermsp1F3 [41] to determine

the number of genetically distinct P. vivax blood-stage clones acquired per individual per year

at risk, i.e., the molecular force of blood-stage infection (molFOB) [42].

Statistical Analysis and Modelling

As the primary objective of the study was to determine relapse frequencies, the analysis was by

modified intention to treat, excluding children who received fewer than 14 DOTs but including

those that received 14–20 DOTs and had incomplete follow-up. For analysis purposes, a clini-

cal episode of P. vivax or P. falciparummalaria was defined as febrile illness (current or previ-

ous 48 h) plus the presence of P. vivax or P. falciparum parasites by LM (any density). The

Fig 2. Study design and follow-up schedule. After the drug treatment period, children were actively monitored for infection and illness every 2 wk for the
first 12 wk. From week 14 to 32, children were actively monitored for illness every 2 wk and for infection every 4 wk.

doi:10.1371/journal.pmed.1001891.g002
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primary trial endpoint was pre-defined as time to first P. vivax infection after baseline by

qPCR. Secondary endpoints included time to first P. vivax infection after baseline by LM; time

to first P. vivax clinical episode; time to first P. vivax gametocyte positivity; incidence rate of

clinical P. vivax episodes; incidence rate of genetically distinct P. vivax infections (molFOB);

incidence rate of P. vivax gametocyte positivity; time to first P. falciparum, P.malariae, and P.

ovale infection by qPCR; and time to first P. falciparum clinical episode. A minimum sample

size of 250 children per arm was calculated using hazard-rate-based calculations (log-rank

tests) based on the effect (30% reduction in incidence risk in PQ group) observed in [27] with

an α–error of 5% and a power of 80% and assuming a 30% increase in time to first infection fol-

lowing additional distributions of long-lasting insecticide-treated nets. Sample sizes were

increased by 5% to account for children receiving fewer than 14 doses of PQ or PL.

Time to first Plasmodium infection or clinical episode and its association with treatment

and covariates were modelled using Cox regression, and the proportional hazards (PH)

assumption was checked using the test based on the Schoenfeld residuals. For these analyses,

time at risk was censored on the last day before the first of two consecutively missed clinical fol-

low-up visits, resulting in the censoring of 177 children (Fig 3). Kaplan-Meier estimates were

computed for each endpoint by Plasmodium species and method of Plasmodium diagnosis.

The log-rank test was used to test for differences between survival curves. In all survival analy-

ses, children were considered “at risk” until they reached the endpoint of interest, withdrew,

were lost to follow-up, were censored, or completed the study. Village membership was fitted

as a fixed effect in the Cox PH model using the following equation:

hðtÞ ¼ h
0
ðtÞ expðb1x1 þ b

2
x
2
þ b

3
x
3
þ b

4
x
4
Þ ð1Þ

where x1 = treatment, x2 = age, x3 = village, and x4 = infection status by the same Plasmodium

species at enrolment.

Negative binomial regression (NB reg) models were used to calculate the incidence rate of

clinical episodes, molFOB, and P. vivax gametocyte positivity. In these models, time at risk was

calculated for individual children based on the number of attended versus missed visits. If a

child was not seen for a consecutive time period of 108 d during the follow-up period, time at

risk was censored at the last attended follow-up visit or passive surveillance contact. This

resulted in 74 children being censored (44 in PL arm and 30 in PQ arm) rather than the 177

shown in Fig 3. In addition, for the molecular analyses, time at risk was reduced for children

who were not seen for consecutive intervals of 42 d by subtracting the days of the missed inter-

vals from the overall individual time at risk. As per PNG treatment guidelines, treatment dur-

ing the follow-up period was given only if a clinical episode was detected. A potential

competing risk could exist if treatment was administered for a clinical episode with one species

before the first event for a heterologous species endpoint had occurred. However, since the

incidence rate of clinical episodes was very low, this occurred very rarely. It should also be

noted that the times at risk for the analyses of different endpoints were not adjusted for the

post-treatment prophylactic effects of the aforementioned treatments. Clinical malaria episode

incidence rate ratios (IRRs) were derived from models adjusted for treatment, age, and P. vivax

positivity by PCR at enrolment, while the models for molFOB and P. vivax gametocyte positivity

were further adjusted for village of residence. Differences between treatment groups at enrol-

ment were investigated using chi-square and Fisher’s exact tests for categorical characteristics

and Student’s t-test for normally distributed continuous variables. All tests were two-tailed,

and the confidence level was set at 95%. All analyses were performed using R version 3.0.3. [43]

and/or Stata version 12 [44].

Understanding and Reducing P. vivax and P. ovale Hypnozoite Reservoir

PLOSMedicine | DOI:10.1371/journal.pmed.1001891 October 27, 2015 8 / 26



The effects of MDA and MSAT programmes with anti-malarial drugs currently recom-

mended as first-line treatment on the dynamics of P. vivax and P. falciparum transmission

were investigated using a mathematical model. The model simulated the impact of a 3-d course

of either dihydroartemisinin-piperaquine (DHA-PIP) or CQ to clear blood stages [45], and a

14-d PQ regimen to clear liver stages. The model also simulated the impact of tafenoquine plus

CQ treatment, a highly promising short-course anti-relapse therapy that is currently undergo-

ing phase 3 clinical trials [34]. A classical Ross-Macdonald model [46,47] was used to describe

the qualitative dynamics of P. falciparum following treatment of “at risk” populations with

drugs for clearing blood-stage infections. This model was extended to incorporate relapse

infections of P. vivax and the effects of PQ treatment for the clearance of liver-stage hypno-

zoites [48]. In brief, individuals in a population can be susceptible to blood-stage infection with

no liver-stage hypnozoites (S0), infected with blood-stage parasites but no hypnozoites (I0),

susceptible to blood-stage infection but carrying hypnozoites (SL), or infected with both blood-

stage parasites and hypnozoites (IL). Full details of the deterministic differential equations

describing the mathematical model and parameter definitions are provided in S1 Table. The

model was also implemented in a stochastic framework with population size 5,000 to capture

stochastic variation and the potential for the elimination of transmission.

Fig 3. Consort diagram: study design, randomisation, and retention of study participants during follow-up. In the analysis of time to first infection and
clinical episode, children were censored on the last day before the first of two consecutive missed clinical visits.

doi:10.1371/journal.pmed.1001891.g003
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Details of all methods used in this study are given in S1–S3 Text, S1 Table, and S1 and S2

Figs, and all datasets are available in the Dryad repository: http://dx.doi.org/10.5061/dryad.

m1n03 [49].

Results

Enrolment and Baseline Characteristics of Children

Of the 524 G6PD-normal children who were randomised to receive PQ/CQ/AL (PQ arm) or

PL/CQ/AL (PL arm), a total of 504 children aged 4.8–10.5 y completed at least 14 d of DOT

with PQ or PL and remained in the study at baseline (day 0 of follow-up) and were thus actively

and passively monitored for 32 wk post-baseline (Fig 3).

No significant differences in demographic characteristics or infection status were observed

at enrolment between the treatment groups (Table 1). At baseline (~4 wk after enrolment and

commencement of drug treatment), four children were P. vivax–positive by qPCR (two each in

the PL and PQ arms), two children in the PL arm were P. falciparum–positive, and one of these

was also P. vivax–positive. These children therefore did not contribute to time at risk and were

thus excluded from the respective analyses of time to first infection. No Plasmodium infections

were detected by LM at baseline. During follow-up, 81.6% (2,308/2,827) of scheduled visits

were attended by children in the PL arm, and 82.7% (2,248/2,717) in the PQ arm. The average

number of all study contacts during follow-up did not differ between the treatment arms (PL

arm: 14.0, PQ arm: 14.4, Student’s t-test, p = 0.25).

Risk of P. vivax Infection during Follow-Up

The time to first or only P. vivax blood-stage infection (as detected by qPCR) differed signifi-

cantly between the two treatment arms: only 25.5% (63/247) of children who received PQ expe-

rienced at least one new P. vivax infection, compared to 65.0% (167/257) in the PL arm (Cox

PH, p< 0.001; Table 2; Fig 4A). qPCR-positive, recurrent P. vivax blood-stage infections were

detected rapidly in the PL arm, with 31.5% (80/254) of children infected by day 42 compared

to only 8.2% (20/245) in the PQ arm (Fig 4A). As expected, LM-positive infections were less

common in both arms and were observed later during follow-up (Fig 4B).

Clearance of liver stages through PQ treatment resulted in an 82%–84% reduction in the

risk of recurrent P. vivax blood-stage infections diagnosed by qPCR (hazard ratio [HR] = 0.18

[95% CI 0.14, 0.25], Cox PH, p< 0.001) and LM (HR = 0.16 [95% CI 0.11, 0.24], Cox PH, p<

0.001) compared to PL (Table 2). This increased to an 83%–88% reduction in risk when only

the first 3 mo of follow-up were considered (qPCR: HR = 0.17 [95% CI 0.12, 0.24], Cox PH, p

< 0.001; LM: HR = 0.12 [95% CI 0.07, 0.19], Cox PH, p< 0.001; Table 2).

There was considerable heterogeneity in the prevalence and risk of P. vivax infection across

the study villages. The risk of first P. vivax infection (by qPCR and LM) differed significantly

among children living in different villages, with the highest risk in Bolumita (qPCR: HR = 4.70

[95% CI 3.14, 7.02], Cox PH, p< 0.001; LM: HR = 4.62 [95% CI 2.92, 7.30], Cox PH, p<

0.001, reference village Albinama) and Balanga (qPCR: HR = 2.33 [95% CI 1.53, 3.55], Cox PH,

p< 0.001; LM: HR = 1.70 [95% CI 1.03, 2.81], Cox PH, p = 0.04, reference village Albinama).

There was, however, no interaction between village and treatment effect. The risk of first P.

vivax blood-stage infection diagnosed by qPCR after treatment was not significantly associated

with age (qPCR: HR = 0.95 [95% CI 0.87, 1.03], Cox PH, p = 0.19); however, there was a 15%

reduction in the risk of having at least one LM-patent P. vivax infection with each additional

year of life (LM: HR = 0.85 [95% CI 0.77, 0.95], Cox PH, p = 0.003). As with village, there was

no interaction between age and treatment effect.
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When all P. vivax infections in a child were genotyped to identify new infections in the con-

text of ongoing multiple clone infections, PQ treatment was associated with a 77% reduction in

the incidence of genetically distinct P. vivax blood-stage clones (molFOB) compared to PL (PQ

arm: molFOB = 1.62/y, PL arm: molFOB = 4.74/y, IRR = 0.23 [95% CI 0.18, 0.31], NB reg, p<

0.001; Table 3). The effect of the PQ treatment on molFOB was substantially larger in the first 3

mo (IRR = 0.21 [95% CI 0.15, 0.28], p< 0.001) than in months 4–8 (IRR = 0.34 [95% CI 0.24,

0.48], NB reg, p< 0.001; Table 3).

In addition, PQ treatment was associated with a 75% reduction in the hazard of becoming

positive for P. vivax gametocytes by Pvs25 qRT-PCR compared to PL (HR = 0.25 [95% CI 0.17,

0.37], Cox PH, p< 0.001; Table 2). The incidence rate of P. vivax gametocytes (defined as the

number of samples positive for Pvs25 qRT-PCR during follow-up) was more strongly reduced

in the PQ arm compared to the PL arm in the first 3 mo (IRR = 0.18 [95% CI 0.11, 0.30], p<

0.001) than in the subsequent 5 mo (months 4–8: IRR = 0.37 [95% CI 0.24, 0.57], NB reg, p<

0.001; Table 3).

Irrespective of treatment group, clinical P. vivaxmalaria episodes were rare, with only 28

children experiencing one or more clinical P. vivax episodes during the 32-wk follow-up period

(incidence risk: 0.19/child/y in PL arm and 0.06/child/y in PQ arm; Table 2). The clearance of

hypnozoites by PQ treatment was associated with an 81% reduction compared to PL in the

hazard of experiencing a P. vivax clinical episode of any density in the first 3 mo of follow-up

(HR = 0.19 [95% CI 0.06, 0.58], Cox PH, p = 0.004; Table 2; Fig 4C) and a 75% reduction in the

entire follow-up period (HR = 0.25 [95% CI 0.11, 0.61], Cox PH, p = 0.002; Table 2).

Table 1. Demographic and clinical characteristics of the cohort at enrolment, classified by allocated treatment.

Characteristic Total (n = 504) PL Arm (n = 257) PQ Arm (n = 247) p-Value

Male sex 49.2% 49.8% 48.6% 0.78

Age (years) 7.6 ± 1.6 7.7 ± 1.5 7.5 ± 1.6 0.40

Weight (kilogrammes) 19.7 ± 3.4 19.7 ± 3.2 19.8 ± 3.6 0.82

Village 0.57

Albinama 22.8% 23.0% 22.7%

Amahup 26.0% 27.3% 24.7%

Balanga 10.9% 12.5% 9.3%

Balif 25.6% 24.5% 26.7%

Bolumita 14.7% 12.8% 16.6%

Bednet use 93.3% 93.4% 93.1% 0.91

Infection by qPCR*

P. vivax 47.4% 44.8% 50.2% 0.22

P. falciparum 23.8% 23.7% 23.9% 0.97

P. ovale 3.4% 1.9% 4.9% 0.07

P. malariae 14.3% 13.2% 15.4% 0.49

Non–P. vivax 12.9% 14.0% 11.7% 0.45

Fever 14.9% 15.2% 14.6% 0.85

Haemoglobin (g/l) 108 ± 13 109 ± 13 108 ± 13 0.78

Data are percentage or mean ± standard deviation. Analysis is by chi-square and Fisher’s exact tests for categorical characteristics and Student’s t-test

for normally distributed continuous variables.

*Prevalence includes single- and mixed-species infections.

doi:10.1371/journal.pmed.1001891.t001
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Risk of Non–P. vivaxMalaria Infection during Follow-Up

Although the number of P. ovale infections diagnosed by PCR in either arm was low (incidence

risk: both arms: 0.10 infections/child/y, PQ arm: 0.06, PL arm: 0.14), PQ treatment was associ-

ated with a 92% reduction compared to PL in the risk of P. ovale blood-stage infection diag-

nosed by qPCR in the first 3 mo of follow-up (HR = 0.08 [95% CI 0.01, 0.67], Cox PH,

p = 0.019) and a 69% reduction in the entire 8-mo of follow-up period (HR = 0.31 [95% CI

0.13, 0.77], Cox PH, p = 0.011; Fig 4F; Table 2).

There was no significant association between PQ treatment and time to first (or only) P. fal-

ciparum blood-stage infection by qPCR (Cox PH, p = 0.104; Fig 4D; Table 4) or LM (Cox PH,

p = 0.706; Table 4), and no effect of PQ treatment on time to first (or only) P. falciparum clini-

cal episode during the 8 mo of follow-up (Cox PH, p = 0.333; Table 4). There was no significant

association between PQ treatment and time to first (or only) P.malariae blood-stage infection

by qPCR in the first 3 mo of follow-up (HR = 0.36 [95% CI 0.13, 1.02], Cox PH, p = 0.055) or

during the entire follow-up period (HR = 0.55 [95% CI 0.24, 1.26], Cox PH, p = 0.157; Fig 4E;

Table 4).

Implications for Malaria Control and Elimination Strategies

MSAT interventions target only individuals with detectable blood-stage parasitaemia. In the

current cohort, 47.4% (239/504) of children had a P. vivax infection (single or mixed species)

at enrolment, and another 12.9% (65/504) were positive with non–P. vivax blood-stage infec-

tions (Table 1). In the absence of PQ treatment, children with no patent infections at enrolment

were significantly less rapidly re-infected with P. vivax (55.2% [58/105] became infected during

8 mo of follow-up) than those that had patent P. vivax (70.5% [79/112]) or P. falciparum/P.

Table 2. Incidence of first (or only) P. vivax/P. ovale re-infections, P. vivax clinical malaria episodes, and P. vivax gametocyte positivity in treatment
groups during the entire 8-mo follow-up period and during the first 3 mo of follow-up.

Outcome PL Arm PQ Arm Cox Model Estimate*

Number of Events PYR Incidence Risk Number of Events PYR Incidence Risk HR (95% CI) p-Value

P. vivax infections by qPCR

Months 0–8 167 63.6 2.62 63 100.6 0.63 0.18 (0.14, 0.25) <0.001

Months 0–3 152 43.4 3.50 48 54.9 0.87 0.17 (0.12, 0.24) <0.001

P. vivax infections by LM

Months 0–8 122 83.4 1.46 40 111.7 0.36 0.16 (0.11, 0.24) <0.001

Months 0–3 104 51.3 2.03 22 58.3 0.38 0.12 (0.07, 0.19) <0.001

P. vivax clinical malaria episodes

Months 0–8 21 109.0 0.19 7 112.5 0.06 0.25 (0.11, 0.61) 0.002

Months 0–3 15 61.2 0.25 4 60.2 0.07 0.19 (0.06, 0.58) 0.004

P. vivax gametocyte positivity

Months 0–8 99 93.3 1.06 35 112.9 0.31 0.25 (0.17, 0.37) <0.001

Months 0–3 70 53.9 1.30 16 58.9 0.27 0.18 (0.10, 0.30) <0.001

P. ovale infections by qPCR

Months 0–8 17 118.0 0.14 7 120.6 0.06 0.31 (0.13, 0.77) 0.011

Months 0–3 10 61.7 0.16 1 60.3 0.02 0.08 (0.01, 0.67) 0.019

*P. vivax Cox PH regression model estimates with adjustment for treatment, age, village, and P. vivax infection status at enrolment. P. ovale Cox PH

regression model estimates adjusted for treatment, age, village, and P. ovale infection status at enrolment. The number of children considered to be at risk

on day 0 was 257 in the PL arm and 247 in the PQ arm, except for P. vivax infections by PCR, where corresponding numbers at risk were 254 and 245,

respectively, since infections on day 0 were considered treatment failures and hence excluded.

HR, hazard ratio; PYR, person-years at risk.

doi:10.1371/journal.pmed.1001891.t002
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malariae/P. ovale infections (81.1% [30/37], log-rank test, p< 0.001; Fig 5; Table 5). In the PQ

group, children with no patent infections were also less likely to be re-infected (17.9% [17/95])

than those in the other two groups (P. vivax patent infection: 31.7% [39/123], non–P. vivax pat-

ent infection: 25.9% [7/27], log-rank test, p = 0.0412; Fig 3; Table 5), indicating that children

with no patent infections were more likely to live in low-transmission areas. PQ treatment was

therefore equally efficient in preventing recurrent P. vivax infections in children with P. vivax,

non–P. vivax, or no blood-stage infection at enrolment (Cox regression, adjusted for age and

village of residence: likelihood ratio = 3.87, df = 2, p = 0.14 for treatment-by-infection status

interaction).

The potential effect of MDA and MSAT with either blood-stage drugs only or blood- plus

liver-stage drugs on the population prevalence of P. vivax and P. falciparum infections was fur-

ther investigated using a basic stochastic transmission model. Administration of blood-stage

drugs (DHA-PIP or CQ) was assumed to clear existing blood-stage infections and provide a

4-wk period of prophylactic protection against new infections, tafenoquine plus CQ was

Fig 4. Time to first Plasmodium spp. infection and P. vivax clinical episode. Kaplan-Meier plots showing the time to first (or only) (A) P. vivax infection by
qPCR, (B) P. vivax infection by LM, (C) P. vivax clinical episode, (D) P. falciparum infection by qPCR, (E) P.malariae infection by qPCR, and (F) P. ovale
infection by qPCR, in the two treatment arms. Dashed lines represent the respective 95% confidence intervals.

doi:10.1371/journal.pmed.1001891.g004
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assumed to clear blood- and liver-stage infections and provide 8 wk of causal prophylactic pro-

tection (for full model details please refer to S1 Table). Fig 6 illustrates the predicted qualitative

dynamics of P. falciparum and P. vivax transmission following two rounds of MDA (Fig 6A

and 6B) or MSAT (Fig 6C and 6D) interventions with 80% coverage, separated by 6 mo. The

interventions are predicted to cause a sharp decline in prevalence, followed by a gradual return

to pre-intervention levels.

MDA is predicted to achieve much larger reductions in prevalence than MSAT, mostly due

to the proportion of infections missed by the MSAT programme because of imperfect diagnos-

tic sensitivity, but also because of the prophylactic protection in treated but uninfected individ-

uals under the MDA programme.

Table 3. Incidence rate of P. vivax clinical malaria of any density, genetically distinct P. vivax blood-stage clones, and gametocyte positivity in
treatment groups during the entire 8-mo follow-up period and separately for months 0–3 and 4–8 of follow-up.

Outcome PL Arm PQ Arm Model Estimate*

Number of Events PYR Incidence Rate Number of Events PYR Incidence Rate IRR (95% CI) p-Value

P. vivax clinical malaria episode—any density

Months 0–8 23 139.8 0.16 11 139.6 0.08 0.43 (0.21, 0.90) 0.026

Months 0–3 15 55.9 0.30 5 54.3 0.09 0.31 (0.11, 0.86) 0.025

Months 4–8 7 83.0 0.08 5 83.1 0.06 0.59 (0.17, 2.08) 0.410

Genetically distinct P. vivax blood-stage clones (molFOB)

Months 0–8 653 122.1 4.74 196 120.6 1.62 0.23 (0.18, 0.31) <0.001

Months 0–3 430 55.5 7.75 102 53.7 1.90 0.21 (0.15, 0.28) <0.001

Months 4–8 221 66.5 3.32 94 66.0 1.42 0.34 (0.24, 0.48) <0.001

P. vivax gametocyte positivity

Months 0–8 202 122.1 1.65 63 120.6 0.52 0.27 (0.19, 0.38) <0.001

Months 0–3 101 55.5 1.82 20 53.7 0.37 0.18 (0.11, 0.30) <0.001

Months 4–8 100 66.5 1.50 42 66.0 0.64 0.37 (0.24, 0.57) <0.001

*The time at risk is calculated independently for each individual for each time range, with applicable study censoring for either clinical or PCR detection.

Clinical malaria episode IRRs are derived from a NB reg adjusted for treatment, age, and P. vivax positivity by PCR at enrolment. Other IRRs are derived

from a NB reg model adjusted for treatment, age, village, and P. vivax positivity by PCR at enrolment. The number of children considered at risk on day 0

was 245 in the PL arm and 253 in the PQ arm. The number of children considered at risk on study day 96 was 207 in the PQ arm and 205 in the PL arm.

PYR, person-years at risk.

doi:10.1371/journal.pmed.1001891.t003

Table 4. Incidence of first (or only) P. falciparum/P.malariae re-infection and P. falciparum clinical malaria in treatment groups in the entire fol-
low-up period.

Outcome (Months 0–8) PL Arm PQ Arm Cox Model Estimate*

Number of Events PYR Incidence Risk Number of Events PYR Incidence Risk HR (95% CI) p-Value

P. falciparum infections by PCR 85 96.0 0.88 72 101.0 0.71 0.77 (0.56, 1.06) 0.104

P. falciparum infections by LM 52 108.8 0.48 53 107.1 0.50 0.93 (0.63, 1.37) 0.706

P. falciparum clinical malaria episodes 21 109.4 0.19 27 105.4 0.26 1.33 (0.75, 2.36) 0.333

P. malariae infections by PCR 15 118.2 0.13 9 119.4 0.07 0.55 (0.24, 1.26) 0.157

*P. falciparum Cox PH regression model estimates adjusted for treatment, age, village, and P. falciparum infection status at enrolment. P. malariae Cox

PH regression model estimates adjusted for treatment, age, village, and P. malariae infection status at enrolment. The number of children considered to be

at risk on day 0 was 257 in the PL arm and 247 in the PQ arm, except for P. falciparum infections by PCR, where corresponding numbers at risk were 255

and 247, respectively, since infections on day 0 were considered treatment failures and hence excluded.

PYR, person-years at risk.

doi:10.1371/journal.pmed.1001891.t004
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The initial reductions achieved by each of the interventions against P. falciparum and P.

vivax are the same; however, when only blood-stage drugs are administered, a rapid rebound

in P. vivax prevalence is predicted due to the hypnozoite reservoir, which is left unaffected by

the treatment. Notably, P. vivax levels are predicted to return to pre-intervention levels within

6 mo post-intervention for both the MDA and MSAT interventions (blue curves in Fig 6A and

Fig 5. Kaplan-Meier plots showing the time to first (or only) P. vivax infection by qPCR in the PL and PQ arms, stratified by Plasmodium infection
status at enrolment. Dashed lines represent the respective 95% confidence intervals. PV, P. vivax.

doi:10.1371/journal.pmed.1001891.g005

Table 5. P. vivax re-infection by qPCR in treatment groups during the entire 8 mo follow-up period and during the first 3 mo of follow-up, stratified
by P. vivax infection status at enrolment.

Infection Status at Enrolment PL Arm PQ Arm Cox Model Estimate*

Number of Events PYR Incidence Risk Number of Events PYR Incidence Risk HR (95% CI) p-Value

Non–P. vivax infection (n = 65)

Months 0–8 30 6.3 4.78 7 12.7 0.55 0.11 (0.04, 0.26) <0.001

Months 0–3 29 5.1 5.73 4 6.6 0.61 0.08 (0.03, 0.24) <0.001

P. vivax infection (n = 239)

Months 0–8 79 24.9 3.18 39 46.4 0.84 0.21 (0.14, 0.32) <0.001

Months 0–3 71 18.0 3.95 32 26.3 1.22 0.21 (0.14, 0.33) <0.001

Uninfected (n = 200)

Months 0–8 58 32.4 1.79 17 41.4 0.41 0.19 (0.11, 0.34) <0.001

Months 0–3 52 20.4 2.55 12 22.0 0.55 0.15 (0.08, 0.29) <0.001

*Cox PH regression model estimates adjusted for treatment, age, village, and P. vivax infection status at enrolment. The number of children considered to

be at risk on day 0 was 254 in the PL arm and 245 in the PQ arm.

PYR, person-years at risk.

doi:10.1371/journal.pmed.1001891.t005
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6C), in contrast to P. falciparum, where, following an MDA programme, prevalence is pre-

dicted to remain below pre-intervention levels for a sustained period of time (Fig 6B).

In the stochastic transmission model, only the addition of 8-aminoquinolines to a regimen

of blood-stage drugs targets the hypnozoite reservoir and prevents the rapid resurgence of P.

vivax blood-stage infections caused by relapses. Consequently, interventions with PQ are

shown to result in a sustained reduction of the P. vivax burden (red curves in Fig 6A and 6C).

Especially in the case of MDA (red curve, Fig 6A), P. vivax parasite prevalence is predicted to

remain very low (<10%) during the modelled 16 mo post-intervention. Tafenoquine is esti-

mated to be more effective than PQ at reducing prevalence because of the higher level of effi-

cacy and the longer duration of causal prophylaxis [34].

Discussion

By randomising children to receive either a blood- and liver-stage treatment of PQ/CQ/AL

(PQ arm) or a blood-stage only treatment of PL/CQ/AL (PL arm), and thereby selectively

removing hypnozoites from half of the children in the cohort, this study confirms that relapses

Fig 6. Mathematical-model-based predictions of impact of MDA andMSAT with either blood-stage drugs only or blood- plus liver-stage drugs on
the population prevalence of P. vivax and P. falciparum infections. The effect of two rounds (6 mo apart) of MDA (A and B) or MSAT (C and D) with anti-
malarial drugs at 80% coverage on P. vivax (A and C) and P. falciparum (B and D) blood-stage parasite prevalence, as predicted by a stochastic model in a
human population of size 5,000. The lines represent the mean of 1,000 repeat simulations, and the shaded areas represent the envelopes containing 95% of
stochastic simulations. The grey and green shaded bars denote the duration of prophylactic protection for DHA-PIP/CQ and tafenoquine, respectively, after
each treatment round. DHA-PIP and CQwere assumed to be administered as part of a 3-d regimen, providing prophylaxis for 1 mo. PQ was assumed to be
administered as part of a 14-d regimen, providing prophylaxis for 15 d. Tafenoquine was assumed to be administered via a single dose, providing prophylaxis
for 2 mo.

doi:10.1371/journal.pmed.1001891.g006
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from long-lasting liver stages account for four out of five P. vivax infections and three out of

five P. ovale infections in PNG children aged 5–10 y living in an area with hyperendemic trans-

mission. A transmission model estimated that MSAT with blood- and liver-stage treatment or

MDA with blood-stage treatment alone would have only a transient effect on P. vivax transmis-

sion levels, while MDA with blood- and liver-stage treatment is predicted to be a highly effec-

tive strategy for P. vivax elimination.

The risk of having at least one PCR-detectable P. vivax infection during 8 mo of follow-up

was reduced by 82% by PQ treatment. This reduction is substantially larger than the 44%

reduction observed in an earlier study [27] that used a 30% lower dose of PQ combined with 7

d of artesunate, confirming that this earlier treatment regimen was not fully effective in pre-

venting relapses. PQ also reduced the incidence of genetically distinct blood-stage infections

(molFOB) [42] in the first 3 mo of follow-up by a similar amount (79%), indicating that relapses

accounted for ~4/5 of all P. vivax infections in PNG children. Although the effect of the PQ

treatment decreased with time since treatment, the incidence of new infections in the PQ arm

was nevertheless still reduced by more than half (66%) after 3 mo of follow–up. This “wash-

out” of the PQ effect is likely due to relapses activating rapidly in PNG [7] and the hypnozoite

reservoir being replenished through continued exposure to new infected mosquito bites. The

relatively sustained effect of the PQ treatment does however indicate that even in tropical P.

vivax strains, a substantial proportion of hypnozoites remain dormant for three or more

months.

Children who were not treated with PQ were also approximately four times more often pos-

itive for P. vivax gametocytes than children who were treated with PQ. Since even low-density

P. vivax infections can infect mosquitoes [50–52], it is thus likely that relapsing infections are

the primary source of P. vivax transmission.

PNG children acquire immunity to P. vivax rapidly [18], and, as shown in earlier studies in

the same age group [20], clinical P. vivax episodes are rare. Nevertheless, PQ reduced the inci-

dence of clinical P. vivax episodes by 69% in the first 3 mo after treatment, indicating that

relapses can cause clinical episodes even in individuals with moderate levels of acquired immu-

nity. Several studies have shown that relapses are often genetically distinct from the initial clini-

cal episode [53,54]. These genetically diverse relapses may either be meiotic siblings [55] or

originate from a previous (mosquito) bite and are likely to result in a higher risk of clinical ill-

ness in relapsing infection than that seen in malaria therapy patients infected twice with the

same strain [10].

PQ treatment reduced the risk of PCR-detectable P. ovale infections by 92% in the first 3

mo of follow-up and by 69% in the entire follow-up period. This confirms that relapses account

for a considerable portion of infections from this less prevalent species of relapsing malaria,

and likely also sustain P. ovale transmission. This is relevant not only in PNG, but also in sub-

Saharan Africa, where P. ovale prevalence can reach 4%–10% (by LM) in areas of west and cen-

tral Africa [56]. We observed no significant association of PQ treatment with risk of PCR-

detectable infections from the non-relapsing species P. falciparum. In the PQ arm, there was a

non-significant (p = 0.055; only 24 total events) reduction in the risk of P.malariae infections

in the first 3 mo of follow-up compared to the PL arm. Although P.malariae is not thought to

form hypnozoites in the liver, chronic or relapsing infections of P.malariae up to 20 y after a

person has left an endemic area have been documented [57,58]. Although it is currently not

known how and where P.malariae infections can remain dormant for such extensive periods

of time, our data suggest that such longer-lived P.malariae stages may be susceptible to PQ

treatment. Larger clinical trials involving both symptomatic and asymptomatic P.malariae

infections would be required to confirm the prevention of recurrent P.malariae infections by

PQ treatment.
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Given the very large contribution of relapses to the burden of P. vivax and P. ovale infection,

illness, and transmission, it is essential that all P. vivax– and P. ovale–infected individuals

receive therapy that is effective against both blood stages and relapses. PNG national standard

treatment guidelines recommend treating confirmed P. vivax or P. ovale cases with 0.25 mg/kg

PQ for 14 d; however, this recommendation is not being consistently implemented due to lack

of access to point-of-care tests to screen for G6PD deficiency.

Interestingly, PQ was not only effective in preventing recurrent P. vivax infection in chil-

dren who had PCR-detectable P. vivax infections but was equally effective in children with

non–P. vivax infections and even those without any Plasmodium spp. infections at enrolment.

All currently available malaria diagnostic tests identify only active blood-stage infections. They

can thus not identify people who have P. vivax hypnozoites in their livers but are free of blood-

stage infection. The rapid appearance of P. vivax infections and significant reduction in rates of

recurrent infections in PQ-treated qPCR-negative children indicate that the number of PNG

children without blood-stage infections who carry P. vivax hypnozoites is comparable to the

number of children with P. vivax infections. The presence of active P. vivax blood-stage infec-

tion is thus a poor predictor for the risk of P. vivax relapse.

The rapid recurrence of P. vivax infections after treatment of P. falciparum infections has

been observed in numerous P. falciparum in vivo drug efficacy trials, both in PNG [45,59] and

elsewhere [60]. It has therefore been argued that anti-relapse therapy should be administered

for all patients with malaria in regions of P. vivax co-endemicity [60]. Our results clearly sup-

port this recommendation and also extend it to asymptomatic parasite carriers.

With the renewed drive to eliminate malaria, the role of asymptomatic and/or submicro-

scopic infections in sustaining malaria transmission has become a major focus [15,61,62]. An

increasing number of studies show that these infections contribute significantly to both P. fal-

ciparum and P. vivax transmission at all levels of endemicity [50–52,63,64]. As first noted by

Robert Koch in 1900 during studies in then German New Guinea, the control of these infec-

tions is essential if elimination is to be achieved rapidly [65].

MSAT and MDA with artemisinin-based combination therapies are two interventions

aimed at reducing the asymptomatic reservoir [32,66,67]. Although the simple model imple-

mented in the present study agrees with the findings from more detailed P. falciparummodels

[67] that an MSAT programme with a highly sensitive diagnostic test such as qPCR can effec-

tively reduce P. falciparum transmission, field trials have shown that MSAT with a less sensitive

diagnostic test such as an RDT has limited or no effect on transmission [68–70]. As mass

screening by PCR is difficult to implement, focalised MDAmay be a more practical approach

[71].

Our modelling predicted that MSAT will have only limited effectiveness for P. vivax even if

conducted with a sensitive molecular diagnostic test and including an anti-liver-stage treat-

ment since it will not target the blood-stage-negative population harbouring hypnozoites.

MDA, on the other hand, is predicted to be highly effective in reducing the burden of future P.

vivax infections but only if conducted with anti-blood- and anti-liver-stage treatment. Thus,

effective control of P. vivax with anti-malarial drugs will require the inclusion of a treatment to

attack the hypnozoite reservoir and will require mass administration regardless of the presence

of blood-stage infections to target the undetectable parasite reservoir.

Currently, PQ is the only licensed drug with activity on the hypnozoite stage capable of pre-

venting relapses [72]. However, due to its association with haemolysis in individuals with

G6PD deficiency [72,73] and its long dosing schedule (up to 14 d), this drug is not in wide-

spread use in many endemic areas, and WHO currently advises against PQ treatment without

prior G6PD deficiency testing. In the absence of a reliable and affordable point-of-care G6PD

test, the routine use of PQ for treatment thus remains a challenge in many endemic regions.
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The challenges of implementing MDA with PQ are even larger, although not insurmountable

[74]. A new generation of G6PD tests are being developed [75,76], and the arrival of tafeno-

quine, a long-acting 8-aminoquinoline that can be given as a single dose [34,76], will not only

make MDA logistically simpler, but our modelling also predicts that MDA with tafenoquine

will be more effective than regimens using PQ. Nevertheless, the development of alternative

anti-hypnozoite treatments remains an important research priority for the elimination of P.

vivax [16].

The treatment schedule used in the present study was optimised for the best possible anti-

hypnozoite activity. The results from the clinical trial are therefore not directly indicative of the

effectiveness of an MDA programme with standard 14-d PQ dosing. As a consequence, we

assumed a significantly lower PQ efficacy (75%) in our model than we found in our study. Sim-

ilarly, our results refer to the fast-relapsing P. vivax strains that are found in relatively highly

endemic areas in the southwest Pacific, southeast Asia, and parts of Amazonia [77]. Further

studies in areas with lower transmission levels and longer relapse intervals will be required to

determine the generalisability of our finding of relapses causing 80% of infections and to extend

the model predictions to other geographical regions and transmission settings.

In conclusion, this study demonstrates that relapsing infections are the overwhelming

source (i.e., ~80%) of not only P. vivax blood-stage infections in children but also clinical epi-

sodes, and that they contribute substantially to maintaining transmission. Given the very ambi-

tious timelines set by political leaders of P. vivax–endemic regions and limited funding, it is

essential that scarce resources available for both P. vivax research and elimination be optimally

allocated. The development of novel anti-hypnozoite drugs and interventions that can specifi-

cally target the hypnozoite reservoir are of highest priority. However, by predicting that MSAT

programmes will not be effective in reducing the burden of P. vivax in affected populations, the

models presented here also suggest that it is not worthwhile investigating or implementing

MSAT programmes in P. vivax–endemic countries. Instead, efforts should now be directed

towards the development of approaches for MDA programmes targeting areas and risk groups

with confirmed local transmission.
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S1 Fig. Schematic representation of the P. vivax transmission model and the associated sys-

tem of differential equations. S0 denotes fully susceptible humans, I0 denotes individuals with

blood-stage infection, SL denotes individuals with liver-stage infection with hypnozoites, and IL
denotes individuals with blood-stage infection and liver-stage infection with hypnozoites.

(TIF)

S2 Fig. The effect of two rounds of MDA and MSAT with anti-malarial drugs on P. vivax

and P. falciparum blood-stage parasite prevalence, as predicted by the deterministic model.

The grey and green shaded bars denote the duration of prophylactic protection for DHA-PIP/

CQ and tafenoquine, respectively, after each treatment round. DHA-PIP and CQ were

assumed to be administered as part of a 3-d regimen providing prophylaxis for 1 mo. PQ was

assumed to be administered as part of a 14-d regimen providing prophylaxis for 15 d. Tafeno-

quine was assumed to be administered via a single dose providing prophylaxis for 2 mo.

(TIF)
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Editors' Summary

Background

Malaria is a mosquito-borne parasitic disease caused by Plasmodium falciparum, P. vivax,

P. ovale, and P.malariae. Although P. falciparum is responsible for most of the 600,000

malaria deaths that occur every year, P. vivax is the most common, most widely distributed

cause of malaria. All malaria parasites have a complex life cycle. When infected mosqui-

toes bite people, they inject “sporozoites,” a parasitic form that replicates in the liver. After

8–9 days, the liver releases “merozoites,” which invade red blood cells, where they replicate

rapidly before bursting out and infecting more red blood cells. This increase in the para-

sitic burden causes malaria’s recurring flu-like symptoms and can cause organ damage

and death. Infected red blood cells also release “gametocytes,” which infect mosquitoes

when they take a blood meal. In the mosquito, gametocytes multiply and develop into spo-

rozoites, thus completing the parasite’s life cycle. Malaria can be prevented by controlling

the mosquitoes that spread malaria and by avoiding mosquito bites. Treatment with anti-

malarial drugs, which is essential to prevent potentially fatal complications, also decreases

malaria transmission.

WhyWas This Study Done?

Malaria control programs have greatly reduced the global malaria burden, but the ability

of P. vivax and P. ovale to persist undetected in the liver as “hypnozoites” (another para-

sitic form) is hindering malaria control and elimination efforts. Hypnozoites can cause

malaria relapses months or years after a primary infection and are not cleared by anti-

malarial treatment unless the treatment includes primaquine, a drug that has to be given

for 7–14 days and that causes hemolysis (red blood cell death) in people who have glu-

cose-6-phosphate dehydrogenase (G6PD) deficiency. Here, the researchers determine the

contribution that relapses make to the burden of P. vivax and P. ovale infection, illness,

and transmission among Papua New Guinean children by undertaking a randomized pla-

cebo-controlled trial of a primaquine treatment regimen. The researchers also use mathe-

matical modeling to investigate the effect of mass drug administration (MDA) on the

occurrence of P. vivax relapses. A randomized placebo-controlled trial compares the out-

comes of individuals randomly chosen to receive an active treatment or a dummy (pla-

cebo) treatment; MDA aims to control malaria by treating entire at-risk populations with

anti-malarial drugs.

What Did the Researchers Do and Find?

The researchers enrolled 524 children aged 5–10 years (none of whom were G6PD defi-

cient) living in a region of Papua New Guinea where P. falciparum and P. vivax are hyper-

endemic (always present at high levels). Half the children received a blood-stage plus liver-

stage anti-malarial treatment regimen (primaquine arm); the rest received a blood-stage

plus placebo anti-malarial treatment regimen (placebo arm). Compared to children in the

placebo arm, children in the primaquine arm had a reduced risk of having at least one P.

vivax or P. ovale infection detected using PCR (a highly sensitive molecular technique)

during eight months of follow-up and a reduced risk of having at least one clinical P. vivax

episode. Children in the primaquine arm were also less likely to carry P. vivax gameto-

cytes. Finally, by feeding the trial data into a mathematical transmission model, the
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researchers predicted that MDA with blood-stage treatment alone, or mass screening and

treatment with blood-stage treatment alone or blood- plus liver-stage treatment, would

have only a transient effect on P. vivax transmission levels, whereas MDA that includes

blood-plus liver-stage treatment would be an effective strategy for P. vivax elimination.

What Do These Findings Mean?

From the trial results, the researchers estimate that, among children living in a malaria-

hyperendemic region of Papua New Guinea, relapses cause about four of every five P.

vivax infections and three of every five P. ovale infections. Thus, P. vivax and P. ovale

relapses are important in sustaining malaria transmission in this population. Notably,

mathematical modeling predicts that MDA campaigns that combine blood- and liver-

stage treatment are likely to be a highly effective strategy for P. vivax elimination. These

findings may not be generalizable to populations with lower malaria transmission levels.

Also, because the trial used a 20-day drug regimen to maximize the clearance of hypno-

zoites and because people would need to be tested for G6PD deficiency before starting pri-

maquine treatment, the chosen treatment regimen may not be applicable to real-world

MDA programs. Nevertheless, these findings highlight the importance of developing new

anti-hypnozoite drugs and MDA programs that target areas and risk groups with con-

firmed local transmission of P. vivax to achieve global malaria control and elimination.

Additional Information

This list of resources contains links that can be accessed when viewing the PDF on a device

or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001891.

• Information is available from the World Health Organization on malaria (in several lan-

guages); the World Malaria Report 2014 provides details of the current global malaria

situation, including information on malaria in Papua New Guinea; the 2015 guidelines

for the treatment of malaria are available

• The US Centers for Disease Control and Prevention provides information on malaria

(in English and Spanish), including information on different malaria parasites, mass

drug administration, and personal stories about malaria

• Information is available from the Roll Back Malaria Partnership on the global control of

malaria

• The Malaria Vaccine Initiative has a fact sheet on P. vivax malaria

• The Scientists Against Malaria collaboration applies modern drug design and modeling

techniques to developing new treatments against malaria; its website includes informa-

tion about many aspects of malaria

• MedlinePlus provides links to additional information on malaria (in English and

Spanish)

• Wikipedia has a page on mass drug administration (note that Wikipedia is a free online

encyclopedia that anyone can edit; available in several languages)

• More information about this trial is available
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