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Abstract This paper examines critically the reconstruction of the ‘Sherlock Holmes
sense of deduction’ proposed jointly by M.B. Hintikka (1939–1987) and J. Hintikka
(1929–2016) in the 1980s, and its successor, the interrogative model of inquiry (imi)
developed by J. Hintikka and his collaborators in the 1990s. The Hintikkas’ model
explicitly used game theory in order to formalize a naturalistic approach to inquiry, but
the imi abandoned both the game-theoretic formalism, and the naturalistic approach.
It is argued that the latter better supports the claim that the imi provides a ‘logic of
discovery’, and safeguards its empirical adequacy. Technical changes necessary to this
interpretation are presented, and examples are discussed, both formal and informal,
that are better analyzed when these changes are in place. The informal examples are
borrowed from Conan Doyle’s The Case of Silver Blaze, a favorite of M.B. and J.
Hintikka.

Keywords Interrogative model · Logic of discovery · Sherlock Holmes

1 Introduction

In the 1920s, Popper (1959) and Reichenbach (1938) converged to the view that
hypothesis making involves a psychological element that eludes rational recon-
struction, formal or informal. Thus, in spite of their disagreement on the ‘logic of
justification’ (deductive logic for Popper, probabilistic for Reichenbach), they agreed
that there could be no ‘logic of discovery’. This view was opposed, in the 1950s, by
Hanson, who maintained that “[if] establishing an hypothesis through its predictions
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has a logic, so has the conceiving of an hypothesis” (Hanson 1958, p. 71). But Han-
son did not articulate a formal proposal, and his informal analysis was not received
as a sufficient rebuttal to the Popper–Reichenbach view. Without stronger contender,
the latter became the standard view of scientific inquiry among epistemologists and
philosophers of science.

In the 1980s M.B. and J. Hintikka revived an early modern view of inquiry, first
articulated by F. Bacon in his Novum Organum, and later defended by I. Kant in his
Critique of Pure Reason. According to Bacon and Kant, inquiry is a process where an
inquirer actively puts questions to Nature, not only to test conjectures, but also to make
new ones. The Hintikkas proposed to capture inquiry as a two-player game between
Nature and Inquirer, and emphasized the strategic role of logical reasoning, formally
reconstructing the “Sherlock Holmes sense of deduction” (Hintikka and Hintikka
1983). They laid down logical foundations for their model and specified constraints
on Inquirer’s strategies resulting from bounded cognitive resources (memory Hintikka
and Hintikka 1983; attention Hintikka and Hintikka 1989). As the interrogative model
of inquiry (hereafter imi), the model received its final form in the late 1990s, a decade
after M.B. Hintikka’s demise, when Hintikka et al. (1999) characterized interrogative
reasoning with the resources of the meta-theory of standard first-order logic alone. By
their own admission, their results were straightforward consequences of elementary
meta-theorems, but they argued that the results were conceptually fruitful, offering a
strategic viewpoint on logical reasoning, and a basis for a logic of discovery.

This claim is disputable. Hintikka, Halonen and Mutanen have made formally
precise arguments the Hintikkas had merely sketched, but their formalization has
streamlined those arguments, leaving out the explicit cognitive interpretation of the
original model. And yet, the parameters that reflected the naturalistic interpretation
of the ‘Sherlock Holmes sense of deduction’ still play an implicit role in the imi.
I will argue that the imi can benefit frommaking them explicit again. Section2 presents
the Hintikkas’ logical approach (Sect. 2.1), its game-theoretic treatment (Sect. 2.2),
and some logical issues (Sect. 2.3). Section3 shows how they were solved (Sect. 3.1),
and how the informal approach to strategies superseded the earlier formal treatment
(Sects. 3.2, 3.3). Section4 discusses implicit assumptions underlying the results pre-
sented by Hintikka, Halonen and Mutanen (Sect. 4.1), how to make them explicit
(Sect. 4.2), and how they relate to other formal models of discovery (Sect. 4.3). Sec-
tion5 provides an illustration with The Case of Silver Blaze, a favorite of the Hintikkas
(Sect. 5.1), and returns to the naturalistic approach in the light of recent advances in
the psychology of creative thought (Sect. 5.2). I conclude in favor of a modest revision
of the imi. An appendix presents alternative proofs for the results discussed in the
paper.

2 The ‘Sherlock Holmes sense of deduction’

2.1 Beth tableaux, deduction, and analysis

As logical foundations for their model of the ‘Sherlock Holmes of deduction’, the
Hintikkas proposed a game-theoretic and naturalistic interpretation of a semantic proof
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procedure (Beth tableaux), extended to represent the posing of questions. The choice
of Beth tableaux is more than a convenience:

Our use of Beth’s tableaux is in keeping with the best tradition of Sherlock
Holmes, who speaks in connection with his “Science of Deduction” of analysis.
As Beth pointed out in his very first paper on the subject, the tableaumethod is an
excellent reconstruction of the old idea of analytical method. […] What we are
doing here can be thought of as an extension of Beth “Science of Deduction and
Analysis” beyond its narrowly deductive applications. (Hintikka and Hintikka
1983, p. 166)

Beth tableaux formally capture semantic entailment between a premise set and a
conclusion. Given a first-order languageL , a countable (possibly empty) premise set
Γ ⊆ L and a conclusion C ∈ L , Γ entails C (Γ |� C) iff all the models of Γ are
also models of C .1 A two-column Beth tableau formalizes the reductio ad absurdum
that Γ |� C . It features an enumeration of Γ on the left, and C on the right; and
then represents the analysis (decomposition) of Γ and C according to the reductio
hypothesis. When the semantics ofL allows for alternative truth-values, subtableaux
are created for each alternative, on both sides. The rules for the left-hand side are
represented in tree form in Fig. 1 omitting material conditional (more on this form
soon). They reflect the reductio assumption that all formulas on the left-hand side of
the tableau are true. They also pushnegation in,whichprevents trafficbetween columns
(this is desirable for the interrogative extension of Beth tableaux, cf. Sect. 2.3).

Rules for the right-hand side are mirror-images of those of the left-hand side, and
reflect the reductio interpretation that all the formulas on the right-hand side are false.
They are displayed in Fig. 2. The tree form allows for a representation of the left- and
right-hand sides of a subtableau on a single branch, by simply switching labels and is
thus easier to read.2

A subtableau yields an impossible distribution of truth-values when: (1) a sentence
S and its negation ¬S occur on the same subtableau with the same label; or: (2) a
formula S appears in the same subtableau with different labels. If this happens, the
subtableau is declared closed, and no further application of the rules is necessary.
Otherwise, it remains open, and yields a model of Γ in which C is interpreted as
false. The tableau is declared closed iff all the branches are. Beth tableaux are sound
and complete for entailment: if there is a closed tableau proof with premises Γ and
conclusion C (abbreviated Γ � C), then Γ |� C (soundness); and if Γ |� C , then
Γ � C (completeness).

1 A first-order model for Γ ⊆ L is a structure S in which all sentences of Γ are interpreted as true.
Formally, it is a triple (S , I, g)where: (1)S is a structure (DomS , RS ), whereDomS is a set of objects
(the domain of S ) and RS is a set of n-ary relations {Rn : Rn ⊆ Domn

S } (Domn
S is the n-th Cartesian

product ofDomS ); (2) I is an interpretation functionmapping n-ary predicates and constant symbols ofL
onto R and Dom(S ) respectively; (3) g is an assignment mapping free variables in expression of L onto
Dom(S ); and: (4) every sentence in Γ is interpreted as true in S , given I and g (assuming the standard
semantics for first-order operators and quantifiers). I will writeS |� C as a shorthand for (S , I, g) |� φ.
2 Substituting labels L- and R- with T- (True) and F- (False) respectively, yields building rules for signed
semantic trees, as introduced by Smullyan (1968).
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L-¬¬S

L-S

L-S1 ∨S2

L-S1 L-S2

L-¬(S1 ∨S2)

L-¬S1
L-¬S2

L-S1 ∧S2

L-S1
L-S2

L-¬(S1 ∧S2)

L-¬S1 L-¬S2

L-∃xS(x)

L-S(a)
(a is new)

L-¬∃xS(x)

L-¬S[a/x]
(a is arbitrary)

L-∀xS(x)
...

L-S[a/x]
(a is arbitrary)

L-¬∀xS(x)

L-¬S[a/x]
(a is new)

Fig. 1 Left column rules for Beth tableaux (tree form)

R-¬¬S

R-S

R-S1 ∨S2

R-S1
R-S2

R-¬(S1 ∨S2)

R-¬S1 R-¬S2

R-S1 ∧S2

R-S1 R-S2

R-¬(S1 ∧S2)

R-¬S1
R-¬S2

R-∃xS(x)

R-S[a/x]
(a is arbitrary)

R-¬∃xS(x)

R-¬S[a/x]
(a is new)

R-∀xS(x)

R-S[a/x]
(a is new)

R-¬∀xS(x)

R-¬S[a/x]
(a is arbitrary)

Fig. 2 Right column rules for Beth tableaux (tree form)

Fig. 3 Cut rule for tableaux ...

L-S∨¬S
L-S L-¬S

...

R-S∧¬S
R-S R-¬S

A proof procedure is analytic if it proceeds without auxiliary constructions (lem-
mas). Beth tableaux are analytic because they comply with the subformula principle:
every formula that occurs in a subtableau τ is a subformulas of some formula occurring
τ . Selective violations of this principle are possible via the the Cut rule, represented
Fig. 3. The construction of aCut-free tableau is always possible in principle, but theCut
rule is critical for the reconstruction of Holmesian deduction, to which I will now turn.

2.2 Interrogative tableaux and interrogative games

The first step for an extension of Beth tableaux beyond “narrowly deductive applica-
tions” is to interpret tableau construction as a game. One player, Inquirer, is trying
to establish C , as the potential answer to some overarching ‘big question’ that may
be represented by the disjunction C ∨ ¬C . Inquirer’s background knowledge is rep-
resented by Γ . It is assumed that simply asking whether C is not an option, so that
C (or its negation ¬C) must be established with the help of ‘instrumental’ questions.
The other player, who answers, is Nature. Relations between moves in the game and
tableau rules are as follow:
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There are moves of three different kinds: (1) deductive moves; (2) interrogative
moves; (3) definitory moves.
(1) The rules for making deductive moves are the same as in any usual for-

mulation of the tableau method. […] The instantiation rules of tableau
construction [introduce] dummy names (indefinite individuals) […].

(2) An interrogative move is relative to a subtableau σ j . It consists in a question
addressed by me to Nature. The presupposition of the question must occur
in the left column. […] Substituting terms [in Nature’s answers] must be
individual constants (in the case of wh- questions). […]

(3) A definitory move is also relative to a subtableau σi . It consists in the intro-
duction of a new predicate symbol, say P(x). It is introduced by means of
an explicit definition, that is, by adding to the left column of σ j either:

(x)(P(x) ←→ f (x))

or

(x)(P(x)(x = a1 ∨ x = a2 · · · ∨ x = ak))

where f is an expression in the vocabulary that has been used in σi and has one
free variable, and where a1, a2, . . . , ak are individual constants. (Hintikka and
Hintikka 1983, pp. 166–167)

Summing up, deductive moves (1) are represented by standard tableaux rules, and
the addition of interrogative moves introduces no other change than a distinction
between definite and indefinite individuals. Presuppositions for interrogative moves
(2) are, for whether-questions, formulas that would split a tableau in subtableaux;
and for other wh-question, formulas that would introduce a new individual. Definitory
moves (3) allow for extending the vocabulary available in the proof, beyond that of Γ

and C , for instance when Inquirer’s own vocabulary is richer.
Whenever Nature fails to answer a whether question, Inquirer must reason by

cases; and when Nature fails to answer a wh-question, she must keep track of an
indefinite individual, and remember not to make any special assumption about it.
Conversely, Nature’s answers reduce the number of alternatives and the number of
indefinite individuals in a proof. The Hintikkas express the strategic problem that
arises from this situation as follows:

As the case usually in game theory, players’ strategic considerations are deter-
mined essentially by the payoffs. We shall no try to specify them fully here. The
following general principles are nevertheless important:
(1) An interrogative move involving a wh- question is the more expensive the

more layers of quantifiers there are in the question […] the ‘price’ of a
question being equal to the same number of units as there are layers of
quantifiers in the question. […]

(2) A definitory move is the more expansive the more layers of quantifiers there
are in the definiens […] each additional layer […] costing a unit.
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(3) Of deductive moves, each of those introducing new dummy names cost a
unit. (Hintikka and Hintikka 1983, p. 167)

Rationale for (1)–(3) are straightforward. The cost of propositional whether ques-
tions is indirect only: if successful, they do not introduce new individuals; otherwise,
they open subtableaux with their own cost. A successful wh-question introduces a
constant naming a denizen of the state of Nature, improving Inquirer’s knowledge. If
the move is unsuccessful, Inquirer must herself introduce the ‘dummy name’ of an
indefinite individual that she may have to identify at a later stage. This may in turn
require additional moves, with the risk of inflating the number of subtableaux and
individuals (definite and indefinite) to consider, and increasing the load on Inquirer’s
memory and reasoning abilities. The payoffs therefore translate explicitly, in game-
theoretic terms, naturalistic constraints. Notice that (1)–(3) entail that the cost of a
given strategy (in a given subtableau) has an upper bound, namely the cost incurred
by the strategy if Nature does not answer any of Inquirer’s questions.

The Hintikkas later introduced another parameter, the range of attention (Hintikka
andHintikka 1989), which explicitly specifies the range of yes–no questions accessible
to Inquirer in a given inquiry. Since the presupposition of a yes–no is an instance of the
ExcludedMiddle, all such instances follow (trivially) fromany set of premisesΓ . Thus,
in principle, Inquirer could ask any yes–no question of her choosing (equivalent to an
application of the Cut rule). Restricting these questions reflects, again, the naturalistic
interpretation of the model, where Inquirer’s reasoning abilities fall short of logical
omniscience. Since a yes–no question is a propositional question, its cost is indirect,
and no alteration of the 1983 payoff scheme is necessary.

2.3 Model consequence and pure discovery

In Beth tableaux, counter-models to C are generated from each open subtableau by
constructive methods. By contrast, in interrogative tableaux, which are relative to the
state of Nature, a counter-model generated from an open subtableau is a state descrip-
tion compatible with what is known about that state. A consequence of this, initially
overlooked, is that interrogative tableaux define implicitly a consequence relation that
differs fromsemantic entailment.Characterizing this relation became amajor endeavor
in the late 1980s, and proof-theoretic considerations then took precedence over natu-
ralistic motivations. Reference to the state of Nature, and its formal representation as
a model ofL , becomes explicit in the presentations of the interrogative model in the
late 1980s, such as this one:

The basic idea onwhich themodel is based is simplicity itself. It can be expressed
most easily in the jargon of game theory. A player, called the Inquirer, is trying
to prove a predetermined conclusion C from a given theoretical premise T . […]
Inquirer may address questions to a source of information and use the answers
(when available) as additional premises, in short, may carry out interrogative
moves. The answerer is called Nature. […] The questions must of course per-
tain to a given model M of the language of T . […] The deductive moves are
restricted to those stages of tableau construction that satisfy the subformula prin-
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ciple, except for a given set of tautologies (S ∨¬S) that may be inserted as extra
premises. (It is also assumed that the tableau rules do not move sentences from
one column to the other.) (Hintikka 1988, p. 173)

The passage calls for a few clarifications. First, T is simply a conjunction T1∧· · ·∧Tn

where Ti ∈ Γ , since in the imi, Γ is assumed to be finite (because Inquirer’s memory
is). Second, if one assumes that C is expressed in the same vocabulary as T , an
underlying model that interprets T eo ipso interprets C , and definitory moves become
redundant. The assumption is implicit in the passage, and thesemoves are thus omitted.
Hence, the only difference between the above description, and the one from1983, is the
addition of an underlying model. The underlying state of Nature is initially unknown
to Inquirer, and her questions aim at identifying its structure, that is, its denizens, and
the relations they stand in.

Let S denote the underlying structure standing for the state of Nature. The inter-
pretation of the vocabulary of T relative to S is assumed to be fixed during inquiry,
guaranteeing that the answers are informative about S . In the simplest case, it is
assumed that S |� Γ , but the assumption can be relaxed. Now, if this assumption
holds, and if Nature’s answers are truthful, there are two limit cases: (1) when no
interrogative move is used, or they are all unsuccessful; and: (2) when Γ is empty, but
all questions about S can be answered. In case (1) the interrogative tableau is iden-
tical with a Beth tableau, and closes iff Γ � C . Case (2) reduces to model-checking
procedure via an oracle (Nature) and the tableau closes iff S |� C . From this, it is
easily seen that interrogative tableaux capture a notion of consequence that holds the
middle ground between derivability and truth-in-a-model.

The relation was characterized by Hintikka et al. (1999) in the late 1990s under
the name model consequence, and abbreviated S : Γ � S. This characterization
substituted cognitive considerations and game-theoretic formalism with an informal
game-theoretic interpretation of tableau construction, and an equally informal notion
of strategy. More explicitly, Hintikka, Halonen and Mutanen assumed that the con-
struction of an interrogative tableau represents formally the reasoning processes of
Inquirer in a game with asymmetric information against Nature, who choosesS and
a set of oracles. In simplest case, there is a single oracle, identical with Nature, so that
information available about S can be represented by a set Ans(S ) ⊆ L (initially
unknown to Inquirer), and S is such that S |� S for any S ∈ Γ ∪ Ans(S ). In
that case, no additional justification is in fact needed for either Γ or any answer in
Ans(S ), and this case is referred to as Pure Discovery. Of course, due to the informa-
tion asymmetry, Inquirer cannot know that she is playing a game of PureDiscovery, but
she can play ‘as if’ she were, until revision becomes necessary.3 In this special case,
standard first-order theorems have interesting consequences relative to interrogative
reasoning.

3 Hintikka, Halonen and Mutanen specify additional tableaux rules for revision, but do not study cases
where they are implemented. Their implementation is investigated formally in Genot (2009) in relation to
AGM-style belief revision.
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3 The strategic viewpoint

3.1 Interrogative logic and its strategic interpretation

This section presents three of the main results of the logic of model consequence,
called interrogative logic by Hintikka, Halonen and Mutanen. These results are the
Deductive Completeness Theorem, the Yes–No Theorem, and the Strategy Theorem.
I will leave out two other results, the Covering Law Theorem and the Extended Beth
Theorem, for which they do not offer a strategic interpretation. All of the above also
have modal extensions, where modal operators formalize the notion that, in Pure Dis-
covery, premises and answers are known, and that reasoning is closed under an implicit
knowledge operator. However, no semantics for this operator is provided, and I will
therefore leave themodal extension out of the discussion. TheDeductiveCompleteness
theorem and the Yes–No Theorem are proved in extended interrogative logic (eil),
in which Inquirer is allowed to introduce arbitrary yes–no questions. The Strategy
Theorem requires only interrogative logic simpliciter, where she is not allowed to do
so. The Deductive Completeness Theorem expresses that Nature’s answers function
as additional premises:

Theorem 1 (DeductiveCompleteness, Hintikka et al. (1999, pp. 53–54))LetAns(S )

and Γ be given. Then: S : Γ � C iff Γ ∪ Ans(S ) � C.

The proof given inHintikka et al. (1999, p. 54) abstracts from the details of transforma-
tions of Beth tableaux into interrogative tableaux, by representing tableaux in sequent
form. An alternative proof making the transformation explicit is given in “Appendix:
Formal proofs”. The Yes–No Theorem, is stated as follows:

Theorem 2 (Yes–No Theorem, Hintikka et al. (1999, p. 55)) Let Ans(S ) and Γ be
given. If S : Γ � C, then C can be established using only yes–no questions.

Again, the proof abstracts from the details of the transformation of strategies, and an
alternative proof is given in appendix. If one abstracts from these details, the results are
straightforward consequences of meta-theorems of first-order logic. Hintikka, Halo-
nen and Mutanen acknowledge the point, but at the same time appeal to a “strategic
viewpoint” illustrated for instance with their gloss on the Yes–No Theorem:

The strategic viewpoint […] put[s] into the proper perspective the Yes–No
Theorem. It is virtually trivial technically and yet it seems to have sweeping
implications. What are other kinds of questions good for, anyway, if their job
could equally well be done by the simplest of all questions, yes–no questions?
The answer is that the inferential job of other kinds of questions can be done by
yes–no questions, but that their strategic job cannot be so done. […] Hence, the
“can” in the Yes–No Theorem means a definitory “can”, not a strategic “can”.
Its import can perhaps be best expressed by saying that any argument can in
the light of hindsight be subsequently replaced (in extended interrogative logic)
by an argument where all questions used are yes–no questions. (Hintikka et al.
1999, p. 59)
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In the light of this passage, what actually matters is the transformation of a deduc-
tive strategy into an interrogative one. The point is further illustrated by the Strategy
Theorem, which borrows its notion of strategy from proof theory, rather than game
theory. The proof-theoretic notion is for instance illustrated by R. Smullyan’s discus-
sion of recursive procedures for systematic constructions of tableau proofs which can
be bested by “clever strategies” studied in theorem-proving.4 Hintikka, Halonen and
Mutanen in turn mention those studies, as the formal basis for the Strategy Theorem:

Fromstudies of strategies of theorem-proving it is known that the crucial strategic
question in deduction is which of [the existentially quantified] sentences to apply
[the rule of existential instantiation] to first. (Thus, we can disregard the choice
of propositional questions.) Obviously, in interrogative reasoning the crucial
question is which of them to use first as the presupposition of a wh-question.
With certain qualifications, it can be seen that not only is the range of choice
the same […]. What is crucial, the optimal choice is the same in both cases.
(Hintikka et al. 1999, p. 58)

The theorem itself expresses slightly more formally the conclusion of the above argu-
ment:

Theorem 3 (Strategy Theorem Hintikka et al. (1999, p. 58)) “The optimal choice of
the wh-question to ask is the same as the optimal choice of the rule [of existential
instantiation] to apply, assuming that the question is answerable.”

The restriction to the case where the question is answerable is straightforward: if
a question is not answerable, Inquirer must introduce ad hoc explicit definitions to
rephrase the question. A second, implicit, restriction, is that the theorem applies to the
case of Pure Discovery: otherwise, Inquirer’s strategymay have to include revisions of
her past inferences when a contradiction between Γ and Ans(S ) obtains. Within the
limits of those restrictions, the consequence of the Strategy Theorem is that deduction
guides question selection in the case of Pure Discovery: since the best interrogative
proof of C from Γ and Ans(S ) parallels the best deductive proof of C from Γ ∪
Ans(S ), insights into the latter are eo ipso insights into the former, and the theorem
vindicates the ‘Sherlock Holmes sense of deduction’:

[I]n the case of pure discovery […] the choice of the optimal question to be
asked is essentially the same as the choice of the optimal premise to draw an
inference from in a purely deductive situation. Thus, Sherlock Holmes was right:
Strategically speaking, all good reasoning consists of “deductions,” if only in
the case of pure discovery. (Hintikka 2007, p. 8)

4 “In general, systematic tableaux may take much longer to close that a tableau constructed using some
ingenuity. […] Thus if the reader is in a very lazy mood, and he wishes to test the satisfiability of X , he can
mechanically run a systematic tableau for X , confident in the knowledge that if X is unsatisfiable, then the
tableau will eventually close. On the other hand, if he is in a brighter and more creative mood, then he can
be alert and seize the first opportunity—or indeed plan clever strategies—for closing the tableau quickly,
even though he disregards the systematic procedure.” (Smullyan 1968, p. 61).
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In fact, the Strategy theorem extends beyond Pure Discovery, as long as Inquirer can
behave ‘as if’ the game is one of Pure Discovery, that is, as long as taking Γ and
Ans(S ) at face value does not induce any contradiction.5

Whenever, to the best of Inquirer’s knowledge, no revision of any of her previous
inferences is needed, strategies that optimize deductive tableau construction, also limit
the number of alternatives (subtableaux) to consider, or the number of individuals to
keep track of in each alternative. Although Inquirer may reach an incorrect conclusion,
becauseS is not in fact a model of Γ , the Strategy Theorem holds for her, as long as
she lacks any evidence that S �|� Γ .

3.2 Definitory rules, strategic rules, and strategies

The distinction between “definitory can” and “strategic can” in the discussion of the
Yes–No Theorem echoes Hintikka’s distinction between ‘definitory’ and ‘strategic’
rules (Hintikka 1989), which is easily illustrated. Consider a casewhereΓ � C , so that
there is a strategy that suffices to establishS : Γ � C using only deductivemoves; and
assume that there is an optimal strategy to prove deductively C from some finite Γ ′ ⊂
Γ , using the premises in Γ ′ in some definite order, and minimizing the subtableaux
and the number of individuals that occur in each of them. Let us furthermore assume
that Inquirer’s memory is a source forΓ , that is, thatΓ ′ ⊂ Ans(S ) and thatΓ ′ can be
generated by a sequence of yes–no questions (representing as many memory recalls).
These questions can be asked to obtain elements ofΓ ′ in the order of appearance in the
shortest deductive tableau proof that Γ � C . The Cut rule, which allows to introduce
presuppositions in any order, is definitory. A higher-order rule specifying the optimal
order of application the Cut rule to obtain Γ ′, would be an example of strategic rule.
Hintikka expresses the same idea informallywhen hewrites that Socrates demonstrates
‘strategic knowledge’ (Hintikka 2007, p. 95). Socrates, who seemingly reasons from
answers to yes–no questions alone, knows in fact which yes–no questions to put to his
audience, so as to obtain the premises he needs, and infer from answers he obtains the
conclusions he wants his audience to accept.

More generally, the tableaux-building rules of Figs. 1 and 2, are definitory, while
rules for systematic tableaux constructions are strategic. But as Smullyan points out,
some clever strategies disregard those strategic rules. A paraphrase of Smullyan’s
point is that systematic procedures offer baseline strategic rules, that can be improved
upon. Therefore, unlike definitory rules, strategic rules are not unique. According
to Hintikka, Halonen and Mutanen, the conceptual fruitfulness of these insight into
deductive strategies and their role in interrogative inquiry, trumps the relative technical
triviality of the results of eil. Their argument extends to other logical analyses of
questions that establish reduction theorems. For instance, it can be established within

5 For instance, assume that all answers in Ans(S ) are true, and that Inquirer takes Γ at face value, but that
some Ti ∈ Γ does not hold inS . If Inquirer does not use ‘control’ questions (for which Inquirer can in fact
deduce an answer from Γ ), she derives presuppositions for her questions from Γ . If she derives a question
from Ti , no answer to it is in Ans(S ) (otherwise, the answer would not be true, contrary to assumption).
Thus, Inquirer can still reason deductively, as if the situation was one of Pure Discovery. A control question
about Ti could reveal that it does not hold in S , but only if ¬Ti ∈ Ans(S ), which might not be the case.

123



Synthese (2018) 195:2065–2088 2075

Wisniewski’s erotetic logic that any question of arbitrary complexity can be reduced
to a set of atomic yes–no questions (Wisniewski 1994), and the result also allows
for a logical characterization of strategic reasoning in question selection (Wisniewski
2003). The notion of strategic rule is also an informal counterpart of the game-theoretic
notion of strategy.A strategy for player I in a game in extensive (move-by-move) form,
is a function assigning a move to every position at which it is I ’s turn to play. The
construction of aBeth tableau is akin to a game of solitaire, and a systematic procedure,
as a set of strategic rules, specifies recursively a strategy in that game (which move to
play at each step of the tableau construction). The Strategy Theorem, extending the
proof-theoretic notion from the purely deductive case to the interrogative-deductive
case, makes redundant an explicit game-theoretic analysis.

3.3 Abandoning game theory

J. Hintikka still held the view that explicit game-theoretic concepts (such as payoffs)
had their place in the imi in the late 1980s.6

It is thus surprising that the Strategy Theorem did not receive an explicit game-
theoretic expression, for instance refining the 1983 payoff scheme. Since Hintikka,
Halonen and Mutanen do not explain why they chose not to do so, we are left with
educated guesses. Clearly, once model consequence and Pure Discovery are defined
explicitly, the preferences that govern the construction of shorter deductive proofs
transfer almost immediately to interrogative proofs, and specifying costs for strategies
would be redundant. But the redundancy could have been interesting. For instance, via
the 1983 payoff scheme, shorter proofs reward lower cognitive loads, and an overlay
of game theory would have preserved this naturalistic interpretation. Why is there
none?

A rather obvious reason is that game theory is not necessary. A ‘game against
Nature’ is a 1-player sequential decision problem where no strategic interaction actu-
ally takes place between the player and Nature. But decision theory is absent as well.
In fact, the standard model of sequential decision-making is the same whether the
decision-maker takes into account alternative courses of action of other agents (n-
player games) or alternative states of Nature (1-player games). In a nutshell, the agent
is assumed to consider, at any given position where she has to make a choice, all
the possible end-states that could result from her next decision, given what she cur-
rently knows about the state of Nature (and, in a n-player game, about other players’
strategies). Then, she chooses her next move by eliminating those moves that would
bring about end-states with lower payoffs, a process called elimination of dominated
strategies.

Consider now a Beth tableau proof as a 1-player game, and assume that the single
player, Eloise, wins iff she stabilizes on the correct answer to the question whether

6 For instance, a footnote to the passage quoted at the beginning of Sect. 2.3 reads: “This is more than a
matter of jargon, however. One of themain advantages of the interrogativemodel is that it enables us to study
strategies of research and not just one-time scientific inferences. Now game theory is the most important
conceptual tool of strategy research; hence its concepts are extremely handy in studying the interrogative
model.” (Hintikka 1988, pp. 188–189).
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Γ entails C . By completeness of Beth tableaux, Eloise has a winning strategy, cor-
responding to a reductio argument: conjecture that Γ �|� C and execute a systematic
procedure to build the tableau, with a commitment to change her mind if the tableau
closes. If Γ |� C , Eloise will win after finitely many iterations of the (strategic) rules
for building the systematic tableau. As Smullyan remarks, there are alternatives to this
brute-force strategy. But the semi-decidability of first-order logic entails that Eloise
cannot in general reason to those alternatives by eliminating dominated strategies.
Otherwise, she would have to anticipate and prevent losses that resulting from build-
ing infinite subtableaux.7 If Γ �|� C , Eloise’s reductio strategy may not even be finite,
but she is still guaranteed to win. Again, she cannot in general eliminate dominated
strategies (for instance, those including redundant moves) because this would some-
times require comparison between infinite strategies. Summing up, in order to reason
by elimination of dominated strategies, Eloise would have to be able, in general, to
solve uncomputable problems.

Since the Strategy Theorem entails that Inquirer’s strategic problem is essentially
the same as Eloise’s strategic problem, Inquirer can solve her strategic problem by
elimination of dominated strategies iff Eloise can. Unlike game theorists, proof the-
orists cannot accept idealizations to the effect that strategic reasoning manipulates
strategies that are not effectively computable. This is why Hintikka, Halonen and
Mutanen claim that the parallelism between interrogative reasoning and deductive
reasoning warrants only conclusions about how proof heuristics inform interrogative
inquiry. In particular, they justify the informal phrasing of the Strategy Theorem by
the fact that it applies to tableau construction in general (whether it will close or not)
but there are no recursive rules for building an optimal open tableau. With elimination
of dominated strategies off the table, there is not need to specify payoffs explicitly,
and preferences for shorter proofs can still be interpreted informally as preferences
for lower computational loads.

4 Question evocation

4.1 A hidden parameter in EIL

Unlike payoffs, ranges of attention are not redundant in eil. Results of eil hold for
an Inquirer who is: (1) capable of deriving presuppositions from her premises, and
using them to ask questions; and: (2) capable of introducing presuppositions of yes–
no questions when necessary. Assuming that tableaux rules represent reasoning takes
care of (1), although it must also be assumed that Inquirer knows a presupposition
when she sees one (this can be taken care of by generalizing the notion of range of

7 Assume Eloise has a winning strategy for conclusion C in a tableau with premises Γ , and that there
is a subset Γ ′ ⊂ Γ such that Γ ′ �|� C . If Eloise reasons by elimination of dominated strategy, she must
be able to eliminate every strategy where she applies tableaux rules only to Γ ′. Assume now that the only
models of Γ ′ where C does not hold, are infinite. Then, all the open branches of a tableau with premises
Γ ′ and conclusion C are, also, infinite. The strategic problem of eliminating dominated strategies where
she applies tableaux rules only to Γ ′, is in that case equivalent to the Halting Problem, which Alan Turing
established to be equivalent to the decision problem for first-order logic, and not effectively solvable.
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attention). Given the range of yes–no questions expressible inL , (2) may seem more
elusive, but in practice, the range of attention required for the main results of eil to
hold is rather limited. It is useful to relativize the range of attention, hereafter RA, to
a given interrogative tableau T, hereafter RA(T).

Some auxiliary definitions will be useful to characterize Inquirer’s competence. Let
Sub(S) ⊆ L denote the set of subformulas of S ∈ L , construed in the usual way,
and define Sub(Γ ) = ⋃{Sub(S) : S ∈ Γ } for any Γ ⊆ L . Next, let Pres(L )

denote the set of formulas of L that can serve as presuppositions of questions; in
particular, the set of instances of the Excluded Middle expressible in L is a subset
of Pres(L ), denoted Presyes–no(L ). Finally, let Ans(S ,T) ⊆ Ans(S ) denote
answers from Ans(S ) that actually occur in some tableau T, and let Q ⊆ L denote
the set of potential answers to the principal question under investigation. For some T
with premises Γ and conclusion C , it is simply assumed that Q = {C,¬C}. With the
above abbreviations, the meta-theorems of eil of Sect. 3.1 hold when the following
hold:

Sub(Γ ∪ Ans(S ,T)) ∩ Pres(L ) ⊆ RA(T) (RA1)

If S ∈ Sub(Γ ∪ Q ∪ Ans(S ,T)), then (S ∨ ¬S) ∈ RA(T) (RA2)

(RA1) translates formally the notion that Inquirer knows the presupposition of a ques-
tion when it occurs in T, and thus always knows when she can play an interrogative
move in T. (RA2) imposes weak constraints on the set RA(T) ∩ Presyes–no(L ), or
equivalently, singles out the minimal applications of the Cut rule that any Inquirer
should be capable of using.8

Postulates (RA1) and (RA2) can be commissioned to re-formulate formally Hin-
tikka’s defense of theYes–NoTheorem. Indeed, the existence of a ‘yes–no strategy’ for
the construction of a closed interrogative tableauT depends on the existence of another
closed interrogative tableau T′, such that RA(T) is obtained from RA(T′). By (RA1)
and (RA2), for every S ∈ Ans(S ,T′), (S ∨ ¬S) ∈ RA(T′) as well. The non-trivial
consequence of the Yes–No Theorem, according to Hintikka, is that the availability of
the ‘yes–no strategy’ inT is only guaranteed for a particular Inquirer when the strategy
to close T′ is available already to that Inquirer. Formally, it is any strategy such that
RA(T) ⊇ Presyes–no(L ) ∩ RA(T′), which generates a closed tableau. The proof of
the Yes–No Theorem given in “Appendix: Formal proofs” illustrates this transfer of
strategies.

Some non-trivial consequences of the Deductive Completeness Theorem become
more conspicuous with (RA1) and (RA2) in mind. For instance, the theorem holds in
general provided that sometimes, at least some of the answers that are necessary to
close T, are obtained using yes–no questions, or equivalently, the Cut rule. Tableaux
systems admits of Cut elimination, that is, for every deductive proof using the Cut

8 (RA1) and (RA2) are static definitions, applying to T as a whole, and thus RA(T) may not correspond
to any representation actually accessible to Inquirer, for instance when T is infinite. A more dynamic
characterization can in principle be obtained by indexing subsets of RA(T) to positions in the game, but
this level of sophistication is unnecessary for this discussion.
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rule, there is a deductive Cut-free proof of the same conclusion. But relative to an
interrogative tableau T with premises Γ , this only guarantees that there is a Cut-
free deductive tableau T′ with premises Γ ∪ Ans(S ,T). Still, it may be so that
the construction of T has required ineliminable yes–no questions. Equivalently, some
answers in Ans(S ,T) may remain inaccessible without the Cut rule.

4.2 Heuristics for yes–no questions

The Strategy Theorem establishes a parallel between the construction of Cut-free
deductive proof strategies, and interrogative strategies, and as such, does not account
for the introduction of yes–no questions. Hintikka, Halonen and Mutanen offer the
following comment about a possible extension of the theorem:

[T]he Strategy Theorem applies in the first place to unextended interrogative
logic. It can be extended further by noting that [the Cut rule] can be used in
ordinary first-order logic to shorten proofs. In interrogative logic, [it] open[s]
the possibility of raising new yes–no questions and thereby facilitating new lines
of reasoning. How closely parallel the principles for choosing tautology for the
two purposes are remains to be studied (Hintikka et al. 1999, p. 59).

We have already seen that interrogative proofs may sometimes require ineliminable
yes–no questions. Therefore, the selection of applications of the Cut rule in interroga-
tive tableaux cannot be explained by preferences governing proof optimization alone.
This in turn makes conspicuous a possible limitation of the current proof-theoretic
approach of the imi. Let me illustrate this with some examples. First, consider an
interrogative tableau T with premise Γ = {S → C}, where the principal question is
whether C holds inS , with C being investigated first. The root of the tableau is thus:

L-{S → C}
R-C

Assume that, unbeknownst to Inquirer, S |� C and S ∈ Ans(S ). As usual, it
is assumed that C /∈ Ans(S ), and that this is known to Inquirer (perhaps from a
previous unsuccessful inquiry), so that a direct question about C is not an option. If S
is obtained inT, closing the set {S, (S → C)} undermodus ponens entails a conclusive
answer to the question whether C holds. In the terminology of J. Hintikka’s analysis
of questions, the conditional (S → C) is a conclusiveness condition for that question,
reducing it to the question whether S hold. Assuming (RA2), (S ∨ ¬S) is in RA(T),
and can be used to ask a yes–no question marked ‘?’:

L-{S → C}
R-C

L-S ∨ ¬S?

Since, ex hypothesis S ∈ Ans(S ), an answer (marked ‘!’) is obtained andnobranching
occurs. The tableau rule for conditionals—which treats (S → C) as (¬S ∨ C)—is
then applied, resulting in two closed tableaux:
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L-{S → C}
R-C

L-S ∨ ¬S?

L-S!

L-¬S
x

L-C
x

In spite of its simplicity, this example illustrates how strategic rules can be defined
relative to Inquirer’s range of attention. The strategic rule above can be expressed
informally as: look for conclusiveness conditions first. Consider now an interrogative
tableau T′ with conclusion C and premise Γ ′ = {S}. Assume again thatS |� C , that
C /∈ Ans(S ), and that only the latter is known (from some former inquiry). Finally,
assume that, unbeknowst to Inquirer, (S → C) ∈ Ans(S ). It would be possible to
close T′ if (S → C) ∨ ¬(S → C) is in RA(T), as shown below:

L-{S}
R-C

L-(S → C) ∨ ¬(S → C)?

L-S → C!

L-¬S
x

L-C
x

While (RA1) and (RA2) suffice to generate the appropriate range of attention in
the first example, they are too weak in the second, since neither (S → C) nor ¬(S →
C) are subformulas of elements of Γ . Nevertheless, the appropriate question can be
generated mechanically. Consider, for instance, the following procedure: (1) define
Sub(Γ ′∪{Q}) in extension; (2) generate inductively combinations of elements listed at
step (1), with the propositional operators ofL ; (3) for any sentence S ∈ L obtained at
step (2), add (S∨¬S) toRA(T′). SinceΓ ′ is finite, (1) can be executed before (2). Step
(2) cannot be fully executed before (3), but both can be executed as an iterated loop,
adding a yes–no question to RA(T′) (and therefore, to T′) after its presupposition has
been generated. Assuming for simplicity that S and C are Boolean atoms, the output
of step (1) is {S, C}. Step (2) generates combinations of S and C with propositional
operators ¬, ∧, ∨, and →, and could run indefinitely, but will generate S → C after
finitely many steps. As soon as this happens, (3) generates (S → C)∨¬(S → C), and
closes T′. Notice also that the same procedure would also output S ∨ ¬S after finitely
many iterations, and close T. This procedure does not so far prioritize conclusiveness
conditions, but may be refined to generate pairs of sentences that can be closed under
modus ponens. With such a refinement, the 3-step procedure would output S ∨ ¬S
from T, and (S → C) ∨ ¬(S → C) from T′, at the first iteration.
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4.3 Another logic of scientific discovery

Algorithms for the discovery of instrumental questions of the sort just described relate
the imi to N.R. Hanson’s logic of discovery, via its formal reconstruction in H. Simon’s
‘normative theory of law-discovery processes’ (Simon 1973). Simon construed liter-
ally Hanson’s notion of pattern of discovery (from the title of Hanson’s seminal book),
formalizing discovery by means of pattern-recognition algorithms. These algorithms
scan a finite data sequence, and when they detect a pattern, output an encoding for
that pattern. This encoding becomes a candidate ‘law’ for the sequence, that can be
tested via its prediction for the next data point. The theory is, according to Simon, a
‘logic’, because it supports normative claims. In particular, it ranks algorithms rela-
tive to how fast they detect and encode a given pattern. Simon argues that the logic of
discovery is decoupled from the logic of justification, but his partial agreement with
Reichenbach rests on different reasons than Reichenbach’s own. Simon contends that
law-discovery algorithms should not be evaluated relative to how likely a candidate
law is to be true: otherwise, evaluating discovery algorithms would require a solution
to the problem of induction. Rather, evaluation has to remain relative to the efficiency
at discovering a pattern (be it a genuine law or an artifact). A law-like generalization
based on a discovered pattern must then be tested with the procedures of a ‘logic of
justification’.

Simon discussed algorithms which, despite their simplicity, are surprisingly pow-
erful. For instance, unsophisticated algorithms could have hypothesized Mendeleev
Periodic Table from the data available at the time, with heuristic search converging
faster than brute-force. The algorithms that Simon describes are not limited to the dis-
covery of law-like regularities, and can capture formally the procedures for generating
questions outlined in the previous section. Specifically, the data sequence over which
discovery supervenes is a finite a string of sentences of L , since Γ is in, in practical
applications, finite. The 3-steps procedure described in the previous section is a brute-
force algorithm for generating yes–no questions: it detects well-formed formulas of
L (subformulas of sentences in Γ ) and generates yes–no questions from them. Its
refinement is an example of heuristic search. It looks for pairs of sentence to which
modus ponens can be applied, and outputs yes–no questions to complete incomplete
pairs with a missing antecedent (when Γ = {S → C}) or a missing conditional (when
Γ ′ = {S}).

Again, there is more to those procedure, than mere proof optimization. The reason
is, quite obviously, that the set Ans(S ) of answers available in S is in general not
known at the time yes–no questions are raised. But another reason is that, in real-
life cases, Γ represents inquirer’s explicit background knowledge (working memory),
while establishing complex chains of conclusiveness conditions involves additional
recall of information stored in long-term memory, in particular through associations
with the content of perception. This does not preclude the possibility of algorithmic
or heuristic search, that could mimic a human inquirer, assuming a more complete
model of an inquirer’s perception and memory.
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5 The ‘Sherlock Holmes sense of deduction’ revisited

5.1 The Holmesian logician

M.B. and J. Hintikka do not mention either Hanson or Simon, but express ambitions
that are strikingly similar to theirs, as conspicuous in this passage:

The crucial part of the task of the Holmesian “logician”, we are suggesting,
is not so much to carry out logical deductions as to elicit or to make explicit
tacit information. This task is left unacknowledged in virtually all philosophical
expositions of logical reasoning, of deductive heuristics, and of themethodology
of logic and mathematics. For this neglect the excuse is often offered that such
processes of elucidations and explication cannot be systematized and subjected
to rules. It may indeed be true that we cannot usually give effective rules for
heuristic processes. It does not follow, however, that they cannot be discussed
and evaluated, given a suitable conceptual framework.” (Hintikka and Hintikka
1983, pp. 156–157)

Deductive moves in interrogative tableaux are means to “make explicit tacit informa-
tion”, and interrogative moves, means to “elicit […] information”. Strategic rules for
using those moves are thus strategies for Holmesian deduction. The Strategy Theorem
shows the relevance of proof theory, and the argument in the previous section, the
relevance of Simon’s logic of discovery, to acquisition of information through interro-
gation. Let me now turn to an informal example, namely Sherlock Holmes’ problem
in The Case of Silver Blaze, one of the Hintikkas’ favorite (see Hintikka and Hintikka
1983; Hintikka and Halonen 2005; Hintikka 2007, among others), to further illustrate
the point.

InThe Case of Silver Blaze, SherlockHolmesmust identify the thief of a race-horse,
Silver Blase, and find the horse before an upcoming race, in which it is favorite. The
thief is also believed to be responsible for the death of the horse’s trainer, John Straker.
Holmes has learned from the newspapers that a suspicious individual, FitzroySimpson,
visited the stables on the evening before the crime, on the pretense of asking tips about
the race. His untimely visit frightened amaid, who called a stable-boy for help, and the
stable-boy let his watchdog on Simpson. Inspector Gregory, in charge of the inquiry,
believes Straker suspected that Simpson would return, acted upon the suspicion, and
met his end at Simpson’s hand. Evidence against Simpson is circumstantial: his scarf
was found near Straker’s body, but he claims to have lost it during the evening; and
his walking stick could have been the murder weapon, but the killing blow could have
been dealt with any blunt instrument. Holmes remains unconvinced, and describes the
case as one where “[t]he difficulty is to detach the framework of fact […] from the
embellishments of theorists and reporters” (Doyle 2003, p. 522).

The differences between the inquiry strategies of Gregory and Holmes illustrate
informally the role of deduction in “eliciting […] information” and “making explicit
implicit information”, as well as the interplay of discovery and justification. Gregory
relies on routine questions (whether Simpson had a motive, an opportunity, could be
placed at the crime scene, or possessed a possible murder weapon) to which he obtains
positive answers, forming the kind of pattern policemen are trained to discover. The
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‘law’ for that pattern predicts that any question whose answer depends on whether
Simpson is guilty, will receive an answer consistent with Simpson’s guilt. However,
Gregory fails to include the presence of a watchdog in relevant data, and thus to predict
that the dog would have barked at Simpson, again, during the night. By contrast, the
presence of the dog and its silence remind Holmes of the general truth that trained
watchdogs only remain silent when ordered to by their masters. From this, Holmes
concludes that “the midnight visitor was someone whom the dog knew well” (Doyle
2003, p. 544), that is, implicit information that Gregory has failed to make explicit.

More interesting even is how Holmes solves the case, for Holmes’ thought process
could be reconstructed as an attempt to discern newpatterns, afterGregory’s hypothesis
has been eliminated.Holmes pays attention to unusual circumstances,whose relevance
was so far overlooked. For instance, Straker carried a knife, but it was “[a] very
delicate blade devised for very delicate work [and a] strange thing for a man to carry
with him upon a rough expedition, especially as it would not shut in his pocket ”
(Doyle 2003, p. 532). Also, a bill for an expensive dress, addressed to a William
Derbyshire, was found on Straker’s body, but “men do not carry other people’s bills
about in their pockets ” (Doyle 2003, p. 545). Holmes inquires whether Straker’s
widow owns the dress (she does not) and hypothesizes that Straker had a mistress and
bought a dress under an assumed name. The cost of a double life provides a motive
to rig the upcoming race, and the means to do so is suggested when Watson identifies
Straker’s knife as a scalpel. Holmes then suspects that Straker tried to cripple the
horse, and was accidentally killed in the process. Holmes reasons to the consequences
of that hypothesis—Straker, lacking medical expertise, would have practiced first—
and inquires about animals Straker could have practiced on, finding out that, among
the sheep that keep company to the horses, several have inexplicably gone lame.

5.2 Analysis, guesses, and associations

In theCase of Silver Blaze, Holmes selects his questions—whether the dog had barked
during the night, whether Straker’s widow owns a dress, and whether some sheep have
gone lame—based on the expected consequences of their answers. These questions,
and the lines of reasoning they belong to, are suggested by associations between
circumstances of the case—Simpson’s first visit, the bill in Straker’s pocket, or the
inadequacy of Straker’s knife for self-defense—and the content of Holmes’ memory
relative to watchdogs, gentlemen, and how to rigg races. Hence, a reconstruction
of Holmesian deduction would be incomplete without an account of the evolution of
Holmes’ range of attention, and the relation between attention andmemory. Reasoning
to consequences, Holmes also anticipates (correctly, as it turns out) the answers to all
his questions. Hence, a reconstruction of Holmesian deduction must also account for
the strategic importance of guesses. Holmes’ guesses are more easily explained in
strategic terms than his associations. To see why, let me quote J. Hintikka on Peirce’s
view that abduction involves an element of guessing:

Strategically, there is little difference between selecting a question to ask in
preference to others and guessing what its answer will be—and guessing how it
compares with the expected answers to other questions that could be asked. […]
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[I]n interrogative inquiry, the crucial consideration is to anticipate the epistemic
situation brought about by the answer—which in practice typically amounts to
anticipating the answer. And such anticipation is hard to characterize in any
terms other than guessing. What is especially interesting—and especially remi-
niscent of Peirce—is that such an element of guessing in abductive questioning is
completely compatible with the strategic analogy between deduction and inter-
rogation. (Hintikka 2007, p. 56)

Holmes’ guesses can therefore be characterized as strategic anticipations, under the
umbrella of the “strategic analogy between deduction and interrogation”, that is, by the
Strategy Theorem.9 There remains that these strategic anticipations are formed after
associations between facts (thewatchdog’s silence and the content of Straker’s pockets)
and the content of Holmes’ memory (general truths about watchdogs, gentlemen’s
habits, and knives). This brings us back to the first remark, which echoes the ambitions
that M.B. and J. Hintikka expressed for their model:

Eliciting tacit information by questioning can be viewed as one possible recall
procedure. […] This partially sharedmodel for recall and intelligent inquirymay
perhaps serve as an explication for the link between memory and intelligence
[and] should not surprise any Sherlock Holmes fan. In some cases, the great
detective has to carry out an observation or even an experiment to answer the
question. More frequently, all he has to do is to perform an anamnesis and recall
certain items of informationwhich he already had been given andwhich typically
had been recorded in the story or novel for the use of the readers, too, or which
are so elementary that any intelligent reader is expected to know them. (Hintikka
and Hintikka 1983, p. 159)

The Hintikkas’ example in support for this remark, is Holmes’ reasoning from the
silence of the dog in the Case of Silver Blaze. But how can we follow up on their
suggestion that it illustrates a relation between recall and intelligent inquiry? One pos-
sibility is to extend the strategic viewpoint to both analytic and associative thought
processes. The idea of ‘strategic associations’ may, at first, sound somewhat contra-
dictory. And yet it has an illustration in the psychology of creative thought. Creative
thought processes involve both associative and analytic sub-processes, and in recent
years, L. Gabora has proposed that this integration is made possible by the architecture
of memory (Gabora 2010). Gabora’s model synthesizes earlier findings from cogni-
tive psychology, neuroscience, and computationalmodeling ofmemory processes, and
reconstructs creative insight as the outcome of recruiting specific neural cliques, that
Gabora calls neurds, as a result of an interplay of analytic and associative thought:

[A]nalytic thought requires a state of focused attention, and associative thought
requires a state of defocused attention. Creativity involves not just the capacity
for both [analytic and associative thought] but the capacity to spontaneously
shift between them according to the situation, referred to as contextual focus.

9 A formal reconstruction of the process of using guesses to generate questions is also proposed in
“Appendix: Deductive completeness theorem”, in the discussion of the left-to-right direction of the Deduc-
tive Completness Theorem.
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[C]contextual focus is explicable at the level of cell assemblies […] composed
of neural cliques, some of which respond to situation-specific aspects of an
experience, and others of which respond to general or abstract aspects. […]
Leakage of information from outside the problem domain occurs in a manner
that is a priori unpredictable because it involves unearthing associations that
exist due to overlap of items in memory that may not have been previously
noticed. Because memory is distributed, coarse-coded, and content-addressable,
items encoded previously to neurds are superficially different from the present
situation yet share aspects of its deep structure. Therefore, the recruitment of
neurds may foster associations that are seemingly irrelevant yet potentially vital
to the creative idea. (Gabora 2010, p. 13)

In Gabora’s model, recall is described in probabilistic terms, and defocused attention
alters the probability that specific memory-encoding cell assemblies are activated. In
strategic terms, defocusing is tantamount to selecting a particular mixed strategy for
recall. A mixed strategy is a lottery (mixture) over deterministic strategies, and both
contextual focus and defocused attention represent different mixtures of deterministic
strategies that would activate particular cell assemblies: focused attention lowers the
probability that neurds are activated, while defocused attention raises it, allowing for
strategic associations. Interestingly, Sherlock Holmes is often pictured as seemingly
distracted and daydreaming, and at least once in theCase of Silver Blaze.10 It invariably
turns out that he is in fact engaging in “associations […] seemingly irrelevant yet
potentially vital” to the solution of the current case. It is thus fitting for a model of
the ‘Sherlock Holmes sense of deduction’ to feature parameters such as the range of
attention, that can be used to describe associative processes, if one’s ambition is to
understand the strategic role of these processes. Models of the architecture of memory,
such as Gabora’s, suggest that the imi could be developed in a direction faithful to the
Hintikkas’ original vision, provided that these parameters are reinstated in the model.

6 Concluding remarks

WhenM.B. and J. Hintikka laid down the logical foundations of the ‘Sherlock Holmes
sense of deduction’, they appealed explicitly to game theory, in order to support a
naturalistic interpretation of their model. This interpretation was reflected in how they
set the payoffs for interrogative strategies (rewarding lower memory loads) or how
they dealt with logical omniscience (with the range of attention). After the demise of
M.B. Hintikka, the interrogativemodel was progressively streamlined, leaving explicit
only its logical architecture. An informal strategic viewpoint was substituted to the
explicit formalization of strategies, that J. Hintikka deemed sufficient to capture the
‘Sherlock Holmes sense of deduction’, vindicate the Bacon-Kant view of inquiry, and
serve as a foundation for a logic of discovery (Hintikka 2007, ch. 1, 4 and 10).

10 “Excuse me,” said he, turning to Colonel Ross, who had looked at him in some surprise. “I was day-
dreaming.” There was a gleam in his eyes and a suppressed excitement in his manner which convinced me,
used as I was to his ways, that his hand was upon a clue, though I could not imagine where he had found
it.” (Doyle 2003, p. 531).
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In this paper, I have examined this streamlining process critically, and I have con-
cluded that parameters with an explicitly cognitive interpretation are necessary to
support the claim that the imi captures the logic of discovery, as well as to safeguard
its empirical adequacy. Those parameters bridge the imi with other models of the
logic of discovery, such as Simon’s. They can capture the strategic role of memory in
Holmesian deduction, and more generally of associative processes. As for the choice
of those parameters, payoffs and utilities cannot shed much light on proof-theoretic
results, as long standard models of strategic reasoning are assumed. Fortunately, the
imi needs little more than an explicit range of attention, indexed on positions where
Inquirer can move. Transitions between ranges of attention can indeed be interpreted
as the outcome of perceptual ormnemic processes, or a combination thereof, and as the
result of either analytic or associative modes of thought. The imi could in fact remain
agnostic about those processes, but it may also seek compatibility with extant models
of the architecture of memory, in order to account for creative processes in strategic
terms. This convergence would offer a strong alternative to the Popper-Reichenbach
view of scientific inquiry, and a rebuttal of the premise upon which it is built, that
creative thought processes cannot be reconstructed within a logic of discovery.
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Appendix: Formal proofs

Deductive completeness theorem

Proof [⇒] Assume that S : Γ � C . Then, there is a closed interrogative tableau T0
with premises Γ and conclusion C where some answers S1, . . . , Sn ∈ Ans(S ) are
used. Hence, every answer Si appears at a node of some subtableau τ0 of T0 as L-Si !
after its presupposition Pi has appeared at a node as L-Pi? in the same subtableau.
Then, T0 is identical to a Beth tableau T1 with premises Γ and conclusion C , in
which, for every Si , Pi and Si appear in some subtableau τ1 of T1 identical to τ0
save for the omission of ‘?’ and ‘!’, and where no tableau rule is applied to L-Pi

in τ1. This, in turn, is equivalent to assume that Si has been added to the premise
set Γ during the construction of T1. Therefore, there is a closed Beth Tableau T2
with premises Γ ∪ {S1, . . . , Sn}, conclusion C , and where, for every Si that appears
in some subtableau τ2, such that τ2 is identical to τ1 save for the omission of the
node L-Pi . By construction, to every closed subtableau τ0 in T0, corresponds a closed
subtableau τ1 in T1, and a closed subtableau τ2 in T2; and there are no subtableaux
in either T1 or T2 that are not obtained from some subtableau of T0. Therefore, by
construction also, all subtableau ofT1 andT2 are closed; and by completeness of Beth

123

http://creativecommons.org/licenses/by/4.0/


2086 Synthese (2018) 195:2065–2088

Tableaux, Γ ∪ {S1, . . . , Sn} � C . Since, by assumption, S1, . . . , Sn ∈ Ans(S ), then
Γ ∪ Ans(S ) � C , as desired. ��

Below is represented the construction of subtableaux for caseswhere Pi = (Si ∨S j )

and Pi = ∃x Si [x] (other cases are left to the reader). SinceT0 is finitely generated and
has finitely many branches, the construction can be iterated, yielding a closed tableau.

L-Γ
R-C

...

L-Si ∨ S j?

L-Si !
...

x
[τ0]

L-Γ
R-C

...

L-Si ∨ S j

L-Si
...

[τ1]

L-Γ ∪ {Si }
R-C

...

L-Si
...

x
[τ2]

L-Γ
R-C

...

L-∃x Si [x]?

L-Si [a/x]!
...

x
[τ0]

L-Γ
R-C

...

L-∃x Si [x]

L-Si [a/x]
...

[τ1]

L-Γ ∪ {Si [a/x]}
R-C

...

L-Si [a/x]
...

x
[τ2]

Proof [⇐] Assume that Γ ∪ Ans(S ) � C . Then, there is a closed Beth tableau T0
with premises Γ ∪ Ans(S ). Since closed Beth tableaux are always finite, there is
a finite subset Δ = {S1, . . . , Sn} ⊆ Ans(S ) such that Γ ∪ Δ � C . Let Δyes–no =
{(Si ∨ ¬Si ) : Si ∈ Δ}. Then, there is a closed Beth tableau T1 identical to T0,
save that any occurrence of Si in a given branch τ0 is preceded by an application
of the Cut rule introducing (Si ∨ ¬Si ), where the application is incomplete, that is,
no tableau rule is applied to (Si ∨ ¬Si ). Then there is an interrogative tableau T2
with RA(T2) = Δyes–no, such that T2 is identical to Beth tableau T1, save that every
occurrence of L-(Si ∨ ¬Si ) and of L-Si in some subtableau τ1 of T1, are substituted,
respectively, with L-(Si ∨ ¬Si )? and L-Si ! in τ2. Since by construction Δ ⊆ Ans(s),
T2 is a closed interrogative tableau, and therefore S : Γ � C , as desired. ��

Below is represented the transformation of a (closed) deductive Beth tableau with
premises Γ ∪ Δ into an interrogative tableau with one less premise. Again, the pro-
cedure can be iterated so as to obtain a closed interrogative tableau with premises
Γ .

L-Γ ∪ Δ

R-C
...

L-Si
...

x
[τ0]

L-Γ ∪ Δ

R-C
...

L-Si ∨ ¬Si

L-Si
...

x
[τ1]

L-Γ ∪ Δ \ {Si }
R-C

...

L-Si ∨ ¬Si?

L-Si !
...

x
[τ2]

Alternatively, Δ can represent a set of guesses (cf. Sect. 5.2), and the transformation,
how an interrogative strategy substitutes guesses with questions. Lastly, the procedure
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can be iterated to eliminate every Ti ∈ Γ , representing formally Socratic “strategic
knowledge”.

Yes–no theorem

Proof Assume that C can be established interrogatively from Γ in S , i.e. that S :
Γ � C . Then, there is a closed interrogative tableauT0 with premisesΓ and conclusion
C , for an Inquirerwith the appropriate range of attention. SinceT0 is finitely generated,
there is a finite subset Δ ⊆ Ans(S ) such that every Si ∈ Δ occurs in T0, and that
answers inΔ suffice to establishC interrogatively, givenΓ . LetΔyes–no = {(Si ∨¬Si ) :
Si ∈ Δ}. By (RA2), Δyes–no ⊆ RA(T0). Let now T1 be an interrogative tableau with
premises Γ and conclusion C , such that RA(T1) = Δyes–no, identical to T0 save that
an application of the Cut rule is interpolated between every interrogative move and its
answer, as represented below:

L-Γ
R-C

...

L-Si ∨ S j?

L-Si !
...

x
[τ0]

L-Γ
R-C

...

L-Si ∨ S j

L-(Si ∨ ¬Si )?

L-Si !
...

x
[τ1]

L-Γ
R-C

...

L-∃x Si [x]?

L-Si [a/x]!
...

x
[τ ′

0]

L-Γ
R-C

...

L-∃x Si [x]
L-Si [a/x] ∨ ¬Si [a/x]?

L-Si [a/x]!
...

x
[τ ′

1]
By construction, for every subtableau t0 of T0, there is a subtableau τ1 of T1 that
closes iff τ0 closes. Since, ex hypothesis T0 is closed, then all subtableaux of T0 close,
and so do all subtableaux of T1. Since, by construction,RA(T1) only includes yes–no
question, C can be established interrogatively in S using yes–no questions only, as
desired. ��

Remark that, in the above proof, subtableaux τ1 and τ ′
1 of T1 can be further stream-

lined, by removing the (now) redundant moves having lead from Γ to the redundant
presuppositions L-Si ∨ S j and L-∃x Si [x]. Again, this process represents formally
Socratic strategic knowledge, and yields the right-to-left Deductive Completeness
Theorem as a corollary.
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