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T
he not-too-strong, not-too-weak bonding of key interme-
diates marks the sweet spot fingerprint of optimal catalytic 
materials. This principle was introduced first by Sabatier, who 

showed that the light-off temperature of catalysed reactions dis-
played a volcano shape as a function of formation energies1,2. Since 
then, theoretical approaches to rational catalytic design have been 
based on identifying the activity of volcanoes and how they depend 
on a few, descriptors, typically the binding energies of (one or two) 
intermediates3,4. With the appearance of the density functional the-
ory (DFT) and wide-spread access to computers, simulations have 
been established as one of the pillars in understanding and predict-
ing catalysis. Nowadays, it is possible to implement robust DFT 
techniques in computational codes, providing detailed electronic 
structure, thermodynamic and kinetic parameters5 of increasingly 
complex reaction networks. Therefore, computationally derived 
volcano plots have become the gold standard in catalyst design6. 
Volcanos provide a systematic way for catalytic optimization by 
finely tuning the adsorption energies or through dynamic opera-
tion7, and have proven to be a powerful tool for assessing alloy com-
position8, size9, metal/oxide interfaces10, pH dependence11 and have 
even been reported in homogeneous catalysts12. The same principles 
can be used in electrocatalysis once the potential and pH terms are 
introduced, and it is likely to appear in photochemistry, although 
this has not been demonstrated yet.

However, there is an increasing pressure to go beyond the top of 
these volcanoes13–15. There are several reasons behind this need. It is 
well known that the maximum of the observed rate provides the limit 
for the activity, and this might be insufficient for the practical appli-
cation of catalytic technologies16. In addition, descriptors are typi-
cally energies, and thermodynamics for intermediates cumbersome 
to obtain experimentally. Moreover, addressing selective processes 
through volcanoes is not straightforward as several paths need to 
be investigated with similar accuracy, and the respective volcanoes 
need to be superimposed17. As for the practical aspects, the iden-
tified maximum does not provide a synthetic route18 towards the 
desired composition. Finally, some false negatives (outliers) might 
appear as the real phase space is much bigger than a single catalyst 
family. In summary, the concept of volcano is practical for activity 
although addresses selectivity and stability aspects poorly. The latter 
have been solved by applying filters, for instance to assess that the 
active phase can exist under reaction conditions. Volcanos are not 

so useful for full-phase space discovery in their present formula-
tion, but they are very convenient for catalyst optimization within 
a family of compounds, for example, alloys and bimetallics. In the 
following, we address the different approximations that have been 
employed in the literature to alleviate the limitations of the volca-
noes by increasing the complexity of materials and the chemical 
variability. To this end, we first describe the appearance of the linear 
scaling relationships (LSRs) and how these are transferred into the 
volcano and cliff shapes once microkinetic balances are considered 
and then provide a perspective on the strategies in the literature to 
alter LSRs by increasing complexity.

The origin of volcanos and cliffs
To improve catalytic performance beyond the volcanos it is neces-
sary to understand why they appear. The procedure is exemplified 
in Fig. 1, where the particular model employed comprises a selective 
process (A+1/2B→P) and a side path (A→Q), the models for which 
can be accessed from ref. 19. The standard procedure is as follows: the 
detailed reaction network is mapped carefully for at least one cata-
lytic compound and the corresponding energies are calculated by 
DFT, then a microkinetic model that wraps all the elementary steps 
is developed. In a complex reaction with multiple intermediates, it 
turns out that the bond order conservation theory and the electron 
counting rules imply that the energies of intermediates are linked one 
to another in a linear manner (tLSRs20, Fig. 1a). This is particularly 
applicable to metals for which the smoothness of the electron cloud 
helps address density fluctuations better. For metals, the local coordi-
nation number can also generate LSR and cLSR21. Brønsted–Evans–
Polanyi, as well as several others, found that the kinetic terms depend 
linearly on thermodynamic parameters, and thus the activation bar-
riers can be traced back to the energy of one or more intermediates 
in a linear form (kinetic linear scaling relationships, kLSRs), Fig. 1b22. 
These kLSRs are also known in the literature as linear free energy 
relationships (LFER) or Bronsted–Evans–Polanyi (BEP) relation-
ships. When the dependencies encoded in the LSRs are introduced in 
the rate expression, activity shows the volcano shape as a function of 
specific adsorption energies for key intermediates, as seen in Fig. 1c,  
with the highest activity marked by an asterisk (see Fig. 1e for a 
particular cut in a monodimensional space). Therefore, a strong 
adsorption implies high coverage and surface poisoning, and a weak 
adsorption entails very low coverage and thus low rate; in both cases 
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the reaction is hindered. Contrarily to the smoothness found for 
activity volcanoes, selectivity relies on the difference between two 
competing steps, and these very small energy differences gener-
ate discontinuities in the behaviour, acting as an on/off switch and 
resulting in much more abrupt profiles, as seen in Fig. 1f. The reason 
behind this is that very small energy differences, as small as <0.10 eV 
at normal conditions, might turn a selective process into an unselec-
tive one23, thus approaching the limit of DFT accuracy energy. If the 
kLSRs for the desired and undesired products have different slopes 
when written as a function of the energy of the key intermediate, as 
seen in Fig. 1b, then cliffs emerge in the volcano plots (see Fig. 1d, f), 
and actually the point with the highest selectivity might depart from 
the point with the best activity.

Therefore, reaching activities that are higher than those marked 
by the volcano limitations implies breaking the symmetry rules 

(dependencies) imposed by the LSRs. This can only be done by 
including alternative energy forms or increasing the complexity of 
the catalyst.

Circumventing linear scaling relationships
In 2015, Vojvodic and Nørskov listed several potential ways of 
breaking or circumventing LSRs24. Following the traditional analy-
sis, geometric and electronic terms, as well as intrinsic or extrin-
sic effects, were taken as orthogonal directions for development. 
Disentangling the geometric and electronic effects is difficult, some 
suggestions have been put forward25. The activity has been very 
large in the field and in Fig. 2 we present the already identified ways 
to elude the LSRs for which examples exist.

The simplest way to circumvent LSRs is through a pure geo-
metrical effect. Strain has been used in this context26, as the binding 
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Fig. 1 | Competitive reaction network to convert A and B into P and Q as desired and undesired products, respectively. a,b, Thermodynamic and kinetic 

linear scaling relationships (tLSRs and kLSRs, respectively. c,d, Activity and selectivity volcanos as a function of the adsorption energy of Q and I. An 

asterisk indicates the condition that maximizes the production of P although with a moderate selectivity (~50%). An optimization strategy is presented as 

a dashed white line. e,f, One-dimensional activity volcano and selectivity cliff (the cuts were done along the dotted lines marked in c,d. The selectivity has 

a cliff where Q binds more strongly than I and thus poisons the surface. Models are from ref. 19, Zenodo.
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energy of different species may depend on the geometric perturba-
tion in different directions. Alternatively, ensemble control requires 
the identification of the minimum site to perform the desired  
reaction and space, and to resolve it in a controlled manner. Actually, 
this effect is really acting on the selectivity control, particularly  
as some reactions might require larger ensembles than others.  
The way to access this control is by alloying with inert species  
(Au, ref. 27); adsorbing molecular fragments (selectivity modula-
tors), as in the Lindlar catalyst28 or NanoSelect29. This method has 
been used recently in single-atom catalysts30,31, and p-block modi-
fied phases like PdSx active materials32. All these changes also modify 
the electronic structure (and even bifunctional mechanisms appear 
with reactants adsorbed in different sites, such as PdSx) but the 
ensemble contribution is the most obvious by far. The best example 
can be found for the hydrogenation of alkynes: while the desired 
path requires very small ensembles (3–4 atoms), the parasitic reac-
tion C–C bond formation demands more than six atoms. Therefore, 
limiting the ensemble is a selectivity enhancer, and this is achieved 
by breaking the LSRs for the C–C bond formation. This has been 

found by sulfiding supported Pd nanoparticles under mild condi-
tions, which results in facet control by kinetic terms33. Therefore, 
the nuclearity control when using small clusters can fine-tune the 
selectivity34–36. Similar concepts have been employed in metal-only 
single-atom catalysts, where the resistance towards coking37,38 and 
the long-term stability of the catalyst are due to the suppression of 
the side decomposition path that does not scale any longer with the 
intermediates. High-entropy alloys are an alternative, as the con-
tinuous nature of adsorption is an effective way to modulate reactiv-
ity39. Notice, however, that metal in metal systems (without a phase 
change) can only provide solutions to the selectivity cliffs (and in 
doing so improve the yield and the long-term stability) but not to 
the underlying activity, as the density anisotropies are very small in 
these materials.

A fully electronic effect was found in the Br version of the Deacon 
reaction ðHBrþ 1

2
O2 ! Br2 þH2OÞ

I

 on oxides of the rutile family, 
most of them with a metallic character. The reaction encompasses 
surface oxidation, the adsorption of the acid, the halogen evolu-
tion, hydroxyl recombination and, finally, water elimination. When  
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considered in this order, the reaction is found to be unfeasible 
on TiO2 rutile, a semiconductor that cannot adsorb O2 (ref. 40). 
However, the order of the competing adsorbing reactions is arbi-
trary. For example, when starting the reaction by HBr adsorption, 
the system self-dopes and leads to an effective catalyst by breaking 
the rules between O and Br adsorption on rutiles41. An important 
conclusion is that, besides geometry, the particular electronic struc-
ture for the material is crucial, and results from metal-like materials 
cannot be extrapolated to semiconductors.

Electronic and geometric terms are generally not so easy to 
separate. The addition of external elements, like ligands to metal 
surfaces, can also provide other electronic effects. For instance, elec-
trostatics and hydrogen bonds are found to rearrange intermediates 
in the direct hydrogenation of O2 (towards H2O2) or for nitrogen 
to ammonia from planarly bonded OOH or NNH (prone to dis-
sociation) towards standing species where the lack of bonds to the 
surface prevent effective dissociation42,43. The LSR for the planar and 
vertical configurations is thus different when electric fields, ligands 
and ionic liquids exist42,43. Again, in the first case, the selectivity 
switch goes on top of the activity control.

In all of the previous cases, the changes mostly affected the 
viability of the reaction network and not in the particular nature 
of the species involved. However, this is one of the most effective 
ways to circumvent LSRs. For instance, hydrogenation on metal sur-
faces takes place via the Horiuti–Polanyi mechanism44, that is, by 
splitting H2 into two H atoms and transferring them sequentially, 
although other ways are also possible. On gold-decorated nanopar-
ticles with ligands containing H2 bonds, the ligands play an active 
role and induce the dissociation as hydride-proton45. On the other 
hand, if the ligand contains C=O terminations, then hydrogenation 
occurs through a concerted step46 transfer hydrogenation. In both 
cases, the kLSR breaks because the transition states are different 
from those of the regular surface. This is also the case of the single 
Pd atoms stabilized on carbon nitride in which the scaffold acts as 
a ligand30. Moreover, the presence of polarity between cations and 
anions in oxides leads to a heterolytic dissociation path47.

Hydrogen molecules can still be separated as two protons and 
two electrons, which gives rise to two alternative hydrogenation 
mechanisms. For instance, catalyst acidity is fundamental to the 
conversion of acidic biomass molecules. Ru nanoparticles decorated 
by surfactants (HHDMA) split H2 into protons and electrons. The 
metal–ligand interface is so strongly acidic48 that it can protonate 
levulate, the most common form in a water-based solution of levu-
linic acid, and thus enable the transformation to γ-valerolactone, 
one of the twelve most demanded chemicals derived from biomass. 
This protonation overrules the reaction mechanism of levulate on 
Ru, which is rather inefficient. pH effects can also tune the cata-
lytic route and change the active volcano49. Very small decorated 
Pt nanoparticles can also store electrons at high potentials, which 
can be used for the selective reduction of nitrobenzene to aniline. 
For such systems, the interface electric field, coupled to the size of 
the nanoparticles (around 1.2–1.5 nm), creates the driving force for 
changing the active species from H atoms on the surface into high 
potential electrons50. The decoration with chiral substrates can also 
alter the reactivity and displace the rate-determining reaction to be 
spin controlled, as has been found for the oxygen evolution reaction 
on chiral-decorated iron oxides. This appears to be consequence of 
the spin-polarized nature of O2 that can be only achieved when the 
surface is ferromagnetically aligned51.

Cooperative effects can also help reducing inefficiencies in reac-
tion paths. Simple coverage effects can be deemed responsible for 
better performance due to rearrangements that make competing 
kLSRs more chemoselective towards the desired product at higher 
coverages52. Alternatively, impurities such as sulfur can preferen-
tially trap CO2 on Cu in electrochemical environments. The tether-
ing53 of the key species allows blocking of the unselective path for 

geometric reasons. The ultimate consequence is a complete change 
in selectivity as the decorated system produces formate instead 
of CO, as would occur on Cu, producing formate instead. Active 
ligands can be employed as reactant relays54 in homogeneous elec-
trocatalysis; this effect could be equivalent to Mars-van-Krevelen 
processes in heterogeneous catalysis, and thus does not follow sur-
face LSRs. Bifunctional mechanisms also belong to this class, since 
a part of the path can occur at one centre while a second conversion 
takes place on a different area of the catalyst55.

Dynamics can offer a way to overcome LSRs, however, the con-
trol at the nanoscale is not evident from our present tools. For 
instance, the fluxionality of small nanoparticles can interconnect 
different geometric configurations with different properties for 
the adsorption of intermediates, thus breaking the rules by adapt-
ing the coordination in each case56. Ligands can also dynamically 
cover parts of the surface, leading to short-lived highly selective 
active sites57. This effect can be amplified and modified when a sup-
port exists58. The effect is particularly important in homogeneous 
catalysis, and in this way in molecular systems LSR can be disrupted 
through geometric strain, which influences the electronic proper-
ties and decouples reaction steps59. Alternatively, the electronic 
dynamics can also contribute to differential reactivity, as has been 
found for CO oxidation on dynamic charge transfer systems, such 
as single-atom platinum on CeO2 where more than one electronic 
state is available, allowing a low-temperature reaction path60.

Finally, the use of other external forces can break LSRs61. Recently, 
mechanochemistry has emerged as a way to enhance the catalytic 
response, and in this case reactions are carried out with the mini-
mum solvent and by grinding the solid reactants62. Plasmonic metal 
nanoparticles can also drive new transformations effectively. The 
incoming electromagnetic radiation in the form of light concentrates 
in the form of plasmons and therefore results new activity rules63. 
Similarly, the oxygen evolution reaction on antiferromagnets at high 
pH has been found to be enhanced by magnetic effects due to spin-
control in the reaction64. All these processes differ from standard 
temperature control and different linear scaling can be envisaged.

Conclusions
In summary, much progress has been made in alternative ways to 
circumvent linear scaling relationships, particularly those affecting 
selectivity, as blocking the lateral paths improves both activity and 
stability. However, a general overall optimization including unchar-
tered territories is not yet possible, partially because of the lack of 
fundamental understanding of the properties of complex electronic 
structure materials (https://materialsproject.org/) and the very lim-
ited atomistic investigations on complex multiphase materials or 
interfaces. Understanding complexity will require the combination 
of the descriptor strategies with high-throughput experimentation 
approaches, as well as detailed synthetic control and characteriza-
tion tools to unveil alternative catalytic routes that circumvent the 
present linear-scaling relationships.

Code Availability
The model systems for Fig. 1 can be retrieved from ref. 19.
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