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Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases
play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained signi�cant
attention in the industries due to their substrate speci�city and stability under varied chemical and physical conditions. Fungal
enzymes are extracellular in nature, and they can be extracted easily, which signi�cantly reduces the cost and makes this source
preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the
potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable
of degrading fatty substances, are narrated with a focus on further applications.

1. Introduction

Lipases are de�ned as triacylglycerol acyl hydrolases (EC
3.1.1.3) and are involved in the hydrolysis of fats and oils to
yield glycerol and free fatty acids [1] (Figure 1(a)). Lipases
belong to the class of serine hydrolases and do not require
any cofactor. Under natural conditions, lipases catalyze the
hydrolysis of ester bonds at the interface between an insoluble
substrate phase and the aqueous phase where the enzyme
remains dissolved [2] (Figure 1(b)). Lipases are involved in
conversion reactions, such as esteri�cation, interesteri�ca-
tion, transesteri�cation, alcoholysis, acidolysis, and aminol-
ysis [3]. Many microorganisms such as bacteria, yeasts,
molds, and a few protozoa are known to secrete lipases for
the digestion of lipid materials [1, 4–12]. Microbes, being
ubiquitous in distribution, are highly successful at surviving
in a wide range of environmental conditions owing to their
great plasticity and physiological versatility and have been the
subject of several reviews [13, 14]. Due to e�cient enzyme

systems, microbes thrive well in inhospitable habitats [15].
With mechanisms for adapting to environmental extremes
and for the utilization of their trophic niche, the ability
of microorganisms to produce extracellular enzymes is of
great survival value [16]. Among dierentmicrobial enzymes,
lipases are widely documented among bacteria, fungi, plants,
and animals [17, 18].

Extracellular secretion has beenwell studied for a number
of fungi, primarily zygomycetes [19], hyphomycetes [20], and
yeasts [21, 22]. Lipase production has also been reported
for some ascomycetes [23] and coelomycetes [24]. Lipolytic
activity has been observed inMucor spp. [25, 26], Lipomyces
starkeyi [27], Rhizopus spp. [26, 28–30], Geotrichum can-
didum [25, 31–34],Pencillium spp. [9, 28, 35, 36],Acremonium
strictum [37], Candida rugosa [38], Humicola lanuginosa
[39], Cunninghamella verticillata [40], and Aspergillus spp.
[11, 41]. Considering the importance of fungal lipases, their
applications are discussed and the techniques involved in
lipase generation have been gleaned recently [1].
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Figure 1: (a)Hydrolysis of triglyceride by lipase [1]. Upon hydrolysis
triglyceride converts into glycerol and fatty acid. (b) Representation
of a molecule of lipase with its features. 
e substrate can be any
triglyceride [2]. Substrate interactive regions are displayed.

Fungi are involved in the degradation of undesirable
materials or compounds converting them into harmless, tol-
erable, or useful products. 
e undesirable materials include
sewage waste from domestic and industrial complexes and
plant, animal, and agricultural wastes, oil spills, and dairy
waste. 
e role of fungi in bioremediation processes in
varied environments has been well documented [16, 30, 42,
43]. 
ere has been an increasing awareness of potentially
harmful eects of the worldwide spillage of oil and fatty
substances in both saline and fresh waters. Domestic waste
is also considered as the pollutants as it has a high amount
of fatty and oil substances. Industrial and domestic wastes
harbor fungal species of greater potential in degrading fats
and oils. Besides waste disposal, bioconversion by fungal
activity results in the production of a vast number of useful
substances. 
us, waste can be converted into a resource.
Bearing in mind the importance of lipolytic fungal enzymes
from dierent disposal sources, this overview focuses on
strategies to characterize the fungal lipases with an emphasis
on a wide range of applications.

2. Lipolytic Fungal Species from
Oil-Spill Wastes

Due to usage of vegetable oils for cooking, these oils are
released into the open environment both at the production

level and by domestic users. To keep the environment clean,
these oils should be degraded by using environmentally-
friendly technology. Several oil-industries have been estab-
lished at both small scale (Figure 2(a)) and large scale
(Figure 2(b)). Oil spillages from these production points
(Figure 2(c)) cause a hindrance in ensuring environmental
hygiene due to the formation of clogs in drain pipes [44].
Cleanup and recovery of oil wastes is di�cult and depends
upon many factors, including the type of oil spilled, the tem-
perature of water aecting evaporation, and biodegradation.
Microbial degradation is one of the most important events
to ameliorate oil pollution in the environment. Fungi that
produce lipases are found in diverse habitats including oil-
contaminated soils, wastes around oil processing factories,
domestic waste points, and dairy products [27]. Gopinath
et al. [16] have isolated 34 fungal species from oil-spill
contaminated soils, collected in major cities of India. 
ese
species were tested for their survival with the changes in
seasons. Twelve fungal species from oil-mill e�uent com-
posts at Nsukka have been studied and it was found that
Aspergillus spp. aremore common; however, the higher lipase
producers are Trichoderma sp. followed by Aspergillus spp.
[9]. D’Annibale et al. [45] used olive mill waste water as the
substrate to determine lipase production. Lipase producing
fungal species were also recovered from compost heaps, coal
tips, and industrial wastes [43]. Cihangir and Sarikaya [42]
have isolated Aspergillus sp. from the soil samples collected
in Turkey. Extracellular lipase of Rhizopus sp. isolated from
oil-contaminated soil was recently characterized [30].

3. Screening Lipase Production on
Agar Solid Surface

Studies on myco�ora are signi�cant as they could harbor
species of the highest potential for degradation.
e industrial
demand for new lipase sources continues to stimulate the
isolation and screening of new lipolytic microorganisms.
In view of the interesting applications of microbial lipases,
it could be of tremendous value to screen and identify
microorganisms of highest potential for the biodegradation
of oils and fats. Although, dierent screening strategies have
been proposed for the determination of lipase activity, assays
using agar plates are highly recommended, because it is an
easier method with lower cost. Assay using agar plates are
performed due to the fact that activities for lipases are hard
to determine because of the water-soluble enzyme acting on
substrates which are insoluble [46, 47].

To isolate fungal species from the oil-spill contaminated
soils, screening studies were performed byGopinath et al. [16,
40] using dierent substrates on agar plates. 
ese methods
with dierent substrates include Tween-20 (Figure 3(a)),
tributyrin (Figure 3(b)), and vegetable oil in the presence of
Rhodamine (Figure 3(c)). Due to the oil rich environments
of the substrates, special attention was given to screening
of lipolytic enzymes. On the Tween-20 substrate, a visible
precipitate appeared due to the deposition of calcium salt
crystals formed by the liberated fatty acid by the action of
lipase or by clearing of such a precipitate due to complete
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Figure 2: Oil production and spillage. (a) Crushing system in small-scale oil production. (b) Crushing system in large-scale oil production.
(c) Spillage from oil production points. 
ese releasing points are potential sources of environmental issues.

degradation of the fatty acid salts. Brockman [48] suggested
that the primary role of calcium ions is to remove fatty acids
formed during hydrolysis as insoluble calcium soaps, and
thus changing the substrate-water interface relationship to
favorable conditions for enzyme action. 
e development
of a clear crystal zone of Tween-20 around the fungus was
also an indication of lipolytic activity, and this zone can
be measured. Using Tween-20 as the substrate, Salihu et al.
[36] screened dierent fungal species for the production of
lipases. Another substrate, tributyrin, is convenient because
it is easily dispersed in water by shaking or stirring without
the addition of any emulsi�ers. Tributyrin is a very strong
surface-active substance, and its hydrolysis can be followed
by measuring the increase in the diameter of the clear zone.
Nevertheless, the observed zones of clearing could be the
activity response of nonspeci�c esterases, which may have
little or no activity against the long-chain triglycerides [49].
Hence, it is imperative to use anothermethod to con�rm true

lipase activity. Tributyrin agar plates were used to investigate
lipase production by new strains and 18 strains were found to
be positive [42]. Using tributyrin formation of the clear zone
around the fungal colony showeddierentmutant strains that
produced extracellular lipases [50]. By using Tween-20 and
tributyrin substrates, lipolytic activity (high and moderate
activity) was evidenced by 19 and 32 species, respectively [51].

e lipolytic potential of this fungus was also con�rmed by
the Rhodamine method because the enzyme will �uoresce
with orange compound (Figure 3(c)) as reported by Kouker
and Jaeger [52]. Furthermore, Hou and Johnston [53] as well
as Lee and Rhee [54] proved that this method is highly
sensitive and reliable as a lipase assay. In a recent study, the
Rhodamine method with olive mill wastewater was used to
determine the production of lipases by Aspergillus ibericus
[11]. Savitha et al. [3] used Rhodamine �uorescence-based
assay to screen 32 fungal species from dierent sources.
Our previous results provide very useful information about
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Figure 3: Agar plate screening for lipases. Using the substrates (a) Tween, (b) tributyrin, and (c) vegetable oil. In the Tweenmethod, formation
of calcium crystals was observed. 
e tributyrin method shows a clear zone, whereas in the Rhodamine method, formation of �uorescence
with fatty substrate was observed under UV illumination. Active zones are increasing with a period of incubation time and these zones can
be measured.

the degradation of vegetable oils by Cunninghamella ver-
ticillata in the presence of Rhodamine [51]. Based on the
above screening strategies, Gopinath et al. [16] revealed
the following fungi as potential candidates that secrete
enzymes lipases, Absidia corymbifera, Aspergillus fumigatus,
Aspergillus japonicus,Aspergillus nidulans, Aspergillus terreus,
Cunninghamella verticillata, Curvularia pallescens, Fusarium
oxysporum, Geotrichum candidum, Mucor racemosus, Peni-
cillium citrinum, Penicillium frequentans, Rhizopus stolonifer,
and Trichoderma viride. 
ey also conducted screening stud-
ies for other enzymes and con�rmed that some of the isolated
fungal species could also secrete amylases, proteases, and cel-
lulases in addition to lipases, representing the ability of these
species to survive in a wide range of environmental substrates
[16]. 
ese observations provided interesting perspectives,
demonstrating that fungi isolated fromoil-rich environments
represent a source of several enzymes potentially exploitable
for biotechnological purposes. In another study, 59 fungiwere
screened by measuring the formation of halos on the agar
plate used for lipase screening [55]. Preliminary screening
studies for lipase production by fungi were also carried
out on agar plates using olive oil or emulsi�ed tributyrin
by gum arabic [56]. Kumar et al. [57] screened fungi with
bromophenol blue dye supplemented agar plates with olive
oil as the substrate.

4. Degradation of Oils by Lipases


e use of speci�c microbial lipases to catalyze interesteri�-
cation reactions became considerable interest because of its
advantages over chemical catalysts. Traditionally, fatty acids
aremanufactured by the hydrolysis of oils at high temperature
and pressure. However, lipase hydrolysis is an energy saving
process because oil degradation of fatty acids (the reaction)
can be carried out at room temperature and pressure [58].
Industrially important chemicalsmanufactured from fats and
oils by chemical processes could be produced by lipases

with rapidity and better speci�city under mild conditions
[59, 60]. Lipases are one among several kinds of extracel-
lular enzymes that perform the function of recycling large
quantities of insoluble organic material in nature [61]. Apart
from numerous applications such as transesteri�cation [62,
63], ester synthesis, production of biosurfactants [64], and
application in food and dairy industry [35, 65, 66], the
enzyme lipase has a proven role as a useful interesteri�cation
catalyst. Interesteri�cation is a technology by which fatty
acids within a triacylglycerol molecule can be interchanged
with regard to their positional distribution.
e process of fat
splitting, along with interesteri�cation, is an essential tool in
the manufacture of new tailor made fats and oils. Enzyme-
catalyzed reactions of lipids are of considerable interest in
view of their possible applications in the biotechnology of fats
and oils.
e technique of fat splitting plays an important role
in the manufacture of soaps and other industrial products
like candles from conventional minor oils. Dierent isolates
from oil mill e�uent have been tested for their ability to
degrade the dierent oils and the potential of individual
species varied with the type of fatty acid residues in the oil
(Table 1). From this study, it was revealed that the behavior
of lipases from dierent fungal species is dierent in terms of
their biochemical characteristics. Teng and Xu [67] analyzed
the production of lipase from Rhizopus chinensis under
experimental conditions and Bapiraju et al. [68] performed
a similar study withmutants of Rhizopus sp. Studies have also
been documented with lipase from Penicillium spp. [69, 70].
Extensive review on the production of lipases from dierent
microbes has been published [71].

5. Purification Strategies for Lipases

Knowledge of the puri�ed lipase activities to be used for
biotechnological purposes is mandatory, and it can be the
basis or other applications. Various puri�cation strategies
have been reviewed for the lipase enzyme [72–74]. In the case
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Table 1: Degree of utilization (%) of vegetable oils by fungal species.

Organism Olive Soybean Groundnut Cottonseed Sun�ower

A. strictum 20 60 40 90 90

C. verticillata 80 80 90 40 90

G. candidum 90 10 90 40 80

M. racemosus 50 60 60 10 50

R. miehei 30 90 90 80 90

R. stolonifer 60 70 80 20 60

T. roseum 90 60 80 80 80

T. viride 50 20 30 50 30
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Figure 4: Puri�cation of lipase using an a�nity system. Separation
of lipase from mixed compounds is indicated. Bound lipase can be
eluted by creating stringent conditions.

of extracellular lipases, it is primarily important to remove
other contaminants from the compound mixture containing
lipase by suitable strategy (Figure 4).
e conventional puri�-
cation strategies give a low yield due to a large hydrophobic
surface near the active site. Novel puri�cation steps are
mandatory to increase overall enzyme yields and it could be
achieved by opting an appropriate chromatography system.
One of the choices is hydrophobic interaction chromatogra-
phy and it is considered as a common strategy [75–77]. In
addition to this, ion exchange and gel �ltration chromatogra-
phy are commonly preferredmethods [75, 78–80]. A reversed
micellar system, membrane processes, immunopuri�cation,
hydrophobic interaction chromatography with an epoxy-
activated spacer arm (ligand), column chromatography
using polyethylene glycol (PEG)/sepharose gel, and aqueous
two-phase systems are also recommended [81]. Kumarevel
et al. [82] reported a stepwise puri�cation strategy for
fungal lipases to remove other components released from

the fungus Cunninghamella verticillata extracellularly, using
acetone precipitation as the important step. To avoid many
steps in this study and to minimize the impurities as much
as possible the experiment was repeated with 50% acetone
saturationwith a gradual increments of 5% acetone. Using the
above methods, many lipases from dierent microorganisms
have been reported, and molecular masses of 31 and 19 kDa
have been reported for the lipase of Aspergillus niger by
Hofelmann et al. [83], 21.4 kDa forRhodotorula pilimena [84],
30 kDa for Rhizopus japonicus [85], 51 kDa for Pichia burtonii
[86], 25 kDa for Aspergillus oryzae [87], 49 kDa for Mucor
hiemalis [88], 35.5 kDa for Aspergillus niger [89], 49 kDa for
Cunninghamella verticillata [40], and 32 kDa for Geotrichum
candidum [34]. Dierent strategies for lipase puri�cation
with the varied sources were recently described in detail
by Singh and Mukhopadhyay [1], and it seems that the
production of lipases from fungal species results in dierent
molecular sizes, due to variations in the number of amino
acid residues. Saxena et al. [73] summarized the puri�cation
strategies for microbial lipases. Overall, traditional puri�ca-
tion strategies are considered time consuming with lower
yields and the trends are moving towards aqueous two-phase
extraction, and puri�cation in ionic liquids and puri�cation
based on lipase-lipase interaction [10].

6. Statistical Calculations

Statistical calculations were focused in the past, due to
their reliable prediction for the experimental conditions
for enzyme studies to be optimized [34, 40, 90–92]. In
statistics, response surface methodology (RSM) has referred
the relationships between several explanatory variables and
one or more response variables. 
is method was introduced
initially by Box and Wilson [93]. 
e main idea of RSM is
to get an optimal response by using a sequence of designing
experiments, and it was suggested to use a second-degree
polynomial model to perform RSM. Box-Behnken design
experiments are one of the most common, and this is an
independent quadratic design without an embedded factorial
design. Dierent combinations of midpoints are used for
experiments; for example, with 3 experimental parameters,
17 experiments can be run and it yields a predicted result
(Figure 5). 
e Box-Behnken design is where the outcome
unit (�) is related to experimental variables by a response
equation,

� = � (�1, �2, �3, . . . , ��) . (1)

As mentioned above a second-degree quadratic polynomial
is used to represent the function in the range of interest,

� = �0 +
�
∑
�=1
���� +

�
∑
�=1
����2� +

�−1
∑
�=1,�<�

�
∑
�=2
������� + 	, (2)

where �1, �2, �3, . . . , �� are the input variables which eect
the response�,�0,��,���, and��� (
 = 1−�, � = 1−�) are the
knownparameters, and 	 is the randomerror. A second-order
model is designed such that the variance of Y is constant
for all points equidistant from the center of the design
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Figure 5: Box-Behnken design for experiments. Dierent com-
binations at the midpoints used for experiments are shown with
3 experimental parameters and 17 experiments run. A number of
experiments vary with the number of experimental parameters.

(Figure 5).
e validity of themodel can be determined based

on Student’s t-test.
e Fisher-test, P value, t-test, and�2, and
so forth can be used to evaluate the model as well as to deter-
mine the optimal processing conditions. 
e Fisher-test with
a very low probability value (model > � = 0.0001) showed
that the regression model had a very high signi�cance. 
e
model reliability of �t was checked by means of the deter-

mination coe�cient (�2). 
is model �ts the experimental
range studied perfectly when the value of R2 is adjusted to
nearly one. Using the Box-Behnken design, conditions were
optimized for lipase production by Geotrichum candidum
[34] and optimization of puri�ed lipase fromCunninghamella
verticillata for physical parameters was also shown [40].
Using these optimized conditions, the puri�cation steps were
reduced and puri�ed lipase was used for crystallization
studies [82]. Other than Box-Behnken, the Plackett-Burman
design and the Luedeking-Piret model can also be used for
dierent optimization studies. Statistical design experiments
by Plackett-Burman were used to evaluate the production of
lipase by Candida rugosa [1].

7. Biosensors for Lipase

A biosensor is a combination of a biological component
with a physicochemical detector and it assists with analysis
of biomolecular interactions. Development of an analytical
system will help us to �nd a minute amount of biological
agents within mixed compounds. Dierent types of sensing
systems have been proposed for determining biomolecular
interactions and environmental monitoring [94–98]. In gen-
eral biosensors may be classi�ed as electrochemical, electri-
cal, optical, or mass sensitive (Figure 6(a)). 
e core design

Electrochemical
(potentiometric,
amperometric,
voltametric)

Electrical
(surface conductivity,
electrolyte conductivity)
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(�uorescence,
adsorption,
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solution assay

Surface
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Direct
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Figure 6: Sensing systems. (a) Types of sensors. (b) Strategy
of immobilizing ligand and analyte. (c) Methods involved with
ligand and analyte binding. Sensitivity depends on the interactive
molecules.

for sensors mainly includes three components, probe-target
recognition, signal transduction, and physical readout [99].
On the sensor surfaces the lipase can be either ligand or ana-
lyte. Ligand can be immobilized directly on the sensor surface
or indirectly via an immobilized surface chemical linkage
(Figure 6(b)). 
e direct adsorption of the molecules on the
sensor surface leads to rapid, simple, and cheaper strategies
compared to immobilization by chemical means. Using these
strategies the interactions of lipase with oil or molecules for
the purpose of interactive analysis and environmental moni-
toring can be done by dierent assay formats (Figure 6(c)).
Various detection and measurement methods or strategies
are discussed on microbial lipases [100]. Phospholipases are
potential markers for diagnosing diseases in the pancreas and
coronary arteries [101, 102]. In all, free and phosphatidyl-
bound choline in milk and a dietary supplement can be
determined quantitatively, using a phospholipase D packed
bioreactor [103]. A surface acoustic wave sensing system
was generated to measure pancreatic lipase [104]. Lipase
activity based on glycerol dehydrogenase/NADHoxidase was
reported based on amperometric sensor [105]. Lipases can be
immobilized on the sensing surface and can function as lipid
biosensors for blood cholesterol determinations [106].

8. Conclusions

Fungi are capable of producing several enzymes for their
survival within a wide range of substrates. Among those
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enzymes, lipases are predominantly used in several appli-
cations. 
ese fat-splitting enzymes are attractive because
of their applications in �elds relevant to medicine and
dairy industry. Lipases play a major role as the biocatalysts
and microbial lipases can be produced in large scale by
overexpression. 
e disadvantage lipase enzyme is that it
continues to be active due to turnover reaction and may
need to optimize the reaction condition and speci�city with
dierent sources of lipase [107]. Indeed, various methods
have been proposed for the dierent lipases to survive under
variant physical and chemical conditions. 
e strategies
involved in the characterization of lipases were discussed
here, suitable for large-scale production.
e great advantage
of fungal lipases is that they are easily amenable to extraction
due to their extracellular nature, which will signi�cantly
reduce the cost and makes these lipases more attractive than
those bacteria. Furthermore, with available sources such as
LIPABASE (database for true lipases), which provides taxo-
nomic, structural, and biochemical information, genetically
engineered lipase sequences from fungal species will hasten
the production, especially in the dairy industry.
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