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Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or
function as a vascular access for hemodialysis. Bioengineered or tissue-engineered
vascular grafts have long been envisioned to take the place of bioinert synthetic
grafts and even vein grafts under certain clinical circumstances. However, host
responses to a graft device induce adverse remodeling, to varied degrees depending
on the graft property and host’s developmental and health conditions. This in turn
leads to invention or failure. Herein, we have mapped out the relationship between
the design constraints and outcomes for vascular grafts, by analyzing impairment
factors involved in the adverse graft remodeling. Strategies to tackle these
impairment factors and counteract adverse healing are then summarized by
outlining the research landscape of graft innovations in three dimensions—cell
technology, scaffold technology and graft translation. Such a comprehensive
view of cell and scaffold technological innovations in the translational context
may benefit the future advancements in vascular grafts. From this perspective, we
conclude the review with recommendations for future design endeavors.
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1 Introduction

Vascular grafts are widely used for vascular surgeries. Their uses occur in a variety of forms,
including vascular access for hemodialysis, as well as surgical bypass for diseased coronary
artery, cerebral artery, or peripheral artery in the abdomen (e.g., aorto-iliac bypass) or in the leg
(e.g., femoro-popliteal bypass), routing blood flow around an area of blockage or narrowing. A
vascular graft can be a native artery or vein, or fabricated from synthetic or natural biomaterials.
The current gold standard for a graft is autologous blood vessels such as a saphenous vein,
which has better clinical outcomes than biomaterials-based grafts (Caliskan et al., 2020), even
those made with tissue engineering approaches (Zilla et al., 2020). A vein fistula for dialysis
access, for example, shows better primary patency than a polytetrafluoroethylene (PTFE) graft
(Stegmayr et al., 2021). Similarly, for femoro-popliteal bypass, the 5-year patency rate of a vein
graft is higher than a PTFE graft (van der Slegt et al., 2014). However, a quality vein suitable for
grafting may be unavailable for many patients, particularly elders (Conte, 2012; AbuRahma,
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2018). Also, to become a dialysis access, a vein must undergo a
prolonged process to gain sufficient strength until its maturation
into artery-like property. The maturation of a vein fistula requires
several weeks up to months, during which compromised dialysis
access may deteriorate patients’ health (Robbin et al., 2016). To
make it worse, the incidence of fistula non-maturation varies
between 20 and 60% (Kosa et al., 2015; Siddiqui et al., 2017).

Thus, bioengineered or tissue-engineered vascular grafts (TEVGs)
have long been envisioned to take the place of synthetic grafts and even
vein grafts under certain clinical circumstances. Selective TEVGs have
gradually progressed into clinical trials, for both adult patients (Lawson
et al., 2016; Kirkton et al., 2019) and pediatric patients with congenital
heart diseases (Hibino et al., 2010; Drews et al., 2017; Sugiura et al., 2018;
Drews et al., 2020), showing some promises despite yet limited successes.
The clinical potentials of TEVGs, acellular or cellular, still require
tremendous efforts to unveil (Zilla et al., 2020; Fang et al., 2021a).
One possible route is to cater the TEVG development to a specific
grafting need or a patient cohort, in which factors that impair healing
or regeneration around the vascular graft can be well defined and targeted
for graft design and engineering.

To this end, this review starts with analyzing healing- or
regeneration-impairment factors, which are tackled by recent graft
innovations. To withstand or override the influences of impairment
factors, pro-healing and/or pro-regenerative environments could be
precisely defined and built into a graft through structural
optimizations, signal molecule incorporations, and integration of
bioactive materials, cells or cell products. As illustrated in Figure 1,
major healing-impairing factors are identified according to their roles
in causing the dysfunction of a graft and/or neighboring blood vessels.
A number of studies have been designed to reveal cause-effect
relationships and unravel underlying molecular mechanisms. To
counteract these impairing factors, a variety of strategies that
promote design optimization, graft healing or regeneration have
emerged. We focused a literature review on those published in
recent years and placed them in the landscape of graft innovations
in translation, scaffold and cell technologies. Essential to the future
graft development is a continual effort to balance the
multi-dimensional graft innovations with the fundamental
mechanistic understandings underlying adverse graft remodeling.

2 Factors impairing healing or
regeneration around vascular grafts

In clinic, graft outcomes in the treatment of vascular diseases are
often determined by the size and location of the devices as well as the
patients’ developmental and health conditions, besides the graft type
(i.e., native vessel vs. synthetic graft). Herein, we examined these graft
design constraints and associated clinical outcomes, by analyzing
relevant impairment factors such as flow-graft interactions, cellular
and molecular environments around grafts, and graft bioinertness.

2.1 Graft location, size and compliance:
Related to flow-graft interactions

Abnormal blood flow in the graft has long been known as a key
impairment factor that alters graft healing and overall patency
(Schwarz et al., 2021). Computational flow dynamics tools, with
the inputs of graft location, diameter, length and/or compliance
together with graft design, have been applied to predict not only
flow conditions but also consequent remodeling of a graft (Lu et al.,
2014; Ramachandra et al., 2017; Donadoni et al., 2020). Variations in
these physical characteristics of a graft delicately influence local fluid
stresses in a blood vessel or a graft. Abnormal hemodynamic stresses
may further result in impaired graft endothelialization, impaired graft
healing and endothelial disruption in neighboring vessels (Chistiakov
et al., 2017). Irregularities in the wall shear stress are known to induce
endothelial dysfunctions, leading to negative clinical outcomes such as
intimal hyperplasia, wherein smooth muscle cells (SMCs) grow to
restrict the lumen of a vessel or a graft (Chistiakov et al., 2017; Ng et al.,
2017; Totorean et al., 2019). Interestingly, in the case of dialysis access
graft, hyperplasia develops predominantly in the vein or anastomotic
regions, particularly toe and heel of distal anastomosis, where flow
disturbances and altered hemodynamic factors are most prevalent
(Sottiurai et al., 1989; Bassiouny et al., 1992). Quantitatively, low shear
stress values (<.5 Pa) or oscillatory values (±.1–.2 Pa), as opposed to
physiological values (1–2 Pa), were shown to induce endothelial
dysfunction and subsequent hyperplasia development (Dhawan
et al., 2010). The graft location determines flow environments

FIGURE 1
Illusration of impairment factors vs. regenerative signals for vascular grafts.
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around a graft (Chiu and Chien, 2011); abnormal flow patterns might
occur in arteries with branches or curvatures or grafts such as looped
vascular access or brachial arterial grafts as compared to aortic grafts.

The graft diameter is key to reach a hemodynamic balance. Bypass
grafts with unfavorable diameter ratios to the original vessel can result
in competitive flow, ultimately leading to graft failure. Competitive
flows occur when a partially stenotic blood vessel is bypassed with a
graft, but still retains some of its throughput, thereby competing with
the newly grafted path and causing irregular flow through it (Gaudino
et al., 2016). A high competitive flow decreases the amount of blood
that reaches the graft, creating low shear stresses that increase the
levels of hyperplasia at the graft’s anastomosis (Jin and Liu, 2019).
Clinical findings suggest that more stenotic vessels with lower
competitive flow, compared to less stenotic vessels, were better
tolerated by coronary bypasses, and arterial grafts were more
susceptible to competitive flow-induced impairment than venous
grafts (Nordgaard et al., 2010; Gaudino et al., 2016; Sabik Joseph,
2016). The presence of chronic competitive flow is inversely related to
internal mammary graft patency (Binns et al., 1989; Sabik et al., 2003).
Intriguingly, saphenous vein graft patency did not decrease with
increasing competitive flow (Ding et al., 2012; Swillens et al., 2012;
Sugiura et al., 2018). Such difference could be attributed to cell and
tissue differences between venous and arterial grafts (Harskamp et al.,
2016; Sabik Joseph, 2016). Thus, the graft diameter in comparison with
the original vessel is an important consideration for reducing flow-
induced impairment, in particular for some graft types.

The roles of graft compliance and length in determining the graft
patency are also well known (Skovrind et al., 2019). Compliance
mismatch was recognized as a major contributor to graft failure
(Tiwari et al., 2003). Though the influence of graft length on
patency rates was insignificant for a similar grafting application
(Tinica et al., 2018; Bosiers et al., 2020), applications that require
long grafts, such as femoral artery lesion and hemodialysis access,
often yielded low patency rates (Connors et al., 2011; Boutrous et al.,
2019). This may be attributed to a wide range of biomechanical forces
across a long graft with a large surface area. These forces consist of a
complex loading combination from varying amounts of radial
deformation, bending, extension/contraction, and torsion/flexion,
which significantly impact the cell-graft interactions.

2.2 Patient’s conditions: Related to cellular
and molecular environments around grafts

The graft failure in the cases of coronary bypass, dialysis access, or
stent graft have been variably associated to age, diabetes mellitus,
hypertension or other health conditions (Gaudino et al., 2017;
AbuRahma, 2018; Misskey et al., 2018). Sex may serve as a possible
compounding factor (Blum et al., 2021). Diabetes mellitus in
particular causes a high risk of platelet aggregation in the blood
and increases the release of von Willebrand factor, which promotes
platelet aggregation and results in significant endothelial damage and
arterial stiffening (Creager et al., 2003). This vascular intima damage
coupled with the pathophysiological mechanism of diabetes leads to
the increased formation of thrombosis (Reddy et al., 2013), and thus
sooner obstruction of a graft such as arteriovenous fistula (Afsar and
Elsurer, 2012). The primary failure of fistulas is associated with an
enormous overall cost. Interestingly, arteriovenous fistula showed
even higher primary failure rates than synthetic grafts in patients

with diabetes mellites (Qin et al., 2016). To make it worse, failure of a
fistula reduces the number of possible sites for an alternate access,
exposing the patients to risks from salvaging attempts (Schinstock
et al., 2011). Therefore, using hemodialysis access for diabetic patients
as an example, it is clear that patients’ health conditions complicate
cellular and molecular environments around grafts, worsening the
ultimate fate of grafts, in particular biological grafts. For above-knee
femoropopliteal bypass, diseases including diabetes and ischemia
significantly reduced graft patency in both vein and PTFE grafts,
but showing similar reduction rates for both types of grafts (Klinkert
et al., 2004). Furthermore, during atherosclerosis such as coronary
artery diseases, systemic biological factors (e.g., diabetes mellitus,
dyslipidemia, sex, age, hypertension, and smoking) and local
biological mechanisms (e.g., increased oxidative stress, vascular
inflammation, and endothelial dysfunction) all contribute to the
initial plaque formation and subsequent progression (Gaudino
et al., 2017). These classic cardiovascular risk factors, particularly
diabetes mellitus, seem to play a role in determining graft failure. For
instance, the impact of diabetes mellitus on arterial and venous bypass
grafts has been investigated by several groups, with most but not all,
showing a detrimental effect on graft patency (Gaudino et al., 2017).

Besides comorbid diseases, the patency of a biological graft,
compared to an inert synthetic graft, might be more influenced by
cellular and molecular environments associated with older age. Older
patient’s arteries tend to be more easily calcified making them more
prone to abnormal shear stress, inflammation and other endothelial
dysfunction (Tesauro et al., 2017). Due to significant comorbidities in
elderly patients, a vein fistula is more likely to fail due to the
deteriorating condition of blood vessels (Miller et al., 1999; Ponce,
2001; Lazarides et al., 2007). The use of synthetic PTFE grafts instead
of vein fistula in elderly patients and those with compromised vessels
might improve primary patency rates (Staramos et al., 2000; Rooijens
et al., 2005). Clinical data point to advanced age as a significant factor
in adversely affecting outcome of dialysis graft (Sugimoto et al., 2003;
Moist et al., 2012). Meanwhile, almost half of all patients initiating
dialysis are 65 years of age or older in the United States and the
percentage of elderly patients is even higher in Canada and Europe
(Ahmed and Catic, 2018), which makes the age as an important
consideration for the graft design. It is increasingly recognized that an
advanced age is associated with adverse graft remodeling and
differentially altered remodeling of vein fistula and synthetic graft,
likely through aged-related changes in vascular cells and molecular
environments initiated by increases in pro-inflammatory cytokines,
pro-calcification signaling, advanced glycation end products, and/or
extracellular matrix stiffness. Similarly, when a bioengineered graft or
TEVG include a cellular and/or molecular component, its design
should consider adverse environments related to clinical conditions
such as aging. In the case of vein fistula for dialysis access, its risk of
failure is greatest among older patients and/or obese patients (Lok
et al., 2006; Peterson et al., 2008; Shingarev et al., 2011).

2.3 Bioinertness of grafts

Graft bioinertness, or lack of biointegration, is another major
impairment factor for long-term graft patency. It is mainly related to
commercial grafts such as those made of PTFE or Dacron, but could be
variedly applicable to different TEVGs, particularly prior to the
completion of vascular tissue regeneration. Previous review articles
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have elaborated the main issues with the graft inertness, which include
thrombosis, inflammation and intimal hyperplasia of a graft. Infection
can also be a serious issue (Kirkton et al., 2018), in particular for
dialysis graft requiring continuous needle access (Halbert et al., 2020;
Kostokis and Loukopoulos, 2020; Stegmayr et al., 2021). A generally
accepted root cause of these issues is the poor interaction of cells and
the non-specific adsorption of proteins onto the graft, which lead to
platelet aggregation but fail to form organized endothelium and/or
matured smooth muscle. To circumvent these issues, bioengineering
strategies including chemical coatings, materials modifications with
peptides, proteins or other biomolecules, and seedings of endothelial
cells or stem cells on inert or degradable grafts, have been utilized, with
the goal of better integrating grafts with the native vasculature
(Hielscher et al., 2018; Wang et al., 2020; Ham et al., 2021; Liu
et al., 2021; Yu et al., 2021). Results with these strategies
demonstrated improved endothelialization and/or inhibited
thrombosis, inflammation, intimal hyperplasia, or infection. More
recent approaches involve degradable, bioactive materials, as
described below.

3 Counteracting adverse remodeling
with regenerative signals

To tackle above-mentioned factors involved in adverse graft
remodeling, we summarize a three-thronged approach being taken
in this field. A focused literature review of recent publications is taken

to map out the research landscape of graft innovations in three
dimensions, namely innovations in cell technology, scaffold
technology and translation (Figure 2). Each referred study is a data
point plotted on three axes in the attempt to show the relationship of
the study in the context of the three innovations. Thus, a
comprehensive perspective is taken for a combined view of both
cell and scaffold technological innovations in the translational context.

3.1 Cell technology

The contribution of cell technology to counteract adverse
remodeling is to enhance graft acceptance and integration with
native vessels, including attenuating chronic inflammation,
reducing thrombogenicity, and promoting fast healing and vascular
regeneration. The cell technology includes the technology to isolate,
culture and use different types of cells for vascular graft applications,
the technology to recruit cells into grafts, and the technology to
produce cell products crucial for regeneration. Herein, a brief
overview is taken on each cell type used for vascular grafting,
highlighting recent innovations in tissue bank, immune-tolerant
cells, and bioreactors. Recent cell technology has been expanded to
include the use of cell secretomes, while on the other end adding a
range of in situ or in vivo cellularization technique into the realm of
cell technology.

Autologous matured vascular cells, such as SMCs, endothelial cells
and fibroblasts (McAllister et al., 2009; Syedain et al., 2011; Amensag

FIGURE 2
The landscape of vascular graft research in three dimensions, namely cell technology, scaffold technology and development stage. The citations of
references used here are the numbered references listed in numerical order as they appear in the paper, as shown in Supplementary Material. The reference
literatures are mapped in this landscape by locating research studies in the 3-dimensional space with reviews with various scopes labeled on the axes. The
colors of oval boxes in the space of cell technology are correlated to the axis scaffold, showing the scaffold technology utilizied in these studies. Herein,
“Current standards” refer to autologous graft (vein or artery) or bioinert graft (mostly PTFE-based); “Targeted preclinical models” refer to animal studies
targeted at a clinical application such as dialysis access, Fontan graft, bypass for coronary, femoral or other arteries; “Larger animal” refer to animal models
larger than rodents, such as rabbit, sheep, pig, dog and balloon; “Non-functional animal study” refer to non-vascular implants (often subcutaneous) or those
used in ex vivo circulation; “In situ or in vivo cellularization” refer to the cellularization and/or tissue production by implanting acellular polymer; “Matured
vascular cells” refer to vascular endothelial, smooth muscle and fibroblast cells; “Other progenitor cells” including endothelial progenitor cell and smooth
muscle progenitor cell; “Biopolymer” includes biodegradable polymer , biologically-derived polymer, decellularized ECMor vessel, bioinert polymer, etc. *HA,
hyaluronic acid; GAGs, glycosaminnoglycans.
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and McFetridge, 2012), were employed for the TEVG creation in early
preclinical and clinical studies. They are not immunogenic, but their
disadvantages include invasive harvest of vascular cells, limited
availability, varied quality, and low potential of replication and
regeneration.

Progenitor cells, compared to matured cells, are isolated using less
invasive procedures, from blood, bone marrow, umbilical cord,
adipose or other tissues, and they demonstrate greater proliferative
capacities despite their scarcity in tissues. For example, bone marrow-
derived smooth muscle progenitor cells, compared to adult vascular
SMCs, produced stronger and tougher TEVGs in vitro, and
consequently progenitor seeded-grafts produced more organized
elastin when implanted in vivo as jugular replacements in lambs
(Swartz et al., 2005; Liu et al., 2007). Similarly, endothelial
progenitor cells have been used to seed TEVG (Melchiorri et al.,
2016; Muniswami et al., 2020; Tamma et al., 2020), but their high
heterogeneity and rare presence could complicate the translation
process (Munisso and Yamaoka, 2020). Mesenchymal stem cell
(MSC), a type of progenitor cell with the potential of generating
various vascular cell types (Gong and Niklason, 2008), lacks major
histocompatibility complexes or other immune-stimulatory molecules
while secreting anti-thrombotic and anti-inflammatory molecules,
such as IL-10 (Fukunishi et al., 2018; Mirhaidari et al., 2020), and
TGF-β receptor 1 (Lee et al., 2016). These characteristics make MSC
an excellent allogeneic cell candidate for the TEVG production (Wang
et al., 2016; Afra and Matin, 2020). In particular, adipose-derived
MSCs are advantageous for their easy extraction in high quantities and
high regenerative potency in a way unaffected by age (Harris et al.,
2011; Zhang et al., 2011; Krawiec et al., 2016; Krawiec et al., 2017;
Haskett et al., 2018). Finally, other new types of progenitor cells such
as pericardial effusion-derived progenitor cells (Wang et al., 2021) can
be potential candidates for cellularizing vascular grafts.

Induced pluripotent stem cells (iPSCs) have the potential of
generating patient-specific SMCs, endothelial cells, and fibroblasts
for TEVGs (Generali et al., 2019; Luo et al., 2020; Shi et al., 2021). The
availability of iPSC-derived cell sources may eliminate the problems
with variation in the cell quality and address the timing issue for “off-
the-shelf” availability, both of which are concerns relevant to
progenitor cells. Nevertheless, a bottleneck of using human iPSC
derivatives is their tumorigenicity and immunogenicity (de
Almeida et al., 2013). Thus, human leukocyte antigen-matched
iPSC tissue banks would be a valuable source for personalized
grafts (Jin et al., 2016; Petrus-Reurer et al., 2021). Additionally,
genetically engineered master human iPSC lines, which give rise to
immune-tolerant (immune-evasive or immune-suppressive) iPSC
derivatives (Riolobos et al., 2013), might yield universal “off-the-
shelf” cell sources for hypo-immunogenic TEVGs.

Cell seeding in vitro often requires an incubation time ranging
from days to months in a dish or in a sophisticated bioreactor.
Bioreactor designs vary from a rotary bioreactor for stem cell
differentiation (Xing et al., 2017; Li et al., 2019a), a closed
apparatus for standardizing cell technology (Kurobe et al., 2015), a
biaxial stretching system for tissue matrix maturation (Huang et al.,
2015; Huang et al., 2016), a semi-automated cell seeding device
(Cunnane et al., 2020a), to a perfusion bioreactor for applying flow
stresses (Melchiorri et al., 2016) and individualized graft conditioning
(Håkansson et al., 2021). Another recent innovation in the in vitro cell
seeding technology is to exploit 3D bioprinting techniques for printing
patterned cell-laden hydrogels, utilizing a mixture of cells and

hydrogel as the bioink to create vascular grafts with precisely-
defined structures.

Recently, in situ or in vivo cellularization, utilizing human (or
animal) body as a bioreactor, added a novel option into the cell
technology for vascular grafts. This approach starts with placing a tube
composed of Teflon (Wang et al., 2019a; Qiu et al., 2021), silicone
(Fujita et al., 2020) or collagen (Nakayama et al., 2020), as a
subcutaneous or peritoneal cavity implant or in an ex vivo location,
allowing fibrous tissues to grow and form an tubular structure, which
is then explanted and subsequently implanted as an autologous graft
(Chen et al., 2019; Nakayama et al., 2020) or as an allograft after
decellularization (Wang et al., 2019a; Fujita et al., 2020; Qiu et al.,
2021). Preclinical or clinical studies showed some encouraging
outcomes.

Last but not least is that the future cell technology for vascular
grafts will surely see an increased use of stem cell secretomes (Chen
et al., 2018; Cunnane et al., 2018; Cunnane et al., 2020b), as their
therapeutic and regenerative values are being unveiled (Ahangar et al.,
2020; Baruah andWary, 2020; Nikfarjam et al., 2020; Tang et al., 2021)
and recently exploited in other cardiovascular implants (Li et al.,
2019b; Baruah and Wary, 2020; Hu et al., 2021).

3.2 Scaffold technology

The scaffold technology encompasses the techniques to improve
the graft structure and mechanics and those to improve the biological
integration. The former includes design innovations involving novel
computational tools, biopolymers, or scaffold fabrication techniques
ranging from decellularization to electrospinning and 3D printing.
The scaffold technology for improved biological integration often
involves the incorporation of a range of bioactive functional
biomolecules on the surface or within a biopolymer, in order to
modulate immune responses and/or to promote regeneration.

3.2.1 Structural optimization and scaffold fabrication
As described in Section 2.1, the patency of vascular grafts is largely

determined by the structural and mechanical interactions between
blood flow and vascular graft, which continuously alter neotissue
growth and graft remodeling. The neotissue growth and graft
remodeling in turn change the flow-graft interactions. Therefore,
computational models simulate such interactions as well as
advanced statistical analyses of a parametric cause-effect
relationship have been exploited to accelerate the rational
optimization of vascular grafts (Keshavarzian et al., 2019; Tamimi
et al., 2019; Khosravi et al., 2020). Recently, data-informed models
have been developed to improve graft designs, even toward patient-
specific design (Best et al., 2018), for desired graft performances in
terms of lumen diameter, extracellular matrix (ECM) production, and
levels of inflammation (Best et al., 2019; Drews et al., 2020). Model
parameters comprise not only graft compliance, pore size, fiber
diameter and degradation rate (Szafron et al., 2019; Tamimi et al.,
2019; Furdella et al., 2021), but possibly also polymer chemistry,
cytokine and other biological inputs (Szafron et al., 2018; Khosravi
et al., 2020). Importantly, model outputs were compared to
experimental outcomes and further predicting outcomes, which
thus unravel mechano-biological mechanisms of neovessel
formation and graft degradation in vivo. For example, models have
been used to guide the design of mechanocompatible grafts (Furdella
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et al., 2021), to examine the role of inflammation activity using
immuno-compromised animals (Szafron et al., 2018), or to
parametrically explore graft narrowing (Drews et al., 2020;
Khosravi et al., 2020). Besides computational models, statistical
methods were used to reveal the roles of specialized design
variables such as braiding angle, braiding density and coating
structure in the graft development (Zbinden et al., 2020).
Collectively, these studies have confirmed the well-accepted tissue
engineering principle—the successful neovessel formation requires
neotissue development to balance the scaffold degradation. However,
such balance varies greatly with the animal model (Fukunishi et al.,
2020). Lack of a balanced coordination over the time can result in
adverse remodeling such as excessive degradation, impaired ECM
synthesis, elevated inflammation and neotissue overgrowth in the
lumen, leading to aneurysm (Best et al., 2019) or stenosis (Drews et al.,
2020), and ultimately graft failure (Stowell et al., 2020). Figure 3
illustrates graft wall remodeling in various scenarios, where
physiological routes ended up with partial or complete regeneration.

In parallel with the development of scaffold optimization tools,
equally important is a rich availability of scaffold fabrication
techniques and biopolymer choices, both of which promote
parametric control for optimizations. Some recent developments in
the graft fabrication include: 1) Shortening the production time for cell
sheet self-assembly method (von Bornstädt et al., 2018); 2) loading
drugs, anti-thrombogenic or pro-regenerative molecules for
electrospun grafts or 3D printed grafts (Zhang et al., 2019;

Domínguez-Robles et al., 2021); 3) refining decellularization
protocols for reduced immunological responses (Schneider et al.,
2018; Valencia-Rivero et al., 2019; Kimicata et al., 2020; Lopera
Higuita et al., 2021); 4) improving the precision of pore generation
in scaffold (Zhen et al., 2021); 5) enhancing recellularization for
allogenic or xenogenic decellularized grafts (Dahan et al., 2017; Lin
et al., 2019; Fayon et al., 2021); 6) expediting degradation with scaffold
composition (Fukunishi et al., 2021) or textile technique (Fukunishi
et al., 2019) to enhance matrix remodeling; 7) mimicking the structure
and/or composition of vascular ECM using electrochemical
fabrication (Nguyen et al., 2018) or an automated technology
combining dip-spinning with solution blow spinning (Akentjew
et al., 2019); 8) creating patient-specific grafts (Fukunishi et al.,
2017); and 9) hybrid approaches, for example, combining
electrospinning with decellularized matrices (Gong et al., 2016; Ran
et al., 2019; Wu et al., 2019; Yang et al., 2019).

Biopolymers used for the graft construction kept diversifying the
graft repertoire. For instance, the recent addition of shape memory
polymer as a self-enclosable external support to a graft reduced
stenosis (Yi et al., 2021). Currently, graft biopolymers consist of
biologically-derived biomaterials such as silk fibroin (Zamani et al.,
2017; Gupta et al., 2020; Tanaka et al., 2020), collagen (Li et al., 2017;
Copes et al., 2019) and fibrin (Syedain et al., 2017), and synthetic
polymers mostly degradable polymers such as polycaprolactone
(Mrówczyński et al., 2014), polyglycolic acid (Sugiura et al., 2017),
polyurethane (Zhen et al., 2021; Fathi-Karkan et al., 2022),

FIGURE 3
Adverse remodeling versus regeneration of a vascular graft.
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polycarbonate urethane (Eilenberg et al., 2020), polylactic acid, and
poly (l-lactide-co-ε-caprolactone) (Zhu et al., 2018). Hybrid graft
materials composed of both biological polymers and synthetic
polymers further leveraged the benefits offered by both materials
for the mechanics and biological recognition of a graft. For further
information, a number of reviews have provided historical views and
in-depth analyses of graft fabrication techniques and graft polymers
(Hiob et al., 2017; Pagel and Beck-Sickinger, 2017; Song et al., 2018;
Chandra and Atala, 2019; Gentile et al., 2020; Niklason and Lawson,
2020; Syedain et al., 2020; Yuan et al., 2020; Gupta and Mandal, 2021;
Heng et al., 2021; Zhang et al., 2021).

By and large, a long-term, dynamic, mechanistic view is taken into
the design parameters and optimizations for vascular grafts, while
continuous advancements in fabrication techniques and materials
allow diverse choices and better controls over design parameters. A
central finding in the graft optimization is that dynamically evolving
mechanical properties can dictate the levels of inflammation and stress
shielding of cells, and in turn affect mechanobiologically-mediated
ECM production, remodeling and degradation (Szafron et al., 2019;
Tamimi et al., 2019; Khosravi et al., 2020; Furdella et al., 2021).
Therefore, adjusting the material chemistry and fabrication
technique for desired dynamic profiles of graft mechanics in a
specific clinical setting would be essential to future improvements.

3.2.2 Starting right at the onset—molecular designs
for anti-thrombotic and anti-inflammatory control

Events immediately occurring upon vascular grafting in the body
involve endothelial injury platelet activation, and acute inflammation.
Properly regulating these early events is crucial to the fate of a graft,
either promoting regeneration or preventing failure from thrombosis
or intimal hyperplasia (Roh et al., 2010; Tseng et al., 2014; Wissing
et al., 2017). Talacua et al. (2015) showed that modulating the initial
inflammatory phase in the first days remarkably improved the 3-
month implantation outcome. In fact, the immune response is always
pivotal to tissue regeneration: on one hand, it is indispensable for
proper healing; on the other hand, extensive, prolonged inflammation
prevent regeneration (Julier et al., 2017). Ideally, after acute
inflammation, a vascular graft would start healing, gradually reach
long-term structural stability, restore the normal vascular flow, and
regenerate vascular functions. However, when a graft undergoes a
healing process with a prolonged presence of inflammatory cells and
non-vascular replacement tissues, fibrous formation and fibrous
encapsulation may dominate, compromising graft mechanics,
vascular flow and flow-dependent vascular cell functions and tissue
regeneration (Boccafoschi et al., 2014).

Critical in the initial healing process is the macrophage activity,
which determines ultimate graft remodeling or regeneration
(Rodriguez-Soto et al., 2021). Macrophage functions are often
performed through macrophage polarization (M1/M2) as well as
their secreted factors including cytokines acting directly or
indirectly on the vascular cells to regulate arteriogenesis
(Boccafoschi et al., 2014). Cytokines such as IL-4 and IL-10 have
been implicated in the transition of macrophages from a pro-
inflammatory phenotype to an anti-inflammatory, pro-healing
phenotype in vivo (Browne and Pandit, 2015). The biomaterials
form, crosslinking level, degradability, hydrophilicity, topography,
and materials choice of an implant can all affect the immune
system, triggering varied inflammation (Boccafoschi et al., 2014;
Browne and Pandit, 2015). Macrophage infiltration and

polarization provides a strategy for predicting, detecting, and
inhibiting stenosis in TEVGs (Szafron et al., 2018).

Because of the pivotal roles of macrophages at the onset of grafting
(Zhang and King, 2022), recent strategies towards regulating
macrophage functions include the use of immunomodulatory
agents, drugs, cytokines, and cells such as progenitor cells.
Immunomodulatory agents such as losartan (an angiotensin-II
type1 receptor antagonist), zoledronate (a bisphosphonate), and
aspirin-triggered resolvin D1, for example, significantly reduce
macrophage infiltration or expedite inflammation resolution, thus
attenuating graft stenosis and/or promoting regeneration (Ruiz-
Rosado et al., 2018; Shi et al., 2019a; Chang et al., 2021). Grafts
loaded with immunomodulatory cytokines, such as IL-4 (Tan et al.,
2019) or human Wharton’s jelly matrix (rich in immunomodulatory
cytokines) (Gupta et al., 2021), enhanced M2 macrophage percentage,
which suppressed intimal hyperplasia (Tan et al., 2019) or promoted
functional regeneration (Gupta et al., 2021). Similarly,
immunomodulatory cells, either by in vitro cell seeding or by
circulating cell recruitment via ligands immobilized to a graft,
successfully regulated macrophage polarization and inflammation
process. Fukunishi et al., for instance, seeded mononuclear cells
onto electrospun TEVG scaffolds, which reduced platelet activation
and attenuated graft stenosis through a higher M2 macrophage
percentage and lower macrophage infiltration (Fukunishi et al.,
2018). Lorentz et al. loaded microparticles with monocyte
recruitment factor (C-C motif chemokine ligand 2) to induce tissue
remodeling of vascular grafts (Lorentz et al., 2021). Shafiq et al. (2018)
used Substance P and stromal cell–derived factor-1α peptide, both of
which encouraged the recruitment of bone marrow cells to initiate
healing and anti-inflammatory response. Similarly, Kim et al. (2019)
also used Substance P for cell recruitment and accelerated
regeneration.

Thrombosis is another early adverse event for a vascular graft and
is caused by the lack of a functional endothelium which prevents the
aggregation of blood components. Due to the essential roles of
endothelial cells in the regulation of thrombogenesis, the in vitro
endothelialization of a vascular graft was used prior to implantation.
But for acellular grafts, if antithrombotic therapy is not used (Fang
et al., 2021b), anti-fouling polymers or anticoagulants such as heparin
must be attached to the graft surface for thrombogenic reduction
through the prevention of platelet adhesion and/or activation (Radke
et al., 2018). Long, flexible hydrophilic polymer chains can offer
protein-repellent backgrounds for anti-coagulation (Thalla et al.,
2012; Strang et al., 2014); multi-armed hydrophilic polymers
further allow other functional molecules to be clickable to the graft
surface (Iglesias-Echevarria et al., 2021). Binding of heparin to
vascular grafts continues to be the most effective and widely-used
method to prevent thrombosis, meanwhile heparin has anti-
inflammatory effect and inhibitory effect on intima hyperplasia
(Poterucha et al., 2017). Heparin binding can be via chemical
conjugations or physical methods, but chemical bonding may
compromise mechanical compatibility (Jiang et al., 2016).
Regardless of graft materials or fabrication methods, heparinized
grafts, including ePTFE grafts (Samson et al., 2016; Freeman et al.,
2018), electrospun grafts (Qiu et al., 2017; Xu et al., 2018; Shi et al.,
2019b; Matsuzaki et al., 2021; Zhu et al., 2021), and decelluarized grafts
(Kong et al., 2019), all outperformed those without heparin in terms of
graft patency, showing critical roles of heparin in the
thromboresistance and in situ endothelialization. Besides heparin,
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anticoagulation methods include the incorporation of anti-thrombotic
drugs (Lee et al., 2022), hyaluronic acid (Dimitrievska et al., 2020) or
more sophisticated ECM secreted by thrombospondin-2 knockout
cells on decellularized aorta grafts (Kristofik et al., 2017).

In summary, regulating the platelet activity and immune response
to a graft is pivotal to initiate graft healing and determine
regeneration—galvanize or depress it. The final stage of immune
responses involves the coordination of macrophages, endothelial
cells and SMCs. The migration and proliferation of the latter two
result in the regeneration of new functional arterial tissues. Disruption
to the collaborative efforts of these cells as well as any negative
exogenous factors such as infection, stresses or environmental
factors, can lead to thrombosis and hyperplasia, and eventually
graft failure. Therefore, factors influencing graft inflammation at
the onset may largely determine its long-term patency. Additional
factors affecting the long-term graft patency include physiochemical
properties of biomaterials, such as hydrophobicity, stiffness and
bioinertness. The current graft material, PTFE, for example, in
some cases, induces severe graft calcification, resulting in
suboptimal mid-term and long-term outcomes.

3.2.3 Biological functionalization of a graft for
vascular regeneration

Due to indispensable, protective roles of endothelial cells
throughout the vasculature, it is widely accepted that the
endothelialization of a vascular graft is of the utmost importance to
graft designers. Reinstitution of a continuous endothelium monolayer
on the lumen surface of a graft is the best way to avoid the activation of
coagulation cascade and progression of intimal hyperplasia (Heath,
2017). Four endothelialization mechanisms have been identified
(Figure 4). The pros and cons of each are summarized in Table 1.
Transanastomotic growth refers to the migration of matured
endothelial cells from the native vessel onto the luminal surface of
the graft across the anastomoses, where a vascular graft is connected to

a native vessel. It served as a major endothelialization mechanism in
animal models, but did not extend beyond 1 cm in humans (Zilla et al.,
2007; Zilla et al., 2020). Therefore, to endothelialize the middle section
of a longer graft, other mechanisms must be considered. Transmural
growth occurs through cellular and vascular infiltration from an
adjacent blood vessel (Pennel et al., 2013). Blood-borne growth is
through cells in the circulation with the capacity of differentiation into
endothelial phenotypes, such as endothelial progenitor cells. Such
endothelialization modality requires a strong binding between the
circulating cell and the graft surface, which may be offered by
progenitor-specific antibodies or ligand (Lu et al., 2013; Hao et al.,
2020) or adhesive peptides (Choi et al., 2016; Hao et al., 2017; Liu et al.,
2021) immobilized on the lumen surface. Since all three in situ
mechanisms are still insufficient to create a continuous
endothelium throughout a long vascular graft in human patients,
ex vivo or in vitro seeding of matured vascular cells (Dahan et al.,
2017), progenitor/stem cells (Olausson et al., 2012; Ardila et al., 2019),
or genetically modified autologous cells expressing fibulin-5 and
VEGF, onto the graft lumen have been employed (Sánchez et al.,
2018).

For in situ endothelialization and in situ smooth muscle
regeneration, strategies to functionalize graft lumen or an inner
layer, have been under continuous development to improve the
regeneration speed and quality. To encourage the adhesion,
migration, differentiation and proliferation of matured or
progenitor-derived vascular cells, bioactive molecules utilized for
graft functionalization include: (a) growth factors, (b) genes, (c)
peptides, and (d) antioxidants. Figure 5 illustrates functionalization
strategies for graft endothelialization.

One of the most adopted growth factors is VEGF (Koobatian et al.,
2016; Wang et al., 2019b). Despite an early study showing undesired
inflammation and intimal hyperplasia on a decellularized vascular
graft with a coating of FGF and VEGF (Heidenhain et al., 2011), a
number of recent studies using these or other angiogenic or stem cell-

FIGURE 4
Possible mechanisms underlying graft endothelization.
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homing molecules demonstrated their positive influences on graft
performances. For example, the incorporation of triple factors, VEGF,
bFGF, and SDF-1α into a two-layered graft was found to improve
endothelialization, SMC layer formation, and thus graft patency
compared with VEGF alone (Antonova et al., 2021). Allogeneic
decellularized vascular scaffold grafted with VEGF, bFGF, and
heparin exhibited similar mechanical properties to the natural
vessels, and positive expression of factor VIII and α2-actin (Kong
et al., 2019). Smith et al. (2019) and Smith et al. (2020) developed a
vascular graft based on small intestinal submucosa with immobilized
heparin and VEGF on the graft lumen to capture VEGF receptor-
expressing circulating angiogenic cells from the blood, which
promoted the formation of artery-mimic structure with endothelial
and medial layers. Besides VEGF, other signaling mediators, including
brain-derived neurotrophic factors (Zeng et al., 2012), dickkopf-3
glycoprotein (Issa Bhaloo et al., 2018), and SDF-1α (Shafiq et al., 2018;
Wang et al., 2019c), were used to improve graft patency through
progenitor cell homing and/or paracrine mechanisms for graft
endothelialization and smooth muscle formation. Furthermore,
these cell-recruiting molecules were used in combination with

anticoagulant and immunomodulatory molecules. For example, the
PTFE graft covalently coupled with heparin, SDF-1α and
CD47 reduced thrombogenicity, facilitated the recruitment of
progenitor cells, and alleviated the immune responses (Gao et al.,
2017). Indeed, fast, high-quality in situ vascular regeneration could
benefit from an exquisite graft design orchestrating the functions of
multiple signaling molecules.

The gene incorporation into a graft can also effectively enhance
vascular regeneration. Genes such as miRNAs and vectors encoding
VEGF receptor-2 ligands (Hytönen et al., 2019) were used instead of
functional proteins or peptides. In particular, miRNAs, such as
miRNA-126 which accelerates the synthesis of VEGF and FGF and
miRNA-145 which modulates the contractile SMC phenotype, were
loaded into grafts: miRNA-126 alone was found to accelerate graft
endothelialization (Zhou et al., 2016), while dual miRNA loading
further improved contractile SMC regeneration and promoted
vascular ECM formation (Wen et al., 2020). However, the lack of
cell-specific transfection and release kinetics as well as potential
toxicity and inflammation are several challenges for the gene
approach.

TABLE 1 Summary of comparisons among four endothelialization mechanisms.

Endothelialization
mechanisms

Pros Cons

Trans-anastomotic growth Effective in small animals; in situ Irrelevant or ineffective in most clinical applications; complicated by inflammatory responses

Transmural growth Essential for graft healing; in situ Inconsistent results due to the complexity of angiogenic process; influenced by physical properties of
the scaffold

Blood borne growth Regenerative poten-tial; in situ
seeding

Scarcity of circulating cells and limited regenerative capability of cells in the circulation

in vitro seeding Formation of a confluent cell layer No “off-the-shelf”; possible cell loss in vivo; Efficiency and outcome depend on cell source, culture
and seeding techniques

FIGURE 5
Surface engineering strategies of grafts Biomolecules conjugated to the surface graft materials are designed to interact with the blood components
including blood cells, progenitor cells and platelets.
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The antioxidant approach could address both regenerative need
for a functional endothelium and therapeutic need for inhibiting
neointimal growth or calcification, which is related to oxidative
stress-caused cellular damage (Gaudino et al., 2017; Washington
and Bashur, 2017). A natural antioxidant, oxide (NO) is
consistently secreted by endothelial cells, providing essential
signaling to prevent thrombosis, SMC proliferation or intimal
hyperplasia (Napoli et al., 2006; Strijdom et al., 2009; Devine et al.,
2020). Therefore, NO-producing mechanisms, including NO-
releasing coating and NO-generating coating such as NO-catalytic
bioactive coating that generates NO from endogenous S-nitrosothiols,
are integrated into vascular grafts (Wang et al., 2015; Tang et al., 2018;
Dou et al., 2020; Li et al., 2020; Enayati et al., 2021) and stents (Yang
et al., 2015; Yang et al., 2020), to promote endothelialization and
reduce restenosis. Another type of antioxidant used was poly (1,8-
octamethylenecitrate-co-cysteine), which was found to inhibit the
calcification of decellularized grafts (Jiang et al., 2017).

4 Translation of vascular grafts for
clinics: Success measures

Essential to the future development is continual efforts to balance
the mechanistic understandings underlying adverse graft remodeling
in clinic with the innovations in grafting technologies. Translational
innovations are as important as innovations in cell technology and
scaffold technology. Assessment tests and preclinical models for
vascular grafts are to be properly matched to the targeted clinical
application (Zilla et al., 2020), in terms of the anatomic structure such
as graft diameter, length and looping, graft functions such as regular
needle access for dialysis grafts, and regeneration potential related to
clinical use, patient’s age and disease condition. Ideally, grafts with
regenerated tissues could also simulate vasoreactivity and
pharmacological responses of a native vessel, for the long-term
success (Strobel et al., 2018).

4.1 Device function tests

Related to tubular vascular implants, FDA guidance documents
have specified testing criteria for a number of physical and mechanical
properties of grafts, including porosity, burst strength, compliance,
elastic modulus, water permeability, compliance, and kink diameter
(ANSI, 2010). Vascular grafts for a specific application such as
arteriovenous graft access may require additional guidelines for
function testing (Vascular Access Society, 2021). For example,
when the synthetic grafts are placed a loop configuration, e.g., for
vascular access, preventing graft kinking is crucial (Wu et al., 2020).
Nevertheless, all the test guidelines refer to traditional, permanent
graft materials. When biodegradable materials, synthetic or natural,
are used to construct grafts, it may be necessary to test the temporal
changes of physical and mechanical properties, in order to avoid
devastating events such as aneurysm. Besides physical and mechanical
properties, in vitro device tests also include biological function
assessment. As TEVG improvements focus on the graft
development by attending to the main causes of graft
failure—thrombus formation and intimal hyperplasia, in vitro
thrombogenicity tests as well as proliferation and migration tests of
vascular cells have been widely employed.

4.2 Preclinical assessment with animals

The goal of TEVG regeneration studies is to translate new findings
to human clinical therapy, which relies on animal models to generate
enormous data useful to the translation. Ideally, the selection of animal
model considers the animal’s analog close to human patients in terms
of similarities in anatomical, structural, pathological and/or functional
aspects. Immunodeficient animal models further allow long-term
accommodation of humanized vascular grafts (Itoh et al., 2019). To
evaluate the biochemical, structural and functional similarities
between a TEVG implant and a native artery in animals, measures
taken on the implants include ultrasonic scan, flow Doppler and
X-ray/angiography, as well as on explant analyses, such as mechanics
(i.e., strength, compliance), histological analyses such as geometry
(i.e., lumen size, thickness), layer structure, cells (e.g., inflammatory
cells, circulating cells, vascular endothelial cells and SMC, cells related
to fibrotic or calcified remodeling), ECM (e.g., elastin, collagen types
I/III/IV), and biomolecules through gene and/or protein assays.

A closer analog to clinical conditions allows one to better predict
graft healing and regeneration in clinic. A huge discrepancy exists
between endothelialization outcomes in animal models and those
occurring in clinic (Zilla et al., 2007; Sánchez et al., 2018; Cai et al.,
2021). Despite increased graft assessments in different animal models,
most studies still use young, healthy small animals. It could be
attributed to drastic differences in the vascular anatomy and
physiology between human and rodents, which are used for
evaluations in the majority of animal studies. The re-
endothelization of a vein graft was reported to complete after
several weeks of post-surgery in rodents, but re-endothelization
duration in human took much longer. More important than the
late presence of an endothelium on TEVG in human is a mismatch
in the endothelialization mechanism—mainly trans-anastomotic
mechanism in short grafts for rodents versus mainly transmural or
blood-borne endothelialization in much longer grafts for humans
(Zilla et al., 2007). In the clinical context of PTFE grafts, trans-
anastomotic endothelialization covers only the immediate peri-
anastomotic graft region in patients. Based on the analysis in a
senescent non-human primate model, Zilla et al. (2007) and Zilla
et al. (2020), concluded that a major issue with the development of
prosthetic vascular grafts lied in wrong animal models, which led to
wrong questions and no healing. Large animal models such as sheep,
pigs, and baboons, though less available and more costly, mimic
human physiology, in terms of vascular anatomy, thrombogenicity,
inflammatory responses and regenerative potentials (Fukunishi et al.,
2016; Rothuizen et al., 2016; Ju et al., 2017; Ma et al., 2017; Syedain
et al., 2017; Liu et al., 2018; Schleimer et al., 2018; Fang et al., 2021b).

Overall, the design of future preclinical studies would better address
the clinical relevance, for example, dialysis access (Gage and Lawson,
2017; Ong et al., 2017) and meso-Rex bypass (Maxfield et al., 2017), by
providing further insight into the mechanisms through experimental
designs that are aligned with the purpose and scope of specific clinical
applications. In selecting animal models that prematurely terminate
adverse remodeling events, the factors that impair vascular
regeneration around grafts in clinic may remain largely overlooked.
Besides the type of animal models, the significant “impairment
factors” as listed in Section 2 include age and disease conditions, e.g.,
diabetes and ischemia. Additionally, temporal and spatial
characterizations of the host responses in animals would be crucial to
improve our mechanistic understandings of TEVG remodeling.
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4.3 Clinical trials and potential
commercialization values

Clinical trials are a true success measure and a determinant to the
commercial value of any graft innovation. Prior trials have been
performed on three types of grafts: Biological grafts (i.e., xenografts
or allografts), bioreactor-manufactured grafts, and readily implantable
grafts. Though trial results are encouraging and enlightening for future
TEVG strategies, the overall success is still limited.

Biological grafts, referring to acellular blood vessels from human or
animal (e.g., bovine) origin, have undergone clinical trials for decades.
Bovine carotid artery grafts, such as those commercialized as Artegraft™,
were used as arteriovenous fistula in patients undergoing chronic
hemodialysis. These grafts outperformed PTFE grafts, though
incrementally (Hutchin et al., 1975; Kennealey et al., 2011; Arhuidese
et al., 2017). Lindsey et al. (2018) did a 15-year follow-up study onArtegaft
used in lower extremity bypass surgery of 120 patients, yielding positive
results for patency and salvage limb rates. Recently, the concern regarding
the immunologic sensitization of artery xenografts in patients was also
addressed (Dyer-Kindy et al., 2020). Similar to an artery graft, a vein
xenograft such as bovine vein-derived ProCol™ demonstrated their
candidacy as an alternative to synthetic grafts through clinical trials in
both hemodialysis patients and patients with critical limb ischemia for
14–20months (Hatzibaloglou et al., 2004; Schmidli et al., 2004). Vein
allografts derived from human cadaveric veins were also a possible
alternative. Cryopreserved allografts were used in 90 patients, showing
similar patency, more resistant to infection but significantly more
susceptible to aneurysms, when compared to PTFE grafts (Madden

et al., 2004). More recently, 15 vein allografts seeded with autologous
endothelial cells were used in coronary artery bypass surgery with
12 patients, showing patency up to 32 months (Herrmann et al., 2019).
Autologous stem cells were also used to recellularize vein allografts and
successfully tried on one pediatric patient for vascular vein shunts without
the need for immunosuppression (Olausson et al., 2012). Overall, decades
of clinical trials have shown that an artery- or vein-based xenografts or
allografts can be considered as an alternative to synthetic PTFE or Dacron
grafts. However, significant improvements over these graft products, in
particular decellularization and recellularization as well as deproteinization
and surface engineering to address complications- and/or rejections-
derived from immune responses (Merola et al., 2017), are needed
before they may gain a bit market share.

Bioreactor-manufactured grafts produce TEVG by culturing
human autologous cells and/or allogeneic cells with or without a
scaffold in a bioreactor with controlled physical, mechanical and/or
biological environments. Clinical trials have illuminated promises and
challenges with current methods. Lawson et al. (2016) seeded
allogeneic human VSMCs onto polyglycolic acid scaffold, subjected
the cell-loaded scaffold to pulsatile cyclic distension for 8 weeks before
decellularization for final acellular implant. The patency of these grafts
(Humacyte™) on 60 hemodialysis patients was 63% at 6 months and
28% at 18 months, with no evidence of immune response or aneurysm
formation. From this trial, 16 tissue samples were acquired from 16 to
200 weeks for the characterization of vascular remodeling, showing
recellularization of grafts by non-inflammatory host progenitor and
vascular cells (Kirkton et al., 2019). A recent follow-up report provided
5-year (phase II) results on 11 patients who completed the study

FIGURE 6
Coupling of technological innovations with translational innovations to tackle adverse remodeling of vascular grafts for clinical applications.
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(Jakimowicz et al., 2022). Results showed that one patient maintained
primary patency, and 10 maintained secondary patency. Like PTFE
grafts, such acellular grafts showed better clinical outcomes when used
as above-knee, femoral-to-popliteal arterial bypass conduits in
20 patients (Gutowski et al., 2020). As an example for scaffold-free
cell-engineered graft, Cytograft™ employed patients’ fibroblasts to
create an autologous TEVG through a prolonged fabrication
procedure, either finishing with autologous endothelial seeding or
implanting as it is. Its clinical trial with hemodialysis grafts on ten
patients showed 1-month patency of 78% and 6-month patency of
60% (McAllister et al., 2009). Later, L’Heureux’s group modified the
graft production into an “off-the-shelf” design—allogeneic Lifeline™
graft. Prior to implantation in patients for hemodialysis access, frozen
cell-sheet based scaffolds were thawed, rehydrated and seeded with
autologous endothelial cells the luminal side. All three implanted
grafts worked well till 11 months (Wystrychowski et al., 2014).

More readily implantable grafts are desirable in clinic, as they require
minimal or no need of cell culture time, relying on in vivo degradation,
remodeling, regeneration and maturation. One recent approach is
embedding a biotube in subcutaneous spaces of a patient for months,
using patient’s body to fabricate a graft. This has been used successfully as
a pulmonary artery substitute in pediatric patients (Kato et al., 2016; Fujita
et al., 2020; Nakatsuji et al., 2021; Higashita et al., 2022). Another
approach was employing biodegradable scaffolds in combination with
autologous bone marrow mononuclear cells. Their clinical trials
investigated these TEVGs in congenital heart surgery (Sugiura et al.,
2018). Researchers observed postoperative growth of a TEVG as well as
frequent graft narrowing in pediatric patients, but there was no graft-
related mortality during the 11-year follow-up period.

5 Challenge and future

In conclusion, we reviewed the studies in the context of three
innovations, i.e., cell technology, scaffold technology, and translational
stages. Regenerative medicine has demonstrated great promises in the
TEVG context. Future endeavors require the technological innovations
to be coupled with translational innovations, in order to tackle the
adverse remodeling of vascular grafts (Figure 6). This is critical to our
fundamental understandings of the regenerative mechanisms and
eventual transfer of the understandings into improved products for
clinical practices. The complex nature of vascular remodeling and
regeneration mechanisms in the spatial and temporal dimensions
demands more sophisticated designs of in vitro studies and animal
models. A combined approach employing both experimental and
computational tools could significantly expedite the determination of
optimal design parameters in a disease- or host-specific condition. From
a perspective of clinical translation and graft commercialization, the
considerations about costs and graft processing logistics become more
and more important and are also highlighted in other recent reviews and
studies. To address scientific questions to the point of clinical relevance, it
is critical to highlight and increase the use of appropriate cell models,
such as 3D cell models in diseased conditions, appropriate animal
models, such as senescent animals, diseased animals, animals with
slow vascular regenerative rates. Additionally, to more quantitatively
and systematically understand the mechanisms, it would be helpful to
standardize protocols such as sampling times across studies to obtain
critical mechanobiological modeling inputs such asmaterial degradation,
inflammation, growth/remodeling/regeneration parameters.

Also, it is expected that the adaptation and integration of
bioengineered or tissue-engineered vascular grafts to human
patients are heterogeneous because of cells’ varied ability to adapt
to new microenvironments. A comparable case of graft heterogeneity
in clinic is the use of vein grafts. Some veins are poor remodelers due to
lack of adaptation, which had a 13-fold increased risk of failure at
2 years compared with “robust remodelers” (Owens et al., 2015). One
factor in this lack of adaptation is biological incompatibility between
cells and host endothelium. Cellular heterogeneity arises due to
reasons not fully understood yet. For example, iPSC-derived
arterial endothelial cells exhibit functional differences from iPSC-
derived venous endothelial cells, including nitric oxide production and
elongation under shear stress (Rosa et al., 2019). At present, the
limitation of cellular heterogeneity is also a direct consequence of
difficulty in identifying and precisely isolating progenitor cells which
has limited their use in TEVGs. Therefore, improving methods of cell
isolation and differentiation as well as reducing heterogeneity between
cells in grafts and host vessels could be a solution to better integrate
TEVGs into native vasculature.

We acknowledge several limitations of this review study, which
include the lack of in-depth analyses and justifications of graft design,
fabrication, biomaterials, and molecular mechanisms underlying graft
failure and integration.
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