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Summary: In an attempt to improve neuroreceptor distribu-
tion volume (V) estimates, the authors evaluated three alterna-
tive linear methods to Logan graphical analysis (GA): GA us-
ing total least squares (TLS), and two multilinear analyses,
MA1 and MA2, based on mathematical rearrangement of GA
equation and two-tissue compartments, respectively, using
simulated and actual PET data of two receptor tracers,
[18F]FCWAY and [11C]MDL 100,907. For simulations, all
three methods decreased the noise-induced GA bias (up to
30%) at the expense of increased variability. The bias reduction
was most pronounced for MA1, moderate to large for MA2,
and modest to moderate for TLS. In addition, GA, TLS, and
MA1, methods that used only a portion of the data (T > t*,

chosen by an automatic process), showed a small V underesti-
mation for [11C]MDL 100,907 with its slow kinetics, due to
selection of t* before the true point of linearity. These nonit-
erative methods are computationally simple, allowing efficient
pixelwise parameter estimation. For tracers with kinetics that
permit t* to be accurately identified within the study duration,
MA1 appears to be the best. For tracers with slow kinetics and
low to moderate noise, however, MA2 may provide the lowest
bias while maintaining computational ease for pixelwise pa-
rameter estimation. Key Words: Positron emission tomogra-
phy—Graphical analysis—Linear regression analysis—
Parameter estimation—Noise-induced bias.

Dynamic positron emission tomography (PET) data
allow estimation of physiologic parameters, for example,
by applying compartmental kinetic models and nonlinear
least squares (NLS) estimation methods. Nonlinear least
squares methods have the theoretical advantage of pro-
viding minimum variance parameter estimates with little
or no bias. The NLS methods can be computationally
expensive, however, particularly for the purpose of pix-
elwise parameter estimation from three-dimensional PET
data (Motulsky and Ransnas, 1987). Alternatively, linear
least squares (LLS) methods are computationally more
robust; that is, by not requiring an iterative search in
parameter space, they avoid the convergence problems
that may arise with the NLS methods. However, LLS
estimation requires some form of linearization of the
standard compartment model equations (Blomqvist,
1984; Gjedde, 1982; Logan et al., 1990; Patlak et al.,
1983), because the standard solutions to these equations

are nonlinear with respect to some of the parameters. Of
the linear methods, the graphical methods developed by
Patlak et al. (1983) and Logan et al. (1990) and their
extensions permit the estimation of a subset of param-
eters and have been used extensively because of their
computational simplicity.

For reversibly binding neuroreceptor tracers, the
graphical analysis (GA) plot of Logan et al. (1990) al-
lows estimation of the total distribution volume (V) from
the slope of the graph (i.e., the LLS regression coeffi-
cient). The advantages of GA include its simplicity and
model independence; that is, no knowledge is required of
the compartmental configuration of the underlying data.
Operationally, since linearity is not achieved from the
beginning of the data set, a period for linear fitting (T >
t*) must be determined. The value of t* depends upon the
regional tracer kinetics. One drawback of GA is that in
the presence of statistical noise in the PET data, GA
underestimates V (Carson, 1993; Slifstein and Laruelle,
2000). To reduce the bias in GA, Logan et al. (2001)
applied the iterative method developed by Feng et al.
(1993, 1996), called generalized linear least squares
(GLLS), as a technique to smooth the time–activity
curves (TACs) and demonstrated that this strategy can
effectively reduce the noise-induced bias. For the two-
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tissue (2T) compartment model, the GLLS method is
applied to the data in two parts to generate smooth TACs
(Logan et al., 2001).

The purpose of the present study was to evaluate al-
ternative noniterative linear methods that are directly ap-
plicable to the 2T model as strategies to improve V es-
timation, particularly to reduce noise-induced bias. In
ordinary least squares (OLS) estimation, the independent
variables are assumed to be noise-free. However, the GA
equation contains a noisy tissue radioactivity term, C(T),
in the independent variable, which will contribute to a
biased least-squares estimation. Therefore, an alternative
approach is total least squares (TLS) estimation that ac-
counts for noise in the independent as well as the depen-
dent variables (Van Huffel and Vandewalle, 1991). Total
least squares estimation has been recently proposed for
GA by Varga and Szabo (2002), who referred to it as the
“perpendicular linear regression model.” Another ap-
proach was to rearrange the GA equation in multilinear
form to remove C(T) as an independent variable, al-
though the integral of C(t) remains. This approach has
been shown to be effective in reducing the noise-induced
bias for the one-tissue (1T) compartment model (Carson,
1993). Finally, another multilinear equation with only
integrals of C(t) in the independent variables was derived
from the 2T model. This equation can be applied to the
full data set, unlike GA or its multilinear form, which is
applicable only beyond a certain time t*. In the present
study, these linear methods and the NLS method were
tested for noise-induced bias by data simulations and
actual PET data of the 5-HT1A tracer [18F]FCWAY (Car-
son et al., 2000a) and the 5-HT2A tracer [11C]MDL
100,907 (Watabe et al., 2000). These tracers were chosen
because their kinetics require the use of at least a 2T
compartment configuration for accurate data fitting.

MATERIALS AND METHODS

Theory
Total least squares. The operational equation for GA (Lo-

gan et al., 1990) is given by the following equation:

�
0

T
C�t�dt

C�T�
= V

�
0

T
Cp�t�dt

C�T�
+ b (1)

where C(t) is the regional or pixel radioactivity concentration
(kBq/mL) at time t, CP (t) is the metabolite corrected plasma
tracer concentration (kBq/mL) at time t, the slope (V) is the
total distribution volume (mL/mL), and b is the intercept,
which becomes constant for T > t*. For the 2T model, V is
(K1/k2)(1 + k3/k4), where K1 (mL·min−1·mL−1) is the rate con-
stant for transfer from plasma to the nondisplaceable (free plus
nonspecifically bound) compartment CN, k2 (min−1) is the rate
constant for transfer from CN to plasma, k3 (min−1) is the rate
constant for transfer from CN to the specifically bound com-
partment CS, and k4 (min−1) is the rate constant for transfer
from CS to CN.

The OLS estimation assumes that independent variables are
noise-free and that noise in the dependent variable is random
with mean zero (Carson, 1986). However, Eq. 1 contains the
noisy term C(T) in the independent variable, and the dependent
and independent variables have correlated noise. Both of these
conditions will contribute to a biased OLS estimation of V with
Eq. 1. For OLS estimation, consider the case of the simplest
example, where the model equation is given by y � �t, the
parameter �, or the regression coefficient can be estimated by
minimizing the cost function Q(�), which is the sum of squared
differences between the observed values (n observations) of the
dependent variable yi and the fitted line; that is,

Q��� = �
i=1

n

�yi − �ti�
2

where the independent variable ti is assumed noise-free (Car-
son, 1986). As an alternative, TLS minimizes the sum of
squared “distances” of the observed points from the fitted line;
that is,

Q��� = �
i=1

n

�yi − �ti�
2��1 + �2�

is minimized. In the TLS formulation, both the dependent vari-
able yi and the independent variable ti can contain indepen-
dently distributed random errors with zero mean and equal
variance (Van Huffel and Vandewalle, 1991). Thus, TLS may
be useful for reducing the biased estimation because of the
noisy term C(T) in the independent variable. However, the
correlated noise in the dependent and independent variables in
Eq. 1 can also be problematic for TLS since it assumes that the
noise is uncorrelated (Van Huffel and Vandewalle, 1991). Be-
cause Eq. 1 contains the constant term b, one of the indepen-
dent variable is noise-free. Thus, implementation of TLS mini-
mization for Eq. 1 corresponds to the mixed OLS and TLS
solution as described by Van Huffel and Vandewalle (1991).

Multilinear analysis 1. Alternatively, Eq. 1 can be rear-
ranged to yield the following equation:

C�T� = −
V

b �
0

T
Cp�t�dt +

1

b�0

T
C�t�dt (2)

The OLS method is likely to be more appropriate for Eq. 2 than
Eq. 1 because only the integral of C(t) appears as a potential
noise source in the independent variables. Note that integrals of
noisy data typically have much lower percent variation than the
data themselves, particularly when only the later data (T > t*)
are included in the linear fit. Also, the correlation of the noise
in the dependent and independent variable is dramatically re-
duced in Eq. 2 compared to Eq. 1. Equation 2 is similar to the
equation tested for the 1T model by Carson (1993). We propose
use of Eq. 2 to estimate two parameters, �1 � −V/b and �2 �
1/b by multilinear regression analysis for T > t*, assuming that
the integrals of the plasma and tissue data are noise-free. V then
is calculated from the ratio of the two regression coefficients,
−�1/�2. Note that both Eqs. 1 and 2 are asymptotically linear
for T > t*; i.e., these equations are never identically linear and
the instantaneous slope of these equations is always less than
but approaching V (Logan et al., 1990; Slifstein and Laruelle,
2000). Therefore, if values of C for T < t* are included in the
calculation, the LLS estimation with Eq. 1 or 2 would under-
estimate V, regardless of statistical noise.

Multilinear analysis 2. A multilinear equation valid for T >
0 with C(T) appearing only as integrals in the independent
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variables can be derived from the 2T model. This equation is a
four-parameter version of the linear equation developed for
three parameters (K1, k2, and k3) by Blomqvist (1984), as de-
scribed by Evans (1987). The differential equation describing
the 2T model using the notation of Patlak et al. (1983) and
Logan et al. (1990) is given by the following equation:

dA

dt
= KA + QCp�t� (3)

where

A = �CN�t�

CS�t��; K = �−�k2 + k3� k4

k3 −k4
�; and Q = �K1

0 �
Eq. 3 can be rearranged to yield

A = −K−1QCp�t� + K−1
dA

dt
(4)

where K−1 is given by

�−
1

k2
−

1

k2

−
k3

k2 k4
−

k2 + k3

k2 k4

�
Equation 4 is equivalent to the following set of differenti-
al equations:

CN�t� = VNCP�t� −
1

k2

dCN�t�

dt
−

1

k2

dCS�t�

dt

= VNCP�t� −
1

k2

d �CN�t� + CS�t��

dt
(5)

CS�t� = VSCP�t� −
k3

k2k4

dCN�t�

dt
−

k2 + k3

k2 k4

dCS�t�

dt

= VSCP�t� −
k2 + k3

k2k4

d �CN�t� + dCS�t��

dt
+

1

k4

dCN�t�

dt
(6)

where VN (mL/mL), given by (K1/k2), is the distribution vol-
ume of the nondisplaceable compartment (CN), and VS

(mL/mL), given by K1k3/(k2k4), is the distribution volume of
the specifically bound compartment (CS). Addition of Eqs. 5
and 6, noting that V � VN + VS, yields

C�t� = VCP�t� −
k2 + k3 + k4

k2k4
�dC�t�

dt � +
1

k4

dCN�t�

dt
(7)

Note that under the condition of equilibrium (all derivatives �
0), Eq. 7 reduces to C(t) � V Cp (t), the definition of the total
volume of distribution. Integration of Eq. 7 yields

�
0

T
C�t�dt = V�

0

T
CP�t�dt −

k2 + k3 + k4

k2k4
C�T � +

1

k4
CN�T �

(8)

Insertion of Eq. 5 into Eq. 8 to eliminate CN (t) and performing
a second integration to eliminate the derivative, followed by
rearrangement, yields

C�T � = �1 �0

T�
0

s
CP�t�dtds + �2�0

T�
0

s
C�t�dtds

+ �3 �0

T
C�t�dt + �4�0

T
CP�t�dt (9)

where �1 � k2k4V, �2 � -k2k4 , �3 � −(k2 + k3 +k4), and �4

� K1. If we assume that there are no radiolabeled metabolites
in plasma, the contribution of vascular radioactivity to C can
also be included into the derivation of Eq. 9 (Appendix). Note
that Eq. 9 has C(t) in the independent variables only as single
and double integrals. Eq. 9 allows LLS estimation of V by
multilinear regression analysis utilizing the entire data set (T >
0), assuming that CP and the integrals of the plasma and tissue
data are noise-free. V is calculated as the ratio of the first two
partial regression coefficients, −�1/�2. Note that neither Eq. 1
nor Eq. 2 allows a separate estimation of the specific distribu-
tion volume VS. However, in those cases where the estimate of
VS from an unconstrained fit is of biological significance, the
multilinear Eq. 9 allows calculation of VS � K1k3/(k2k4) from
the partial regression coefficients as

VS =
−���1 + �3�4� + �2�4

2

�2��1 + �3�4�
(10)

Simulation analysis
In the present study, we evaluated the bias and variability of

V estimates due to statistical noise for the following estimation
methods using PET data simulated from the 2T model: (1)
graphical analysis with OLS (GA) and TLS; (2) two multilinear
analyses, Eq. 2 (MA1) and Eq. 9 (MA2); and (3) 2T compart-
ment kinetic analysis (KA).

The PET data simulations were performed for two reversibly
binding neuroreceptor tracers: [18F]FCWAY (Lang et al., 1999;
Carson et al., 2000a,b), an [18F] analog of WAY 100635, and
the 5-HT2A tracer [11C]MDL 100,907 (Ito et al., 1998; Watabe
et al., 2000). Simulations were performed using selected
plasma input functions and regional kinetic parameter values
obtained by unconstrained 2T compartment fitting of individual
human [18F]FCWAY and monkey [11C]MDL 100,907 PET
data. These tracers have kinetics described typically by at least
a 2T compartment configuration (Carson et al., 2000a; Watabe
et al., 2000). The 2T model parameters used for the simula-
tion—K1, k2, k3, and k4—were 0.0613 mL·min−1·mL−1, 0.0776
min−1, 0.0734 min−1, and 0.0135 min−1 for [18F]FCWAY (rep-
resenting midbrain raphe); and 0.8542 mL·min−1·mL−1, 0.0785
min−1, 0.0502 min−1, and 0.0227 min−1 for [11C]MDL 100,907
(representing basal ganglia), respectively. Using these param-
eter values (derived from one actual data set) and the input
functions, noise-free regional time–activity data were generated
for 120 minutes, with values calculated at the same midscan
time as in the actual PET studies (33 and 31 time points
for [18F]FCWAY and [11C]MDL 100,907, respectively,
with scan durations ranging from 30 seconds to 5 minutes).
Then, differing amounts of normally distributed mean-zero
noise were added to the noise-free data with standard deviation
(SD) according to the following formula adopted from Logan
et al. (2001):

SD�ti� = SF �e�tiC�ti�

�ti
�0.5

(11)

where SF is the scale factor that controls the level of noise, C(ti)
is the noise-free simulated radioactivity, �ti is the scan duration
(seconds), and � is the radioisotope decay constant. This model
is appropriate in the case of low or constant randoms fractions,
constant scatter fraction, and relatively unchanging emission
distribution with time.

Using Eq. 11, 1,000 noisy data sets were generated for each
of several different values of SF. Different ranges of SF values
(0.5–5 and 2–20 for [18F]FCWAY and [11C]MDL 100,907,
respectively) were selected for the two tracers given the body
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mass differences between humans ([18F]FCWAY) and mon-
keys ([11C]MDL 100,907), yielding roughly comparable noise
levels. These SF values would cover the range of TAC noise
found in a moderately sized region of interest to that of a pixel.
The mean percent noise contained in the noisy data, which
depends on both SF and the tracer half-life, was calculated as
the ratio of the mean SD (Eq. 11) to the mean tissue activity
(C(t)), and ranged from 1.9% to 18.8% for [18F]FCWAY and
1.9% to 18.6% for [11C]MDL 100,907. The total distribution
volume, V, was then estimated for these data sets by the linear
(GA, TLS, MA1, and MA2) and nonlinear (KA) methods. The
specific distribution volume, VS, was also estimated by MA2
and KA. For GA, TLS, and MA1, t* was fixed at 42.5 minutes
for [18F]FCWAY and 57.5 minutes for [11C]MDL 100,907.
These t* values were chosen graphically from preliminary GA
of the noise-free data sets. Parameter estimation was considered
“unsuccessful” when the methods failed (owing to ill condi-
tioning or nonconvergence) or had V or VS values < 0 or more
than twice the true values. Furthermore, the estimation method
was considered “unsuccessful” if at least 30/1,000 or 3% of the
estimations were unsuccessful. V and VS values were expressed
as percent deviation from the true value or percent bias ± per-
cent SD of the successful sample (n � 1,000). For uncon-
strained four-parameter fitting (KA), the initial parameter val-
ues were chosen randomly from the range of 75% to 125% of
the true parameter value.

The asymptotic nature of Eqs. 1 and 2 was tested by exam-
ining the relationship between estimated V by the current analy-
ses and the scanning duration for three sets of simulated noise-
free [11C]MDL 100,907 data. The sample mean K1 (0.60543
mL·min−1·mL−1) and k2 (0.0418 min−1) values obtained in the
basal ganglia of five monkeys by unconstrained 2T compart-
ment fitting were used and V was fixed to 30 (mL/mL). Three
different k4 values were used for simulations representing the
sample mean (0.0232 min−1), the sample minimum (0.0123
min−1), and one half of the minimum (0.0062 min−1), the last
value being chosen to exaggerate the asymptotic effect. A tri-
exponential function was fitted to one of the original input
functions and used to extrapolate it from 120 to 240 minutes.
Using this extended input function and the parameter values,
three noise-free TACs were generated for 240 minutes at
1-minute intervals. V was estimated 18 times by each of the
current methods from these TACs, with scan duration succes-
sively shortened in 10-minute decrements from 240 to 70 min-
utes. For GA, TLS, and MA1, the latter fitting period of 60
minutes was used for these analyses; that is, t* was adjusted
with the scan duration from 180 to 10 minutes.

Positron emission tomography study analysis
For the purpose of comparison with the simulated data analy-

ses, examples from the human [18F]FCWAY and monkey
[11C]MDL 100,907 PET studies were used. [18F]FCWAY PET
studies were performed in five normal human subjects, as de-
scribed previously (Carson et al., 2000a). In brief, scans were
acquired for 120 minutes (33 frames with scan duration ranging
from 30 seconds to 5 minutes) after bolus administration of 6 to
10 mCi (specific activity, 800 to 1,600 Ci/mmol) of the tracer
in three-dimensional mode on the GE Advance tomograph (GE
Medical Systems, Waukesha, WI, U.S.A.). The arterial input
function was determined from blood samples corrected for ra-
diolabeled metabolites. Regional brain time activity data were
corrected for tissue [18F]fluorocyclohexanecarboxylic acid, a
principle metabolite that enters the brain (Carson et al., 2000b).
Regional brain data for raphe (42 pixels, 4 mm2/pixel) and
frontal cortex (̃500 pixels) were selected for the current analyses.

The [11C]MDL 100,907 PET studies were performed in rhe-
sus monkeys using 1% to 2% isoflurane anesthesia, as de-
scribed previously (Watabe et al., 2000). In brief, control scans
were acquired for 120 minutes (33 frames with scan duration
ranging from 30 seconds to 5 minutes) after bolus administra-
tion of 20 to 39 mCi (specific activity, 700 to 1,800 Ci/mmol)
of the tracer in two-dimensional mode on the GE Advance
tomograph. The arterial input function was determined from the
blood samples corrected for radiolabeled metabolites. In certain
cases, [11C]MDL 100,907 TACs could be well fit by a 1T
model, particularly in regions with highest specific binding. For
the purpose of evaluation of these linear estimation methods,
five control studies were selected in which the regional brain
data could be fitted reliably by the 2T model. Regional brain
data for basal ganglia (84 pixels) and thalamus (42 pixels) were
subjected to the current analyses. For these [11C]MDL 100,907
studies, the first two frames (1 minute of data) were discarded
for the estimation process in order to eliminate the intravascular
radioactivity contribution. Correction for the time delay be-
tween the arterial input function and the brain time–
radioactivity was applied as described by Watabe et al. (2000).

Mean percent noise contained in these samples was calcu-
lated based on deviations from 2T compartment fitting, with
averaging done over the number of study subjects (n � 5).
Distribution volumes were estimated by the current linear and
nonlinear methods. V and VS values were expressed as mean ±
SD of the sample (n � 5). The values of t* were determined by
performing GA with the modeling software PMOD (Burger
and Buck, 1997), and these values were also used for corre-
sponding TLS and MA1. An algorithm in PMOD searches for
t* by performing LLS regression using data from t0 (initialized
to 0) to the end time and calculating for each data point the
absolute error of regression; that is, |observed − predicted|/pre-
dicted value of the dependent variable. If the maximal value of
this error within the fitting period is less than a prescribed
value, then this t0 is taken to be t*. Otherwise, this process is
repeated, increasing t0 successively until this condition is met
(Burger and Buck, 1997). The prescribed value of 10% was
used except for the raphe with [18F]FCWAY, for which a value
of 20% was used because of the higher noise level in this small
region of interest. The mean t* values were 52 ± 16 minutes
(raphe) and 35 ± 7 minutes (frontal cortex) for [18F]FCWAY,
and 34 ± 4 minutes (basal ganglia) and 29 ± 3 minutes (thala-
mus) for [11C]MDL 100,907. A vascular radioactivity contri-
bution of 4% was included in the unconstrained 2T compart-
ment fitting.

Data analysis
All data analyses were implemented in MATLAB (The

MathWorks, Natick, MA, U.S.A.) or PMOD (PMOD group,
Zurich, Switzerland). Statistical analyses were performed with
paired t-tests and the Pearson correlation analysis when appli-
cable. Statistical significance was defined as P <0.05.

RESULTS

Simulation analysis
Figure 1 shows examples of TACs generated by simu-

lations. The [11C]MDL 100,907 TAC showed signifi-
cantly more noise at late time points relative to the earlier
time points than the [18F]FCWAY TAC, as produced by
Eq. 11, which considers the decay half-life of the tracer
(T1/2 � 20.4 and 109.8 minutes for 11C and 18F, respec-
tively). Table 1 and Fig. 2 show the bias and variability
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of the estimation methods at different levels of noise for
[18F]FCWAY and [11C]MDL 100,907 (Table 1) and the
average magnitude of percent bias and percent variability
for [18F]FCWAY (Figs. 2A and 2B) and [11C]MDL
100,907 (Figs. 2C and 2D), respectively.

Overall, the absolute biases were smallest for MA1
(0–4%), followed by KA (0–5%), MA2 (0–17%), TLS
(1–27%), and GA (2–33%), whereas the variability was
smallest with GA (2–12%), followed by TLS (2–15%),

KA (2–20%), MA1 (2–23%), and MA2 (2–37%). The
three linear methods (MA1, MA2, and TLS) all de-
creased the absolute bias of V estimates at the expense of
increased variability compared with GA. These effects
were most pronounced for MA1, moderate to large for
MA2, and modest to moderate for TLS (Table 1 and Fig.
2). The bias and variability of KA was intermediate be-
tween MA1 and MA2 (Table 1 and Fig. 2). The increased
variability of V estimates with increasing noise resulted
in “unsuccessful” estimation rates at higher noise levels,
particularly for MA2 and to a lesser extent for KA. MA2
was “unsuccessful” at the mean noise of 15.1% or greater
for [18F]FCWAY and at 9.4% or greater for [11C]MDL
100,907, respectively. KA was “unsuccessful” at these or
one-level-higher noise and beyond (Table 1). Because
unsuccessful estimations were excluded in calculating
the mean biases, V estimation biases for MA2 or KA did
not increase significantly or even decreased at the high-
est noise levels tested (Table 1).

The mean values of bias ± variability of VS estimation
over all noise levels by MA2 and KA were 5.9% ±
13.2% and 3.3% ± 11.6%, respect ively, for
[18F]FCWAY; and 5.8% ± 26.8% and 3.6% ± 14.5%,
respectively, for [11C]MDL 100,907. Thus, the bias and
variability of VS estimation by MA2 or KA was similar
to those of V estimation by the respective method, with
the bias and variability of MA2 somewhat inferior to
those of KA.

Positron emission tomography study analysis
Figure 3 shows examples of unconstrained 2T com-

partment fitting of [18F]FCWAY data from the midbrain
raphe (A) and [11C]MDL 100,907 data from thalamus
(B). Similar to the simulated results (Fig. 1), the
[11C]MDL 100,907 data showed more noise at late time
points relative to the earlier time points than did the
[18F]FCWAY data. The mean amounts of noise con-
tained in the regional data were 11.0% ± 4.4% (raphe)
and 3.5% ± 1.0% (frontal cortex) for [18F]FCWAY, and
1.9% ± 0.4% (basal ganglia) and 2.9% ± 0.3% (thala-
mus) for [11C]MDL 100,907.

Figure 4 depicts the mean regional values of V esti-
mated by the different methods for [18F]FCWAY (Figs.
4A and 4B) and [11C]MDL 100,907 (Figs. 4C and 4D).
For [18F]FCWAY, the mean V values in the raphe (noise
range, 8–19%) estimated by GA and TLS were lower by
24% ± 14% and 19% ± 13%, respectively, than those by
KA (P < 0.05) and the mean V values estimated by TLS,
MA1, MA2, and KA were all higher than those estimated
by GA (P < 0.05), whereas there were no significant
differences in the mean V values between the estimation
methods in the frontal cortex (3.5% noise) (Figs. 4A and
4B). These results were consistent with the noise simu-
lation results.

FIG. 1. Examples of simulated time–activity curves at mean
noise of (A) 0%, 7.5%, and 18.8% for [18F]FCWAY (raphe) and
(B) 0%, 9.4%, and 18.6% for [11C]MDL (basal ganglia).
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For [11C]MDL 100,907, there were no differences in
the mean V values in the basal ganglia (2% noise) or
thalamus (3% noise) between GA, TLS, and MA1, con-
sistent with the simulation results. However, despite very
low noise in the [11C]MDL 100,907 data, the V values by
GA, TLS, and MA1 were lower by 7% (range: 4–15%,
P < 0.05) than those by MA2 or KA (Figs. 4C and 4D).
The magnitude of this discrepancy tended to negatively
correlate with the individual k4 values (basal ganglia:
mean � 0.0232 min−1, range � 0.0123–0.0365 min−1,
r2 � 0.62, P � 0.1; thalamus: mean � 0.0236 min−1,
range � 0.0176–0.0286 min−1, r2 � 0.46, P � 0.2)
obtained by KA. The cause of this discrepancy was the
fact that the automatic estimation process chose a value
of t* that was earlier than the true point of linearity due
to slow kinetics of [11C]MDL 100,907. Figure 5 shows
the relationship between scanning duration and V by GA,
TLS, and MA1 for three sets of simulated noise-free
[11C]MDL 100,907 data extended to 240 minutes. GA,
TLS, and MA1 equally and progressively underestimated
V as t* and the scanning duration were successively de-
creased (Fig. 5A). As expected, MA2 and KA showed no
such biases. This problem of choosing a t* value that is
earlier than the true point of linearity would arise for
tracers with slow kinetics, where the asymptotically lin-
ear portion of the graphical plot is achieved at late times
(Fig. 5B).

Finally, there were no differences in the mean VS val-
ues (mL/mL) between MA2 and KA. For [18F]FCWAY,
the mean VS values (mL/mL) were 3.9 ± 1.4 (MA2)
versus 3.8 ± 1.5 (KA) in the raphe and 2.7 ± 0.6 (MA2)
versus 2.9 ± 0.7 (KA) in the frontal cortex. For

[11C]MDL 100,907, values were 20.0 ± 8.1 (MA2) ver-
sus 21.3 ± 8.4 (KA) in the basal ganglia and 14.1 ± 6.2
(MA2) versus 14.1 ± 6.0 (KA) in the thalamus.

DISCUSSION

In the present study, we have shown that three alter-
native linear methods—TLS, MA1, and MA2—can re-
duce the magnitude of noise-induced bias of V estimates
compared to GA for tracers with a 2T compartment con-
figuration. Reductions in bias, however, come at the
price of increased variability. Bias reductions are largest
for MA1, moderate to large for MA2, and modest to
moderate for TLS. The bias and variability of KA appear
intermediate between MA1 and MA2. For tracers with
early t*, MA1 appears to be the method of choice. For
tracers with slow kinetics, however, selection of appro-
priate t* can be difficult and can lead to underestimation
of V. Thus, in cases with low to moderate noise ranges,
MA2, which uses the full data set, may provide the best
balance between bias and computational ease suited for
pixelwise parameter estimation.

For the unconstrained 2T model, variability of V esti-
mates is smallest for GA. Thus, for the experimental
paradigm in which reproducibility of pixelwise V mea-
surements is of primary concern, GA may provide the
most stable estimates of V in the presence of consider-
able statistical noise in the PET data at the expense of
increased bias. Alternatively, region-of-interest based, as
opposed to pixelwise, parameter estimation improves the
signal-to-noise ratio; hence, MA1, MA2, or KA can pro-
vide parameter estimates with little bias and more ac-
ceptable variability.

TABLE 1. Bias and variability in estimating the total distribution volume by different estimation methods for simulated data at
different noise levels

Tracer Noise GA TLS MA1 MA2 KA

[18F]FCWAY 1.9 (0.5) −1.5 (1.8) −1.1 (1.8) −0.9 (1.8) 0.3 (1.8) 0.3 (1.8)
(“true” V value of 5.07 mL/mL) 3.8 (1) −3.4 (3.4) −2.0 (3.6) −0.8 (3.5) 1.0 (3.6) 0.6 (3.6)

7.5 (2) −9.9 (6.1) −5.0 (6.8) −0.2 (7.1) 4.0 (8.2) 1.6 (8.2)
11.3 (3) −18.4 (8.5) −9.9 (10.2) 1.2 (12.0) 10.0 (15.5) 3.9 (14.9)
15.1 (4) −26.1 (9.8) −15.1 (12.2) 2.2 (15.4) 15.5 (19.7)* 4.5 (17.5)*
18.8 (5) −33.3 (11.9) −21.3 (14.6) 3.9 (20.3) 16.6 (25.8)* 5.0 (19.5)*

Average magnitude
of % bias† 15.4 9.1 1.5 7.9 2.7

Average % SD 6.9 8.2 10.0 12.4 10.9
[11C]MDL 100, 907

(“true” V value of 34.9 mL/mL) 1.9 (2) −2.8 (2.3) −2.4 (2.4) −1.7 (2.2) −0.4 (2.1) 0.1 (2.0)
4.7 (5) −7.7 (5.3) −5.9 (5.5) −1.4 (5.3) 1.2 (5.7) 0.7 (5.6)
9.4 (10) −17.9 (8.0) −14.0 (9.9) 0.7 (13.4) 6.5 (18.5)* 2.7 (12.3)

14.0 (15) −25.3 (8.6) −21.2 (11.4) 3.9 (20.0) 7.2 (28.9)* 2.9 (16.7)*
18.6 (20) −30.1 (8.8) −26.8 (11.6) 3.0 (22.6)* 1.0 (37.2)* 1.3 (18.6)*

Average magnitude
of % bias† 16.8 14.1 2.1 3.3 1.5

Average % SD 6.6 8.2 12.7 18.5 11.0

Noise is indicated by mean percent noise and the values of scaling factor, SF, in brackets. Bias and variability in brackets are expressed as mean
percent deviation of V from the true value and normalized percent standard deviation (SD) of the “successful” sample (n �1,000), respectively.
V, total distribution volume; GA, graphical analysis; TLS, total least squares; MA1 and MA2, multilinear analysis 1 and 2, respectively; KA, kinetic
analysis.

* The number of “unsuccessful” estimations exceeds 30 out of 1,000 runs (or 3%). † An average of absolute values of percent bias.
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Equation 1 for GA is model independent (Logan et al.,
1990). This feature of GA is particularly useful for pix-
elwise parameter estimation for tracers where TACs
from different regions are characterized by the 1T or 2T
compartment configuration within the same PET data
set. Both TLS and MA1 retain this feature. In fact, a
method similar to MA1 effectively reduces the noise-
induced bias in estimating V for the 1T model (Carson,
1993). Although Eq. 9 or A1 (Appendix) is derived from
the 2T model, MA2 was also applicable to simulated data
for the 1T model, where the bias and variability of MA2
was nearly identical to those of MA1 (data not shown).
That is an interesting and surprising result because MA2
is an overdetermined model for data derived from a 1T
model (i.e., there are too many parameters in the data).
For nonlinear iterative fitting, this condition usually
leads to convergence failures. For noise-free data, mul-
tilinear regression with Eq. 9 would also be expected to
fail because the four “independent” variables are in fact
linearly dependent. Two factors prevent this failure.
First, the noise in the independent variables of Eq. 9
produces linear independence. Second, even with low-
noise or noise-free data, small errors in the numerical

integration of tissue and plasma data disrupt the linear
dependence of these variables. Thus, with linear nonit-
erative methods, the presence of poorly determined pa-
rameters did not affect the quality of the estimates of V.
Thus, effectively, all of these alternative linear methods
appear to be model independent. These noniterative lin-
ear methods are computationally simple, and therefore
allow efficient pixelwise parameter estimation.

The GA, TLS, and MA1 equations are asymptotically
linear. Therefore, the instantaneous slope of these equa-
tions is always less than but approaching V. This asymp-
totic linearity introduces a negative bias in estimating V,
the magnitude of which depends on how the linear por-
tion of the transformed data is defined (i.e., identification
of t*). In the current simulation analysis (Table 1), the
small initial negative bias for GA, TLS, and MA1 at low
noise levels likely reflects this asymptotic linearity, be-
cause this bias can persist even for noise-free data, with
its magnitude shrinking by pushing t* later). For GA, the
time t* can be identified graphically (Logan et al., 1991).
For MA1, this t* can also be identified graphically by
plotting the observed versus predicted values of the de-
pendent variable including all data points (Ichise et al.,

FIG. 2. Bias and variability in esti-
mating the total distribution volume,
V, by different estimation methods for
simulated [18F]FCWAY data (A and
B) and [11C]MDL 100,907 data (C
and D). Values shown are averages
over the simulated noise levels and
biases are expressed as magnitude
of percent biases (i.e., absolute per-
cent biases). GA, graphical analysis;
TLS, total least squares; MA1 and
MA2, multilinear analysis 1 and 2;
KA, kinetic analysis.
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1999). However, this task of graphically identifying t*
accurately can be a challenge even with noise-free data
(Fig. 5B). With noise added, identification of t* is more
problematic. Alternatively, algorithms have been devel-
oped for automatic determination of t* (Burger and
Buck, 1997; Watabe et al., 2000), which would be suited
for pixelwise parameter estimation. For example, the al-
gorithm developed by Watabe et al. (2000) automatically
searches potential t* values to find the one with mini-

mum coefficient of variation of V estimates. In PMOD,
the criterion was to keep the maximum regression error
below a predetermined value. These algorithms should
be also applicable to TLS and MA1. Note that in this
study, the t* values from GA were used for TLS and
MA1 in order to allow direct comparison of the bias and
variability results.

For the algorithm in PMOD to function properly, an
appropriate predetermined value of maximum regression
error must be selected by performing preliminary analy-
sis, because the regression errors increase with noise. For
example, for [18F]FCWAY, values of 10% and 20%
were appropriate in the frontal cortex (3.5% noise) and
raphe (11% noise), respectively. For [11C]MDL 100,907,
the t* values chosen by this algorithm in basal ganglia
and thalamus (34 ± 4 and 29 ± 3 minutes, respectively)
appear to be somewhat earlier than the true point of
linearity as judged from the simulation analyses (Fig. 5),
resulting in underestimation of V by GA, TLS, and MA1.
The time points that gave minimum coefficient of varia-
tion of V were at 32 ± 8 and 22 ± 7 minutes for basal
ganglia and thalamus, respectively. Thus, these auto-
matic estimation algorithms can choose a value of t* that
is earlier than the true point of linearity, particularly for
tracers with slow kinetics if there are a small number of
tissue data values acquired during the linear portion of
the data. The underestimation of V by GA, TLS, and
MA1 was reduced from 7.3% to 4.5% by using a fixed t*
value of 60 minutes for all [11C]MDL 100,907 subjects
at the expense of increased standard errors of the V es-
timates. Thus, the requirement for defining the linear
portion of the transformed data can be problematic for
GA, TLS, and MA1, particularly with noisy data from
tracers with slow kinetics. However, note that this prob-
lem of selecting t* applies only for tracers requiring the
2T model, because for the 1T model, both Eqs. 1 and 2
are linear for T > 0.

Equation 2 for MA1 has the potential theoretical ad-
vantage of using weighted least squares (WLS) to ac-
count for noise-level differences in C(T) (Carson, 1993).
WLS requires that the time pattern of variance of noise
be specified (Carson, 1986). Using the ideal weights,
1/Var [C(T)], for the current simulated data, WLS for
MA1 improved the bias and variability of V estimation,
minimally for [18F]FCWAY and slightly more for
[11C]MDL 100,907. For example, the bias and variability
of V estimates were 0.4% and 11% with weighting and
0.9% and 13% without weighting, respectively, for
[11C]MDL 100,907 over all noise levels. Because there
was a greater range in scan noise values for [11C]MDL
100,907 due to the short half-life of 11C, WLS would be
expected to be more effective for [11C]MDL 100,907
than for [18F]FCWAY. Therefore, WLS should improve
the bias and variability of MA1 for tracers with nonuni-
form variance of noise. Caution should be exercised in

FIG. 3. Example of unconstrained, 2T compartment fitting of ac-
tual (A) [18F]FCWAY (raphe) and (B) [11C]MDL 100,907 (thala-
mus) positron emission tomography data.
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applying WLS, however, because the presence of non-
random errors for heavily weighted data points can lead
to a biased estimation. For example, a heavy weight
placed on early data points because of a low absolute
level of noise can result in a large bias if there is an
uncorrected time shift in the input function (Carson, 1993).

In contrast to GA, TLS, or MA1, MA2 has the advan-
tage of not requiring the definition of t*; that is, MA2 can
be applied to the full data set. In using the full data set,
however, MA2 estimates four (or five with Eq. A1) pa-
rameters, as does kinetic analysis. Thus, it demonstrates
similar or greater fitting instability for high noise ranges,
as does KA (Table 1). Another potential advantage of
MA2 is that, along with estimation of V, MA2 allows
estimation of VS with precision and accuracy comparable
to that of unconstrained 2T nonlinear fitting, as shown in
our results of simulation and actual PET data analyses. In
most cases, the total volume of distribution, V � VN +
VS, has been the more common outcome measure for the
purpose of intersubject comparisons. V is useful under
the assumption that the contribution of VN to V is small,
VN is constant across subjects, or VS can be estimated
indirectly from V, provided that VN is uniform and that

VN can be estimated from a region with no specific bind-
ing. For tracers with a significant intersubject or interre-
gional variability in VN, VS could be a more appropriate
measure of neuroreceptor binding, if it can be estimated
reliably from an unconstrained fit. The physiologic in-
terpretation of VN and VS obtained by any unconstrained
2T estimation method, however, should only be accepted
following careful validation studies, since often the es-
timates of VN are not uniform throughout the brain, but
rather increase regionally with increasing V. For ex-
ample, for the opiate antagonist [18F]cyclofoxy (Carson
et al, 1993) and for [18F]FCWAY (Carson et al, 2000b),
VN (calculated as K1/k2 from unconstrained 2T fit)
showed an approximately threefold variation across re-
gions with positive correlation to V, whereas blocking
studies showed minimal interregional variation in the
level of nondisplaceable binding.

In OLS, two assumptions should be met. First, the
independent variable is noise-free; and second, the de-
pendent variable has uncorrelated random noise with
mean zero. As shown by Slifstein and Laruelle (2000),
GA produces a biased estimate of V with noisy data by
violating these assumptions. The violation of the first

FIG. 4. Sample mean distribution
volume, V, by different estimation
methods for [18F]FCWAY (A and B)
and [11C]MDL 100,907 (C and D).
Error bars indicate SD (n = 5). *Sig-
nificantly (P < 0.05) lower compared
with KA. ‡Significantly lower (P < 0.05)
compared with KA. GA, graphical
analysis; TLS, total least squares;
MA1 and MA2, multilinear analysis 1
and 2; KA, kinetic analysis.
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assumption by Eq. 1 motivated the use of TLS in the
present study, because TLS accounts for random noise
with mean zero in the independent variable (Van Huffel
and Vandewalle, 1991). In contrast, alternative multilin-
ear methods MA1 (Eq. 2) and MA2 (Eq. 9 or A1) more
closely satisfy these two OLS assumption by removing
C(T) from the independent variable. As for assumption 1,
Eqs. 1, 2, 9, and A1 have in the independent variable a
single integral and additionally a double integral of C(t),
in the case of Eq. 9 or A1. Typically the percent noise in
these integral terms is much smaller than the percent
noise in C(T). For example, the percent variations on a
[18F]FCWAY TAC and its integral at 90 minutes gener-
ated with a SF value of 3 in our simulation study were
10.5% and 1.9%, respectively. Slight biases in calculat-
ing single and double integrals of the data from scan
values can occur, however, because they are not instan-

taneous measurements but mean activity measurement
over each scan.

For TLS, we have implemented the solution to the
mixed OLS and TLS problem as described by Van
Huffel and Vandewalle (1991). This solution was imple-
mented for a problem with an arbitrary number of noise-
free and noisy independent variables. In the special case
of two independent variables, one constant and one with
noise (as in Eq. 1), this is mathematically equivalent to
solving for the regression parameters with a quadratic
equation, as recently described by Varga and Szabo
(2002) as the “perpendicular” regression model. We veri-
fied this mathematical equivalence by implementing the
quadratic version of TLS and applied it to our simulated
noisy data, and found that the two methods gave identical
results. Thus, the “perpendicular” regression model of
Varga and Szabo (2002) and our TLS model as applied
to GA appear identical.

The use of TLS for Eq. 1 may not provide a perfect
solution to the bias problem for the following two rea-
sons. First, the structure of Eq. 1 causes the noise distri-
bution of the dependent and independent variables to be
correlated. Second, Eq. 1 can violate another assumption
needed for TLS: that the noise distribution of the two
variables has equal variance (Van Huffel and Vande-
walle, 1991). Our results are consistent with these theo-
retical considerations of TLS; that is, TLS appears to
have only modest to moderate effects on parameter bias.

Varga and Szabo (2002), however, showed dramatic
reduction of noise-induced bias of the TLS-equivalent
“perpendicular” regression method for three tracers with
2T compartment kinetics, [11C]NNC 112, [11C]-d-threo-
methylphenidate, and [11C](+) McN 5652. The reason
for the discrepancy between their results and ours is not
apparent. In both studies, tracers with different kinetic
parameters were used, and the results were not dependent
on tracer kinetics. The noise models and range of noise
levels tested in both studies are very similar. A remaining
difference is the input function. To address whether this
function was the source of the discrepancy, we per-
formed TLS simulations varying the terminal clearance
rate of the input function. Although the value of the
clearance rate somewhat altered the magnitude of the
noise-induced bias, it did not remove the bias, as shown
by Varga and Szabo (2002). Thus, the source of the
inconsistency in these results remains unknown.

CONCLUSIONS

Three alternative linear methods to Logan GA have
been evaluated as strategies to improve V estimates. TLS
estimation accounts for noise in the independent vari-
able, and MA1 and MA2 only have tissue concentration
appearing as integrals in the independent variable(s). Our
results from simulated and actual PET data of the

FIG. 5. Relationship between scanning duration and distribution
volume, V, by graphical analysis (GA), total least squares (TLS),
and multilinear analysis 1 (MA1) for three sets of noise-free
[11C]MDL 100,907 data in the basal ganglia. In these simulations,
k4 values are varied with the V value fixed at 30 mL/mL and the
data are extended to 240 minutes (A), and corresponding graphi-
cal analysis plots (plotted every 5 minutes) (B) in which the plots
are asymptotically linear. Arrows indicate points corresponding to
60, 120, 180, and 240 minutes.
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5-HT1A tracer, [18F]FCWAY, and the 5-HT2A tracer,
[11C]MDL 100,907, show that TLS, MA1, and MA2 all
reduce the magnitude of noise-induced bias at the ex-
pense of increased variability compared with GA. These
noniterative linear methods are computationally simple,
and therefore allow efficient pixelwise parameter estima-
tion. For tracers with kinetics that permit t* to be accu-
rately identified within the study duration, MA1 appears
to be the method of choice. However, for tracers with
slow kinetics and for data with low to moderate noise
ranges, MA2 may provide the lowest bias while main-
taining the computational ease necessary for pixelwise
parameter estimation.

APPENDIX

If the whole blood-to-plasma parent radioactivity is
constant for the scanning period, the MA2 method can be
extended to account for the presence of intravascular
radioactivity. Assuming no radiolabeled metabolites in
plasma, if the total volume of distribution (V*) is defined
to include the plasma, then V* � VN + VS + VP, where
VP (mL) is the regional plasma volume. The following
equation, which corresponds to Eq. 9, can be then de-
rived from Eqs. 5 and 6:

C�T� = �1�0

T�
0

s
Cp�t�dtds + �2�0

T�
0

s
C�t�dtds + �3

(A1)

�
0

T
C�t�dt + �*4 �0

T
Cp�t�dt + �5Cp�T�

where �1 � k2k4V*, �2 � -k2k4 , �3 � -(k2 + k3 + k4),
and �5 � VP. Eq. A1 is a five-parameter version of
Eq. 9, where V* is calculated as the ratio of the first
two partial regression coefficients, −�1/�2. VS is given by
the equation

VS =
�1��1 + �3�*4� + �2��*4 + �3�5�2

�2��1 + �3�*4�
(A2)
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