
Strategies to manage quality requirements in agile
software development: a multiple case study

Pertti Karhapää, et al. [full author details at the end of the article]

The Author(s) 2021

Abstract

Agile methods can deliver software that fulfills customer needs rapidly and continuously.
Quality requirements (QRs) are important in this regard; however, detailed studies on
how companies applying agile methods to manage QRs are limited, as are studies on the
rationale for choosing specific QR management practices and related challenges. The aim
of this study was to address why practitioners manage QRs as they do and what
challenges they face. We also analyzed how existing practices mitigate some of the found
challenges. Lastly, we connect the contextual elements of the companies with their
practices and challenges. We conducted 36 interviews with practitioners from four
companies of varying sizes. Since each company operates in different domains, compar-
ing QR management strategies and related challenges in different contexts was possible.
We found that the companies apply proactive, reactive, and interactive strategies to
manage QRs. Additionally, our study revealed 40 challenges in six categories that
companies applying agile methods may face in QR management. We also identified nine
contextual elements that affect QR management practice choices and which, importantly,
can explain many related challenges. Based on these findings, we constructed a theoret-
ical model about the connection between context, QR management practices, and chal-
lenges. Practitioners in similar contexts can learn from the practices identified in this
study. Our preliminary theoretical model can help other practitioners identify what
challenges they can expect to face in QR management in different developmental
contexts as well as which practices to apply to mitigate these challenges.

Keywords Agile software development . Requirements engineering . Quality requirements .

Requirements management practices . Non-functional requirements . Agile requirements
engineering

1 Introduction

Quality requirements (QRs) are different from functional requirements (FRs) in the sense that
they describe non-functional aspects (e.g., maintainability, reliability, performance, security) of
a system (Wagner 2013; Wiegers and Beatty 2013). QRs are important because even if the

https://doi.org/10.1007/s10664-020-09903-x

Communicated by Jon Whittle

Empirical Software Engineering (2021) 26: 28

Accepted: 11 September 2020 /Published online: 3 March 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09903-x&domain=pdf

promised functionality is delivered, the system will not be regarded as good by users if it does
not have, for example, sufficient performance or usability. Agile software development (ASD)
is aimed at continuously delivering valuable software to customers. The quality aspects of
software are integral to fulfilling customer needs and delivering the promised value. Moreover,
considering QRs too late in the development process produces bottlenecks and necessitates
further work (Schön et al. 2017). It has been found that adopting agile methods often leads to
neglecting QRs when the focus is mostly on delivering working functionality to the customer
as quickly as possible (Cao and Ramesh 2008; Ramesh et al. 2010; Curcio et al. 2018).
Together with the fact that an increasing number of companies, regardless of size, are adopting
agile methods (Rodriguez et al. 2012; VersionOne Inc. 2016), it is important to understand
how QRs are or should be managed in ASD. Recent secondary studies on requirements
engineering (RE) in ASD have highlighted the importance of QRs and have emphasized that
managing QRs in the context of ASD is both challenging and understudied (Schön et al. 2017;
Heck and Zaidman 2016; Heikkilä et al. 2015; Inayat et al. 2015; Magües et al. 2016; Alsaqaf
et al. 2017; Behutiye et al. 2019). Some of these studies—for example, Inayat et al. (2015) and
Alsaqaf et al. (2017)—also concluded that there is a lack of empirical evidence on how QRs
are managed in ASD.

Alsaqaf et al. (2019) is the most recent empirical study to have explored in detail the
challenges associated with QRs in large-scale ASD. As one of our case companies applies
large-scale ASD, we had the opportunity to compare our findings to those of Alsaqaf et al. We
were consequently able to determine whether the same challenges exist in any kind of large-
scale ASD, or whether other contributing factors are involved. This consideration underscores
the importance of accounting for context while studying the management of QRs. However, in
our study of the literature, we discovered that many studies of QR management in ASD focus
on specific QRs while overlooking a careful consideration of context.

Our research contributes to the body of knowledge of empirical evidence concerning QR
management by examining QR management strategies, practices, and associated challenges in
four case companies that apply ASD in different contexts. By differences in context, we mean
differences in the characteristics of the setting in which software development occurs, such as
company size, organizational model, or type of customers. These characteristics are listed as
contextual elements in Table 1. By QR management strategy, we mean a plan containing

different practices to handle QRs; by management practices, we mean the activities that are
carried out to handle QRs in order to realize the plan (Merriam-Webster 2019). The following
three research questions were formulated to determine why practitioners manage QRs as they
do, what challenges they face in doing so, and how the contextual elements of the companies
are connected with these practices and challenges:

& RQ1: What strategies and practices are used to manage QRs in ASD?
& RQ2: What challenges are associated with the QR management strategies and practices in

ASD?
& RQ3: How does context affect QR management strategies, practices, and challenges in

ASD?

In this paper, we report on the findings from 36 interviews we conducted with practitioners
from four ASD companies. These companies have been using agile methods for several years
(from 7 to 13 years). The smallest of the companies employs close to 100 employees; two
companies employ close to 1000 employees; and the largest company employs over 100,000

28 Page 2 of 59 Empirical Software Engineering (2021) 26: 28

Ta
b
le
1

C
as
e
C
om

pa
ni
es

an
d
C
on
te
xt

A
da
pt
ed

fr
om

P
et
er
se
n
an
d
W
oh
lin

(2
00
9)

C
on
te
xt

fa
ce
t

C
on
te
xt

el
em

en
t

C
om

pa
ny

A
C
om

pa
ny

B
C
om

pa
ny

C
C
om

pa
ny

D

P
ro
du
ct

N
a
m
e

P
ro
du
ct
A

P
ro
du
ct
B

S
ev
er
al
pr
od
uc
ts

P
ro
du
ct
D

D
o
m
a
in

S
of
tw
ar
e
de
ve
lo
pm

en
t

T
el
ec
om

m
un
ic
at
io
ns

T
el
ec
om

m
un
ic
at
io
ns

H
ea
lth
ca
re

*
P
ro
d
u
ct

ty
p
e

C
om

m
er
ci
al
so
ft
w
ar
e
m
od
el
in
g

to
ol

C
om

m
er
ci
al
em

be
dd
ed

se
cu
re

co
m
m
un
ic
at
io
n

de
vi
ce

C
om

m
on

pl
at
fo
rm

so
ft
w
ar
e
fo
r

te
le
co
m
m
un
ic
at
io
ns

C
on
tr
ac
t-
ba
se
d
cu
st
om

so
ft
w
ar
e

so
lu
tio
n

*
M
a
tu
ri
ty

o
f
p
ro
d
u
ct

L
on
g-
liv
ed

m
at
ur
e
pr
od
uc
t

N
ew

pr
od
uc
t

L
on
g-
liv
ed

m
at
ur
e
pr
od
uc
t

N
ew

pr
od
uc
t

*
C
u
st
o
m
iz
a
ti
o
n

G
en
er
al
pr
od
uc
t,
sa
m
e
fo
r
al
l

cu
st
om

er
s

P
ro
du
ct
fo
r
sp
ec
if
ic
ni
ch
e

m
ar
ke
t,
sa
m
e
fo
r
al
l

cu
st
om

er
s

G
en
er
al
pr
od
uc
ts

P
ro
du
ct
ta
ilo
re
d
to

di
ff
er
en
t
cu
st
om

er
s

P
ro
ce
ss

*
C
h
a
ra
ct
er
is
ti
cs

o
f
th
e
so
ft
w
a
re

d
ev
el
o
p
m
en
t
p
ro
ce
ss

(a
g
il
e,

p
la
n
-d
ri
v
en
,
…
)

A
gi
le
-b
as
ed
,
co
nt
in
uo
us
,
an
d

in
cr
em

en
ta
l
de
ve
lo
pm

en
t
of

fe
at
ur
es

S
cr
um

-b
as
ed
,
co
nt
in
uo
us
,

an
d
in
cr
em

en
ta
l

de
ve
lo
pm

en
t
of

fe
at
ur
es

P
la
n-
dr
iv
en

an
d
S
cr
um

-b
as
ed

de
ve
lo
pm

en
t
of

fe
at
ur
es

M
ix
tu
re

of
S
cr
um

an
d
K
an
ba
n
fo
r

in
cr
em

en
ta
l
de
ve
lo
pm

en
t
of

cu
st
om

so
ft
w
ar
e
so
lu
tio

ns
,
ag
ile

S
ta
rt

o
f
a
g
il
e
a
d
o
p
ti
o
n

20
06

20
07

20
09

to
20
11

20
12

*
D
is
tr
ib
u
te
d
d
ev
el
o
p
m
en
t

N
o

Y
es

(n
at
io
na
lly
)

Y
es

(g
lo
ba
lly
)

N
o

*
D
ev
el
o
p
er
s
in

d
ev
el
o
p
m
en
t
o
f

th
e
p
ro
d
u
ct

o
r
co
m
p
o
n
en
t

22
50

50
0

U
p
to

9

T
ea
m

si
ze

U
p
to

10
6
to

8
9

U
p
to

9
O
rg
an
iz
at
io
n

S
iz
e
(n
u
m
b
er

o
f
em

p
lo
y
ee
s)

>
10
00

~1
00
0

>
10
0,
00
0

~1
00

*
H
ie
ra
rc
h
ic
a
l
o
rg
a
n
iz
a
ti
o
n
a
l

m
o
d
el

N
o

N
o

Y
es

N
o

O
rg
a
n
iz
a
ti
o
n
a
l
u
n
it
in
v
o
lv
ed

in

th
e
st
u
d
y

D
ev
el
op
m
en
t
te
am

fr
om

on
e

lo
ca
tio
n
de
ve
lo
pi
ng

on
e

co
m
po
ne
nt

of
th
e
pr
od
uc
t

D
ev
el
op
m
en
t
te
am

in
co
m
pa
ny

he
ad
qu
ar
te
rs

de
ve
lo
pi
ng

th
e
pr
od
uc
t

O
ne

lo
ca
l
de
ve
lo
pm

en
t
te
am

fr
om

on
e
bu
si
ne
ss

lin
e
de
ve
lo
pi
ng

a
co
m
po
ne
nt

fo
r
th
at

bu
si
ne
ss

lin
e

D
ev
el
op
m
en
t
te
am

fr
om

on
e
lo
ca
tio
n

M
ar
ke
t

*
T
y
p
e
o
f
cu
st
o
m
er

S
of
tw
ar
e
de
ve
lo
pe
rs

N
at
io
na
l
or
ga
ni
za
tio
ns

O
n
co
m
po
ne
nt

le
ve
l
-
in
te
rn
al
cu
st
om

er
s
us
in
g

th
e
sa
m
e
pl
at
fo
rm

fo
r
di
ff
er
en
t
co
m
m
un
ic
a-

tio
n
te
ch
no
lo
gy

se
rv
ic
es

O
n
sy
st
em

le
ve
l
–
na
tio
ns
,
la
rg
e
or
ga
ni
za
tio
ns

In
st
itu
tio
ns
,
bu
si
ne
ss

or
ga
ni
za
tio
ns

S
et
ti
n
g

B
us
in
es
s-
to
-u
se
r

N
ic
he

m
ar
ke
t

B
us
in
es
s-
to
-b
us
in
es
s
(B
2B

)
C
on
tr
ac
tu
al
de
ve
lo
pm

en
t,
B
2B

C
o
n
st
ra
in
ts

C
om

pe
tit
iv
e
m
ar
ke
t
of

si
m
ila
r

to
ol
s

H
ig
h
se
cu
ri
ty

an
d
sa
fe
ty
,

co
nf
id
en
tia
lit
y,

st
an
da
rd
s

an
d
re
gu
la
tio
ns

S
er
vi
ci
ng

m
ul
tip
le
ne
tw
or
ki
ng

st
an
da
rd
s,

st
an
da
rd
s
an
d
re
gu
la
tio
ns

C
om

pe
tit
iv
e
m
ar
ke
t

*
A
cc
es
s
to

cu
st
o
m
er
s
o
r
u
se
rs

D
ir
ec
t
ac
ce
ss

to
cu
st
om

er
s
an
d

us
er
s

L
im

ite
d
ac
ce
ss

to
en
d
us
er
s

A
cc
es
s
to

in
te
rn
al
cu
st
om

er
s,
lim

ite
d
ac
ce
ss

to
en
d
us
er
s

D
ir
ec
t
ac
ce
ss

to
cu
st
om

er
s
an
d
us
er
s.

V
er
y
fr
eq
ue
nt

co
nt
ac
ts
w
ith

cu
st
om

er
s

Empirical Software Engineering (2021) 26: 28 Page 3 of 59 28

employees globally. The focus of the interviews was on the practitioners’ ASD processes, QR
management strategies and practices, and the challenges of QR management. Since the
companies examined in our study are of varying sizes and are situated in different contexts,
we also investigated the effect of context on QRmanagement strategies and related challenges.
Via this analysis, we were able to create an initial theoretical model depicting the relationship
between context and QR management challenges as well as the practices employed by the
companies to mitigate these challenges.

The main contributions of the study are as follows: (1) a detailed analysis of how the
different case companies manage QRs; (2) an in-depth understanding of the actual challenges
faced by practitioners when managing QRs in ASD, which is essential for focusing research
efforts on generating solutions to actual problems deemed critical from a practitioner’s point of
view; (3) a fuller understanding of how contextual elements affect the choice of QR manage-
ment practices as well as what kinds of challenges the different contextual elements might
pose; and (4) a theoretical model of the connections between these contextual elements and
QR management challenges and practices. We also discuss our findings in light of those
detailed in the existing literature and aggregate the findings in order to facilitate future research
on QR management and support practitioners in the management of QRs.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
describes the research method we followed and introduces the case companies. Section 4
presents our findings regarding the research questions: how the companies applying agile
methods manage QRs, what challenges they face, and to what extent contextual elements can
explain their choice of practices and the challenges they face. Then, at the end of Section 4, we
present our theoretical model. In Section 5, we discuss our main findings and relate them to the
scientific literature. We also outline some implications for practitioners and researchers before
discussing potential threats to the validity of our findings. Section 6 concludes the paper,
providing recommendations for future research.

2 Related work

QRs have been defined as requirements related to quality concerns that are not covered by FRs
(Pohl 2016). As such, QRs have often been referred to as non-functional requirements (NFRs).
NFRs have a definition very similar to that of QRs; for example, they cover aspects like
performance, reliability, and maintainability, which cannot be covered by FRs (Mylopoulos
et al. 1992). Other terms have also been used in the scientific literature, like extrafunctional
requirements (Shaw 1996) or different -ilities (Glass 1998). Despite such terminological
differences, we have used the term QR for all requirements not designated as FRs.

Although several secondary studies (e.g., Schön et al. 2017; Heikkilä et al. 2015; Inayat
et al. 2015) aggregated the research on RE in ASD, focus was placed on requirements in
general, and as such no studies, except for Alsaqaf et al. (2017), exist that describe QR
management. For instance, even though Heikkilä et al. (2015) found that NFRs are often
ignored or implemented relying on tacit knowledge, they did not provide a detailed explana-
tion for why this occurs. Likewise, although Inayat et al. (2015) identified some practices—
mainly related to testing activities, such as acceptance tests, system quality tests, and “inspec-
tive testing” throughout the lifecycle—used to solve challenges posed by NFRs in ASD, they
did not provide details of these solutions; moreover, they reported that the usability of these
solutions has not yet been explored. Schön et al. (2017) found and briefly described ongoing

28 Page 4 of 59 Empirical Software Engineering (2021) 26: 28

work on QR management in ASD in their secondary study, identifying one framework and
two methods for managing QRs in ASD. The framework is called the Agile Framework for
Integrating Non-Functional Requirements Engineering (AFFINE). This framework introduces
a new role into Scrum that is responsible for NFRs (Bourimi et al. 2010). The two methods are
(1) Non-functional Requirements Modeling for Agile Process (NORMAP), in which a taxon-
omy is used to classify requirements as functional or non-functional (Farid 2012); and (2)
SENoR for NFR elicitation through workshops utilizing the quality sub characteristics of ISO
25010, and the importance of NFRs for the development project (Nawrocki et al. 2014). These
studies described and proposed practices that can help manage NFRs (or QRs); however, they
did not focus on a detailed analysis of the QR management strategies or practices that
companies are currently using or on the challenges they are presently facing.

The secondary study by Alsaqaf et al. (2017) focus specifically on QRs in ASD. They
reported on the challenges covered in the existing literature. They summarized the reported QR
management practices in large-scale ASD as well as general challenges to QR management in
ASD. The authors outlined 12 elements of agile processes that result in diminished focus on
QRs, such as the inability of users’ stories to document QRs and the dependency on the
product owner (PO) as the single point to collect QRs. The study also inspected different
solution proposals for QR management in ASD as well as whether the level of agility of these
proposals was considered. They found that the agility factor was considered in only two of the
13 identified proposals. Still, the study did not explain whether the associated challenges were
relevant to a specific context. In a more recent empirical study, Alsaqaf et al. (2019) explored
the challenges of engineering QRs in ASD. They revealed the challenges practitioners face
when engineering QRs, the mechanisms behind these challenges, and the practices applied to
mitigate them. Their research questions were very similar to ours; their focus was on large-
scale distributed agile projects in the Netherlands. One of our studied companies also applies
distributed agile development in large-scale systems. This gave us the opportunity to compare
our findings to those of Alsaqaf et al. Additionally, we included small-to-medium size
enterprises (SMEs) in our study, which allowed us to compare practices and challenges at
different scales of software development. Alsaqaf et al. (2019) also discussed the possibility of
traceability between QR management challenges and context. However, in their study, context
was not modeled in detail and was related mostly to the domain of the companies.

The adoption of agile methods in large-scale development, which was the setting in Alsaqaf
et al. (2019) study, can pose its own set of challenges for the management of requirements, and
QRs are no exception. For example, Kalenda et al. (2018) studied this topic both empirically
and in the literature. They found, among other challenges, that the distributed nature of scaled
ASD places emphasis on constant communication, and that scaling ASD also means scaling
RE, which in turn demands some hierarchy in requirements management. Many of the
challenges that arise when scaling ASD or when transforming the plan-driven devel-
opment of large systems into agile development are both interesting and relevant—
that said, this topic is mostly outside the scope of our study. What is relevant for our
study is that Kalenda et al. (2018) determined, from the literature as well as from
their empirical results, that when scaling ASD, there is the risk of a loss of quality in
code and of an accumulation of technical debt shortly after the transition to scaled
agile processes, if the processes are not managed properly. Additionally, Kasauli et al.
(2017) also studied requirements engineering challenges in large-scale ASD. They also
found that communication and knowledge management are important in such

Empirical Software Engineering (2021) 26: 28 Page 5 of 59 28

development, and they additionally emphasized the importance of bridging the gap
between customers and developers.

In addition to the mentioned studies on QRs in ASD, we found in our own recent
systematic mapping study (SMS) on QRmanagement in agile and rapid software development
some proposals for QR management (Behutiye et al. 2019). Most of these studies, however,
had a narrower scope, focusing only on a particular QR. For example, Azham et al. (2011),
Siponen et al. (2005), and Rafi et al. (2015) focused on security in ASD. Azham et al. (2011)
stated that Scrum does not address security issues. Meanwhile, Siponen et al. (2005) stated, in
their work on integrating security into ASD, that current agile methods lack features to
specifically address security risks. Rafi et al. (2015), on the other hand, proposed a modified
Scrum method to enhance correctness, usability, and security, and they additionally stated that
security and usability are overlooked when focusing on functional features. Usability in ASD
is a recurring theme in the literature as well. Butt et al. (2014), Anwar et al. (2014), and Singh
(2008) are examples of these studies. Butt et al. (2014) worked toward integrating usability
into ASD and found that usability approaches are not followed in agile approaches when
focusing on the development of a running system. Anwar et al. (2014) reported that ensuring
usability is challenging for distributed teams in SMEs that are applying agile methods. Singh’s
(2008, p. 556) study on agile methods found that in “traditional Scrum processes […] usability
is typically included only as an afterthought, if at all.” Usability and security are among the
most frequently studied QRs in the scientific literature we reviewed. As the main focus of these
publications was on solution proposals, they did not include detailed descriptions of the
challenges faced by companies when managing QRs, nor were they all evaluated in an
industrial context.

In our SMS, we also identified some solution proposals focusing not on a specific
QR but instead on a wider range of QRs. Farid and Mitropoulos (2013) proposed the
Non-functional Requirements Planning for Agile Processes (NORPLAN) to improve
the planning and prioritization of NFRs. Cannizzo et al. (2008) explained that the
implementation of continuous integration (CI) can address QRs, particularly robustness
and performance. According to the authors, CI can reveal robustness and performance
issues that are not visible in acceptance tests. Similarly, Chen (2015) showed how CI
enhances the reliability of releases. Continuous delivery helps to identify errors in
deployment earlier through frequent testing. The study by Singh (2008) is one of the
few to have deeply analyzed challenges. However, the focus of the study was on
usability only. Another study that provided a more detailed analysis of challenges was
conducted by Cajander et al. (2013), who also focused on usability as well. The
studies that we identified either did not offer a deeper analysis of the challenges faced
by companies when managing QRs or had a narrow scope, focusing only on a
specific QR.

As a summary, although the literature describes some initial solutions to manage QRs in
ASD, the reported proposals often lack empirical validation (Schön et al. 2017; Inayat et al.
2015; Alsaqaf et al. 2017), making it unclear to what degree they are useful in practice or
which proposal works in what context. In order to understand and address the challenges that
practitioners experience, we must have a better understanding of which challenges are specific
to what context and what kinds of practices can mitigate these challenges. This research will
shed light on the actual strategies used in practice in different companies, as well as related
challenges, and will explore whether—and if so, to what extent—context can explain their
choice of strategies or practices and the accompanying challenges.

28 Page 6 of 59 Empirical Software Engineering (2021) 26: 28

3 Case study design

We conducted a multiple case study (Runeson et al. 2012) of four separate holistic cases.
Runeson and Höst’s (2009) guidelines were adopted for designing and conducting the case
studies. We focused on specific units of development within each company, which are
explained in Section 3.1. In Section 3.2, we describe the data collection procedure and present
profiles of all interviewees. Section 3.3 explains the data analysis procedure. In 3.4 we explain
the guidelines used for constructing the theoretical model.

3.1 Case and subject selection

The companies in our study are all part of the Q-Rapids1 project, which is aimed at improving
QR management in ASD. This study is also part of the Q-Rapids project. The companies were
selected for the project because of their different domains, sizes, and other contextual factors,
as the aim of Q-Rapids is to improve the quality of processes and products in any kind of ASD
context. The companies have all applied ASD for several years. Based on the checklist and
suggestions provided by Petersen and Wohlin (2009) and Dybå et al. (2012), Table 1 presents
detailed information about the company contexts in our study so that others can understand
and make comparisons to our case companies. We divided context into four different facets,
and each facet was further divided into context elements. For example, the Product facet
includes the product name (due to confidentiality, the actual names of the products and
companies are not given), product type, maturity of the product, and customization, which
characterizes the product as a general product, a tailored product, or a product for a specific
niche market. The Process facet characterizes the software development process applied in the
company, when agile development was adopted, whether or not development is distributed,
and the number of developers involved in developing the product. The contextual elements
relevant for QR management practices and challenges, as we will show later in the findings,
are highlighted in Table 1 with an asterisk (*).

3.1.1 Company A

Company A is an SME developing a long-lived software modeling tool for developers and
architects to support software and system engineering. The company is also positioned as a
strategic partner of the largest clients of the market in the sectors of Finance, Banking, and
Insurance, and it has developed expertise in the field of Digital, Big Data, Analytics,
Performance, and Operations. Our case study within Company A was conducted with a
software development team in charge of developing one of the modeling language components
in that tool. The tool, which has been developed for 25 years, is used by software developers
following a model-driven development approach and is also used by the company itself. The
development process follows the values of the Agile Manifesto (Fowler and Highsmith 2001),
emphasizing working software over documentation and utilizing face-to-face communication
and close collaboration with customers. The development process is iterative; however, the
company does not follow any formalized method, like Scrum. Even though the content of a
release is planned every six months, the company prefers to not follow any pre-defined sprint
cycles. In addition, even though development relies heavily on face-to-face communication,

1 http://q-rapids.eu/

Empirical Software Engineering (2021) 26: 28 Page 7 of 59 28

https://doi.org/http://creativecommons.org/licenses/by/4.0/

standard daily or weekly meetings are not practiced. Meetings take place when needed. The
focus is on being highly responsive to change, staying ahead of the competition, and fulfilling
customer needs, which are the drivers when prioritizing requirements. Requirements are
managed in terms of features. Features to be developed are elicited by product management
following a feature strategy given by the executive managers and are heavily influenced by
customer feedback. The features are communicated to and discussed with the development
manager, who in turn plans the features for the sprints together with the developers. Unit tests,
nightly integration tests, and validation tests are done before release. All faults are reported
through automated reports and discussed between developers, the quality assurance team, and
the development manager whenever needed.

3.1.2 Company B

Company B is a large enterprise that develops secure communication and connectivity
solutions for multiple industry domains. In a bid to achieve efficiency and shorter time-to-
market, the company moved to agile and lean software development in 2007. A well-defined
Scrum process, “almost directly from the book,” as one interviewee stated, is followed in the
development of highly secure, reliable, and robust embedded devices. The company aims to
identify the needs of the market and to fulfill those needs with special solutions. The company
has all their development processes well-documented, which is a requirement in the security
and safety-critical domain. The development of one of those devices, which started in 2015, is
the unit of focus in our case study. The company uses a standardized process for managing the
development process as follows. After the project is initiated, product management approves
the product proposal. Elicitation of high-level epics follows this approval. In this case, these
high-level epics are refined to features and user stories together with developers. Everything is
documented in internal wiki-pages. The user stories are passed on to sprint planning, where
they are prioritized in the sprint backlog. A sprint is normally two weeks long in a six-month
release cycle. Implementation is supported by automated build and testing, manual code
review practices, continuous integration, and acceptance testing. An intelligent dashboard is
used to visualize and monitor the status of the development process in real time. The company
also applies the standard Scrum practices of daily stand-up meetings, sprint reviews, and
retrospectives. There is, however, one difference from the common Scrum practices: Due to
the special customer segment (i.e., public safety, law enforcement, military, etc.), the company
has limited access to the final users of the embedded products and thus limited communication
with them during the actual development of the product. Trial users, who can be company-
internal, may act as users to test usability prior to release. Feedback from real users is taken
into consideration after release, in the maintenance phase.

3.1.3 Company C

Company C is a global company with several business lines in which development is
distributed to many locations across the globe. Several coordinated agile teams develop large
systems with complex dependencies. Thus, we can consider development in Company C as
very large-scale ASD. Due to the size of the company, there is a need for some hierarchy in the
decision making and coordination of development done by several teams. Thus, we classify
the company as an organization with a hierarchical organization model in the context table
(Table 1). All the different business lines have a global process description to follow; however,

28 Page 8 of 59 Empirical Software Engineering (2021) 26: 28

their practices are not identical. Some business lines focus more on software products; while in
others, hardware is tightly coupled with the software. The number of employees also varies
greatly between business lines. Thus, the process is not exactly the same in all business lines.
Even though our main focus of study was on one specific business line, we included interviews
from other business lines as well to get a richer picture of QR management in the company. In
this paper, we do not go into details of any specific business line but generalize the description.
In general, in a business line, development is carried out by teams applying agile methods.
Scrum is the most preferred method of the small dynamic teams of nine developers that are
formed based on required competences. Features to be built are decided upon and prioritized at
the management level, where business opportunities are analyzed. Following that, a separate
group of people within that business line is responsible for splitting those features into sub-
features and for refining the sub-features into requirements and acceptance criteria. Finally,
this same group of people specifies the requirements. Features and sub-features usually require
so much effort and different areas of expertise that their development is divided not only into
different teams in one location but also into teams at different sites. Thus, one team in one
location develops only a small part of a component that is part of a sub-feature, which in turn is
part of a feature of the system. Eventually, the POs are responsible for refining the tasks for
teams. The PO completes the refinement together with some of the developers, depending on
the expertise required for the task. Once this has been done, the PO presents an effort
estimation to managers for approval before implementation. Development is accomplished
in two-week sprints in either one-month or six-month releases, depending on whether the
release is an internal release, a maintenance release, or a customer release. The customer
release is typically a six-month release. Testing starts as soon as there is something to test;
developers run unit tests before committing code to the CI. A multi-level CI starts with the
integration of small parts at the lowest level. Any issues found at this level can be commu-
nicated directly back to developers for them to address. The results of several teams are
integrated on a higher level in the CI and finally in system testing at the highest level. This
practice helps to ensure quality by making it possible to address issues found in lower-level
testing as fast as possible.

3.1.4 Company D

Company D is the smallest of the case companies in our study. The company develops
customized applications and software solutions for other companies and institutions operating
in various areas, such as health care, security, warehouse management, or the space sector.
Each project lasts between two and 14 months. The project of focus in our study was in the
health care domain. The development employs a mixture of Scrum and Kanban. The company
works in close collaboration with customers. Several meetings take place in “scoping sessions”
before development, in which the requirements are elicited and an acceptance criterion
is formed. The client also participates in intermediate reviews of the product if agreed
upon in the contract. The PO sets up the project configuration and development team
and defines the tasks for developers to complete in one- to two-week sprints. Sprint
length depends on the length of the project but usually lasts one week, from Tuesday
to Tuesday. The sprint planning, sprint review, and sprint retrospective meetings are
held consecutively within one meeting between sprints. Daily stand-up meetings are
also practiced during development. A project Kanban board is utilized to manage the
flow of work in the software development process.

Empirical Software Engineering (2021) 26: 28 Page 9 of 59 28

3.2 Data collection procedure

Data was collected incrementally through semi-structured interviews by the first two authors.
The third author participated in one interview to ensure that the interviews flowed well and for
the purpose of researcher triangulation. Interviews were conducted in two rounds. The first
round consisted of two sets of interviews. The first set, the initial interviews, were conducted
with 13 interviewees in 12 interviews (one interview had two interviewees, see Table 2 in
Section 3.2.1): three interviewees from Company A, four from Company B, four from

Table 2 Interviewee Profiles

Comp. ID Interviewee role Experience in years in Interview length
(min)

SW dev. Comp. ASD Round 1 Round 2
A P1** SW architect, SW developer 11 11 11 48 52

P2 Project manager 20 6 10 28 66
P3 Head of research unit 17 11 12 48
P22 Executive manager 30 30 13 47

B P4, P5 P4 – DevOps specialist, Technical leader, 15 2.5 15 54 65
Project manager, SW architect
P5 – Product owner 10 5 7 54

P6 Quality manager 21 11 9 63
P7 Production tester

SW developer
25 6 5 54 68

P30** Project manager 25 17 12 51
P31 Process coach 15 15 6 62

C P8 Requirements manager 20 20 12 54
P9 Product owner 17 4 9 41
P10 Agile coach 20 16 11 80
P11 Project manager 4 4 4 42
P14* SW developer 16 16 5 43
P15* Test architect NA 20 7 51
P16* SW developer 22 22 10 58
P17* Product owner 20 10 10 50
P18* Planning manager 20 20 NA 54
P19* Competence developer,

Planning manager,
Quality specialist

24 24 12 59 61

P20* Product owner 20 18 10 45
P21 Fault manager 3 33 3 37
P23** Transformation expert on processes and tools NA 1.5 NA 101
P24 Quality manager, Competence manager 18 25 10 45
P25 Technical leader,

Project manager
12 10 8 48

P26 Fault manager,
Process manager

6 20 6 65

P27 Quality specialist,
Process improvement expert

NA 19 NA 58

P28 SW engineer,
CI developer

6 6 6 54

P29 SW developer 16 16 6 50
D P12 Product owner,

Scrum master,
Chief SW architect

10 10 5.5 68 85

P13 SW architect,
Chief of SW development department

8 8 6 47

28 Page 10 of 59 Empirical Software Engineering (2021) 26: 28

Company C, and two from Company D. Based on the initial analysis of these interviews, we
identified the need to have complementary interviews at Company C to get a more
detailed view of their QR management practices. Company C is much larger than the
other companies, and some of the interviewees came from different business lines
with slightly different practices. We conducted seven additional interviews in Com-
pany C. These complementary interviews used the same interview script as the initial
12 interviews; thus, they were part of the first round of interviews. Later, a second
round of interviews was conducted to confirm, complement, and further deepen our
knowledge of QR management in the companies. Some of the interview questions in
the second round were specific for each case company to capture all relevant
information that was not captured during the first interview round. In the second
round, we conducted 17 interviews: three interviews from Company A, four from
Company B, nine from Company C, and one from Company D. The distribution of
interviewees across companies is also depicted in Fig. 1.

Overall, we conducted 36 interviews with 30 different participants. One interview in the
first round included two interviewees, P4 and P5, while other interviewees were interviewed in
both the first and second rounds (P1, P2, P4, P7, P12, P19). The interview length for these
participants in both round 1 and round 2 are indicated in Table 2. Those participants who
participated in the complementary interviews of round 1 are indicated with a star (*).

Each initial interview was divided into three sections. At the start of the interview, each
interviewee was given an informed consent form to read and sign before the recording began.
The interview then started with warm-up questions, asked regarding the interviewees’ expe-

Fig. 1 Interview rounds in the different companies

Empirical Software Engineering (2021) 26: 28 Page 11 of 59 28

rience in ASD and the company in question, after which the interviewees were asked about
their understanding of QRs. The purpose of this question was to understand how the
interviewees perceived QRs and to make sure they understood what we meant by QRs. The
rest of the interview questions were defined and structured around different activities of RE
according to CMMI for development, version 1.3 (CMMI Product Team 2010). We acknowl-
edge that there are varying views on whether CMMI and ASD work together; however, we
used CMMI as a comprehensive checklist, not as a maturity or capability model. With the help
of CMMI, we sought to ensure that we covered all the different aspects of RE. We
asked questions related to how QRs are elicited, how they are prioritized, how they
are documented and validated, and so on. In addition, questions were asked about
whether the interviewees saw any connection between QRs and other areas related to
software development, such as planning and risk management. Finally, in the last
section, we wrapped up the interview by asking about any challenges the interviewees
faced in the management of QRs in their current development practices. We did not
ask about specific challenges that have been reported in the scientific literature in
order not to bias the interviewees into thinking that they might have experienced
those challenges. In the second round of interviews, we first confirmed the findings of
the first round of interviews, after which we asked about specific details that we
failed to capture in the first round. The interview scripts can be found in Appendix 1
and Appendix 2.

The interview scripts were devised by two researchers and reviewed by two additional
researchers. All interviews were recorded, stored for internal use by the researchers only, and
transcribed for analysis. Transcription was performed by a professional transcription service
provider. All data extracted from the interviews were anonymized. We conducted and
analyzed all interviews in peers in order to minimize researcher bias.

3.2.1 Subjects

All interviewees were practitioners who were working in software development either directly
in the development of products or as a PO or manager with knowledge about QRs or the
software development processes. If the company had specific roles related to the quality of the
product, these roles was of special interest. Interviewees were selected from varying roles on
different levels in the companies to obtain a broad range of perspectives on the management of
QRs. From each case company we had one person that was a member of the Q-Rapids project,
that we call a champion. The champion helped us in identifying interviewees. In Companies B
and D, the champion was a manager; in Company A, the champion was a SW architect; and in
Company C, the champion was a transformation expert on processes and tools. A pre-
questionnaire was sent to each champion prior to the interviews, in which we asked for
domain and context information, as well as for information regarding the methods and tools
used in their software life cycle management. The pre-questionnaire was designed to gather
initial information for the Q-Rapids project and was also utilized for our case study. Those
parts of the pre-questionnaire that were utilized for this case study are presented in Appendix 3.
The pre-questionnaires were also employed for triangulation purposes during data analysis.

Table 2 lists interviewee information for each case company. Those champions who also
participated as interviewees are indicated with two stars (**). Note that some interviewees
have more than one role. Three of the interviewees have N/A (not applicable) in the experience
column. P23 is an expert on development processes but has not worked in software

28 Page 12 of 59 Empirical Software Engineering (2021) 26: 28

development as a developer. Interviewees P15 and P27 stated that they have worked with
software development for longer than they have been employees at the company, but they
could not say for how long. Since they both started out in the company as young developers,
we can safely assume that their years of experience in software development are equal to their
years of experience in the company.

3.3 Analysis procedure

The coding of interview transcripts was completed with NVivo qualitative data analysis
software (NVivo 2018). The challenges and practices were coded in a deductive (Miles and
Huberman 1994) manner with a start scheme that was devised a priori by two researchers
according to the main topics in the interview questions (ways of working, QR understanding,
QR elicitation, QR communication, QR documentation, specifying QRs, QR prioritization,
QR validation, and related challenges). The concrete practices and challenges emerged during
the analysis of the data. Fig. 2 shows a snapshot of coding in NVivo. On the left-hand side,
next to the blue bubbles, are the codes of which elicitation is highlighted, and on the right-hand
side there are excerpts of interviews coded as relevant for elicitation of QRs. Identifying the

Fig. 2 NVivo used in coding interview transcripts according to themes in interview questions

Empirical Software Engineering (2021) 26: 28 Page 13 of 59 28

connection of the practices and challenges to context was achieved in an inductive way
through thematic analysis (Cruzes and Dybå 2011). Contextual elements were identified from
the interviews and the pre-questionnaire (the contextual elements are presented in Table 1).

Figure 3 shows an example of how we coded parts of interviews related to practices and
challenges in the elicitation and analysis of QRs. We coded the practices as shown by text with
blue underlining in the yellow boxes and matched them to the activities discussed. Fig. 3 also
shows the “together with the client” and “limited access to user scenarios” codes with red
underlining. As these were both related to the same concept of access or limited access to
users, we classified them under the same theme. Further, we identified contextual elements
enabling practices or contributing to inhibiting challenges. In the example in the figure, access
to users enables the practice of conducting scoping sessions together with the users and using
templates and checklists in the elicitation and analysis of QRs. It also shows how limited
access to users poses a challenge for elicitation but can later be mitigated by the practice of
value stream mapping sessions (VSM, explained later in Section 4.1.2). Interviewee IDs and
parts of the text in the challenge box are hidden to ensure confidentiality.

The information from the pre-questionnaire was also used for triangulation by checking that
the information collected through interviews was in agreement. We conducted workshops
together with the champions and key roles of the companies to validate the results of our
analysis. The number of workshops and participants are presented in Table 3. During the
workshops, which lasted approximately 1.5 h, we presented process models of the companies’
software development, including QRmanagement, followed by an open discussion on whether
the model was accurate and properly fit the company’s way of working. In most of the case
companies, the input from the workshops required only minor changes in detail regarding, for
example, QR management tools and details about QR flows, but these changes did not affect
the findings presented in this paper in any other way. In the case of Company C, we needed to
update the flow of reporting to correctly order the activities and recurrence timescale. When
structuring the findings, we constructed a theoretical model of the relationship between

Fig. 3 Example of connecting challenges and practices with contextual elements

28 Page 14 of 59 Empirical Software Engineering (2021) 26: 28

contextual elements and the reported challenges and included also the practices that the
companies apply that have the potential to mitigate the challenges. This was done to better
highlight the reasons for the chosen practices and how the practices, challenges, and contextual
elements were connected. How we did this is presented in Section 3.4. After we had analyzed
the contextual impact, the results were shared with the champions of the companies, who
reviewed the results. The results were discussed with the champions when necessary and
minor changes to details were done when needed. These results can be used in future research
to explore whether the findings are generalizable to other companies in similar contexts.

3.4 Theoretical model formulation

Sjøberg et al. (2008) proposed building software engineering theories in five steps: (1)
defining the constructs of the theory, (2) defining the propositions of the theory, (3)
providing explanations to justify the theory, (4) determining the scope of the theory,
and (5) testing the theory through empirical research. These steps are not usually
applied sequentially but are often carried out iteratively and partly in parallel instead.

In our theoretical model, constructs and propositions (steps 1 and 2) were extracted from
our results as it is described in Sections 4.1.1 and 4.1.2, respectively. In order to offer
explanations for each proposition (step 3), we provide logical justifications based on interpre-
tations of our empirical multiple case study (in Section 4.1.2), which is one of the ways
explicitly mentioned in Sjøberg et al. (2008) to perform this task. Regarding the determination
of the scope of the theoretical model (step 4), we specify all the contextual factors that define
the cases for which the proposed theoretical model applies as attributes of the constructs.
Finally, the testing through empirical research of the theoretical model (step 5) has not been
done in cases other than the four cases of the present study. Further empirical research should
consolidate, extend, or refute the results of the proposed theoretical model.

4 Results

In this section, we present the findings from each case study and the results of the
cross-case analysis. We first give an overview of the QR management strategies (a
plan containing different practices to handle QRs) and practices (activities that are

carried out to handle QRs in order to realize the plan) in each case company in
Section 4.1, with a cross-case comparison in Section 4.1.5 to answer Research
Question 1. Then, we present findings regarding challenges in Section 4.2 to answer
Research Question 2. We explain the differences in challenges and practices with the
help of the different contexts of the companies in Section 4.3 to answer Research
Question 3. Finally, in Section 4.4, we present the findings more systematically in the

Table 3 Workshops for Validating Results of Interviews

Participants in Workshop 1 Participants in Workshop 2

Company A 4 (P1, P2, P3, P22) 3 (P1, P2, P22)
Company B 3 (P4, P6, P7) 4 (P4, P7, P30, P31)
Company C 3 (P23, P24, P28) 2 (P23, P28)
Company D 2 (P12, champion) (no workshop)

Empirical Software Engineering (2021) 26: 28 Page 15 of 59 28

form of the theoretical model of QR management challenges and practices. In the
following text, all quotations from the interviews are in italics.

4.1 Strategies and practices to manage QRs in ASD

Overall, we found that the term QR is a fuzzy concept among practitioners in agile companies.
When we asked them about QRs, the discussion tended to focus on quality in general and how
it was managed. When seeking to discuss specific RE practices, the discussion tended to focus
more on FRs. The interviewees naturally tried to reflect on the practices they were following,
which were mostly related to FRs or to the development of features. The same phenomenon
was observed regarding the questions about challenges. The interviewees tended to focus on
the challenges the interviewees were currently facing in their work, which did not necessarily
relate to QRs. The results reported in this section are relevant for QRs.

We characterized the strategies the companies apply as proactive, reactive, and interactive.
Table 4 explains these strategies together with examples. The overall strategies applied by each
case company mostly feature all of the above characteristics. However, one strategy of QR
management can be more dominant than others. We do not intend to classify the strategies as
one being better than the other.

4.1.1 QR management in company A

The goal of Company A is to deliver as stable and reliable a product as possible. Thus, the
most prominent QRs are stability and reliability. The strategy they apply to reach this goal is
mostly reactive and interactive. The only proactive characteristic is that the company roadmap,
which contains the company’s long-term and short-term goals, is the first source for high-level
QRs. The interactive characteristic of their QR management comes from the fact that the
developers use the product in the development themselves and can identify concerns regarding
the quality of the product. They allow the QRs to evolve during development. “We are using

the tool to develop the tool. That way, the developers can spot any problems.” The reactive
characteristic comes from the practice of not specifying QRs up front and relying heavily on
feedback from quality assurance (QA) and users. This is possible because the product is
mature and the most important QRs have already been established.

Table 4 Categorization of QR Management Strategies into Proactive, Reactive, and Interactive Strategies

Strategy Definition (Merriam-Webster 2019) Meaning and example

Proactive “creating or controlling a situation rather
than just responding to it after it has
happened”

QRs are analyzed and specified before development
starts (up-front analysis and specification): e.g.,
Mock-ups and templates are used in meetings to-
gether with the client prior to development to elicit
and specify important QRs.

Reactive “acting in response to a situation rather than
creating or controlling it”

QRs are allowed to surface later in development: e.g.,
a minimum viable product can be developed for the
users, whose feedback can be used to identify
important QRs.

Interactive “(of two people or things) influencing each
other”

General, high-level QRs are identified early, and they
are evolved during development: e.g., users validate
QRs in review sessions during development, before
the product is released.

28 Page 16 of 59 Empirical Software Engineering (2021) 26: 28

Instead of explicitly specifying QRs, the company relies on the experience and expertise of
the developers to consider these QRs in development. “It is a trade-off. Do you spend time

doing specification, or do you spend time developing?” Another interviewee said: “The
developers know it. They know the QRs.” As for FRs or the features in general, specification
and documentation of QRs is minimal, as promoted in the Agile Manifesto (Fowler and
Highsmith 2001). Company A relies mostly on Word documents, emails, and whiteboards in
documentation and communication. “The QRs are mostly in the heads of the managers, and

they are communicated through emails and Word documents,” one interviewee reported.
Another interviewee stated that “the Word documents can be considered as backlogs.” When
the executive board has decided on the priority of features to implement, there is a meeting in
which the most suitable architecture is discussed. There is not much more discussion about
QRs at this point, unless the feature to be implemented is completely new. In that case, they
produce detailed documentation to explore the extent to which the new feature is compatible
with existing features or technologies; however, there is still no specification or documentation
explicitly for the QRs, even though they are communicated verbally.

In testing, the company utilize both automatic testing in the CI and manual testing to
identify quality concerns, and finally, they utilize customer or user feedback extensively. Users
can provide feedback through the open source community, and paying customers can utilize a
hotline for reporting issues directly to the sales team. These are means to identify “quality

issues,” so called because they are reported as issues and could be translated into QRs. For
example, a report could say that an element of the interface does not scale when changing
resolution. This issue could be translated into a QR by stating that all elements in the interface
should scale when changing its resolution. The quality-related errors found in testing are
discussed between the QA team and the product manager to decide on the priority of the
issues. Here, the “gravity of the issue” (i.e., the criticality), as some interviewees call it,
determines the priority. For example, when a user experiences a crash—i.e., when the software
stops working, and the user reports the issue—it receives the highest priority. “Blocking
issue”—i.e., when the software prevents the user from accomplishing a task—have the
second-highest priority. The customer-reported issues are prioritized in the same way as the
internally found issues, with the difference being that they always get the highest priority.

Lessons learned

& Company goals and roadmaps can be used for proactive elicitation of high-level QRs
& With a mature product, there is a reduced need to specify all QRs up front
& When developers use the tool in development, they can interactively evolve QRs during

development
& Close connection to users enables valuable user feedback for reactive elicitation of QRs
& CI and QA can also be utilized for reactively eliciting QRs

4.1.2 QR management in company B

The most emphasized goal in Company B is to deliver value to the customer: “We always try

to think, what is the value of this feature?”QRs are important for this goal. The strategy for QR
management in Company B is a combination of proactive, interactive, and reactive. It is
proactive in the sense that, currently, it includes practices for QR management already in the

Empirical Software Engineering (2021) 26: 28 Page 17 of 59 28

initial steps before actual development. Initial roadmaps and high-level epics include QRs that
may come from, for example, the regulatory needs of a governmental customer. The interac-
tive part comes from a periodical review/check done by the company to ensure that the
development is in line with the goals. The reactive part comes through ongoing test automation
in the CI, separate security testing, and trial user tests.

QRs are prioritized already at an early phase when roadmaps and high-level epics
are defined. The value to the customer is an important theme in the prioritization. The
product manager prioritizes features and requirements together with POs. Features are
stored in product backlogs using Jira. At the feature level, QRs are considered in the
Definition of Done (DoD) as quality targets, i.e., target values for general quality-
related aspects in exit criteria, e.g., testing should reach a certain code coverage. One
example of how a QR is considered is that, at the feature level, it is specified that all
stability tests need to have been run. These are done through ongoing automated tests.
When the features are broken down to user stories and further to lower-level tasks,
these user stories and tasks include details that are more technical, and these include
QRs related to, for example, performance or power consumption. However, low-level
DoDs do not contain quality targets, as in the feature level, but include only items to
be done and to ensure that everything has been tested. It is only the higher-level DoD
that contains quality targets. The stability and performance QRs are tested in auto-
mated ongoing tests in the CI.

As the value to customers is important, it is also considered during development. Company
B has so-called value stream mapping (VSM) sessions during development in which they
periodically check that the product is in line with the goals, and that they are producing
benefits for the end user. “We start testing the feature. Does this feature work? Is this feature

in line with the goal? Does this feature produce any value?” This also helps Company B to
reprioritize QRs. In testing, Company B applies ongoing test automation for performance and
stability, and basic acceptance testing is performed after every sprint until release. A separate
testing group focuses on security testing only because security is of high importance in
Company B. Usability is not tested until a trial phase, which is performed by trial users who
are personnel at the same company.

Lessons learned

& When there are standards and regulatory needs, it is necessary to proactively plan QRs up
front

& Software internal QRs (stability and performance) can be ensured by extensive ongoing
tests

& With limited access to users, an internal VSM session can help to align QR priorities with
goals and values

& When security is important, it is advisable to have a team of experts in security for testing
& QRs can be documented as part of DoD and acceptance criteria

4.1.3 QR management in company C

Company C applies a strategy that utilizes mostly proactive and reactive practices for the
management of QRs or quality in general. As the system is large and complex, some level of

28 Page 18 of 59 Empirical Software Engineering (2021) 26: 28

hierarchy is necessary to coordinate many development teams. Most elicitation, analysis, and
specifying of QRs is done up front before implementation together with FRs in the features.
Extensive testing in a multi-level CI is practiced to ensure quality as a reactive practice, and
review meetings are held periodically to address quality concerns for the future. One interac-
tive practice is also utilized for managing QRs; developers can elicit QRs during development
and suggest their inclusion into the backlog.

Development is feature-driven, and all requirements, including QRs, are derived from
features. In the initial phase, the elicitation, analysis, and defining of features are done by
product managers. Factors such as customers, business opportunities, and the organization’s
roadmap are taken into consideration in the feature elicitation and analysis from which QRs are
derived. In the feature elicitation and analysis, QRs are included as quality criteria for features,
just like in Company B. Features are further divided into sub-features before they are split into
tasks for development. The sub-features are prioritized by managers for the POs. Thereafter,
POs and Scrum masters divide the sub-features into tasks for development teams. When the
quality criteria are broken down for the developers, they are written down as part of the DoD
as a list of certain practices to follow, certain guidelines to follow, and certain tests to run.
Some of the items listed in the DoD relate to QRs—for example, unit testing to ensure
robustness.

For the reactive part, extensive testing is practiced to verify that the product meets the desired
quality as well as functionalities. Testing is done at several levels, depending on the duration of
tests, to speed up the discovery of potential faults. Developers can perform unit tests test when
compiling before they push the code to the CI. “We have three different quality gates in the CI.

More parts of the system are integrated in each gate.” In other words, there are three levels of
testing in the CI. In the case of one of the business lines, which is responsible for developing a
common platform software, the most prominent QR in integration testing is interoperability with
existing systems or legacy systems. Any interoperability issues that arise from testing are
communicated back as faults. Lower-level integration-testing faults are communicated directly
back to the developers, and the developers are responsible for carrying out root-cause analysis.
Higher-level integration faults are communicated back to specific quality roles in a monthly
quality meeting, who are responsible for root-cause analysis. These quality roles participate in
meetings with managers, in which they present the analysis of the faults, collaboratively decide on
actions to take to correct the faults, and agree upon actions to take to prevent these faults in the
future. The result may be a process change or an item to put in the product backlog.

In Company C, there is also another practice used to manage quality. There is a small
reservation for quality-related initiatives as a percentage of the effort of a sprint. This means
that any developer can suggest including quality-related items into the backlog. These quality-
related initiatives can regard both process and product improvement. For example, a developer
may realize that a certain QR might be easier to ensure with a certain test that is currently not
done. He or she can suggest including the implementation of the test as an item in the backlog.
As another example, a developer might realize that it would be much easier to pinpoint the root
cause of a fault if he or she would have an additional logging of an event in the log file that the
system produces. The developer can then suggest including in the backlog, as a quality item,
that log file X should incorporate the logs of event Y. The suggestions are inspected, after
which management decides whether to include the new suggestion; if so, the suggestion is sent
to the developers to implement. In a sense, this is a practice to elicit quality-related items, if not
QRs. We call this practice quality reservation-based elicitation of QRs when referring to it
later in the paper.

Empirical Software Engineering (2021) 26: 28 Page 19 of 59 28

Lessons learned

& Distributed development of a large and complex system requires some up-front planning
of QRs

& When interoperability with legacy systems might be challenging to elicit up front, a multi-
level CI could help

& Knowledge of the experts, i.e., the developers, can be utilized to elicit QRs during
development, and the QRs can be proposed for inclusion in the backlog

4.1.4 QR management in company D

The strategy to manage QRs is proactive, interactive, and reactive in Company D; however, in
comparison to other cases, Company D utilizes more proactive and interactive practices. QRs
in general play an important role in software development in Company D. The visual aspects
of the system to be developed are an important topic of the initial scoping sessions together
with the client. In these scoping sessions, mock-ups are utilized to present a possible solution
for a given problem. The mock-ups are used to elicit requirements, including QRs. “We

present them the mock-up filled with some dummy data. Does it look right? Does it work as

it should? Do you find all information you need? Does it respond as you expect?” If agreement
is reached, a contract is made that includes the acceptance criteria, and a second round of
scoping sessions is held in which further QRs are elicited with the help of mock-ups. Initial
mock-ups, together with notes on client feedback as well as user stories and epics drawn up in
the scoping sessions, serve as a baseline for the following implementation process.

The PO is mainly responsible for the prioritization of requirements; however, the
prioritization decision is made after consultation with the development team. These
requirements are mainly functional, and QRs are included in the FRs. “For example,

the functionality should provide the user some information in tabular form. Then

there is a question of how many and which fields do you want to be shown. In what

order should they be displayed? How should the rows be organized in the table?

Should we include paging, infinite scroll, and so on?” These details are necessary to
be able to provide the requested functionalities. These details are documented in a
template that the PO utilizes for specifying some of the QRs. The interviewed PO
stated that this template has been designed mainly to help his own work. This way,
time is saved, as details are recorded and given directly to developers, avoiding
situations in which a developer has to stop work to get additional details from the
PO. With the template, the PO can communicate some of the QRs up front and is the
main channel of communication of QRs at the beginning of a project. The template is
also reusable in other projects.

In addition, QRs are communicated and clarified in the meetings between sprints. Daily
stand-up meetings, in which the product owner also participates, are additionally used for
discussing QRs or acceptance criteria, if necessary. Additionally, Company D has review
meetings with the customers during implementation to check the progress of every sprint or
every second sprint, depending on the contract. With the help of this strategy, which includes
the client from the beginning to the end, it can be ensured that the customers get what they ask
for, and that the result is of sufficient quality. Finally, some QRs are included as acceptance
criteria. For example, it might be specified in the acceptance criteria that the user interface

28 Page 20 of 59 Empirical Software Engineering (2021) 26: 28

needs to be responsive at a certain resolution, or that the front-end needs to support certain
versions of certain browsers, or that support for multiple languages is implemented and
working. Some aspects of QRs are included in the DoD; however, the DoD is more generic.
The acceptance criteria are more detailed. “To meet the acceptance criteria is one part of the

DoD.”Meeting the acceptance criteria is mostly achieved through manual testing at the end of
development.

Lessons learned

& When accessible, users should be utilized throughout development—in elicitation, analy-
sis, specification, and validation of QRs

& When accessible, users can be consulted during development in intermittent review
meetings to verify already elicited QRs and to identify possibly missed QRs

& Mock-ups and quick prototypes are valuable when eliciting QRs from the users, especially
if usability is important

& Templates are useful for eliciting important QRs that users might usually omit
& Templates are useful for specifying and document QRs, and for communicating them to

developers

4.1.5 Cross-case analysis: Comparison of QR management strategies and practices

This section compares similarities and differences in QR management strategies and
practices in the case companies. Many differences are attributable to the companies’
contexts, which are further elaborated in Section 4.3. Table 5 summarizes the strat-
egies and practices we found in the case studies. The overall strategies are in one
category alone and the practices we categorize according to RE activities in SWEBOK
3.0 (Bourque and Fairley 2014).

What is common to all the studied cases is that they have clear quality goals and manage
quality in general. The QRs are tightly coupled with FRs and are included in the acceptance
criteria; however, practitioners appear to have a much better understanding of how to manage
FRs, since none of the companies have as well-defined a plan for the management of QRs as
they do for the FRs. For any specific QRs, the companies’ strategy is to complement their
development processes with practices specifically oriented toward reaching their quality
goals—for instance, having a separate team for testing security or utilizing mock-ups when
user experience is important.

All of the case companies utilize proactive practices in their strategies, albeit a bit
differently. Companies A to C employ a company roadmap as the first high-level source of
QRs. They elicit QRs from the high-level feature or epics. On the other hand, Company D, as
their development is contract-based, works closely with the customers, and is able to
utilize them directly for QR elicitation with the help of templates. Most of the companies
also utilize interactive practices for the management of QRs. Company D works closely
with the customers whenever possible, while Company B practices VSM sessions in
which they check the results of development with the goals. Company A uses the tool to
develop it, and thus developers can notice if any QR-related aspects are not right, while
Company C utilizes the expertise of the developers by having them suggest QRs to include
in the backlog. For reactive practices, validation was very similar in all companies. All

Empirical Software Engineering (2021) 26: 28 Page 21 of 59 28

companies include some QRs in the acceptance criteria, and some are included as items in
the DoD. Additionally, all companies utilize CI, to which developers contribute on a daily
basis. QRs are distributed in different artifacts rather than being considered as separate
items in the product backlog (Table 5).

4.2 QR management challenges

In this section, we present the challenges in managing QRs in ASD as elicited in our interviews.
We categorize the individual challenges according to the area of effect. In that way, the categories
follow the same structure fromSWEBOK3.0 (Bourque and Fairley 2014) as in the previous section.
However, we situated implementation as an additional area of effect, in a category called “Chal-
lenges in QR implementation.” The category related to specifying QRs was denoted as “Challenges
in specifyingQRs” instead of “Challenges inQRs specification” in order to avoid confusionwith the
QR specification artifact. An overview of the challenge categories and the companies can be found
in Table 6. After the table, we describe each category and show what kinds of challenges can be
expected in each area. We explain the reasons for the challenges and what kinds of consequences
these challenges may have. We also reflect on the findings of the QR management practices and
elaborate on how these challenges can be mitigated.

None of the challenge categories apply for all companies, as listed in Table 6. Likewise,
none of the companies are experiencing challenges in all areas. The effect of the context is
explored in Section 4.3 after the challenges have been presented.

4.2.1 Challenges in QR elicitation

Challenges related to the elicitation of QRs were reported in three of our case companies: B, C, and
D. One of the companies emphasizes value to customers and users; however, in this company, they
have limited access to them.“Wehave very limited information about their actual use scenarios and

how they use them, what they actually expect to get out of this product.” For this reason, they cannot
be sure that they are getting the QRs right. For example, it might be deemed internally in the
development organization that processing power is important to make all features work fast, when
the context of use would not have required that, but battery power would have beenmore important.
In such a scenario, there is risk of rework. In Company B, the practice of conducting VSM sessions
during development, even though not helping elicitation directly, reduces the risk of rework.

In contrast, another company that does have access to customers and works closely with them
also reported challenges in this area. At this company, part of the challenge came from the fact that
customers, or users, rarely pay attention to software-internal QRs, like maintainability or scalability.
For example, a customer may order a warehouse management system for one warehouse but fail to
mention that, later, the systemmight need to support decentralizedwarehouses in different locations.
Another example is language support for different languages. If the customer is a national company
but fails to mention plans to expand to other countries, and thus, they may not think to ask for
language support for different languages. This requirement is not purely internal, since it is also
related to the usability of the system. Even though part of the challenge may be the fact that
customers or users rarely pay attention to software-internal QRs, the interviewees reported the
elicitation itself as a problem: “How do you make sure that you get all the necessary QRs right from

the beginning?” It is many times the case that the POdoes not have enough domain knowledge to be
able to know all the important QRs. Even though Company D utilizes a template to collect details
about QRs, the PO felt that elicitation techniques could be improved because there is always a risk

28 Page 22 of 59 Empirical Software Engineering (2021) 26: 28

T
ab
le
5

P
ra
ct
ic
es

fo
r
Q
R
M
an
ag
em

en
t
in

th
e
C
as
e
C
om

pa
ni
es
.
R
E
A
ct
iv
iti
es

fr
om

S
W
E
B
O
K

3.
0
(B
ou
rq
ue

an
d
F
ai
rl
ey

20
14
)

C
om

pa
ny

A
C
om

pa
ny

B
C
om

pa
ny

C
C
om

pa
ny

D

O
ve
ra
ll
Q
R

m
an
ag
em

en
t

st
ra
te
gy

•
M
os
tly

re
ac
tiv
e
st
ra
te
gy
,
in
te
ra
ct
iv
e

el
ic
ita
tio

n
•
P
ro
ac
tiv
el
y
ut
ili
zi
ng

hi
gh
-l
ev
el
fe
at
ur
es

•
Q
R
s
tig
ht
ly

co
up
le
d
w
ith

F
R
s

•
N
ot

ex
pl
ic
itl
y
sp
ec
if
ie
d

•
R
el
yi
ng

on
de
ve
lo
pe
rs
’
ex
pe
rt
is
e

•
D
ev
el
op
er
s
el
ic
it
Q
R
s
du
ri
ng

de
ve
lo
pm

en
t

•
R
ea
ct
iv
el
y
te
st
in
g
in

C
I
an
d
ac
tin
g
on

fe
ed
ba
ck

fr
om

us
er
s

•
M
os
tly

pr
oa
ct
iv
e
an
d
re
ac
tiv

e
st
ra
te
gy

•
P
ro
ac
tiv

el
y
ut
ili
zi
ng

hi
gh
-l
ev
el
ep
ic
s
an
d
fe
at
ur
es

•
Q
ua
lit
y
ta
rg
et
s
fo
r
hi
gh
-l
ev
el
fe
at
ur
es

as
Q
R
s
in

ac
ce
pt
an
ce

cr
ite
ri
a
an
d
D
oD

•
Q
R
s
tig
ht
ly

co
up
le
d
w
ith

F
R
s

•
R
ea
ct
iv
e
te
st
in
g
in

C
I

•
D
ed
ic
at
ed

te
st
in
g
te
am

fo
r
se
cu
ri
ty

re
qu
ir
em

en
ts

•
In
te
ra
ct
iv
e
V
S
M

se
ss
io
ns

•
M
os
tly

pr
oa
ct
iv
e
an
d
re
ac
tiv

e
st
ra
te
gy

•
P
ro
ac
tiv

e
el
ic
ita
tio

n
fr
om

hi
gh
-l
ev
el
fe
at
ur
es

•
S
pe
ci
fy
in
g
an
d
an
al
yz
in
g
pr
oa
ct
iv
el
y
up

fr
on
t

•
Q
R
s
tig
ht
ly

co
up
le
d
in

fe
at
ur
es

•
Q
R
s
as

qu
al
ity

ta
rg
et
s
fo
r
fe
at
ur
es

in
ac
ce
pt
an
ce

cr
ite
ri
a
an
d
D
oD

•
R
ea
ct
iv
e
te
st
in
g
in

C
I

•
Q
ua
lit
y
in
iti
at
iv
e
re
se
rv
at
io
n
in

th
e
ba
ck
lo
g

•
P
ro
ac
tiv
e
an
d
re
ac
tiv
e
m
an
ag
em

en
ta
nd

in
te
ra
ct
iv
el
y
ev
ol
vi
ng

Q
R
s

•
U
se
r
is
ce
nt
ra
l
in

al
l
ph
as
es

of
de
ve
lo
pm

en
t

•
P
ro
ac
tiv
e
el
ic
ita
tio
n
us
in
g
m
oc
k-
up
s

•
Q
R
s
in
cl
ud
ed

in
ac
ce
pt
an
ce

cr
ite
ri
a

•
In
te
ra
ct
iv
el
y
le
tti
ng

us
er
s
va
lid
at
e
Q
R
s

du
ri
ng

de
ve
lo
pm

en
t

•
R
ea
ct
iv
e
m
an
ua
l
te
st
in
g
to

va
lid
at
e

Q
R
s

R
E
ac
tiv
ity

P
ra
ct
ic
e
in

C
o
m
p
a
n
y
A

P
ra
ct
ic
e
in

C
o
m
p
a
n
y
B

P
ra
ct
ic
e
in

C
o
m
p
a
n
y
C

P
ra
ct
ic
e
in

C
o
m
p
a
n
y
D

E
lic
ita
tio
n

•
D
er
iv
ed

ou
to
f
hi
gh
-l
ev
el
fe
at
ur
es

an
d
ou
t

of
th
e
fu
nc
tio
na
lit
ie
s

•
D
ev
el
op
er
s
us
in
g
th
e
to
ol

fo
r
de
ve
lo
pi
ng

it
•
T
es
t
au
to
m
at
io
n,

m
an
ua
l
te
st
in
g,

an
d

cu
st
om

er
fe
ed
ba
ck

al
so

ut
ili
ze
d

•D
er
iv
ed

ou
t
of

ep
ic
s
an
d
ar
e
pa
rt
of

th
e

fu
nc
tio
na
lit
ie
s

•S
ta
nd
ar
ds

an
d
re
gu
la
tio
ns

•
D
er
iv
ed

ou
t
of

fe
at
ur
es

an
d
ou
t
of

th
e

fu
nc
tio

na
lit
ie
s

•
S
ta
nd
ar
ds

an
d
re
gu
la
tio
ns

•
M
on
th
ly

qu
al
ity

re
vi
ew

m
ee
tin
gs

(r
oo
t

ca
us
es

an
al
ys
is
)

•
D
ev
el
op
er
s
ca
n
su
gg
es
t
in
cl
ud
in
g

qu
al
ity
-r
el
at
ed

ite
m
s

•
It
er
at
iv
e
m
ee
tin

gs
w
ith

cl
ie
nt
s
be
fo
re

de
ve
lo
pm

en
t

•
U
til
iz
es

m
oc
k-
up
s
to

el
ic
it
im

po
rt
an
t

Q
R
s

A
na
ly
si
s

•
N
o
ex
te
ns
iv
e
up
-f
ro
nt

an
al
ys
is

•
D
is
cu
ss
ed

in
da
ily

an
d
w
ee
kl
y
m
ee
tin
gs

•
P
ri
or
iti
ze
d
ba
se
d
on

“
gr
av
ity

of
fo
un
d

is
su
e”

•
In
iti
al
an
al
ys
is
do
ne

w
he
n
el
ic
ite
d
ou
to
f
th
e
ep
ic
s

•
D
is
cu
ss
ed

in
da
ily

an
d
w
ee
kl
y
m
ee
tin

gs
•
P
ri
or
iti
es

fo
llo
w

pr
io
ri
ty

of
fe
at
ur
es

ba
se
d
on

va
lu
e
to

cu
st
om

er

•
A
na
ly
zi
ng

an
d
sp
ec
if
yi
ng

up
fr
on
t
by

a
se
pa
ra
te
gr
ou
p
in

ea
ch

bu
si
ne
ss

lin
e

•
P
ri
or
iti
es

fo
llo
w

pr
io
ri
ty

of
fe
at
ur
es

•
D
is
cu
ss
ed

an
d
an
al
yz
ed

in
da
ily

an
d
w
ee
kl
y

m
ee
tin
gs

•
A
na
ly
ze
d
in

se
pa
ra
te
m
on
th
ly

qu
al
ity

re
vi
ew

m
ee
tin
g

•
M
oc
k-
up
s
an
d
re
us
ab
le
te
m
pl
at
es

to
-

ge
th
er

w
ith

cl
ie
nt
s

•
D
is
cu
ss
ed

in
da
ily

an
d
w
ee
kl
y

m
ee
tin
gs

•
P
ri
or
iti
ze
d
to
ge
th
er

w
ith

fu
nc
tio
na
lit
ie
s

in
sp
ri
nt

pl
an
ni
ng

•
D
is
cu
ss
ed

w
ith

cl
ie
nt
s
in

in
te
rm

ed
ia
te

re
vi
ew

m
ee
tin
gs

S
pe
ci
fy
in
g

•
Im

pl
ic
it
in

th
e
F
R
s
an
d
ve
rb
al
ly

co
m
m
un
ic
at
ed

to
de
ve
lo
pe
rs

•
R
el
y
on

th
e
ex
pe
rt
is
e
of

th
e
de
ve
lo
pe
rs

•
Im

pl
ic
it
in

th
e
F
R
s

•
R
el
y
on

th
e
ex
pe
rt
is
e
of

de
ve
lo
pe
rs

•
In
cl
ud
ed

as
ta
sk
s
to

be
do
ne

fo
r
a
us
er

st
or
y

•
In

ac
ce
pt
an
ce

cr
ite
ri
a
as

qu
al
ity

ta
rg
et
s
fo
r

fe
at
ur
es

an
d
as

ite
m
s
in

th
e
D
oD

fo
r
ta
sk
s

•
A
na
ly
zi
ng

an
d
sp
ec
if
yi
ng

up
fr
on
t
by

a
se
pa
ra
te
gr
ou
p
in

ea
ch

bu
si
ne
ss

lin
e

•
Im

pl
ic
it
in

fe
at
ur
es

•
In

ac
ce
pt
an
ce

cr
ite
ri
a
as

qu
al
ity

ta
rg
et
s
an
d

as
ite
m
s
in

th
e
D
oD

•
S
om

e
in
cl
ud
ed

as
qu
al
ity

ite
m
s
in

th
e

ba
ck
lo
g

•
Im

pl
ic
it
in

th
e
F
R
s

•
R
eu
sa
bl
e
te
m
pl
at
es

•
In

ac
ce
pt
an
ce

cr
ite
ri
a
as

qu
al
ity

ta
rg
et
s

an
d
as

ite
m
s
in

th
e
D
oD

V
al
id
at
io
n

•
E
xt
en
si
ve

au
to
m
at
ic
an
d
m
an
ua
l
te
st
in
g

•
D
ev
el
op
er
s
us
in
g
th
e
to
ol

th
em

se
lv
es

w
hi
le
de
ve
lo
pi
ng

it
•
U
se
rs
pr
ov
id
e
fe
ed
ba
ck

th
ro
ug
h
sa
le
s

te
am

an
d
to
ol

de
ve
lo
pm

en
t
fo
ru
m

•
E
xt
en
si
ve

au
to
m
at
ic
an
d
m
an
ua
l
te
st
in
g

•
S
ec
ur
ity

te
st
ed

by
a
se
pa
ra
te
te
am

•
U
sa
bi
lit
y
te
st
ed

by
tr
ia
l
us
er
s

•
C
he
ck
in
g
th
e
D
oD

an
d
ch
ec
ki
ng

ag
ai
ns
t

ac
ce
pt
an
ce

cr
ite
ri
a

•
E
xt
en
si
ve

te
st
in
g
th
ro
ug
ho
ut

de
ve
lo
pm

en
t

•
S
ev
er
al
qu
al
ity

ga
te
s
in

m
ul
ti-
le
ve
l
C
I
fo
r

in
te
ro
pe
ra
bi
lit
y

•
C
he
ck
in
g
th
e
D
oD

an
d
ch
ec
ki
ng

ag
ai
ns
t

ac
ce
pt
an
ce

cr
ite
ri
a

•
A
ut
om

at
ic
an
d
m
an
ua
l
te
st
in
g

•
R
ev
ie
w
in
g
re
su
lts

of
de
ve
lo
pm

en
tw

ith
th
e
cu
st
om

er
pr
io
r
to

re
le
as
e

•
C
he
ck
in
g
th
e
D
oD

an
d
ch
ec
ki
ng

ag
ai
ns
t
ac
ce
pt
an
ce

cr
ite
ri
a

Empirical Software Engineering (2021) 26: 28 Page 23 of 59 28

that some important QRs might be missed and costly rework would be needed later: “If you get

everything right from the beginning, you just specify and develop. If you miss something, you do

rework.”

Another challenge related to the area of QR elicitation was the dependency
between business lines, components, and development teams. One of the business
lines in the biggest case company is producing a component for a common platform
software. Products of the other business lines utilize this common platform software.
Thus, because of the crosscutting nature of QRs, they have dependencies between
different business lines, and interoperability between different components and legacy
systems becomes a challenge. Interviewees stated that it is difficult to identify these
dependencies: “So, if Business Line X wants a change in our product, how do we

make sure that that change does not have adverse effects on Business Line Y?” Even
though the challenge is different, and because of different reasons as in other
companies, the consequence is the same—rework: “Sometimes, when we have suc-

cessfully satisfied a QR for one business line, it might come as a surprise at some

point for another business line when they find out that something is not working any

longer.” The multi-level CI applied in the company helps to identify potential
interoperability issues as early as possible.

Summary of challenges, consequences, and mitigation actions in QR elicitation

& Not being able to elicit all important QRs
& Consequence: Development focusing on wrong QRs
& Mitigated in Company B later in development by VSM sessions
& Customers or users might omit important software-internal QRs
& Consequence: Rework
& Mitigated in Company D by utilizing mock-ups and templates in elicitation
& Identifying QRs with dependencies is challenging
& Consequence: Rework
& Mitigated in Company C by multi-level CI to find interoperability issues early on

Table 6 Challenge Categories in the Case Companies

Company

Challenge category A B C D

Challenges in QR elicitation X X X
Challenges in QR analysis X X X
Challenges in specifying QRs X
Challenges in QR implementation X X X
Challenges in QR validation X X
General QR challenges X

28 Page 24 of 59 Empirical Software Engineering (2021) 26: 28

4.2.2 Challenges in QR analysis

This category includes challenges related to QR analysis. For example, it might be difficult to
see the relationship between a specific QR and other requirements, whether a QR is process or
product-related, or how to give the QRs proper priority. One of the challenges in this category
is—and this is also related to the fact that practitioners find QRs to be a fuzzy concept—that “it
is difficult for us to measure quality.” Many QRs are difficult to concretize and are more
elusive and difficult to measure. When QRs are not easy to analyze and define in detail, they
are accordingly not easy to measure; and consequently, they become difficult to specify.

Limited access to customers or users carries over to this area aswell. Even if QRs are identified, it
is still a challenge to identify what QRs bring the most value to the users; i.e., the challenge is to
identify the right QRs to focus on. This makes the prioritization of QRs challenging, and the
consequence is that sometimes development might focus on the wrong requirements. For example,
if it is not known which communication bands the potential users would need or use, one might
implement the use of many different bands, of which some would be unnecessary. One interviewee
stated that the goal is to produce the minimum viable product as fast as possible; however, as in the
example of communication bands, they would have already gone beyond the minimum viable
product. Thus, they can feel that time has been wasted.

Dependencies pose a challenge for analysis too. Even if a dependency is identified, it is difficult
to identify the exact effects of addressing that dependency on another component. If one QR is
addressed from the point of view of one specific component, it might have adverse consequences on
another component.

In our interviews, we found another challenge that also had a big impact on
prioritization. This challenge was related to QRs competing for prioritization against
FRs. Interviewees in one company said that customer features, and thus the FRs, get
more priority than software-internal QRs. Interviewees stated that “you need to give a

good reason why to develop something quality-related,” “it is difficult to convince

product managers why they should focus on quality,” and “it is hard to show the value

of QRs in the backlog.”

Summary of challenges, consequences, and mitigation actions in QR analysis

& Challenging to know what to measure
& Consequence: Unable to identify and know how to monitor and control quality
& No mitigation practice identified from the practices of the companies of this study
& Prioritizing QRs is challenging
& Consequence: Development focusing on wrong QRs
& Mitigated in Company B in VSM sessions by reflecting QRs to goals and targets
& Identifying QR dependencies across components is challenging
& Consequence: Not knowing the effect of a QR on all components
& Mitigated in Company C by multi-level CI to identify dependencies
& Focus on delivering functionality to customers is a challenge for QRs
& Consequence: QRs get less priority compared to FRs
& No mitigation practices identified from the practices of the companies of this study

Empirical Software Engineering (2021) 26: 28 Page 25 of 59 28

4.2.3 Challenges in specifying QRs

We found only one challenge that we can categorize as a challenge for the activity of
specifying QRs. One company specifies requirements in user stories and tries to also
include QRs in those user stories. However, interviewees felt that these user stories
are still many times too technical. “It should not be a technical explanation that says,

‘add a button here.’ There needs to be the ‘why’ and the value behind that.” One
consequence that was mentioned, of not having enough background information or
detail about a QR in the user story, was that even though functionality—i.e., what
needs to happen—is described in detail, it may not say how. It might be that there are
two ways to implement the “what” part, but only one is preferred. The “why” part
could help identify the right “how” part.

Summary of challenges, consequences, and mitigation actions in specifying of QRs

& Use of user stories for specifying requirements is challenging for specifying QRs
& Consequence: QRs are not easy to specify in user stories and unclear QR specification
& No mitigation practice identified from the practices of the companies of this study

4.2.4 Challenges in QR implementation

Most of the individual challenges that were reported by interviewees are related to implemen-
tation. Some of these challenges might be seen as belonging to the previous category,
Challenges in specifying QRs; however, they were not reported as challenges while specifying
QRs. The results of the activity of specifying requirements caused challenges in
implementation.

One interviewee in one company reported that “granularity is a challenge; the

specification is not detailed enough.” That is, specifications are unclear or not always
detailed enough for the developers to easily implement. Similarly, in another company,
the unclear specification was reported as a challenge several times. However, in this
company, the main reason was in some cases that specification was done by a separate
group of people without the involvement of developers. Interviewees reported that
“specification is done without collaboration with developers” and “specification people

and developers are not working together.”

The developers also expressed that sometimes they get the feeling of “are we even

doing the right thing?” Contributing to this was that the developers did not have visibility
of the original requirements. Interviewees reported that “the big picture is missing” and
that there was “no visibility to customers” in some of the business lines. Because
developers have limited visibility to the customers or the original requirements, the
developer expects that the specification is precise and unambiguous. However, developers
explained that sometimes the specification leaves room for interpretation. The developer
might have several options for how to implement a functionality, but how the developer
ultimately implements this functionality may have architectural implications or might
affect performance. This is why the developers feel it is important that they see the

28 Page 26 of 59 Empirical Software Engineering (2021) 26: 28

original requirements or the big picture. As a result, when developers are not involved in
carrying out the specification and when they have limited visibility of the original
requirements—i.e., they do not see the “why” part—they might not understand the
specification as intended. This can lead to an issue whereby the development is focusing
on the wrong things or, once again, to more rework later on.

Summary of challenges, consequences, and mitigation actions in QR implementation

& Unclear or insufficiently detailed specification of QRs leaves room for interpretation
& Consequence: Implementation of QRs becomes difficult
& Consequence: Focusing on wrong QRs
& Consequence: Development is slowed down
& Mitigated in Companies B and D by including developers in the activity of specifying QRs
& Mitigated in Company A by increasing developers’ visibility to the original requirements

4.2.5 Challenges in QR validation

Interviewees in two of the companies reported challenges that can be considered relevant
in the validation of QRs. Again, limited access to users is the cause for one of these
challenges. Because of this limitation, one interviewee reported that they receive feed-
back about QRs too late. Although one company practices VSM sessions and tests the
product with internal trial users, the interviewee felt that they cannot be absolutely sure
that they have been able to provide all the value a real user would want. The internal trial
user can never replace the real end-user because the trial user does not operate the
product under the same conditions. Additionally, the internal trial user might be biased.

Other reported challenges were “limited traceability to the big picture” and “some

QRs seen first on high-level integration testing.” The first of these challenges is caused
by developers having limited visibility of the original requirements during implementa-
tion. In a big organization, when the requirements are split into smaller parts and
distributed to many teams, and when the intra-organizational distances start to grow,
there is the risk that traceability will be lost. This is related not only to QRs but to any
requirements. When a fault is found, the root cause analysis will be slowed down if
traceability is lost.

The second challenge is related to the complexity of the dependencies of large
complex systems. Even though a multi-level advanced CI system may find faults related
to dependencies as early as possible, some dependency issues might still not be discov-
ered until late system testing. When this happens, it produces an additional challenge.
Testing a large and complex system takes a long time, and finding the right root cause
for a fault might also be time-consuming. During that time, a team of developers might
have already moved on to the new tasks in the following sprints; and since teams are
dynamic—i.e., they are put together based on needed competences—it might be difficult
to find the developer who was developing the part of the component that caused the
fault. “It is difficult to find the responsible guy much later after the sprint has ended,”

one interviewee stated.

Empirical Software Engineering (2021) 26: 28 Page 27 of 59 28

Summary of challenges, consequences, and mitigation actions

& Too late feedback regarding QRs
& Consequence: Focus on wrong QRs, or QRs important to the user go unnoticed
& Mitigated in Company B by VSM sessions
& Mitigated in Company B by internal trial users
& Maintaining traceability of QR-related test cases to design artifacts and requirements is

challenging
& Consequence: Finding root cause for faults may take a long time
& No mitigation practice identified from the practices of the companies of this study

4.2.6 General QR challenges

The challenges included in this section have a more holistic effect on development,
not just on specific parts. They are more general, affect several areas of development,
and are context-independent. Two of these reported challenges are related to the
tendency of development to focus more on functionality than on the cost of QRs.
Interviewees of one company reported that “because of up-front planning and in case

of tight schedules, quality gets less attention,” and “the improvement frame has

decreased over time.” Both challenges have effects on several areas of development.
The reservation for quality-related improvements in the backlog was in place in one
of the companies to enable developers to elicit QRs with regard to, for example,
maintainability. However, it was stated by interviewees that these QRs have a limited
possibility of getting enough priority and being included in the product backlog. If the
QR in question would be related to maintainability, it would have severe effects later.
The final challenge included in this category was reported as “QRs are generally

more challenging than FRs.” This is included here, even though explicitly mentioned
in only one interview, because the notion the interviewees had about QRs suggested
that QRs are many times difficult to grasp. This confirms that practitioners find the
QR to be a fuzzy concept.

Summary of challenges and consequences, and mitigation actions

& More focus on FRs than on QRs
& Consequence: Challenges in all areas of development
& No mitigation practice identified from the practices of the companies of this study
& QRs are a fuzzy concept
& Consequence: Challenges in all areas of software development
& No mitigation practice identified from the practices of the companies of this study

28 Page 28 of 59 Empirical Software Engineering (2021) 26: 28

4.3 Context

We will now inspect the differences in QR management and related challenges and
explain these differences with the help of the different contexts of the companies. We
started by studying which areas in the companies faced challenges, and what kinds of
challenges were faced. Next, we studied the differences in the challenges and the
contextual elements of the companies in order to determine whether the contextual
elements could explain why some companies experience challenges while others do
not. When we found a specific contextual element causing a certain challenge, we
realized that the same element could also work as a driver for applying a certain practice.
That way, we could explain why a specific company was not experiencing a certain
challenge while another company was. This led us to map contextual elements to
different practices applied in the management of QRs. This way, we identified nine
different contextual elements from the four different context facets that may affect the
choice of practices or the challenges related to QR management in ASD. From the
product facet, the elements were product type, maturity, and customization. From the
process facet, the elements were the characteristics of the development process, whether
or not development was distributed, and the number of employees involved in the
development of the product or component. From the organization facet, the element
was whether the organizational model was hierarchical. From the market facet, the
element was the type of customers or users and access to customers. Tables 7, 8, 9
and 10 summarizes the contextual elements driving the practices that explain the
challenges which are summarized in Tables 11, 12, 13, 14, 15 and 16.

4.3.1 Context and QR management practices

In this section, we start by inspecting the management strategies and practices per RE
activity as defined in SWEBOK 3.0 (Bourque and Fairley 2014) and in Table 6. We
identified seven different contextual elements affecting the choice of strategy and
practices: product type, maturity of the product, customization, characteristics of the
development process, distributed development, hierarchical organizational structure,
and access to customers or users.

Elicitation of QRs All the companies apply a proactive approach and try to elicit QRs up
front before implementation, although differently. Company D utilizes the users of the
product for QR elicitation. Ultimately, there will be users using the system whose
productivity might depend on the system. For this reason, they need to work closely
with the users to develop the right solution. As such, the product and market facets of the
context affect the choice of practice in QR elicitation. This would naturally also require
that there is access to the users of the product. This is not the case in Company B, which
relies on company goals and roadmaps for the product to elicit important QRs. Also,
Company A has access to the users; however, the company does not interact with users
in the same manner as Company D. The product that Company A develops is a mature
tool that already has an established set of requirements. Therefore, the company does not
have the same need to elicit specific QRs. The users are more valuable in giving
feedback about how the product performs and compares with other, similar tools. The
company uses this feedback as a technique to elicit additional QRs. Additionally, the

Empirical Software Engineering (2021) 26: 28 Page 29 of 59 28

company has adopted a development mode that is highly reactive to this feedback. This
can also be the reason why Company A does not experience any challenges in the
elicitation of QRs. Company C is producing a large system with complex dependencies.
It is challenging for the company to elicit all the QRs that are affected by the depen-
dencies of different components up front, so as an aid it utilizes the multi-level advanced
CI to do so.

Analysis of QRs The situation in the analysis of QRs is very similar to elicitation, and for
the same reasons. Company D has access to customers or users and utilizes them to
analyze the QRs together with the customer using mock-ups and reusable templates.
Company B does not do this because of limited access to users, and Company A does not
experience the need to do it together with the users due to the maturity of the product. In
Company A, there is also another element of the product facet that affects the choice of
not analyzing all QRs to the smallest detail: the customization element. The product is
the same for all users. This means that the product can be installed in a great variety of
environments, and it is virtually impossible to identify all of those environments. Thus, it
is easier to address, for example, the main stability issues and address other issues as
soon as they emerge. Additionally, the developers use the product to develop it.
Company B, which has limited access to users, practices VSM sessions to analyze
QRs. All companies evolve the QRs together with FRs during development by analyzing
and reviewing the QRs further in daily and weekly meetings, although in Company C
this practice is somewhat limited because all requirements are analyzed and specified by
a separate internal organization. It could be said that the hierarchical organizational
model and distributed development together dictate this choice.

Table 7 Contextual Elements Driving Practices Used for Eliciting QRs

Contextual elements Practice applied in case companies

Access to users Mock-ups and templates for elicitation of QRs
Mature product and access to

users
Feedback from product usage for elicitation of new QRs

Limited access to users Company goals and roadmaps used for elicitation of most important QRs
Large and complex system Multi-level CI for identification of QRs with dependencies between

components

Table 8 Contextual Elements Driving Practices Used for Analyzing QRs

Contextual elements Practices applied in case companies

Access to users Mock-ups and templates used further for analysis of QRs
Limited access to users VSM sessions to analyze QRs
Mature general product Development process highly responsive to feedback as

QRs emerge
Distributed development with hierarchical control

mechanism
Most analysis and specification of QRs done up front

28 Page 30 of 59 Empirical Software Engineering (2021) 26: 28

Specifying QRs Many of the interviewees stated that they did not specify QRs; however, some
of the QRs are still specified in the acceptance criteria, while others are specified as quality-
related items and are included in the DoD. Interviewees in Company A reported that they do
not exercise extensive specification of QRs, but they instead rely on developers’ experience
and expertise to consider QRs during implementation. The same applies for Companies B and
C. Company B tries to include QRs in user stories but reports doing so as challenging.
Company C, on the other hand, aims to conduct the most extensive up-front specifications.
The nature of the distributed development affects this choice, since QRs can influence the
development of several teams. Company D utilizes a template for specification and documen-
tation of some of the QRs up front and communicates them to developers in this template.
However, the company also elaborates QRs further during development. It could be said that
most companies avoid specifying QRs too heavily up front, which is in accordance with agile
methods. Thus, the characteristic of the development process would influence this strategy.

Validation of QRs CI and acceptance criteria seem to be the chosen practice to ensure the
quality of the product in all companies. Multi-level CI appears to be especially useful with
large and complex systems. In addition to testing, Companies A and D utilize the users in
validation as well. As explained earlier, Company A utilizes user feedback to correct any QR
issues. Although this can be seen as a very late reactive practice, since it happens after release,
it is less resource-demanding, and the company has adopted a highly reactive development
process. In Company D, review sessions are conducted together with the customers or the
users, and thus any QR issues can be corrected before release. The contextual elements of
access to customers or users and customization explain this difference. Company D is
developing a custom solution for a specific problem, while Company A is producing a general
product that can be used in many situations and diverse environments. In the case of Company
A, it would be an overwhelming task to attempt to address all the contexts of use of the tool to
identify all possible quality issues. Thus, it makes more sense for the company to instead react
to quality issues found by users as fast as possible after release. If it is not possible to get the
final end-users to test the product, then the development organization should have a group of
internal people test the product, as is done in Company B.

Table 9 Contextual Elements Driving Practices for Specifying QRs

Contextual elements Practices applied in case companies

Distributed development with hierarchical
control mechanism

Most analysis and specification of QRs done up front

Characteristics of development process
(agile)

Less extensive up-front specification of QRs relying on developer’s
expertise to implement QRs

Table 10 Contextual Elements Driving Practices for Validating QRs

Contextual elements Practices applied in case companies

Access to users Review meetings together with users during development
Mature product and access to users User product usage feedback
Limited access to users Internal trial users
Large and complex system Multi-level CI

Empirical Software Engineering (2021) 26: 28 Page 31 of 59 28

4.3.2 Context and challenges

In this section, we explore the connection between context and the identified challenges in
each area of effect and aim to elucidate how the contextual elements may cause challenges. We
use the same grouping of challenges as in Table 6. We found five contextual elements that
cause challenges in the different areas: access to customers or users, hierarchical organizational
model, characteristics of the development process, and type of product.

Contextual elements and challenges in QR elicitation From the interviews, we could
identify two contextual elements that cause challenges in QR elicitation. One such challenge
comes from the constraint of the market facet, i.e., limited access to customers or users. This
has a negative effect on elicitation. If it is difficult to elicit the right QRs together with the
customers or users, it is even more so without access to the customers. The other contextual
element that causes challenges is the system with complex dependencies of the product-type
facet. It is not always easy to see all dependencies up front. Additionally, we found the
challenge of how to get all important QRs from the users. However, we do not believe that this
challenge is caused by any contextual element but is rather a more general challenge in the
elicitation of requirements.

Contextual elements and challenges in QR analysis Two contextual elements cause chal-
lenges in QR analysis. The challenge of identifying what is most valuable to customers, which
affects the prioritization of QRs, is derived from limited access to customers or users in one
case. The other contextual element is the system with complex dependencies. For example, the
interoperability QR can be known, but what is not known is exactly how different parts of the
product will be affected, and it is thus difficult to analyze dependencies between the tasks of
different teams. Additionally, there is one challenge affecting QR analysis that cannot be
mapped with a contextual element: QR is a fuzzy concept. Because of this, some QRs can be
difficult to concretize and measure. This is, however, a more general challenge.

Contextual elements and challenges in specifying QRs. Regarding the activity of specifying
QRs, we found that the only challenge is the difficulty of including QRs in user stories. User
stories are widely used in agile methods. Thus, we can say that this challenge originates from
the contextual element of the characteristics of the development process. For this challenge, we
did not find an effective mitigating practice. The interviewees themselves suggested that user

Table 11 Contextual Elements Contributing to Challenges in Elicitation of QRs

Contextual element Effect in elicitation of QRs

Limited access to users Increases difficulty of eliciting right QRs
Large complex system Increases difficulty of eliciting dependences of QRs

Table 12 Contextual Elements Contributing to Challenges in Analyzing QRs

Contextual element Effect in analysis of QRs

Limited access to users Increases difficulty of identifying QRs of value to users
Large complex system Increases difficulty of identifying effect of QRs across components of the system

28 Page 32 of 59 Empirical Software Engineering (2021) 26: 28

stories should include additional information about QRs. How user stories could be extended
or enhanced to also include QRs is a topic for further research.

Contextual elements and challenges in QR implementation Most of the challenges were
related to implementation. One reported challenge was that specification is not detailed
enough. In this particular company, it can be said that the challenges are derived from the
characteristics of the development process. The company has chosen not to spend much time
on specifying or documenting the QRs. This is in line with the Agile Manifesto (Fowler and
Highsmith 2001). In another company, most of the challenges in implementation, like unclear
specification, misunderstandings of specification, and the missing “big picture,” are also rooted
in the activity of specifying the QRs. However, in this company, the requirements were
specified without the involvement of developers. Thus, it can be said that this challenge comes
from the hierarchical organizational model. The distributed development and plan-driven
characteristics of the development process also contribute to these challenges. Requirements
are specified up front, and the developers are detached from the original requirements.

Contextual elements and challenges in QR validation The challenges in validation in one of
the companies are once again related to limited access to users. Interviewees stated that they
received feedback from users quite late, and that they would like earlier user feedback. In
addition, the same contextual elements of hierarchical organizational model, distributed
development, and characteristics of the development process also contribute to the challenges
in validation. Final system-level integration is accomplished late from the perspective of a
development team in one company. Because of this, a development team may obtain feedback
from integration testing long after the related sprint has ended. At that time, root-cause analysis
might take a long time, and it might be difficult to find the developer who was developing a
specific part of a component.

Contextual elements and general QR challenges Two of the challenges in this category
were related to the focus of development on functional features at the cost of focus on QRs. It
could be said that this is inherited from agile development and thus from the characteristics of
the development process contextual element. However, in one of our cases, the contextual

Table 13 Contextual Elements Contributing to Challenges in Specifying QRs

Contextual element Effect in specification of QRs

Characteristics of development process (agile) QRs difficult to specify in user stories

Table 14 Contextual Elements Contributing to Challenges in Implementation of QRs

Contextual element Effect in implementation of QRs

Characteristics of the development process
(agile)

Minimum effort for QR specification results in ambiguous
specification of QRs

Hierarchy in development organization Increased difficulty of implementing QRs if developers not
involved in specifying QRs

Characteristics of the development process
(plan-driven)

Up-front planning decreases response to changes

Distributed development Increased risk of developers not having visibility to the original
requirements

Empirical Software Engineering (2021) 26: 28 Page 33 of 59 28

element of type of customer also contributed to the focus on functionality. If the customers are
company-internal—that is, the affected users are developers and engineers—QRs might
receive less priority if end-user functionality is not directly affected. The other reported
challenge was that QRs are generally more difficult to manage. This challenge has no
connection to context. To raise the awareness of quality and QRs among all stakeholders, it
could be helpful to shift the focus more toward QRs than functionalities alone.

4.4 Theoretical model

This section presents the results and analysis from our multiple case study in the form of a
theoretical model of QR management challenges and practices in ASD. The model was
designed to systemize the findings obtained from the present study. For this purpose, we used
the methodology proposed by Sjøberg et al. (2008), which was developed to generate theories
that can explain or predict phenomena occurring in software engineering. Our model can be
used as the basis for explaining the relationship between contextual elements and QR
management challenges, and it can thus be used to predict the challenges that companies
can face in certain contexts. Further research may consolidate the findings of the present study,
yield new findings, or refute some of our propositions.

According to Sjøberg et al. (2008), a theory is formed by introducing its main constructs
and then establishing propositions as relationships among them. Constructs can be (1) classes
defined as specializations or components of one of the four archetype classes, namely Actor,
Technology, Activity, and Software System, or (2) attributes inside these classes. Archetype
classes are predefined in Sjøberg et al.’s approach; their purpose is to provide a uniform
terminology and structure to formulate theories in software engineering. Propositions relate a
source and a target element. The source of a proposition can be a class or an attribute, and the
target can be an attribute or another proposition. When the target of a proposition is another
proposition, this means that the source element affects the direction and/or strength of the
effect of the target proposition.

Before describing the theoretical model, we illustrate its usefulness by means of proposition
examples that belong to the resulting theoretical model. On the one hand, the propositions are
able to express the relationships between contextual elements and QRmanagement challenges.
For instance, the proposition “Limited access to users increases the difficulty of eliciting QRs
in ASD” relates a source contextual element, i.e., the limited access to users of the develop-

Table 15 Contextual Elements Contributing to Challenges in Validation of QRs

Contextual element Effect in validation of QRs

Limited access to users Increases risk of getting valuable user feedback too late
Hierarchy in development organization Increases difficulty of finding root cause for faults

Table 16 Contextual Elements Contributing to General Challenges Related to QRs

Contextual element Effect on QRs in development overall

Characteristics of development process (agile) Increases risk of QRs getting too little priority compared to FRs
Type of customer (internal customers) Increases risk of QRs getting too little priority compared to FRs

28 Page 34 of 59 Empirical Software Engineering (2021) 26: 28

ment team actor, and a target element representing a challenge, i.e., the difficulty of the
elicitation activity of the QRs. Furthermore, propositions can also relate practices to the
challenges they face. For instance, the previous proposition is itself the target of another
proposition, meaning that there exists a source element that affects its strength—that is: “Use
of roadmaps and value goals for QR elicitation decreases the difficulty of eliciting QRs when
there is limited access to users in ASD.”

The rest of the section presents a description of the whole set of constructs and propositions
of the theoretical model.

4.4.1 Constructs

In this subsection, we present the constructs that we have defined for each of the predefined
archetype classes and illustrate them graphically in Fig. 4.

The diagram shown in Fig. 4 follows a UML-based notation proposed by Sjøberg et al.
(2008). Classes are drawn as boxes. Specializations between classes are denoted by the UML
generalization arrow, e.g., Elicitation practice is a subclass of QR management practice.
Component classes are depicted as boxes within another box, e.g., Project is a component
of Organization. Attributes are textually represented inside their corresponding classes. As

Fig. 4 A theoretical model for QR management in ASD: constructs, general propositions (solid arrows), and
their mitigation propositions (dashed arrows)

Empirical Software Engineering (2021) 26: 28 Page 35 of 59 28

already done above, terms that appear in the model are written in italics in the text. The arrows
in Fig. 4 represent propositions and will be presented in Section 4.4.2.
& Software system: This class represents the scope of the study. In our case, we are interested in a

specific type of system, i.e., software systems developed using ASD (agile-developed software
system). A specific agile-developed software system should satisfy certainQRs that correspond
to a QR type. The software system is involved in a software product (e.g., an embedded system,
a software tool) that has a certain type (e.g., large with complex dependencies), amaturity level
(e.g., a long-lived mature product, a new product) and a customization degree.

& Technology: This class represents the focus of the study. Following Sjøberg et al. (2008),
this archetype class must be interpreted in a broad sense, and the focus of the study can
range from a process model, method, or technique to a tool or language. In our case, the
focus is the QR management process in ASD. To understand how QRs are managed in a
particular context, it is necessary to consider:

1. The contextual software development process that is being followed. From a partic-
ular process, it considers the method taken as a basis (base method, e.g., Scrum,
Kanban), its release frequency, the feature language used (e.g., natural language), and
its feature management artifacts (e.g., product backlog).

2. The QR management practices that are being applied. A QR management practice is
classified as an elicitation practice, specification practice, analysis practice, or
validation practice. The aspects to be considered in each practice appear as attributes
in the corresponding class.

& Actor: The main actor in the theoretical model is the organization that manages the
development of the software system. According to our study, the context attributes to
consider in a particular organization are size, domain, geographical distribution, organi-
zational model, and market setting (e.g., business-to-user, niche market, business-to-
business). In an organization, we identify as crucial actors the project and team. For a
project, we consider the type of customer (e.g., national organizations, software devel-
opers). For a team, we consider its size, whether it is distributed or not, whether it has
access to users or not, and the understanding of QRs of its members.

& Activity: The main activity studied is the development of a software system (develop software
system). The important sub-activities of this main activity are the following: elicit QRs, specify
QRs, analyze QRs, implement QRs, and validate QRs. For each of these activities, it is relevant
to know about its difficulty; and for QR specification, the clarity of its results is also relevant.

4.4.2 Propositions

The propositions obtained from our multiple case study can be classified as general, context, or
mitigation propositions. General propositions are those that specify relationships not depen-
dent on contextual aspects and, hence, they are susceptible to appear in any context (e.g., “In
ASD, there is no shared understanding of the concept of QR”). Context propositions state
relationships in which contextual elements are involved (e.g., “Limited access to users
increases the difficulty of eliciting QRs in ASD” is a proposition about contexts in which
the team has limited access to users). Finally, mitigation propositions specify cases of elements
that can mitigate the negative effects stated by the previous general or context propositions
(e.g., “Use of roadmaps and value goals for QR elicitation decreases the difficulty of eliciting

28 Page 36 of 59 Empirical Software Engineering (2021) 26: 28

QRs when there is limited access to users in ASD” is a proposition about mitigating the
negative effects on QR elicitation of limited access to users).

The propositions can be graphically represented, following Sjøberg et al.’s (2008) notation,
by means of arrows that connect their sources and targets. For readability purposes, we have
distributed the representation of our propositions in two figures. Fig. 4 illustrates general
propositions (solid arrows) and their corresponding mitigation propositions (dashed arrows),
while Fig. 5 illustrates context propositions (solid arrows) and their corresponding mitigation
propositions (dashed arrows). The constructs are the same in both figures. The definition of the
whole set of propositions is presented in Table 17. Table 17 also provides, for each proposi-
tion, an explanation that justifies it in terms of the results of the study. General, context, and
mitigation propositions are referred to as Gk, Ck, and Mk, respectively, and their correspond-
ing explanations as EGk, ECk, and EMk, respectively.

5 Discussion

In this section, we discuss the key findings and compare them with the scientific literature.
Afterward, based on the findings, we discuss the implications for researchers and practitioners
alike. Finally, we discuss the limitations of our research.

Fig. 5 A theoretical model for QR management in ASD: constructs, context propositions (solid arrows), and
their mitigation propositions (dashed arrows)

Empirical Software Engineering (2021) 26: 28 Page 37 of 59 28

Table 17 Theoretical model Propositions and Explanations

General Propositions Explanations
G1 In ASD, there is no shared understanding of the

concept of QR.
EG1 From the interviews at all companies, it was

found that QR is a fuzzy concept among
practitioners.

G2 In ASD, it is difficult to elicit all the important
QRs.

EG2 From the interviews at one company, it was
found that difficulties in eliciting all the
important requirements in ASD arise from the
observation that customers rarely focus on
SW-internal QRs and also from the observa-
tion that the PO may not know all the domain
QRs due to a lack of domain knowledge.

G3 In ASD, it is difficult to analyze QRs. EG3 From the interviews at two companies, it was
found that QR is a fuzzy concept among
practitioners (difficult to concretize), making
quality difficult to measure for practitioners.

G4 In ASD, it is difficult to specify QRs using user
stories for QR specification.

EG4 The interviewees of the company where user
stories are used to specify QRs reported that it
is difficult to specify QRs as a challenge.

G5 Use of separate templates for QR specification
decreases the difficulty of specifying QRs in
ASD.

EG5 The interviewees of the company where a
separate template is used to specify QRs did
not report as a challenge difficulty in
specifying QRs.

G6 In ASD, unclear specification of QRs increases
the difficulty of implementing QRs.

EG6 Unclear specification of the QRs was reported as
a challenge for the developers to easily
implement them by interviewees at two
companies.

G7 In ASD, specifying QRs without developers’
involvement increases the difficulty of
implementing QRs.

EG7 The specification of QRs done by a separate team
without developers’ involvement was reported
by interviewees at one company as a
challenge to implementing them.

G8 In ASD, limited visibility of the original
requirements of developers increases the
difficulty of implementing QRs.

EG8 Limited visibility of the original requirements to
developers and the corresponding limited
traceability to the big picture was reported by
interviewees at one company as a challenge to
implementing QRs.

G9 In ASD, limited visibility of the original
requirements (or limited traceability to the big
picture) of developers increases the difficulty
of validating QRs.

EG9 Limited visibility of the original requirements to
developers and the corresponding limited
traceability to the big picture was reported by
interviewees at one company as a challenge to
validating QRs.

Context Propositions Explanations
C1 Limited access to users increases the difficulty of

eliciting QRs in ASD.
EC1 The interviewees of the company with limited

access to users reported that this fact increases
the difficulty of eliciting QRs in ASD.

C2 Limited access to users increases the difficulty of
analyzing QRs in ASD.

EC2 The interviewees of the company with limited
access to users reported that this fact increases
the difficulty of analyzing QRs in ASD, e.g., it
makes it difficult to identify which QRs bring
more value to the users.

C3 Limited access to users (too-late feedback from
users) increases the difficulty of QR valida-
tion.

EC3 Limited access to users was reported by
interviewees of one company as a challenge
for QR validation because feedback about
QRs is received too late.

C4 A large product with complex dependencies
increases the difficulty of eliciting QRs in
ASD.

EC4 The interviewees of the company with a large
product with complex dependencies reported
that it is difficult to elicit QRs. Because of the
crosscutting nature of the QRs, they have
many dependencies between business lines,
components, and development teams that are
difficult to identify.

C5 A large product with complex dependencies
increases the difficulty of analyzing QRs in
ASD.

EC5 The interviewees of the company with a large
product with complex dependencies reported
that it is difficult to analyze the QRs. Because
of the crosscutting nature of the QRs, they
have many dependencies between business
lines, components, and development teams,
and it is difficult to analyze the effect of
addressing a QR in one component on another
component.

28 Page 38 of 59 Empirical Software Engineering (2021) 26: 28

5.1 Key findings and reflections on the previous literature

We divided this section into three subsections—practices, challenges, and context—for
reflecting on our findings in light of the previous literature.

5.1.1 Challenges

In our study, the challenges stated by interviewees were grouped according to area of effect in
order to help connect the contextual factors rather than classifying them according to themes of
the challenges. Still, we could see that most of the challenges that we found can also be found
in the scientific literature. Some of these challenges are: QR is a fuzzy concept among

Table 17 (continued)

C6 A large product with complex dependencies
increases the difficulty of validating QRs in
ASD.

EC6 In the company with a large product with
complex dependencies, it was reported that it is
difficult to validate the QRs since some
dependency issues might not be discovered until
high-level integration testing, the testing of a
large and complex system may take a long time,
and finding the cause for a fault may also take a
long time.

Mitigation Propositions Explanations

M1 Use of mock-ups and templates for QR elicita-
tion decreases the difficulty of eliciting all the
important QRs in ASD.

EM1 For one of the companies, it was reported that the
difficulty to elicit all the important requirements
(G2) was mitigated by using mock-ups and a
specific template for QR elicitation.

M2 Use of reservation for quality items in backlogs
for QR elicitation decreases the difficulty of
eliciting all the important QRs in ASD.

EM2 For one of the companies, the reservation for
quality items in the backlog was reported to
facilitate the elicitation of all the important QRs
(G2).

M3 VSM sessions for QR analysis decrease the
difficulty of analyzing QRs in ASD.

EM3 For one of the companies, the practice of
conducting VSM sessions for QR analysis
mitigated the effects of the challenge related to
analyzing QRs (G3).

M4 VSM sessions for QR validation decrease the
difficulty of analyzing QRs in ASD.

EM4 For one of the companies, the practice of
conducting VSM sessions for QR validation
mitigated the effects of the challenge related to
analyzing QRs (G3).

M5 Use of roadmaps and value goals for QR
elicitation decreases the difficulty of eliciting
QRs when there is limited access to users in
ASD.

EM5 For one of the companies, the practice of using
roadmaps and value goals for QR elicitation
decreased the challenge posed by the limited
access to users to elicit the QRs (C1).

M6 Multi-level CI for QR validation decreases the
difficulty of eliciting all the important QRs in
cases of a large product with complex
dependencies in ASD.

EM6 For one of the companies, the challenge of
eliciting QRs in the context of a large product
with complex dependencies (C4) was mitigated
by testing the system in a multi-level advanced
CI instead of spending resources on identifying
dependencies in advance.

M7 Multi-level CI for QR validation decreases the
difficulty of analyzing QRs in cases of a large
product with complex dependencies in ASD.

EM7 For one of the companies, the challenge of
analyzing QRs in the context of a large product
with complex dependencies (C5) was mitigated
by testing the system in a multi-level advanced
CI instead of spending resources on analyzing
the dependencies in advance.

Empirical Software Engineering (2021) 26: 28 Page 39 of 59 28

practitioners (e.g., Alsaqaf et al. 2019), users do not focus on software-internal QRs (e.g.,
Aljallabi and Mansour 2015), user stories are challenging for QRs (Rodríguez et al. 2009), and
feedback regarding QRs is obtained too late (Alsaqaf et al. 2019). A more comprehensive list
of all the QR-related challenges reported in the scientific literature can be found in our SMS
(Behutiye et al. 2019), and as such there is no need to repeat them here.

Not all of the challenges found in literature were identified in our study, nor did we find any
new challenges to add. However, we were able to provide more details for some of the challenges
presented in literature to help understand the challenges better. From what can be found in the
literature, and from what we did not find, we can point out a few examples. In the literature, it is
reported that QR implementationmany times relies on tacit knowledge (e.g., Heikkilä et al. 2015).
This was the case in some the companies in our study, to some extent; however, it was not
explicitly stated as a challenge. Instead, some interviewees said that in the case of unclear
specification, they would have liked to have had visibility of the original requirements to help
guide them in the implementation of QRs. This can be limited in companies in which developers
are not involved in specifying requirements. Additionally, relying on tacit knowledge can be
problematic for software development in the domains of safety and security (Knauss et al. 2017).
Although one of our companies used Scrum almost by the book, and safety and security were
major concerns for this company, it did not adopt any structured framework, such as Safe Scrum
(Stålhane et al. 2012) but instead complemented the Scrum process with additional documentation
for security and safety and a separate team specialized in testing security. The use of user stories is
considered a strength in ASD, but it is difficult to include QRs in user stories (Alsaqaf et al. 2017;
Savolainen et al. 2010; Bourimi and Kesdogan 2013). Three of our cases utilized user stories, but
the challenge was reported by only one of them.

What is more interesting is that some of the QR management challenges found in our study
are very specific to the companies and are often not a challenge in ASD only. For example, one
stated challenge was limited access to user scenarios. This was due to the company’s attempt
to enter a niche market in which it had not yet established good connections with the market’s
users. The challenge in this regard would have been present irrespective of the mode of
development. Complex dependencies across different components of a large system was
another company-specific challenge that is directly related to the complexity of the system
under development. This complexity would be present in any kind of development. In fact, it
might be argued that this particular challenge is less so in ASD that applies CI since less effort
is spent up front on something that is very difficult to find or specify up front.

Other interesting points are that the challenges we found were relatively scarce—for
example, challenges in the specification of QRs came only from one company; in Company
D, interviewees mentioned challenges only in QR elicitation. We did, however, identify the
general challenge that QRs are fuzzy, as also found in literature (Alsaqaf et al. 2017), and it is
not easy to know what to measure regarding some QRs. Should this be the case, then,
consequently, it would be difficult to specify QRs. One reason, at least in one company, could
be the fact that it simply chose not to specify QRs in detail. In Company A, the most important
QRs of the mature product had already been established, so for this company it was not cost-
effective to expend efforts up front on trying to specify something about which it was
uncertain. Instead, the company relied on CI and usage feedback. On the other hand, most
companies claimed that they specify QRs in DoD and acceptance criteria. Specifying QRs in
the acceptance criteria is part of Requirements Specification for Developers (RSD) approach,
which has been evaluated in small companies, and which includes an extended acceptance
criteria targeted for software-internal requirements (Medeiros et al. 2020). The approach also

28 Page 40 of 59 Empirical Software Engineering (2021) 26: 28

includes the use of mock-ups. In Company D, the mock-ups and templates were utilized for
elicitation, analysis, and specification of QRs. With the help of the mock-ups and templates,
the company actively elicited internal QRs in such detail that they could be specified for
developers. In that sense, the practice is similar to RSD. In the largest of our companies,
Company C, specification was not always best suited for developers. Perhaps even large-scale
development could benefit from the RSD approach.

Not finding as many challenges as would be expected based on the scientific literature and
on the number of interviewees may imply that companies applying ASD are becoming
increasingly quality aware, and that they are already finding ways to manage QRs. This could
also be supported by the finding that many challenges can be seen as non-specific for ASD.
Those QR management challenges that were previously ASD-specific are perhaps gradually
being resolved, while those that remain are QR management challenges that depend purely on
context or that have always been an issue—for example, how to collect all relevant QRs. In
cases of large systems with complex dependencies in which some level of hierarchy is need for
decision making, there is an increased general need to pay careful attention to aspects such as
documentation, communication, and traceability, as well as to generally and carefully align RE
with testing through people, processes, and artifacts. This alignment has been the interest of
many large software development organizations in the automotive and avionic domains
(Karhapää et al. 2017), and QR management could benefit from it.

Since Alsaqaf et al. (2019) is the most recent study, and since one of our companies
operates in large-scale ASD, a brief comparison is warranted. We can see similarities in
findings regarding QR challenges, however, we have treated these findings somewhat differ-
ently in our studies. For example, one of the companies in our study stated that “users do not
pay attention to software-internal QRs,” highlighting this as a challenge for which the
company had developed a mitigation practice. However, in the study by Alsaqaf et al.,
“customers are not interested in internal QRs” was identified as a mechanism behind “QR
elicitation challenges” rather than as a challenge on its own. Still, we can confirm that users’
interest in internal QRs is limited. Table 18 lists challenges found by Alsaqaf et al. (2019) and
we compare them to our findings and point out similarities.

As can be seen from Table 18, there are similarities but also differences in findings regarding
challenges. In addition, it should be noted that not all the challenges that are similar to those of
Asaqaf et al. were found in the largest of the case companies of our study. The challenge of too late
feedback about QRs was stated in one of the larger SMEs and users limited interest in internal QRs
in the smallest SME. One of the most evident dissimilarities concerns the QRs documentation:
Alsaqaf et al. found the challenge, “confusion about QR specification approach,” and discussed,
based on this, the possibility of abandoning the concept of requirement in agile development.
According to the authors, for agile practitioners, the concept of requirement included “the user story
+ the conversation about what is in the user stories + the acceptance criteria” (Alsaqaf et al. 2019, p.
50) and suggested that using this variety of documentation strategy may introduce further inconsis-
tencies into the development process. In our study, the QRs were often included in the acceptance
criteria and DoD, and the interviewees did not find this to be problematic. It seemed natural for the
practitioners in our study to include certain QRs in the acceptance criteria and others in the DoD.

5.1.2 Practices

In our own SMS about QR management (Behutiye et al. 2019), we identified 143 papers that
examined practices, methods, models, frameworks, advice, tools, and guidelines for QR

Empirical Software Engineering (2021) 26: 28 Page 41 of 59 28

management. Out of these studies, 43 focused on practices, with a total of 74 practices of
which many have not been validated in industry. In light of this large number of practices, one
might expect that all practices that we found in our study have already been included in the
literature—indeed, most of them have. For example, the practice of utilizing experts in the
field of security can be found in Ayalew et al. (2013) and S. Türpe and Poller (2017); the
practice of using mock-ups (or “low-fi prototypes”) for QRs is described in Wale-Kolade et al.
(2014); the practice of continuous and automated monitoring and testing is discussed in Cruzes
et al. (2017), Cannizzo et al. (2008), and Gary et al. (2011); and the practice of using
acceptance criteria and DoD, among others, for documenting QRs is detailed in Behutiye
et al. (2017). However, not all of these practices were used exactly as they were proposed in
the literature, or for the exact same purpose. For example, Wale-Kolade et al. focused on
usability, whereas Company A utilized mock-ups and templates to capture any kind of QRs.
Cruzes et al. focused only on performance testing, and Gary et al. focused on security testing,
yet CI was employed in all our case companies for ongoing testing to fulfill their respective
QR needs. Company B utilized VSM sessions periodically, as they explained, to ensure that
what they have developed so far was in line with quality goals. Käpyaho and Kauppinen
(2015) proposed prototyping with a focus on reviewing the big picture at steady intervals and

Table 18 Comparison of Practices Found by Alsaqaf et al. (2019)

Challenges from Alsaqaf et al. (2019) Similarities to our study

Teams coordination and communication challenges.
This category includes the following challenges:

- Late detection of QRs infeasibility
- Hidden assumptions in inter-team collaboration
- Uneven teams maturity
- Suboptimal inter-team organization.

Too late feedback regarding QRs was reported in
Company B, however, it was not due to
communication issues. In the company, they applied
VSM sessions to check feasibility of QRs. The three
remaining challenge were not found in our study.

Quality assurance challenges. This category includes
the following challenges:

- Inadequate QRs specification
- Lack of cost-effective real integration tests
- Lengthy QRs acceptance checklist
- Sporadic adherence to quality guidelines

It was confirmed in our interviews that QRs are a fuzzy
concept. Practitioners said that it is difficult to know
what to measure. This is in line with the first challenge
of the category. In Company C, it was stated that some
QRs issues might come as a surprise later, however;
this was not stated as a testing challenge but rather
challenge of eliciting all QR dependencies. The two
remaining challenges were not found in our interviews.

QRs elicitation challenges. This category includes
the following challenges:

- Overlooking sources of QRs
- Lack of QRs visibility
- Ambiguous QRs communication process

We see the challenge of how to elicit all important QRs
from the users as similar to the first challenge.
However, this challenge was expressed in the smallest
of our case companies, not in the largest. One reason
for this could be that the interviewees of the largest
company were not in direct contact with the clients. In
Alsaqaf et al. (2019) study, Lack of QRs visibility
related to the fact that internal QRs are not directly
visible to users. We found that according to
practitioners, users rarely pay attention on internal
QRs. The last challenge of this category was not found
in our interviews.

Conceptual challenges of QRs. This category
includes the following challenges:

- Unclear conceptual definition of QRs
- Confusion about QRs specification approaches

The first challenge was confirmed in our study, expressed
as QRs are a fuzzy concept. The second challenge we
did not find.

Software architecture challenges. This category
contains the following challenge:

- Unmanaged architecture changes

This challenge did not emerge in our interviews.

28 Page 42 of 59 Empirical Software Engineering (2021) 26: 28

reviewing prototypes with a focus on QRs. However, Käpyaho and Kauppinen did not discuss
the potential of this practice in the context of limited access to customers. As we have shown,
this contextual factor could be the driver for the practice in Company B.

Since similarities do exist between the practices proposed in the scientific literature and the
practices found in our case companies, it would seem that these practices have been adapted
from the literature. However, it would seem that the sources for the practices were rather in
their own efforts to solve challenges. For example, in Company D, it was explained that the
use of the template for eliciting QRs and details of QRs was developed by themselves in an
attempt to solve their needs. The only practice that we did not find in the scientific literature
was “developers using the tool to develop it,” which was used by Company A. This practice is
very specific for a certain type of situation—that is, when a tool is being developed that can be
utilized in the development of the next version of that same tool. It is highly unlikely that this
practice would be applicable in any other kind of scenario.

Alsaqaf et al. (2019) identified a set of practices in their empirical study. Just like the
practices we identified in our study, those discussed by Alsaqaf et al. are very specific to the
contexts of the companies they examined and are therefore not directly comparable. However,
some similarities exist. In Table 19, we reflect on the practices applied in our case companies
with regard to the mitigation practices covered by Alaqaf et al. We compare most of the
practices to Company C, since this company operates in large-scale ASD.

Similarities between the practices found by Alsaqaf et al. (2019) and those identified in our
study can be evidenced through comparison. However, in our study, these practices did not
always surface as practices for mitigating specific challenges. This is probably because the
identified challenges are not the same. Likewise, we identified practices in Company C that
were not reported by Alsaqaf et al. Company C applied a multi-level CI with different quality
gates to catch, for example, internal QR issues as soon as possible. QRs documented in the
acceptance criteria and DoD are reported as a practice in our study; however, in Alsaqaf et al.,
this was regarded as a challenge, one which caused confusion about the specification approach
of QRs.

5.1.3 Context

When we grouped the challenges, compared them between different companies, and
then compared the contexts of the companies, we could see that some of the contextual
elements could explain some of the challenges and also work as drivers behind some of
the practices. Likewise, context might explain why none of the identified challenges
were universally experienced by all the studied companies. It might be that a specific
challenge is not experienced because of the way of working, or because it did not have
a major effect in a certain context. A comparison with existing literature, however, is
very limited. In our SMS, we found that research into the interplay of context and QR
management practices and challenges is almost completely lacking. Alsaqaf et al.
(2019) is the only other study that we found that took context into consideration. They
explored whether challenges vary in terms of the severity or risks they pose to
companies. In their study, they related context mainly to domain. They listed seven
business sectors: government, public transport, tax services, commercial/business, trans-
port navigation, banking, and insurance. The type of system was either an information
system or an embedded system. Ultimately, they did not find a relationship between
context and challenges.

Empirical Software Engineering (2021) 26: 28 Page 43 of 59 28

5.2 Implications for research and practice

From all the different challenges experienced by the case companies as well as the various practices
employed to mitigate them, we were able to identify sets of practices for each area of software

Table 19 Comparison of Practices Found by Alsaqaf et al. (2019)

Practice from Alsaqaf et al. (2019) Similar practices in our study

Maintaining an assumption wiki-page. A challenge was
that developers make assumptions about QRs when
the PO has failed to provide sufficient clarity about
specifications. These assumptions were collected in
wiki-pages. Also, “self-evident” QRs are
documented.

Company B did document all requirements and
specifications in wiki-pages. Company C (company
operating in large-scale ASD) documented all fea-
tures to the smallest detail in their feature specifica-
tion. However, interviewees in Company C stated
that, sometimes, QRs were not sufficiently specified.
In those cases, they relied on additional communi-
cation to solve any issues. This occasionally led to
delays in development.

Use multiple product backlogs to include requirements
of different viewpoints. A challenge was that
different stakeholders can have different viewpoints
on QRs. With the help of multiple BLs incorporated
by developers, the development teams could
maintain traceability to the different viewpoints and
could escalate possible QR issues to the relevant
stakeholders for priority negotiation.

All our companies preferred to work with one BL.
Company C previously practiced the use of several
BLs. However, having different BLs for different
managers and teams resulted in a complex hierarchy
of BLs. This hierarchy made traceability more
difficult and sometimes introduced delays into
development. For this reason, Company C decided
to simplify and reduced the number of BLs.

Use automated monitoring tools. To help with
conceptual challenges of QRs, QRs that are related
to the internal operation of the software were
implemented as rules in the monitoring tools.

All our companies utilized automated monitoring tools,
especially in the CI, to monitor the quality of the
product. Some interviewees stated that QRs can be a
fuzzy concept. This usually meant that they did not
know what to measure. Thus, the tools did not
provide assistance with this specific challenge.

Reserve part of the sprint for important QRs. A
challenge was that the PO might neglect
requirements that do not have business value. The
development teams “found a way to work around
this PO behavior” by agreeing with the PO to
implement at least one of the important internal QRs
per sprint.

This kind of juxtaposition of PO and development team
never surfaced from our interviews. However, in
Company C, the interviewees stated that it was a
challenge to convince managers to focus on
something QR-related (not having direct business
value). The practice of having a quality reservation
in the BL to reserve time for internal QRs is similar
to this practice.

Sprint allocation based on multiple product backlogs.
This practice was also in place to mitigate
conceptual challenges of QRs to ensure that QRs of
different viewpoints get priority.

This practice could not be found in any of our case
companies. They preferred to use a single product
BL.

Establishing preparation team. A practice to mitigate
challenges to team coordination and communication,
QR elicitation, and conceptual challenges of QRs.
Senior analysts and architects and business
representatives are together responsible for preparing
the product BL and distributing work to different
teams in a sensible way based on the nature of the
user stories.

This practice is similar to the practice of Company C,
where up-front requirements analysis and specifica-
tion was done by a separate team of experts before
distributing work to different teams.

Establishing component teams. Distributed teams were
organized around particular components to help
resolve QR elicitation challenges.

Company C organized development around particular
components and features; however, this was not
directly related to QR elicitation but instead to the
organization of implementation in a sensible way.

Establishing QR specialists’ teams. A practice to
mitigate quality assurance and architectural
challenges. A team of experts is given the ownership
of, e.g., security requirements.

In Company B, where security is of high importance, a
team of specialists is used to ensure that security
requirements are met. In Company C, teams are
dynamic and are put together based on required
skills and knowledge.

Innovation and planning iteration. A practice to
mitigate quality assurance and architectural
challenges. A team can request time to work on
activities other than user stories with business value
to resolve technical debt from previous sprints.

This practice was not found in our study.

28 Page 44 of 59 Empirical Software Engineering (2021) 26: 28

development that can be applied in ASD. Practitioners can use these results to guide their decision
about QRmanagement practices and help to solve challenges that ASD is prone to when managing
QRs. In order to keep the text shorter, we included the list of practices in Appendix 4 Beneficial
practices for QR management in ASD. As an example, Fig. 6 illustrates the practices that can be
applied in the case of access/limited access to users. When there is limited access to users, both QR
elicitation and QR validation can benefit from internal trial users while internal VSM session can
help in analysis of QRs. When a company does have access to users, the users should be utilized
throughout development. Mock-ups and templates can help QR elicitation, analysis, and specifying
while reviews meetings together with the customers can help in QR validation.

The relationship between context and QR management, or between context and QR manage-
ment challenges, is complex and requires further study by researchers. More possibilities exist for
drawing connections between contextual elements, chosen practices, and experienced challenges
than those we have elucidated in the present study. Moreover, there are likely other contextual
elements with similar effects that we did not discover in our study. Additionally, contextual elements
could be used to explain why a certain practice is not used, even when it is apparently beneficial, as
well as why a certain challenge is not experienced, even though it should be expected. Understand-
ing all these connections would be of significant value in designing both general QR management
guidelines and specific QR management processes for practitioners.

5.3 Validity discussion

We classified validity concerns into four different aspects of validity, as proposed by Runeson
et al. (2012), in this multiple case study: construct validity, internal validity, external validity,
and reliability.

In our study, construct validity related mostly to whether interviewers and interviewees
possessed the same understanding of the interview questions. The interview questions were
created by two researchers and reviewed by two other researchers. All interviews, except the
complementary interviews conducted with Company C, were carried out by two researchers.
While one researcher asked the interview questions, the other used a checklist to ensure that all
necessary information was recorded. Since the researchers and practitioners did not necessarily
use the same terminology when talking about a certain concept, preparations were made to
explain the terminology whenever needed. For example, in some cases, the practitioners
preferred to talk about, and understood better, the concept of NFRs instead of QRs. Still,
there was always the possibility that an interviewee would not want to admit that a concept
was unfamiliar. For this reason, we encouraged more open discussion instead of short and
simple answers. There was also the risk that interviewees would not want to report on the
challenges the company was currently facing. This was mitigated by assuring the interviewees
that all information would remain anonymous and confidential, and that only a summary of the
interviews would be presented to others. In some cases, we observed that some interviewees
were very eager to point out challenges—and for this reason, some challenges might have been
exaggerated. However, we did not focus on the severity of a challenge reported by one
interviewee but instead on the frequency with which the challenge was reported. Additionally,
the number of interviewees in the largest company was much larger than in the other
companies. This approach was necessary for yielding a fuller understanding of how the
different business lines operate. We acknowledge that this might skew the results toward
making challenges or practices in the largest company more prominent. However, we did not
prioritize challenges based on number of times mentioned, nor did we exclude challenges or

Empirical Software Engineering (2021) 26: 28 Page 45 of 59 28

practices mentioned by individual interviewees in smaller companies since we wanted to
gather as many QR management related challenges and practices as possible.

Internal validity refers to the causal relationships between factors. Since we were inves-
tigating the relationship between context and QR management challenges and practices,
internal validity had to be considered. One researcher conceptualized the connections between
QR management practices and challenges and the contextual elements of the companies. Two
other researchers reviewed the results and used this information to construct a model of the
connections as well as to check whether these connections were realistic. As can be seen from
our findings, not all challenges were related to the contextual elements. Thus, it can be
assumed that factors other than those presented in this study can also affect the challenges.
However, the aim was to find those challenges that were most evidently affected by contextual
elements. Additionally, it is possible to think of QR type as a contextual factor in itself.
Different types of QRs could require different kinds of management practices. For example,
practices to manage usability related requirements rarely fit for security requirements, and vice
versa. This aspect could be further explored in future work.

External validity must also be considered, since we sought to find connections between
context and practices and challenges that others could utilize. All the studied companies
operate in different context, thus, there is only one company with a specific context. Yet,
some of the practices were applied in all the companies. These practices are typical for or
favored in ASD, and thus it can be said that such practices are likely to be found in companies
outside our study as well. Some practices are unique in a certain context, and as such it can be
argued that they have emerged in response to special needs, or specific challenges, faced by a
certain company. However, whether these practices could be effective in mitigating challenges
in other companies with similar contexts and similar challenges is an issue in need of further
research. None of the challenges were experienced universally by all the case companies.
Thus, even though we were able to rationalize the connections between certain elements of the
context and the challenges, of which some were obvious, these connections would need to be
confirmed with further studies.

For reliability, both data collection and analysis were mostly done by peers. Two
researchers independently devised coding schemes that were used to code the interview

Fig. 6 Practices applied for QR management with limited access to users compared to full access to users

28 Page 46 of 59 Empirical Software Engineering (2021) 26: 28

transcripts. Independent coding was done in a top-down and bottom-up fashion by using the
same transcripts. The resulting coding schemes were compared and discussed to form a
common understanding of how the transcripts were to be coded. The common coding scheme
was then used on another transcript by both researchers, and the results were compared once
again. At this point, there were only minor points of discussion, and we were thus able to use
the coding scheme on the rest of the interviews. The top-down coding employed the same
structure as the interview questions. CMMI for development, version 1.3 (CMMI Product
Team 2010), was used in this regard. For this part, other researchers could arrive at the same
coding scheme. However, the bottom-up coding is more subjective, and a different set of
researchers could generate different results. The results were validated in each company in
workshops by the company champions and other key actors who had knowledge about the
software development processes. Additionally, the company champions reviewed this manu-
script to validate that the included information was accurate.

6 Conclusion and future work

We conducted a multiple case study to investigate strategies and practices for quality require-
ment (QR) management in agile software development (ASD) and related challenges. Addi-
tionally, we identified contextual elements that contribute to the choice of practices and to the
emergence of specific challenges. The case study was conducted in four different companies of
different sizes and contexts through semi-structured interviews. We found that the practitioners
in the studied cases manage quality in general and complement their development processes
with any practices necessary for the management of QRs to reach their quality goals. We
classified these practices as proactive, reactive, and interactive, and then grouped them as
practices in QR elicitation, QR analysis, specifying QRs, and QR validation.

The challenges reported by the interviewees were different depending on the context of the
studied companies. We grouped the challenges according to the area of effect as challenges in
QR elicitation, QR analysis, specifying QRs, QR implementation, and QR validation. Some
challenges were more general and affected several areas of development, i.e., they were
context independent. Other practitioners can utilize our findings to identify what kinds of
challenges they can expect to face in different contexts.

Many of the challenges reported in the literature were also found in our case companies,
albeit with some slight variations. We also determined that not all challenges found in the
scientific literature were present in our studied case companies.

We were able to identify a set of practices that have a positive effect on different areas of
software development and can as such help mitigate some of the challenges we found.
Practitioners could utilize these findings to improve their own QR management practices.

We identified many connections concerning how context drives the choice of QR man-
agement practices and how contextual elements can be the source for challenges. However,
opportunities remain for the further exploration of these connections. For example, future
research could examine why some practices are not used despite being apparently beneficial,
or why some challenges are not experienced even though they should be expected to occur. An
investigation into these connections would complement the findings of this study and ulti-
mately complete the theoretical model on QR management in ASD. In addition, analyzing
whether there are differences in managing QRs depending on the type of QRs and, if so, what
those differences are would be interesting.

Empirical Software Engineering (2021) 26: 28 Page 47 of 59 28

Acknowledgements We would like to thank all the practitioners who participated in the interviews during this
study. This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement 732253.

Funding Open Access funding provided by University of Oulu including Oulu University Hospital.

Appendix 1 Interview script for first round of interviews

28 Page 48 of 59 Empirical Software Engineering (2021) 26: 28

Empirical Software Engineering (2021) 26: 28 Page 49 of 59 28

28 Page 50 of 59 Empirical Software Engineering (2021) 26: 28

Appendix 2 Interview script for second round of interviews

Empirical Software Engineering (2021) 26: 28 Page 51 of 59 28

28 Page 52 of 59 Empirical Software Engineering (2021) 26: 28

Appendix 3 Pre-questionnaire

Empirical Software Engineering (2021) 26: 28 Page 53 of 59 28

28 Page 54 of 59 Empirical Software Engineering (2021) 26: 28

Appendix 4. Beneficial practices for QR management in ASD

Empirical Software Engineering (2021) 26: 28 Page 55 of 59 28

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aljallabi BM, Mansour A (2015) Enhancement approach for non-functional requirements analysis in agile
environment. In: Computing, Control, Networking, Electronics and Embedded Systems Engineering
(ICCNEEE), 2015 International Conference, pp 428–433

Alsaqaf K, Daneva M, Wieringa R (2017) Quality requirements in large-scale distributed agile projects - a
systematic literature review. International Working Conference on Requirements Engineering: Foundation
for Software Quality, pp 219–234

Alsaqaf W, Daneva M, Wieringa R (2019) Quality requirements challenges in the context of large-scale
distributed agile: an empirical study. Inf Softw Technol 110:39–55

Anwar S et al (2014) User-centered design practices in scrum development process: a distinctive advantage?
2014 IEEE 17th International Multi-Topic Conference (INMIC), pp 161–166

28 Page 56 of 59 Empirical Software Engineering (2021) 26: 28

https://doi.org/http://creativecommons.org/licenses/by/4.0/

Ayalew T, Kidane T, Carlsson B (2013) Identification and evaluation of security activities in agile projects. In:
Proceedings of the 18th Nordic Conference on Secure IT Systems, pp 139–153

Azham Z, Ghani I, Ithnin N (2011) Security backlog in Scrum security practices. Software Engineering (MySec),
2011 5th Malaysian Conference, pp 414–417

Behutiye W, Karhapää P, Costal D, Oivo M, Franch X (2017) Non-functional requirements documentation in
agile software development: Challenges and solution proposal. International Conference on Product-
Focused Software Process Improvement, pp 515–522

Behutiye W et al (2019) Management of quality requirements in agile and rapid software development: a
systematic mapping study. Inf Softw Technol:106225

Bourimi M, Kesdogan D (2013) Experiences by using AFFINE for building collaborative applications for online
communities. International Conference on Online Communities and Social Computing, pp 345–354

Bourimi M et al (2010) AFFINE for enforcing earlier consideration of NFRs and human factors when building socio
technical systems following agile methodologies. In: International Conference on Human-Centered Software
Engineering, pp 182–189

Bourque P, Fairley RE (2014) Guide to the software engineering body of knowledge (SWEBOK (R)): Version
3.0. IEEE Computer Society Press

Butt S, Ahmad WFW, Rahim L (2014) Handling tradeoffs between agile and usability methods. In International
Conference on Computer and Information Science (ICCOINS), pp 1–6

Cajander Å, Larusdottir M, Gulliksen J (2013) Existing but not explicit - the user perspective in scrum projects in
practice. In: IFIP Conference on Human-Computer Interaction, pp 762–779

Cannizzo F, Clutton R, Ramesh C (2008) Pushing the boundaries of testing and continuous integration. Agile
Conference, AGILE'08, pp 501–505

Cao L, Ramesh B (2008) Agile requirements engineering practices: an empirical study. IEEE Softw 25(1):60–67
Chen L (2015) Continuous delivery: huge benefits, but challenges too. IEEE Softw 32(2):50–54
CMMI Product team (2010) CMMI for Development. Version 1.3. In: Software Eng Inst
Cruzes DS, Dybå T (2011) Recommended steps for thematic synthesis in software engineering. In: 2011

International Symposium on Empirical Software Engineering and Measurement:275–284
Cruzes DS, Felderer M, Oyetoyan TD, Gander M, Pekaric I (2017) How is security testing done in agile teams?

A cross-case analysis of four software teams. In: Proceedings of the International Conference on Agile
Software Development (XP), pp 201–216

Curcio K, Navarro T, Malucelli A, Reinher S (2018) Requirements engineering: a systematic mapping study in
agile software development. J Syst Softw 139:32–50

Dybå T, Sjøberg D, Cruzes DS (2012) What works for whom, where, when, and why? On the role of context in
empirical software engineering. In: ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement pp 19–28

Farid W (2012) The NORMAP methodology: lightweight engineering of non-functional requirements for agile
processes. In: 2012 19th Asia-Pacific Software Engineering Conference, vol 1, pp 322–325

Farid W, Mitropoulos F (2013) NORPLAN: non-functional requirements planning for agile processes. In
Proceedings of SouthEastCon, pp 1–8

Fowler M, Highsmith J (2001) The agile manifesto. Softw Dev 9(8):28–35
Gary K, Enquobahrie A, Ibanez L, Cheng P, Yaniv Z, Cleary K et al (2011) Agile methods for open source

safety-critical software. Softw: Pract Experience 41(9):945–962
Glass RL (1998) Defining quality intuitively. IEEE Softw 15(3):103–104
Heck P, Zaidman A (2016) A systematic literature review on quality criteria for agile requirements specifications.

Softw Qual J:1–34
Heikkilä VT, Damian D, Lassenius C, Paasivaara M (2015) A mapping study on requirements engineering in

agile software development. In: 41st Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp 199–207

Inayat I et al (2015) A systematic literature review on agile requirements engineering practices and challenges.
Comput Hum Behav 51:915–929

Kalenda M, Hyna P, Rossi B (2018) Scaling agile in large organizations: practices, challenges, and success
factors. J Softw-Evol Proc 30(10):e1954

Käpyaho M, Kauppinen M (2015) Agile requirements engineering with prototyping: a case study. In: 2015 IEEE
23rd International Requirements Engineering Conference (RE), pp 334–343

Karhapää P, Haghighatkhah A, Oivo M (2017) What do we know about alignment of requirements engineering
and software testing? in: Proceedings of the 21st International Conference on Evaluation and Assessment in
Software Engineering, pp 354–363

Kasauli R, Liebel G, Knauss E, Gopakumar S, Kanagwa B (2017) Requirements engineering challenges in large-
scale agile system development. 2017 IEEE 25th International Requirements Engineering Conference (RE),
pp 352–361

Empirical Software Engineering (2021) 26: 28 Page 57 of 59 28

Knauss E, Liebel G, Schneider K, Horkoff J, Kasauli R (2017) Quality requirements in agile as a knowledge
management problem: more than just-in-time. In 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW), pp 427–430

Magües DA, Castor JW, Acuña ST (2016) Requirements engineering related usability techniques adopted in
development process. In: SEKE 2016. Proceedings of the Twenty-Eight International Conference on
Software Engineering and Knowledge Engineering. Knowledge Systems Institute Graduate School

Medeiros J, Vasconcelos A, Silva C, Goulão M (2020) Requirements specification for developers in agile
projects: evaluation by two industrial case studies. Inf Softw Technol 117:106194

Merriam-Webster (2019) [Online]. Available at: https://www.merriam-webster.com/. Accessed 17 April 2019
Miles MB, Huberman AM (1994) Qualitative data analysis: An expanded sourcebook, 2nd edn. Sage, Thousand

Oaks, CA, p 1994
Mylopoulos J, Chung L, Nixon B (1992) Representing and using nonfunctional requirements: a process-oriented

approach. IEEE Trans Softw Eng 18(6):483–497
Nawrocki M, Ochodek J, Jurkiewicz S, Alchimowicz B (2014) Agile requirements engineering: a research

perspective. In: International Conference on Current Trends in Theory and Practice of Informatics, pp 40–51
Nvivo (2018) [Online]. Available at: http://www.qsrinternational.com/nvivo/nvivo-products. Accessed 27 Aug

2018
Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: Proceedings of the 3rd

International Symposium on Empirical Software Engineering and Measurement, pp 401–404
Pohl K (2016) Requirements engineering fundamentals: a study guide for the certified professional for require-

ments engineering exam-foundation level-IREB compliant. Rocky Nook Inc
Rafi U, Mustafa T, Iqbal N, Zafar WUI (2015) US-Scrum: a methodology for developing software with

enhanced correctness, usability and security. Int J Sci Eng Res 6(9):377
Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering practices and challenges: an empirical

study. Inf Syst J 20(5):449–480
Rodríguez P, Yagüe A, Alarcón P, Garbajosa J (2009) Some findings concerning requirements in agile

methodologies. In: Product-Focused Software Process Improvement, pp 171–184
Rodriguez P, Markkula J, Oivo M, Turula K (2012) Survey on agile and lean usage in Finnish software industry.

In: Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, pp 139–148

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering.
Empir Softw Eng 14(2):131

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering: guidelines and
examples. Wiley

Savolainen J, Kuusela J, Vilavaara A (2010) Transition to agile development-rediscovery of important require-
ments engineering practices. 2010 18th IEEE International Requirements Engineering Conference, pp 289–
294

Schön E-M, Thomaschewski J, Escalona MJ (2017) Agile requirements engineering: a systematic literature
review. Comput Stand Interfaces 49:79–91

Shaw M (1996) Truth vs knowledge: the difference between what a component does and what we know it does.
In: 8th International Workshop on Software Specification and Design, p 181

Singh M (2008) U-SCRUM: an agile methodology for promoting usability. In: AGILE'08 Conference, pp 555–
560

Siponen M, Baskerville R, Kuivalainen T (2005) Integrating security into agile development methods. In:
Proceedings of the 38th Annual Hawaii International Conference on System Sciences, HICSS'05, p 185a

Sjøberg DIK, Dybå T, Anda BCD, Hannay JE (2008) In: Shull F et al (eds) Building theories in software
engineering. Guide to Advanced Empirical Software Engineering. Springer

Stålhane T, Myklebust T, Hanssen GK (2012) The application of safe scrum to IEC 61508 certifiable software.
In: 11th International Probabilistic Safety Assessment and Management Conference and the Annual
European Safety and Reliability Conference, pp 6052–6061

Türpe S, Poller A (2017) Managing security work in Scrum: tensions and challenges. SecSE@ESORICS 2017:
34–49

VersionOne, Inc (2016) 10th annual state of agile development survey. [online]. Available at: https://www.
stateofagile.com/#ufh-i-338498988-10th-annual-stateof-agile-report/473508. Accessed April 2019

Wagner S (2013) Software product quality control. Springer, Berlin
Wale-Kolade A, Nielsen P, Päivärinta T (2014) Integrating usability practices into agile development: A case

study. Proceedings of 23rd International Conference on Information Systems Development, pp 337–347
Wiegers KE, Beatty J (2013) Software requirements. Pearson Education

28 Page 58 of 59 Empirical Software Engineering (2021) 26: 28

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/

Affiliations

Pertti Karhapää1 & Woubshet Behutiye1
& Pilar Rodríguez2 & Markku Oivo1

& Dolors

Costal3 & Xavier Franch4
& Sanja Aaramaa5

& Michał Choraś6,7 & Jari Partanen8
& Antonin

Abherve9

* Pertti Karhapää
pertti.karhapaa@oulu.fi

Woubshet Behutiye
woubshet.behutiye@oulu.fi

Pilar Rodríguez
pilar.rodrigues@upm.es

Markku Oivo
markku.oivo@oulu.fi

Dolors Costal
dolors@essi.upc.edu

Xavier Franch
franch@essi.upc.edu

Sanja Aaramaa
sanja.aaramaa@nokia.com

Michał Choraś
mchoras@itti.com.pl

Jari Partanen
jari.partanen@bittium.com

Antonin Abherve
antonin.abherve@softeam.fr

1 M3S, Faculty of Information Technology and Electrical Engineering (ITEE), University of Oulu,
90014 Oulu, Finland

2 Department of Languages, Computer Systems and Software Engineering, Faculty of Computer Science,
Universidad Politécnica de Madrid, Madrid, Spain

3 Universitat Politècnica de Catalunya, UPC-BarcelonaTech, 08034 Barcelona, Spain

4 Department of Service and Information System Engineering, UPC-BarcelonaTech, 08034 Barcelona, Spain

5 Nokia Oy, 90620 Oulu, Finland

6 ITTI Sp. z o.o, 61-612 Poznan, Poland

7 University of Science and Technology, UTP Univerisy of Science and Technology, 5-796 Bydgoszcz,
Poland

8 Bittium Wireless Ltd., 90590 Oulu, Finland

9 Softeam, 75016 Paris, France

Empirical Software Engineering (2021) 26: 28 Page 59 of 59 28

mailto:pertti.karhapaa@oulu.fi

	Strategies to manage quality requirements in agile software development: a multiple case study
	Abstract
	Introduction
	Related work
	Case study design
	Case and subject selection
	Company A
	Company B
	Company C
	Company D

	Data collection procedure
	Subjects

	Analysis procedure
	Theoretical model formulation

	Results
	Strategies and practices to manage QRs in ASD
	QR management in company A
	QR management in company B
	QR management in company C
	QR management in company D
	Cross-case analysis: Comparison of QR management strategies and practices

	QR management challenges
	Challenges in QR elicitation
	Challenges in QR analysis
	Challenges in specifying QRs
	Challenges in QR implementation
	Challenges in QR validation
	General QR challenges

	Context
	Context and QR management practices
	Context and challenges

	Theoretical model
	Constructs
	Propositions

	Discussion
	Key findings and reflections on the previous literature
	Challenges
	Practices
	Context

	Implications for research and practice
	Validity discussion

	Conclusion and future work
	Appendix 1 Interview script for first round of interviews
	Appendix 2 Interview script for second round of interviews
	Appendix 3 Pre-questionnaire
	Appendix 4. Beneficial practices for QR management in ASD
	References

