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Abstract

Rhizoctonia solani is an important phytopathogenic fungus with a wide host range and worldwide distribution. The
anastomosis group AG1 IA of R. solani has been identified as the predominant causal agent of rice sheath blight, one
of the most devastating diseases of crop plants. As a necrotrophic pathogen, R. solani exhibits many characteristics
different from biotrophic and hemi-biotrophic pathogens during co-evolutionary interaction with host plants. Various
types of secondary metabolites, carbohydrate-active enzymes, secreted proteins and effectors have been revealed to
be essential pathogenicity factors in R. solani. Meanwhile, reactive oxygen species, phytohormone signaling,
transcription factors and many other defense-associated genes have been identified to contribute to sheath blight
resistance in rice. Here, we summarize the recent advances in studies on molecular interactions between rice and R.
solani. Based on knowledge of rice-R. solani interactions and sheath blight resistance QTLs, multiple effective strategies
have been developed to generate rice cultivars with enhanced sheath blight resistance.

Background
Rice sheath blight (RSB) caused by the necrotrophic
pathogen Rhizoctonia solani Kühn is considered as one
of the most devastating rice diseases worldwide (Rao
et al. 2020). The disease is also called “snake skin dis-
ease”, “mosaic foot stalk”, and “rotten foot stalk” because
of its special disease symptoms (Molla et al. 2020; Zhang
et al. 2019b). The past decades have witnessed a sharp
increase in the incidence of RSB in the field largely due
to the application of high dose of nitrogen fertilizers and
large-scale planting of semi-dwarf high yield cultivars
(Yellareddygari et al. 2014). RSB was first reported in
Japan in 1910 and subsequently spread around the world,
particularly in Asia, Africa and America. In China, RSB
was first reported in 1934, and it has become the second

most important disease in rice at present, causing a yield
loss of 10 ~ 30% every year, even up to 50 % in the rice-
growing region of Yangtze river valley and South China in
epidemic years (Yu et al. 2019; Zhu et al. 2019). The
annual disease area in China is about 15 ~ 20 million hm2

(Bernardes-de-Assis et al. 2009; Shu et al. 2019).
Due to the lack of resistant germplasms in rice, pro-

gress in breeding for RSB-resistant varieties is slow. At
present, chemical fungicides and cultivation practices
are the major approaches to preventing and managing
the disease (Singh et al. 2019; Yellareddygari et al. 2014).
Advances in omics, including genomics, proteomics and
transcriptomics, genetic variability of R. solani, quantita-
tive trait loci (QTL) and genetic regions for RSB resist-
ance, and integrative management methods have been
well reviewed recently (Li et al. 2019a; Molla et al. 2020).
This review focuses on the molecular basis of the inter-
actions between rice and R. solani and the molecular
strategies for controlling the disease.
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Overview of the Pathogens and Diseases
Thanatephorus cucumeris, the sexual stage of the causal
agent of RSB, belongs to the Corticiaceae family in the
Homenomycetales order of the Basidiomycetes class.
The soil-borne pathogen causes diseases in many monocot
and dicot plants (Anderson et al. 2017; Zhang et al. 2009).
The genetically closely R. solani isolates are compatible
and form a fused hyphal network involving fusion of cell
wall, cytoplasm and nuclei, whereas the genetically distant
isolates may not anastomose (Carling et al. 2002). Accord-
ingly, R. solani is assigned into 14 anastomosis groups
(AG1 to AG13, AGB1) with high genetic diversity based
on their compatibility for hyphal fusion with known tester
isolates (Carling et al. 2002; Singh et al. 2019). Based on
the differences in sclerotium morphology and host plants,
AG1 isolates are further divided into three subgroups, in-
cluding IA, IB and IC. R. solani AG1 IA has been identified
as the dominant anastomosis group causing RSB (Singh
et al. 2019; Taheri and Tarighi 2011).
It is very difficult to find asexual spores of R. solani

and this fungus survives in an unfavorable environment
through sclerotia formed by tightly interweaving mycelia
(Willetts and Bullock 1992; Sun et al. 2020b). Sclerotia
are developed on infected plants late in the cropping
season and are dropped into soil or water (Shu et al.
2019). Dormant sclerotia can live in the soil for several
years and serve as the primary inocula for the next crop-
ping season (Singh et al. 2019). Sclerotia can float and
disperse over long distance with irrigation water and
gather around rice plants on the surface of water (Yellar-
eddygari et al. 2014; Zaeim et al. 2015). Under favorable
conditions, sclerotia germinate and then the mycelia
begin to grow (Feng et al. 2017; Kwon et al. 2014). R.
solani gains entry into host tissues through multiple ave-
nues, such as via infection cushions that are aggregates
of complex hyphae or lobate appressoria that penetrate
the cuticle, via stomata or wounds (Molle et al. 2013;
Pooja and Babu 2017; Zhao et al. 2008). R. solani initially
causes green-gray, water-soaked lesions on the sheath at
the base of rice plants, or close to the water line in the
paddy field. As the symptoms develop, the center of
lesions becomes grayish white, and the edge shows dark
brown. Eventually, individual lesions merge together and
even cover the entire sheath. As a consequence, the
sheathes become yellow and wilted, and even rot and die
(Taheri and Tarighi 2011; Wang and Zheng 2018) .

Pathogenicity Factors in R. solani.
Elucidation of molecular mechanisms underlying the co-
evolutionary interaction between rice and R. solani will
facilitate developing novel strategies to manage RSB.
Pathogen-secreted molecules play an important role in
the pathogen-host interaction. It has been reported that
the infection cushions are involved in enzymatic degradation

and necrosis occurs in plants before mycelial invasion of R.
solani (Groth and Nowick 1992; Singh et al. 2019). Besides,
many defense genes in host plants are specifically down-
regulated after R. solani infection (Rao et al. 2020; Mayo
et al. 2015; Xia et al. 2017). These findings indicate that R.
solani has evolved to secrete some substances, which actively
regulate host immunity and promote virulence. Indeed, a
wide arsenal of effectors, carbohydrate-active enzymes and
various types of secondary metabolites secreted by R. solani
have been identified to modulate host immunity (Costanzo
et al. 2011; Wang et al. 2014; Wei et al. 2020).

Secreted Proteins and Effectors
It is generally believed that some effector proteins
secreted by hemi-biotrophic and necrotrophic pathogens
can inhibit pattern-triggered immunity (PTI) at the early
and transient establishment stage of infection, while
others induce cell death at the late necrotrophic stage of
infection and ultimately contribute to pathogen viru-
lence (Li et al. 2019c; Wei et al. 2020). Through com-
parative genomics and secretome analyses, 985 secreted
proteins and 103 small cysteine-rich effector candidates
were predicted in R. solani AG1 IA genome (Zheng
et al. 2013). The effectors AG1IA_09161, AG1IA_05310
and AG1IA_07795 containing glycosyltransferase GT
family 2, cytochrome C oxidase assembly protein CtaG/
cox11 and peptidase inhibitor I9 domains, respectively,
have been identified to induce cell death in rice and
maize plants. Eighteen putative effectors were subse-
quently identified and categorized into three classes of
verified effectors through the hierarchical clustering
method (Zheng et al. 2013). Based on transcriptome
analyses, hundreds of putative secreted protein-encoding
genes and dozens of candidate effector genes are up-
regulated during the infection of R. solani AG1 IA
(Ghosh et al. 2018; Xia et al. 2017). Among them, a
nucleoside diphosphate-linked moiety X (Nudix)
domain-containing protein (AG1IA_02392), NACHT
domain-containing protein (AG1IA_06487) and BTB
domain-containing protein (AG1IA_03906) are preferen-
tially expressed during R. solani infection of the suscep-
tible rice cultivars (Rao et al. 2020). Although Nudix
effectors are widely distributed in plant pathogens and
probably play essential roles in pathogenesis, very few
have been characterized (Dong et al. 2016). Therefore, it
is important to reveal the role of AG1IA_02392 in R.
solani pathogenicity (Rao et al. 2020). Recently, a
putative lipase effector AGLIP1 has been demonstrated
to induce cell death in Nicotiana benthamiana and rice
protoplasts. Interestingly, ectopic expression of AGLIP1
suppresses basal defenses and promotes bacterial multi-
plication in Arabidopsis ( Li et al. 2019c). Besides, a
highly conserved fungal effector RsIA_NP8 in R. solani
anastomosis group AG1 is localized predominantly in
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the chloroplasts and triggers non-host cell death when
transiently expressed in N. benthamiana (Wei et al. 2020).
Chitin, an unbranched homopolymer of 1, 4-β linked

N-acetyl-D-glucosamine (GlcNAc), is the second most
abundant polysaccharide on earth and is the major
component of fungal cell walls. As a major pathogen-
associated molecular pattern (PAMP) in rice, chitin is
recognized by the pattern recognition receptor (PRR)
CEBiP and coreceptor OsCERK1 on plant cell mem-
brane, and thus initiating immune responses (Gong et al.
2020; Sanchez-Vallet et al. 2020; Shimizu et al. 2010).
For successful infection, fungal pathogens have evolved
to secrete certain effector proteins to interfere with
PAMP recognition by PRRs. In the soil-borne Verticil-
lium and Fusarium fungal pathogens, secretory polysac-
charide deacetylase (PDA1) proteins deacetylate chitin
oligomers into ligand-inactive chitosan, and thereby pre-
venting chitin-triggered immunity and promoting viru-
lence (Gao et al. 2019). Gene expression profiling reveals
that a chitin deacetylase-encoding gene (CL8196Con-
tig1) is significantly up-regulated during R. solani infec-
tion (Ghosh et al. 2018). Therefore, it is of interest to
investigate whether R. solani exploits the same strategy
to inhibit chitin-triggered host immunity. Besides, R.
solani encodes the carbohydrate binding module 14
(CBM14) family of putative chitin-binding proteins
similar to Cladosporum fulvum Avr4 and Ecp6, which
suppress chitin-triggered immunity through blocking the
release of chitin from fungal cell walls by plant chitinases
and competing with CEBiP for binding of chitin oli-
gosaccharides, respectively (Anderson et al. 2017; de
Jonge et al. 2010; van den Burg et al. 2006). Addition-
ally, the genes encoding xylanase and inhibitor I9
domain-containing proteins are transcriptionally up-
regulated during R. solani infection. Both proteins can
induce plant cell death when transiently expressed in
N. benthamiana (Anderson et al. 2017). Collectively,
the effectors in R. solani might function as important
pathogenicity factors. Elegant studies from Sclerotinia
sclerotiorum also substantiate the essentiality of ef-
fector proteins in virulence and pathogenicity of the
necrotrophic pathogens (Liang and Rollins 2018).
Next, it is interesting to identify the effectors that
inhibit pattern-triggered immunity to establish initial
colonization and also the effectors that induce cell
death and contribute to necrotrophic stage.

Secondary Metabolites
R.solani secretes a variety of secondary metabolites,
including host-selective toxins and biologically active
molecules. These factors contribute to pathogen virulence
through breaking host physical barriers and interfering
with normal physiological functions and host defenses
(Brooks 2007; Costanzo et al. 2011; Howlett 2006). The

host-specific toxin in R. solani has been partially purified
and identified as a carbohydrate consisting of mannose,
N-acetylglucosamine, glucose and N-acetylgalactosamine.
Highly virulent R. solani isolates produce more host-
specific toxin than weakly virulent isolates (Chen et al.
2009; Vidhyasekaran et al. 1997; Yang et al. 2011).
Other biologically active molecules produced by R.

solani include oxalic acid (OA), 3-methylthiopropionic
acid (MTPA), phenylacetic acid (PAA) and its derivatives
(Brooks 2007; Hu et al. 2018; Vidhyasekaran et al. 1997;
Yang et al. 2014). OA produced by necrotrophic
pathogens is an essential virulence factor for successful
infection. The highly virulent isolates of R. solani have
been identified to produce more OA than weakly
virulent isolates (Nagarajkumara et al. 2005). During R.
solani infection, OA inhibits the synthesis of various
phenolic substances and acts synergistically with polyga-
lacturonases (PGs) to cause pH instability and cell wall
degradation (Liang et al. 2018; Qi et al. 2017; Rollins and
Dickman, 2001). Besides, OA triggers programmed cell
death in host plants, and thus promoting infection
(Cessna et al. 2000; Heller et al. 2013; Kabbage et al.
2013). PAA treatment, similar to R. solani infection,
causes severe disease symptoms on maize sheath (Cook
et al. 2016; Hu et al. 2018). Besides, PAA treatment and
R. solani infection have similar effects on the synthesis
of secondary metabolites, including traumatin, phytosphin-
gosine, vitexin 2’’ O-beta-D-glucoside, rutin and 2,4-dihy-
droxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA)-glucoside,
while inhibit the generation of the jasmonic acid (JA)
precursors 3-oxo-2-(2’-pentenyl)-cyclopentane-1-octanoic
acid (OPC-8:0) and 12-oxo-phytodienoic acid (OPDA)
(Ahmad et al. 2011; Hu et al. 2018; Yang et al. 2016). The
PAA metabolism pathway has been well identified and the
phytotoxin inhibits seed germination and chlorophyll syn-
thesis and functions as a virulence factor in the potato
pathogen AG3 (Chen et al. 2009; Lakshman et al. 2006).
Unexpectedly, it fails to directly isolate or detect PAA in R.
solani AG1 IA. The amount of PAA and its derivatives
detected in the culture medium of the AG1 IA isolates
is also significantly lower than that from AG3 and AG4,
indicating PAA might not be the primary toxin for
AG1 IA (Bartz et al. 2012; Kankam et al. 2018). It has
also been demonstrated that MTPA is essential for
mycelial production and promotes disease progression
(Kankam et al. 2018).
Furthermore, the cytochrome P450s (CYPs)-encoding

genes involving in the biosynthesis of primary and sec-
ondary metabolites including phytotoxins are differen-
tially regulated during R. solani infection and sclerotial
development, implying that the CYPs and CYP-associ-
ated genes contribute to R. solani pathogenicity (Shu
et al. 2019; Xia et al. 2017). These findings further
highlight the essentiality of secondary metabolites in R.
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solani pathogenicity (Ghosh et al. 2019; Keller et al.
2005; Vidhyasekaran et al. 1997; Yang et al. 2014).

Carbohydrate‐active Enzymes
For successful invasion, plant fungal pathogens generally
secrete various types of carbohydrate-active enzymes
(CAZymes), particularly including cell wall-degrading
enzymes (CWDEs) (Molla et al. 2020; Rao et al. 2020).
CAZymes mediate the degradation of cellulose, hemicel-
lulose and pectin in host cell walls and break down the
physical barrier of plant immune system, and thus
enhancing pathogen virulence (Zheng et al. 2013; Xia
et al. 2017). CWDEs in R. solani are categorized into
seven major families including PG, endo-β- 1,4-gluca-
nase, polymethylgalacturonase, pectin methylesterase, fil-
ter paper enzyme, polymethylgalacturonase trans-
eliminas and pectin methyltrans-eliminase (Silva et al.
2018; Xue et al. 2018; Rathinam et al. 2020). As a group
of hydrolytic enzymes, PGs act on polygalacturonic acid,
a key component of plant cell wall, by cleaving the α-(1,
4)-glycosidic bonds, and thus causing hydrolysis of pec-
tate. Pathogens of rice, soybean, maize and other crops
have evolved multiple PGs to maximize their offensive
potential (Chen et al. 2006; Gawade et al. 2017; Zhou
et al. 2016). R. solani AG1 IA selectively secretes various
pectinases according to the cell wall characteristics of
different host species (Zheng et al. 2013). RNAseq ana-
lysis revealed that 30 genes encoding pectin-degrading
enzymes in R. solani, especially PG_04727, PG_01811,
PG_06500, PE_09779 and AG1IA_01129, were greatly
induced during infection, indicating that these pectin-
degrading enzymes are likely involved in R. solani AG1
IA infection of rice (Rao et al. 2020). Many CAZyme
genes encoding pectin lyases, cellobiose dehydrogenase
and β-glucanases are also up-regulated at different levels
during R. solani infection of the hosts (Ghosh et al. 2018;
Rao et al. 2020). Besides, endo-1,4-β-xylanase A breaks
down hemicellulose in plant cell wall through decompos-
ing linear β-1,4-xylan into xylose to facilitate pathogen
penetration. The xylanase shows increased expression in
highly susceptible rice plants after R. solani infection
(Prathi et al. 2018).
In addition, other transcriptome analyses suggest that

a variety of glycosyltransferases (GTs), glycoside hydrolases
(GHs), polysaccharide lyases (PLs), carbohydrate esterases
(CEs) and non-catalytic CBMs are the important CAZymes
involving in the degradation of host cell walls and in R.
solani virulence (Ghosh et al. 2018; Xia et al. 2017; Zheng
et al. 2013). Sixteen GH-, GT-, and PL-encoding genes
exhibit significantly higher expression levels in the rice sus-
ceptible cultivars compared with the resistant cultivars
after R. solani inoculation, which might explain the pheno-
type of higher degree of necrosis in susceptible cultivars
(Rao et al. 2020). Notably, much more CAZymes are up-

regulated in R. solani during the necrotrophic phase com-
pared with the colonization stage, implying that CAZymes
in necrotrophic pathogens play more important roles in
virulence than those in biotrophic pathogens (Blanco-Ulate
et al. 2014; Ghosh et al. 2018; Zhao et al. 2013). This state-
ment can stand close scrutiny since biotrophic pathogens
generally avoid damaging the cells to acquire nutrients and
restrict the cell wall degradation, which products are often
recognized as damage-associated molecular patterns and
thus triggering plant defenses.

Countermeasures from the Host
To counteract the effects from pathogenicity factors in
plant pathogens, plants develop multiple layers of de-
fenses against pathogen attacks. During pathogen infec-
tion, PAMPs are recognized by plant PRRs, and thus
triggering PTI. As the first layer of plant defense, PTI re-
sponses include the activation of defense gene expres-
sion and mitogen-activated protein kinase (MAPK)
cascades, reactive oxygen species (ROS) burst, accumula-
tion of secondary metabolites and defense-related phyto-
hormone signaling pathways (Bigeard et al. 2015; Yu
et al. 2017; Zipfel 2014). On the other hand, intercellular
immune receptors (R proteins) in host plants recognize
certain pathogen effectors and therefore cause hypersen-
sitive responses, which are rapid and robust defense re-
sponses called effector-triggered immunity (Jones and
Dangl 2006; Peng et al. 2018). The two branches of plant
immunity are perfectly coordinated and might cross-talk
with each other to form a barrier against external bio-
logical invasion.

Reactive Oxygen Species
In general, ROS has a dual function in regulating plant
defenses. ROS can function as a signal molecule initiat-
ing defense responses against fungal pathogens. In re-
sponse to R. solani challenge, plants generate ROS and
initiate various defense responses, such as phytoalexin
biosynthesis, activation of defense-related genes and cal-
lose deposition in cell walls (Gechev et al. 2006). H2O2

activates phenylalanine ammonia lyase (PAL)-mediated
biosynthesis of phenolic compounds including lignin in
the shikimate pathway, and thereby improves plant anti-
oxidant capacity and thickens cell walls (Molla et al.
2013). Particularly in the early stage of infection, plants
prevent pathogen infection by enhancing cell wall lignifi-
cation and producing a variety of secondary metabolites.
Comprehensive KEGG enrichment analyses also indicate
that phenylpropanoid and phenylalanine metabolism
plays an important role in preventing infection in RSB
resistant varieties (Kwon et al. 2014; Shi et al. 2020;
Zhang et al. 2017).
Interestingly, the rice resistant line exhibits a significant

less ROS accumulation compared with the susceptible line
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at 48 h post inoculation of R. solani (Oreiro et al. 2020).
In this case, pathogen attack may stimulate excessive ROS
accumulation in the susceptible plants and thereby indu-
cing cell death, which is conducive to the growth and
colonization of necrotrophic fungi (Heller and Tudzynski
2011). Therefore, ROS might function as a signal for R.
solani to switch from the establishment to the necro-
trophic stage (Noctor et al. 2018; Oreiro et al. 2020).
Besides, exogenous and endogenous ROS has a promoting
effect on the formation and development of R. solani
sclerotia, while trehalose, a ROS-scavenger, functions as
an inhibitor to sclerotial development, suggesting that
trehalose might serve as a new antioxidant fungicide
to inhibit sclerotial differentiation in R. solani AG-1
IA ( Wang et al. 2018).
To effectively balance the role of ROS during the

interaction between rice and R. solani, many smart strat-
egies have evolved to regulate the ROS level to reduce
damage and activate defense in rice. A quantitative trait
locus qLN1128 enriched in defense-related genes is in-
volved in the activation of the genes related to the ROS-
redox pathway and alleviates ROS accumulation in rice
cells, and thus delaying R. solani colonization (Oreiro
et al. 2020). The catalase OsCATC and chloroplast gluta-
thione peroxidase involving in scavenging ROS are found
in hub gene network in rice and might play an important
role in maintaining normal ROS level in rice after R. solani
infection (Alam and Ghosh 2018). In addition, previous
studies revealed that various peroxidases can function to
maintain the balance of H2O2 and play an important role
in cell wall regeneration and thickening (Bindschedler
et al. 2006; Marjamaa et al. 2009).

Phytohormones and Transcription Factors
Phytohormone signaling pathways are required for plant
defenses against various pathogens. Typically, SA confers
resistance against biotrophic and hemibiotrophic patho-
gens, whereas JA and ethylene synergistically cooperate
to activate defenses against necrotrophs (Singh et al.
2018). The ethylene insensitive mutant sickle (skl) is
highly susceptible to R. solani AG8, while the transgenic
plants overexpressing ethylene response factors (ERFs)
or the ethylene biosynthesis enzyme ACS2 exhibit
resistance to R. solani (Anderson et al. 2010; Anderson
et al. 2018; Helliwell et al. 2013). Ethylene-insensitive
protein 2 (EIN2) is significantly up-regulated in the
resistant and susceptible rice varieties during R. solani
infection (Shi et al. 2020). These findings support that
ethylene signaling positively regulates rice resistance to
RSB. An elegant study has revealed that siR109944, a
type of tourist-miniature inverted-repeat transposable
element-derived small interfering RNA, suppresses rice
immunity to sheath blight by affecting auxin homeostasis.
The small RNA targets F-Box domain- and LRR-containing

protein 55 (FBL55) encoding transport inhibitor response 1
(TIR1)-like protein. The siR109944-overexpressing rice
plants have a significantly enhanced susceptibility to R.
solani, while FBL55-overexpression causes the transgenic
plants to be more resistant to RSB (Qiao et al. 2020).
Additionally, multiple indeterminate domain (IDD) pro-
teins including LPA1 (Loose Plant Architecture 1), IDD3
and IDD13 form a transcription factor complex and
regulate expression of the auxin efflux carrier gene PIN-
FORMED 1a (PIN1a) in rice through binding to its pro-
moter (Sun et al. 2019; Sun et al. 2020a). Interestingly,
LPA1 and IDD13 positively regulate PIN1a expression and
RSB resistance, while IDD3 is a negative regulator in PIN1a
expression and RSB resistance (Sun et al. 2019; Sun et al.
2020a). The G-protein γ subunit DEP1 (dense and erect
panicle 1) interacts with LPA1 and suppresses DNA bind-
ing ability of LPA1 and thereby inhibiting expression of
PIN1a. Consistently, mutation of G-protein γ subunit
DEP1 can promote rice resistance to RSB (Liu et al. 2020;
Sun et al. 2019; Sun et al. 2020a). Furthermore, auxin appli-
cation enhances rice resistance to sheath blight (Qiao et al.
2020; Sun et al. 2019). These results indicate that auxin
signaling positively regulates RSB resistance and that appli-
cation of auxin analogues might effectively protect field
crops against the disease.
The transcription factors including NAC, WRKY, and

basic leucine zipper (bZIP) family members differentially
regulate the expression of various defense genes and are
involved in modulating resistance to R. solani (Olsen
et al. 2005; Zhang et al. 2018). NAC transcription factors
are involved in the regulation of signal transduction
pathways mediated by salicylic acid (SA), JA, ethylene
and abscisic acid (Zhao et al. 2020). The osnac4 mutant
shows reduced necrosis symptom after pathogen infec-
tion, while OsNAC4 overexpression promotes R. solani
infection in rice, indicating that OsNAC4 negatively reg-
ulates sheath blight resistance in rice (Kaneda et al.
2009). By contrast, the NAC transcription factor XNDL
positively modulates RSB resistance through activating
the ethylene signaling pathway (Wang 2019). Multiple
WRKY family members are also important components
of plant defense against pathogen infection (Gallou et al.
2012; Shi et al. 2020; Zheng et al. 2013). OsWRKY30
and OsWRKY80 are positive regulators in rice resistance
against sheath blight (Peng et al. 2012; Peng et al. 2016).
Silencing of OsWRKY80 in rice remarkably reduces
resistance to R. solani (Peng et al., 2016). OsWRKY80
expression is induced by R. solani infection, exogenous
JA and ethylene, but not by SA. OsWRKY80 elevates
OsWRKY4 expression through specifically binding to the
promoter of OsWRKY4 and both of transcription factors
function synergistically to increase rice defenses against
R. solani infection (Peng et al. 2016; Wang et al. 2015a).
Over-expression of WRKY13 in rice results in significantly
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increased expression of WRKY12, TIFY9 and PR2 and en-
hances resistance to R. solani (Jimmy and Babu 2019).
WRKY33 and WRKY70 are significantly induced in the rice
susceptible cultivars in comparison with the resistant culti-
vars after R. solani infection. Various types of transcription
factors are often involved in regulating different phytohor-
mone signaling, and thereby modulating rice defenses
against sheath blight. WRKY70 acts as an activator of SA-
induced genes and a repressor of JA-responsive genes (Shi
et al. 2020; Zhang et al. 2017). The transcription factor
RAVL1 negatively regulates rice resistance to R. solani
through activating the expression of brassinosteroid-related
genes (Helliwell et al. 2011; Yuan et al. 2018). Paradoxically,
RAVL1 also activates ethylene-mediated signaling, which
positively regulates rice resistance against sheath blight
(Yuan et al. 2018). These findings indicate that rice plants
have evolved distinct strategies to defend against various
pathogens, which might be mediated by different transcrip-
tion factors.

Other Signal Molecules
As an important secondary messenger, Ca2+ regulates
plant physiology and metabolism and plays an important
role in plant disease resistance (Pusztahelyi et al. 2015).
After R. solani infection, most of the genes involving in
the calcium signaling pathway in rice are down-
regulated at 12 h but increased at 24 h, which is more
significant in resistant varieties compared with suscep-
tible varieties, implying that these genes are involved in
regulating sheath blight resistance (Zhang et al. 2017).
The calcium-binding proteins OsBON1 and OsBON3
have been identified as negative regulators of broad-
spectrum disease resistance to both bacterial and fungal
pathogens including R. solani, which regulate the
balance between immunity and agronomic traits in rice
(Yin et al. 2018).
To combat OA action, host plants have evolved to

effectively decompose oxalate by synthesizing and se-
creting oxalate oxidases (Karmakar et al. 2015; Molla
et al. 2013). Bacteria and fungi are also able to produce
oxalate decarboxylases (ODCs) to inhibit OA accumula-
tion (Liang et al. 2015; Qi et al. 2017). During R. solani
colonization of host plants, several ODC genes were
significantly up-regulated (Ghosh et al. 2019; Liang et al.
2015). The ODC genes are essential for the formation of
appressorium in S. sclerotiorum, another necrotrophic
fungal pathogen, probably because ODCs function in OA
detoxification and pH homeostasis or contribute to cata-
bolic energy generation (Liang et al. 2015).
As a countermeasure to fungal PGs, plant

polygalacturonase-inhibiting proteins (PGIPs) specifically
recognize and bind to fungal PGs, and thereby inhibit the
cell wall degradation activity and prevent fungal infection
(Rathinam et al. 2020). The interaction of PGs and PGIPs

results in the production of oligogalacturonides, which are
important signals to induce PGIP gene expression and plant
defense responses (Davidsson et al. 2017). The expression
of the PGIP family genes is also significantly induced by R.
solani infection, wounding, SA and JA (Feng et al. 2016;
Zhu et al. 2019). It has been demonstrated that multiple
PGIPs from different plant species except OsPGIP2 confer
a wide spectrum of inhibitory activities to PGs and play an
essential role in resistance against various fungal pathogens
including R. solani (Wang et al. 2015b; Zhu et al. 2019).

Lessons from the Rice - R. solani Interaction
No cultivar with complete resistance has been identified
after screening of thousands of rice cultivars from
various rice growing regions (Li et al. 2019a; Molla et al.
2020; Shi et al. 2020). Due to the lack of resistant
germplasms to RSB, successes in conventional breeding
programs for RSB resistant varieties are very limited. By
contrast, many pathogenicity factors in R. solani and the
underlying mechanisms have been revealed in the mo-
lecular interaction between rice and R. solani (Table 1).
Besides, many defense-related genes have been also
identified to be associated with sheath blight resistance
in rice (Table 2). The knowledge provides a solid foun-
dation to create RSB resistant germplasms through
precisely manipulating the expression of target genes via
transgenic technology, gene editing and RNA interfer-
ence (Table 1).

Silencing Essential Pathogenicity Genes via RNA
Interference in the Fight Against R. solani
Cross-kingdom trafficking of small RNAs (sRNAs) be-
tween hosts and pathogens opens an avenue to develop
disease resistant transgenic plants producing sRNAs and
double-stranded RNAs, which can silence fungal patho-
genicity genes (Huang et al. 2019; Wang et al. 2016).
The host delivered RNA interference (HD-RNAi) tech-
nology has been developed to silence two PATHOGEN-
ICITY MAP KINASE 1 (PMK1) homologues, RPMK1-1
and RPMK1-2 in R. solani. The transgenic rice plants
show an increased resistance to RSB (Tiwari et al. 2017).
Besides, silencing of the key pathogenicity gene AG1IA_
04727 encoding polygalacturonase via HD-RNAi signifi-
cantly enhances rice resistance to R. solani (Rao et al.
2019). These results indicate that the targeting of key
pathogenicity genes in R. solani by HD-RNAi is a novel
and promising strategy for durable control of RSB.

Targeting Essential Pathogenicity Factors in R. solani via
Transgenic Technology
The attempts at inhibiting the PG activity via PGIP overex-
pression are also successful in suppressing R. solani infec-
tion. Overexpression of OsPGIP1 significantly improves
rice resistance to RSB (Chen et al. 2016; Rathinam et al.
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2020; Wang et al. 2015b). Although OsPGIP2, a homolog
of OsPGIP1, has no inhibitory activity to PGs, the mutant
protein OsPGIP2L233F has been identified to have the PG
inhibition activity. Overexpression of OsPGIP2L233F confers
rice resistance to R. solani (Chen et al. 2019). Furthermore,
the transgenic rice plants constitutively expressing
ZmPGIP3 exhibit significantly elevated expression of some
rice PGIP genes and enhanced resistance to sheath blight
compared with the wild-type plants (Zhu et al. 2019).
Importantly, these transgenic plants do not show any
detrimental phenotypic or agronomic effect. The findings
indicate that genome editing and natural allele mining of
plant PGIP genes provide important strategies to improve
RSB resistance in rice.
Since OA is an essential pathogenicity factor for

necrotrophic pathogens, expression of OA-detoxifying
enzymes in host plants leads to enhanced resistance
against necrotrophic pathogens including R. solani
(Nagarajkumara et al. 2005; Liang and Rollins 2018).
Overexpression of the rice oxalate oxidase 4 gene
(OsOXO4) and simultaneous overexpression of OsOXO4

and the chitinase gene OsCHI11 driven by green tissue-
specific promoters both significantly confer enhanced
and durable resistance to sheath blight (Karmakar et al.
2015; Molla et al. 2013). Expression of the oxalate de-
carboxylase Bacisubin, an oxalate-degrading enzyme
from Bacillus subtilis, also enhances resistance to RSB
and fungal blast diseases (Qi et al. 2017). In the transgenic
plants expressing oxalate oxidases and ODCs, OA released
by R. solani is degraded by these OA-detoxifying enzymes
to generate H2O2. Hydrogen peroxide plays a key role in
activating defense responses, such as phytoalexin biosyn-
thetic pathways, hypersensitive response, systemic acquired
resistance, and subsequently induces the expression of
PR genes TS and RC24 genes (Molla et al. 2013; Qi
et al. 2017).
As another essential virulence factor in R. solani, the

phytotoxin PAA induces the production of the cytotoxic
metabolite methylglyoxal (MG) in rice as a common
consequence of many abiotic and biotic stresses. The
transgenic rice plants overexpressing glyoxalase for MG
detoxification have been demonstrated to have much

Table 1 The effective strategies to generate rice cultivars with enhanced sheath blight resistance are developed based on the
findings in molecular interactions between rice and R. solani

Essential pathogenicity factors in R. solani The strategies and genes/proteins used
to enhance rice sheath blight resistance

Promoters/
Transformation methods

References

Name Roles during infection Name Functions

Oxalic acid Oxalic acid (OA) is secreted
and accumulated early in
the pathogen–plant interaction,
and is involved in plant cell
wall degradation.

OsOXO4 The oxalate oxidase detoxifies
OA and generates CO2 and H2O2,
which triggers defense responses
in plants.

A green tissue-specific
promoter-cassette, the
biolistic method

Molla et al.
(2013)

OxDC
(Bacisubin)

The oxalate decarboxylase (OxDC)
from Bacillus subtilis catalyzes the
production of formic acid and CO2

from OA, which reduces the
accumulation of oxalic acid.

The CaMV35S promoter,
Agrobacterium
tumefaciens-mediated
transformation

Qi et al.
(2017)

RPMK1-1 and
RPMK1-2

PMK1 homologs are essential
for the formation of appressorium,
the fungal infection srtructures, and
invasive growth inside the plant.

Host-derived RNA interference is
used to silence RPMK1-1 and
RPMK1-2 in R. solani.

Embryogenic calli as
a target tissue using a
biolistic particle gun

Tiwari et al.
(2017)

AG1IA_04727 The gene encodes
polygalacturonase.

Host-derived RNA interference
(Silencing)

Constitutive maize
ubiquitin promoter, A.
tumefaciens-mediated
transformation

Rao et al.
(2019)

Polygalacturonase Polygalacturonases (PGs) secreted
by R. solani degrade pectin, which
is a major plant cell wall component.

OsPGIP1 The polygalacturonase inhibiting
proteins (PGIPs) can specifically
recognize PGs to prevent fungal
infection through inhibiting their
cell wall degradation activity.

The CaMV35S promoter,
A. tumefaciens
-mediated transformation

Wang et al.
(2015b)

OsPGIP2L233F The maize ubiquitin-1 pro-
moter, A. tumefaciens-me-
diated transformation

Chen et al.
(2019)

ZmPGIP3 Zhu et al.
(2019)

PAA A biologically active toxin molecule
produced by R. solani

Glyoxalase The glyoxalase detoxifies the
cytotoxic metabolite methylglyoxal
generated in response to biotic
and abiotic stresses in plants.

The CaMV35S promoter,
A. tumefaciens
-mediated transformation

Gupta et al.
(2017)

α-1,3-glucan masking chitin to evade PRR
recognition, and maintaining the
infection-specific hyphal structure

α-1,3-
glucanase

A bacterial α-1,3-glucanase is able
to remove α-1,3-glucan on the
fungal surfaces.

The CaMV35S promoter,
A. tumefaciens
-mediated transformation

Fujikawa
et al. (2012)
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Table 2 The plant defense-related genes that have been manipulated to enhance sheath blight resistance in rice

Promoters/Transformation
methods

Resistance phenotype References
Name Functions

OsCHI11 The chitinases are chitin-degrading
enzymes that hydrolyze
the β-(1, 4) linkages of chitin.

The maize ubiquitin promoter
or CaMV35S promoter, A.
tumefaciens-mediated
transformation or protoplast
transformation

The transgenic plants
overexpressing OsCHI11 exhibit
enhanced resistance to sheath
blight.

Lin et al. (1995)
Baisakh et al.
(2001)
Kumar et al.
(2003)
Sridevi et al.
(2003)
Sridevi et al.
(2008)
Sripriya et al.
(2008)

OsRC7 The chitinase gene (OsRC7)
encodes a class I chitinase
(PR3 family) in rice.

The CaMV35S promoter, the
biolistic method and protoplast
transformation

The transgenic plants
overexpressing the chitinase
show different levels of
enhanced resistance to R. solani.

Datta et al.
(2001)

Os11g47510 A novel chitinase gene from
indica rice

The CaMV35S promoter,
the biolistic method

The transgenic plants show
good correlation between
transgene expression and the
level of sheath blight resistance.

Richa et al.
(2017)

Ace-AMP1 Ace-AMP1, a cysteine rich
antimicrobial peptide from
Allium cepa, is homologous
to plant ns-LTP and shows strong
antimicrobial activity.

An inducible rice phenylalanine
ammonia-lyase (PAL) promoter or a
constitutive maize ubiquitin
promoter, A. tumefaciens-
mediated transformation

The transgenic plants exhibit
increased resistance to blast,
sheath blight, and bacterial leaf
blight without agronomic trait
penalty.

Patkar and
Chattoo
(2006)

Dm-AMP1 Dm-AMP1, an antifungal plant
defensin from Dahlia merckii,
directly inhibits the pathogen.

The maize ubiquitin promoter,
A. tumefaciens-mediated
transformation

The transgenic rice plants
expressing Dm-AMP1 have the
potential to provide broad-
spectrum disease resistance in
rice.

Jha et al. (2009)

Rs-AFP2 Rs-AFP2, an antifungal plant
defensin from Raphanus sativus,
directly inhibits the pathogen.

The maize ubiquitin promoter,
A. tumefaciens-mediated
transformation

The transgenic rice plants
expressing Rs-AFP2 show
enhanced resistance to M.
oryzae and R. solani.

Jha and
Chattoo
(2010)

OsWRKY30 WRKY30 activates expression of
JA synthesis-related genes LOX,
AOS2 and pathogenesis-related
PR3 and PR10 genes

The maize ubiquitin promoter,
A. tumefaciens-mediated
transformation

The transgenic lines
overexpressing WRKY30 have an
enhanced resistance to R. solani.

Peng et al.
(2012)

OsWRKY80 OsWRKY80 activates OsWRKY4
expression, and subsequently
activates JA/ET-dependent
defense responses.

The maize ubiquitin promoter,
A. tumefaciens-mediated
transformation

Overexpression of OsWRKY80 in
rice plants significantly enhances
disease resistance to R. solani,
while silencing of OsWRKY80
compromises disease resistance
to R. solani.

Peng et al.
(2016)

OsACS2 OsACS2,1-aminocyclopropane-1-
carboxylic acid synthase, is a key
enzyme of ET biosynthesis.

The pathogen-inducible PBZ1
promoter, A. tumefaciens-
mediated transformation

The OsACS2-overexpression
lines show significantly
increased levels of endogenous
ET and defence gene
expression, increased resistance
to R. solani and M. oryzae, with
little or no influence on seed
production.

Helliwell et al.
(2013)

AtNPR1 Nonexpresser of pathogenesis-
related gene 1 (NPR1) in
Arabidopsis as the master
regulator of salicylic acid-
mediated signaling

The CaMV35S promoter,
A. tumefaciens-mediated
transformation

Green tissue-specific expression
of AtNPR1 in rice confers
resistance to sheath blight, with
no concomitant abnormalities
in plant growth and yield
parameters.

Molla et al.
(2016)

BjNPR1 Brassica juncea nonexpresser
of pathogenesis-related gene 1
(BjNPR1) causes redox-regulation
in mustard akin to that of
AtNPR1 in Arabidopsis.

The CaMV35S promoter,
A. tumefaciens-mediated
transformation

The BjNPR1-expressing rice lines
display enhanced resistance to
rice blast, sheath blight and
bacterial leaf blight diseases,
and improved agronomic traits.

Sadumpati
et al.(2013)
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less accumulation of MG and enhanced resistance
towards damage caused by PAA. The finding provides
another transgenic technology to develop RSB resistant
rice plants (Gupta et al. 2017). The mechanism of ob-
served tolerance of the glyoxalase-overexpressing plants
towards diverse abiotic and biotic stresses involves
enhanced detoxification and reduced oxidative damage,
leading to better protection of chloroplast and mito-
chondrial ultrastructure and maintained photosynthetic
efficiency under stress conditions (Gupta et al. 2017).

Interestingly, α-1,3-glucan produced by R. solani
masks chitin to evade PRR recognition, thus promoting
pathogen infection. Besides, α-1,3-glucan is essential
for the maintenance of the infection-specific hyphal
structure (Fujikawa et al. 2012). These findings pro-
vide a new virulence target for developing rice plants
against R. solani infection. Actually, the transgenic
rice plants expressing and secreting bacterial α-1,3-
glucanase show strong resistance not only to R. solani
but also to the phylogenetically distant ascomycete

Table 2 The plant defense-related genes that have been manipulated to enhance sheath blight resistance in rice (Continued)

Promoters/Transformation
methods

Resistance phenotype References
Name Functions

OsOSM1 Osmotins belong to thaumatin-
like proteins of PR5 family and
are involved in the permeability
stress and defense response
in plants

The maize ubiquitin promoter,
A. tumefaciens-mediated
transformation

An appropriately elevated level
of OsOSM1 in transgenic rice
enhances RSB resistance
without affecting rice
development or grain yield.

Xue et al. (2016)

OsOXO4
and
OsCHI11

As mentioned above The green tissue-specific rice
D54O-544 promoter and maize
PEPC promoter,
A. tumefaciens-mediated
transformation

Simultaneous overexpression of
the defense-related genes
OsCHI11 and OsOXO4 in rice
leads to significant resistance
against R. solani without
distressing any agronomically
important traits.

Karmakar
et al.(2015)

AtNPR1 and
OsCHI11

As mentioned above The green tissue-specific rice
D54O-544 promoter and maize
PEPC promoter,
A. tumefaciens-mediated
transformation

The transgenic rice plants with
simultaneous overexpression of
AtNPR1 and OsCHI11 show a
significant upregulation of
defense-related genes, PR genes,
and antioxidant marker genes,
and are more resistant to sheath
blight as compared to the single
transgene.

Karmakar
et al.(2017)

OsMAPK20-5 Mitogen-activated protein
kinases (MAPKs) play important
roles in plant responses to biotic
stresses.

Silencing of OsMAPK20-5 by
inserting an inverted-repeat
orientation (irMAPK20-5)
A. tumefaciens-mediated
transformation

Silencing of OsMAPK20-5 causes rice
plants
more susceptibility to
Cnaphalocrocis medinalis and
Magnaporthe grisea, but
enhances sheath blight
resistance.

Liu et al. (2019)

OsGSTU5 OsGSTU5 is a tau class of
glutathione-S-transferase in rice,
an important defense-associated
protein that confers resistance
against several abiotic and biotic
stresses.

Via the expression vector
pIRS154,
A. tumefaciens-mediated
transformation

The OsGSTU5-overexpressing
rice lines are more tolerant,
while the knockdown lines are
more prone to Rhizoctonia
infection.

Tiwari et al.
(2020)

OsASR2 OsASR2 (abscisic acid, stress and
ripening 2) regulates the
expression of a defense-related
gene, Os2H16, by targeting the
GT-1 cis-element.

Maize Ubiquitin 1 promoter,
A. tumefaciens-mediated
transformation

Overexpression of OsASR2
enhances the resistance against
Rhizoctonia solani and tolerance
to drought in rice.

Li et al. (2018)

LPA1 LPA1 belongs to an INDETERMIN
ATE DOMAIN protein family and
regulates sheath blight
resistance, tiller and leaf angle
by activating auxin signaling.

Maize Ubiquitin 1 promoter,
A. tumefaciens-mediated
transformation

Overexpression of LPA1 and
IDD13 enhances rice defenses
against sheath blight via the
activation of PIN1a in rice.

Sun et al. (2019)
Sun et al.
(2020a, 2020b)

DEP1 DEP1, a G-protein γ subunit, is a
novel interactor of LPA1 and
controls dense and erect panicle
of rice.

The knock-out mutant dep1
(PFG_3A-02648) was generated
with T-DNA insertion.

DEP1 knock-out increases
planting density and resistance
to sheath blight disease in rice.

Liu et al. (2020)
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Cochlioborus miyabeanus and Magnaporthe oryzae
(Fujikawa et al. 2012).

Enhancing Sheath Blight Resistance by Manipulating
Expression of Plant Defense-associated Genes
Although no complete resistance gene for sheath blight
has been identified in rice, many successful attempts
have been performed to develop resistant rice lines by
expressing defense-associated genes. Non expresser of
pathogenesis-related genes 1 (NPR1) was first identified
in Arabidopsis to be a master regulator of systemic ac-
quired resistance, which confers broad-spectrum resistance
to various pathogens (Fu and Dong 2013). Tissue-specific
expression of Arabidopsis NPR1 gene in rice enhances
sheath blight resistance without phenotypic and agronomic
costs (Molla et al. 2016). The transgenic indica rice lines
expressing Brassica juncea NPR1 also exhibit enhanced
resistance to R. solani (Sadumpati et al. 2013). Overexpres-
sion of pathogenesis-related genes such as PR3 and PR5
results in enhanced resistance to R. solani, manifested by
reduced disease lesion sizes in the transgenic rice plants as
compared with the wild-type rice plants (Datta et al. 1999;
Datta et al. 2001; Datta et al. 2002). In addition, over-
expression of OsGSTU5, a tau class glutathione-S-
transferase, in rice effectively increases the activities of
superoxide dismutase and peroxidase, and thereby reduces
accumulation of H2O2 and O2

−, and enhances rice resist-
ance to sheath blight (Tiwari et al. 2020). Various MAPKs
play important roles in plant adaptive responses to biotic
stresses. Silencing of OsMAPK20-5 remarkably reduces re-
sistance of rice to M. oryzae, but enhances resistance to R.
solani (Liu et al. 2019). Another group of small, highly
basic, cysteine-rich antimicrobial peptides called defensins
from various plant species exhibit strong antimicrobial
activities. Expression of such proteins as Ace-AMP1 from
Allium cepa, Dm-AMP1 from Dahlia merckii and Rs-AFP2
from Raphanus sativus in rice greatly suppresses the
growth of M. oryzae and R. solani (Jha et al. 2009; Jha and
Chattoo 2010; Patkar and Chattoo 2006). ASR2 (short for
abscisic acid, stress and ripening 2) specifically binds to an
important cis-element GT-1 and activates the expression of
the rice defense-related gene Os2H16. Over-expression of
the stress-responsive gene OsASR2 enhances resistance
against Xanthomonas oryzae pv. oryzae and R. solani, and
tolerance to drought in rice (Li et al. 2018). Collectively,
many defense-associated genes can be manipulated to
improve sheath blight resistance in rice (Table 2).

QTL for Disease Resistance to RSB
It is well recognized that rice resistance to sheath blight
is a quantitative trait controlled by multiple genes (Zuo
et al. 2014a). Therefore, identification, mapping and
subsequent characterization of RSB resistance QTL will

be of great significance for sheath blight resistance
breeding in rice (Jia et al. 2012; Molla et al. 2020;
Taguchi-Shiobara et al. 2013; Yadav et al. 2015).
Since the first RSB resistance QTL was identified in

1995, more than 110 RSB resistance QTLs have been
mapped to different chromosomes in rice (Molla et al.
2020; Wen et al. 2015; Zhang et al. 2019a). However,
only qSBR9-2, qSBR11 − 1, qSB-9TQ and qSB-11LE have
been finely mapped and no RSB resistance QTL has yet
been isolated in rice (Channamallikarjuna et al. 2010;
Zuo et al. 2013; Zuo et al. 2014a). A total of 14, 12, 12
and 26 putative genes have been predicted in the
qShB9-2, qSB-9TQ, qSB-11LE and qSBR11-1 regions, re-
spectively (Channamallikarjuna et al. 2010; Zhang et al.
2019a; Zuo et al. 2013; Zuo et al. 2014b). The SBR-9
locus in a 12.8-Mbp region between the markers
Nag08KK18184 and Nag08KK18871 contains at least
two putative resistance genes (Liu et al. 2009; Taguchi-
Shiobara et al. 2013). In addition, a novel chitinase gene
LOC_Os11g47510 in the QTL qSBR11-1 region of the
RSB resistant rice cultivar Tetep has been functionally
verified. Expression of the chitinase gene in the RSB sus-
ceptible rice line significantly inhibits the growth and
branching of R. solani hyphae and enhances rice resist-
ance to RSB (Richa et al. 2017). A major-effect QTL for
durable resistance containing a cluster of 12 germin-like
protein (OsGLP) genes has been identified on chromo-
some 8 in rice. The more the OsGLP genes in this gene
cluster are silenced by RNAi, the more the transgenic
lines are susceptible to R. solani. The disease resistance
conferred by OsGLPs at the QTL region, which is highly
conserved in the grass family, is broad-spectrum
(Manosalva et al. 2009). More importantly, an F-box
protein ZmFBL41 has recently been identified to confer
resistance to banded leaf and sheath blight in maize
through a genome-wide association study (Li et al. 2019b).
The isolation of the maize sheath blight resistance gene
offers a promising avenue to generate sheath blight resist-
ant cultivars in different crop plants.
Multiple QTLs for RSB resistance have been detected

in several resistant varieties, including Teqing, Jasmine
85, Zhaiyeqing 8, Xiangzaoxian 19, Tetep and Pecos
(Datta et al. 2001). Some major QTLs for RSB resistance,
such as qSB-9TQ, qSB-11LE and qSB-11HJX, have been uti-
lized in resistance breeding program. Pyramiding disease
resistance QTLs has been considered as an important
strategy to develop RSB resistant cultivars. The lines car-
rying qSB-11LE and qSB-11HJX have a significantly lower
disease level than the recurrent parent and the lines with
single QTL under the same genetic background, indicat-
ing that QTL pyramiding can further increase the resist-
ance to sheath blight (Li et al. 2019a). It has been also
demonstrated that pyramiding of two QTLs (qSB9-2 and
qSB12-1) and three QTLs (qSB7TQ, qSB9TQ and qSB11LE)
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has higher levels of resistance than a single QTL (Wang
et al. 2012; Yin et al. 2008). Therefore, simultaneous
introduction of multiple resistance alleles and stacking
of multiple QTLs in susceptible varieties increase rice
resistance to RSB (Chen et al. 2014; Pinson et al. 2008;
Zuo et al. 2008).
Sheath blight resistance QTLs are often mapped to the

same region as the QTLs for heading date and plant
height (Pinson et al. 2005; Sharma et al. 2009). For
instance, four QTLs for RSB resistance have been identi-
fied in F8 recombinant inbred lines of two rice varieties
from the United States, which are allelic to the QTLs for
plant height and heading date (Goad et al. 2020). The
flag leaf angle, length and plant compactness are also
tightly linked with the RSB resistance QTLs, qRlh11,
qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2 and qSB-9
(Hossain et al. 2016). The reason for the correlation
between morphological traits and resistance may be re-
lated to canopy microenvironment. Rice canopy density
has a great impact on humidity and temperature, which
are the important environment factors for pathogen
infection and multiplication.

Conclusions
Sheath blight has become one of the most important dis-
eases in rice. Genetic resistance has been well considered as
the most economic, effective and environmentally friendly
strategy to control crop diseases. However, no RSB resist-
ance gene has been isolated and identified. Increasing
knowledge on molecular interaction between R. solani and
host plants reveals many pathogenicity factors in R. solani
and defense-associated genes in rice. Accordingly, the ef-
fective strategies to develop RSB resistant germplasms in-
clude disarming essential pathogenicity factors in R. solani
via host-derived RNAi and transgenic technology, manipu-
lating expression of plant defense-associated genes, and
pyramiding the RSB resistance QTLs.
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