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Abstract

COVID-19 vaccination is being rolled out among the general population in India. Spatial hetero-
geneities exist in seroprevalence and active infections across India. Using a spatially explicit age-stratified
model of Karnataka at the district level, we study three spatial vaccination allocation strategies under
different vaccination capacities and a variety of non-pharmaceutical intervention (NPI) scenarios. The
models are initialised using on-the-ground datasets that capture reported cases, seroprevalence estimates,
seroreversion and vaccine rollout plans. The three vaccination strategies we consider are allocation in
proportion to the district populations, allocation in inverse proportion to the seroprevalence estimates,
and allocation in proportion to the case-incidence rates during a reference period.

The results suggest that the effectiveness of these strategies (in terms of cumulative cases at the end
of a four-month horizon) are within 2% of each other, with allocation in proportion to population doing
marginally better at the state level. The results suggest that the allocation schemes are robust and
thus the focus should be on the easy to implement scheme based on population. Our immunity waning
model predicts the possibility of a subsequent resurgence even under relatively strong NPIs. Finally,
given a per-day vaccination capacity, our results suggest the level of NPIs needed for the healthcare
infrastructure to handle a surge.

1 Introduction

India has witnessed a significant resurgence in the number of COVID-19 reported cases since the begin-
ning of March 2021. The number of confirmed active cases which was 165,412 on 01March 2021 increased
thirteen-fold to 2,284,411 by 21April 2021. The state of Karnataka, a large state in South India with a
population of about 70 million (estimated for 2020) and an area of approximately 192,000 km2, also experi-
enced this resurgence: from 5,945 confirmed active cases on 01March 2021 to 196,236 confirmed active cases
on 21April 2021; the rate of positive tests increased from 0.68% to 15.87%, the number in intensive care
units increased from 116 to 985, and the cumulative deaths increased from 12,343 to 13,885 during the same
period [17, 18]. This resurgence has significantly stressed the healthcare system. Further, the resurgence
has been heterogeneous across the districts of Karnataka, with Bengaluru Urban, Bidar, Kalaburagi, Udupi,
Dakshina Kannada, and Tumakuru showing early resurgence.

India approved the use of two vaccines whose effectiveness from Phase 3 trials are now well-documented
[6, 47]. To vaccinate 70%-90% of the population, Karnataka needs 98 – 126 million doses. This will likely
take 6-24 months given current vaccine production levels in India (approximately 65 million doses per month
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during April 2021), production ramp-up plans, and all India requirements (Karnataka has about 1/20 of
India’s population). The strategy has thus far prioritised (i) healthcare workers and front-line workers
from 16 January 2021; (ii) those 60 years and above plus those 45 years and above with co-morbidities,
from 01March 2021, given that COVID-19 disproportionately affects older adults and individuals with co-
morbidities; and (iii) those 45 years and above from 01April 2021. From 01May 2021, all individuals 18
years and above became eligible for vaccination [35]. The challenges involved in vaccinating nearly a billion
adults at the national level are outlined in [29].

Given the limited supply of vaccines, the eligibility of the entire adult population for vaccines, and
Karnataka’s heterogeneous spread of COVID-19 across its districts, a study of vaccination allocation policies

across districts is needed to design effective vaccination strategies. There are multiple possible criteria for
vaccine allocation across districts – based on population, on seroprevalence, or on case-incidence rates. It is
crucial to understand how these strategies compare in terms of minimising the number of cases. Assessing
the effectiveness of these strategies is complicated due to many factors, including immunity waning, new
variants, mobility, non-pharmaceutical interventions (NPIs)1, and delayed onset of vaccine effectiveness. To
account for these factors and assess the overall impact of the vaccination strategies, we resort to a modeling
study using a spatially explicit, age-stratified epidemiological model.

There are many district-level epidemiological models already available for Karnataka (See [1,3,25,40,43]).
These models use time-series data on reported cases, confirmed active cases, tests conducted (some models),
and deaths across the districts in the state. Age-stratified models have been used to understand vaccine
allocation strategies for India around the time of the first wave [24]. While spatial allocations of COVID-19
vaccines have been studied in the recent literature [10, 13, 32], such a study has not been undertaken in the
Indian context. We extend prior work by modelling the following additional factors.

• Karnataka conducted an extensive state-wide serological survey [4,5] during 02-16 September 2020 near
the first peak. This information on the state of the pandemic at that time was used to initialise our
model.

• Though more than 98% of the infected participants in a study seroconverted2 [48], it is well-documented
that the antibody titres decay and the decay rate is robust across asymptomatics, mild symptomatics,
age groups, sex, etc. [36] at approximately 25% reduction every two weeks. Antibody titres seem
to be correlated with the severity of the infection [12, 22, 27, 33]. Data seems to suggest significant
seroreversion among asymptomatics [30] who constitute a sizeable majority of the COVID-19 infected
population in India [28]. We account for this seroreversion in our epidemiological model.

• As of 22April 2021, about 6.7 million people, comprising healthcare workers, front-line workers, and
people over 45 years of age, or just under 10% of the population of Karnataka, received at least one dose
of vaccination in phases since 16 January 2021. We account for these vaccinations and their effectiveness
in our model.

• There has been an increase in transmission during the resurgence phase, perhaps due to new variants
in circulation. NPIs are being imposed for six weeks during April-June 2021 to break the chain of
transmission [26]. We re-calibrate the contact rates to account for this resurgence and the NPIs.

By accounting for the above aspects in our epidemiological modelling, we study the following:

(i) Effectiveness of three possible vaccination allocation strategies across districts: in proportion to the
population, in inverse proportion to seroprevalence estimates, and in proportion to case-incidence rates;

(ii) Possibility of a subsequent resurgence in the latter half of 2021: under an immunity waning model
along with various daily vaccination capacities and NPI scenarios; and

(iii) The target level of NPIs required: to ensure total caseload in a four-month horizon is within the
healthcare infrastructure capacity given a daily vaccination budget.

The situation is fluid on the ground with significant ramping up of testing3, renewed telemedicine cam-
paigns [20], and non-pharmaceutical interventions [26]. These will impact people’s behaviour, mobility
patterns, and transmission dynamics. Nevertheless, we envisage that our study will provide epidemiological
insights for better public health response and can serve as a framework that can be updated and expanded
to a national scale based on data availability.

1These include the closure of schools and colleges, workplaces, community spaces, mobility restrictions, and varying degrees
of lockdowns.

2But see [44] which is an Indian cohort study that reported only 85% seroconversion rate.
3There has been a 50% increase in testing from 118,933 tests on 01April 2021 [19] to 162,534 tests on 21April 2021 [17].
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Figure 1: Datasets for our epidemic simulator. The epidemic simulator takes data from several sources. Disease

parameters come from the current state of knowledge of how COVID-19 affects an infected individual. Case surveil-

lance data include tests, reported cases, discharges, and deaths. Serosurveillance data comes from a state-wide survey

done in September 2020 during the first peak. The timings and the duration of the NPIs are based on when they

come into effect in the state. A mobility model captures the spread of infection in the units before the April 2021

resurgence. Karnataka’s actual geography enables better visualisation of the simulation outcomes. Demographic

data for the units are taken from the 2011 census and extrapolated to 2020. Vaccine supply assumptions are based

on historical vaccination data. Experimental vaccination allocation policies are based on these data elements. The

epidemic simulator takes all these and generates outcomes for a comparative study.

2 Methods: Data, Modelling, and Experiment Design

Karnataka has 30 administrative zones called districts. We treat all districts other than the capital Bengaluru
Urban district as individual spatial units. Since the Bengaluru Urban district is heavily populated, we further
subdivide it into nine units. This yields a total of 38 units which were also the units used in the state-wide
serosurvey conducted in September 2021 [4, 5].

We use a spatial and age-stratified compartmental model to study the disease spread within Karnataka.
There are five compartments: susceptible (S), exposed (E), infected (I), recovered/deceased (R) and vacci-
nated (V). The infected compartment includes both detected and undetected infections. The population is
divided into sub-units, with each sub-unit comprising an (age-group, unit) pair, where a unit is one of the
38 units described above. The model keeps track of the numbers in the five compartments in every sub-unit
and lets them evolve over time. The trajectory is obtained by time-discretisation and solutions to difference
equations [45, 46], which we shall soon describe.

Datasets: We use the following datasets in our model. The datasets used are portrayed in Figure 1 and
summarised in Table 1.

• Population data is based on the official projected population data for 2020 [21]. The age distribution
is based on a 2017 projection from [37].

• Age-stratified contact rates [38] modulate the number of contacts made between people of various age
groups.

• Disease parameters (incubation period, mean recovery time) are based on [11,23, 34].

• We leverage the unit-wise active infection and past infection data from the Karnataka-wide round-1
seroprevalence study [4, 5] to initialise our simulation on 11October 2020.

• Time series of daily reported cases data and tests conducted in each unit are taken from the official daily
bulletins (e.g., [18], summarised in [42]) starting from 11October 2020. The data until 22April 2021
is used for model calibration, and the data until 11May 2021 is used for validation and uncertainty
quantification.

• To move from reported cases to infections, we use the the unit-wise reported cases-to-infections ratio
(CIR) estimated from the Karnataka round-1 seroprevalence study [4,5]. Further, we use testing data
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Figure 2: Compartments, disease progression, vaccination, and immunity waning (antibody decay) compo-
nents of the model.

from March 2021 to modify the CIR on a weekly basis. This is to account for significantly increased
testing since March 2021. The testing data are taken from Karnataka’s daily COVID-19 bulletins.

• We also use the daily number of vaccinations administered in each unit and assume, for simplicity, a
conservative 66% efficacy 14 days after one dose4.

Model: Let D denote the set of units and let A denote the set of age groups. A sub-unit (also referred to
as a patch) of the population is identified with a given unit and an age group; let u = (i, x) ∈ D × A be a
patch of the population. Let N(i,x) denote the population of patch (i, x). Let us consider the evolution of the
exposed population at u. People from patch u get exposed to the virus from the infected population in u as
well as from the infected population in other patches v owing to mobility across units and interactions across
age-groups. We model the impact of mobility on infection spread by keeping the population of the patches
constant and by adjusting the within-unit and cross-unit contact rates based on a mobility matrix. Let Θ(t)
denote the unit-wise travel matrix at time t, i.e., θj,i(t) denotes the probability that an individual in unit j
spends time in unit i at time t. Let M denote the matrix of age-stratified interaction rates, i.e., Mx,y is the
number of contacts made by individuals of age group x with age group y on a typical day (time unit being
one day). We also define βi(t), a piece-wise constant function, to be a contact rate modulating parameter at
time t. Let S(i,x)(t), E(i,x)(t), I(i,x)(t), R(i,x)(t) and V(i,x)(t) denote the number of people in susceptible (S),
exposed (E), infected (I), recovered/deceased (R), and vaccinated (V) states, respectively, in patch (i, x) at
time t; see Figure 2. Assuming that a tagged individual in patch u = (i, x) comes in contact with a tagged
individual in patch v = (j, y) at rate βi(t)θj,i(t)Mx,y/N(j,y) effective contacts per unit time, the change in
the exposed population at time t in patch u = (i, x), defined as ∆E(i,x)(t) = E(i,x)(t+1)−E(i,x)(t), is given
by

∆E(i,x)(t) = βi(t)S(i,x)(t)
∑

j∈D

θj,i(t)
∑

y∈A

Mx,y

I(j,y)(t)

N(j,y)
− αE(i,x)(t) (1)

where α is the rate at which individuals move from the exposed state to the infected state (i.e., 1/α is the
mean incubation period). Let γ denote the recovery rate, i.e., 1/γ is the mean time to recovery or death.

4At the time of writing, as indicated in the Introduction, two vaccines were being administered in India. The guidelines
recommend two doses of the vaccine spaced twelve weeks apart. For effectiveness studies, see [47] and the interim phase 3
results [6].
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Table 1: Summary of datasets used in the simulator, their brief descriptions, and references.

Dataset Description Reference

Population The population of each unit of Karnataka (estimated for 2020). [21]
Age distribution The age distribution of the population in Karnataka. This is used

to find out the population of each age group in each unit.
[37]

Age stratified contact
rates

The number of contacts made by an individual of a given age
group with another individual of another age group. This is used
to modulate the contact rates based on age-groups.

[38]

Disease parameters The mean incubation time in and the mean recovery time of
COVID-19 infected individuals. These are used to model the
spread of the disease.

[11,23,34]

Seroprevalence data Unit-wise antibody (IgG) prevalence and active prevalence of
COVID-19 from the Karnataka-wide round-1 serosurvey con-
ducted during 02–16 September 2020. The round-1 data is used
to initialise the simulator. We then use a Weibull model for im-
munity waning.

[4, 5]

Daily new reported
cases

The time-series of unit-wise daily new reported cases since
11October 2020. This is used to calibrate the contact rates.

[42]

Tests The time-series of tests done in the state of Karnataka since
19February 2021. This is used to modify the cases to infections
ratio.

[42]

Vaccinations The time-series of unit-wise vaccine doses administered since
16 January 2021.

[42]

Then the changes in the variables S, I, and R for the patch (i, x) at time t are modelled as

∆S(i,x)(t) = −βi(t)S(i,x)(t)
∑

j∈D

θj,i(t)
∑

y∈A

Mx,y

I(j,y)(t)

N(j,y)
−∆V(i,x)(t) + ∆W(i,x)(t), (2)

∆I(i,x)(t) = αE(i,x)(t)− γI(i,x)(t), (3)

∆R(i,x)(t) = γI(i,x)(t)−∆W(i,x)(t). (4)

Additionally, V(i,x)(t) is incremented based on (for simplicity) the number of first-dose vaccines administered
fourteen days prior to t in that unit, after taking into account the efficacy of the vaccine. This data is
extracted from bulletins like [18] and is summarised in [42]. The 14-day delay accounts for the time for
antibodies and immunity to develop. The increment to the vaccinated pool ∆V(i,x)(t) depends on the
number vaccinated in age group x of district i and the effectiveness of the vaccine, which is conservatively
set to 66%, the lower of the two effectiveness numbers reported in [6, 47] after two doses.

In addition to the disease progression dynamics (1)–(4), we also consider an agent-based immunity waning
factor in our model. The feature, also known as seroreversion, is motivated by the observed reduction in
seroprevalence in the densely populated areas of Mumbai [41]. Both reinfections from the original strain
due to antibody waning and cross-strain infections are possible factors driving the increasing trend in the
daily number of reported cases in Karnataka starting early March 2021. In our implementation of immunity
waning and seroreversion, individuals in the recovered state are assumed to lose their immunity after a
random amount of time which has the Weibull distribution with shape κ = 3.67 and scale λ = 120 days, a
model inspired by that in [7] but with a faster median seroreversion period to account for the resurgence.
We sample a duration from this Weibull distribution for each recovered individual and move that individual
from the recovered state to the susceptible state after this duration. This is the ∆W(i,x)(t) in (2) and (4).

Calibration: Certain parameters are kept fixed throughout the simulation duration. These are the mean
incubation period 1/α (assumed to be 5.8 days) and the mean infectious period 1/γ (assumed to be 5 days).
These are based on [11,23,34]. The piece-wise constant contact rate parameters βi(·) are tuned to minimise
the per day squared error between the logarithm of daily-new-reported-cases time-series and that of the
model (see Appendix 4.2). We aim to match the time-series for each unit by calibrating its contact rate.
Since our simulator tracks infections, we multiply the reported cases by the estimated cases-to-infections
ratio available from the Karnataka-wide round-1 seroprevalence study [4, 5] as the total infections that the
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simulator should track. To account for the increased testing since March 2021, we modify the CIR every
week based on the ratio of the average number of daily tests done in a given week to the average number
of daily tests done during 18–28February 2021. Finally, we consider a 7-day moving average for the daily
infected time-series to smooth the curves for tracking.

In summary, the following steps are performed during calibration:

• Start the simulator with susceptible, infected and recovered fractions matched to the round-1 sero-
prevalence data projected to 11October 2020. Tune the contact rate parameters during 11–31 October
2020 to match the number of reported cases on 01 November 2020 within 10%.

• Tune the unit-wise contact rate parameters (one scalar per unit) during the period 01November 2021
– 28February 2021 to bring the per day squared error to within 0.1 for each unit. We use the identity
matrix for mobility during this period, so the disease evolves independently in each unit. We update
the contact rates in each iteration after evolving the time-series over the duration.

• Tune the unit-wise contact rate parameters during 01–15March 2021 to match the number of model-
reported cases on 15March 2021 within 10% of the actual reported cases. Then tune the unit-wise
contact rate parameters during 16March – 07April 2021 to minimise the per day squared error during
this period. To account for the stochasticity due to a low number of reported cases in many units, we
introduce moderate uniformly mixing mobility, i.e., Θ(t) = (1− ε)I + εJ , where I denotes the identity
matrix of size |D|, J denotes the all-one matrix of size |D|, and ε = 0.01.

• Repeat the above for the duration 08–22April 2021 to arrive at the corresponding calibrated contact
rates for this period. From this period onward, since the infections have been seeded, we go back to
diagonal mobility, i.e., Θ(t) = I. If mobility data is available, then the mobility matrix Θ(t) can be
appropriately set.

• For the projections, we redo the calibration for the period 08April–01May 2021 and hold the resultant
contact rate parameters constant into the future.

• Finally, to account for the delay in sample collection and test outcomes, we delay the trajectory of
reported cases by one week.

The immunity waning Weibull distribution is fixed to have shape κ = 3.67 and scale λ = 120 and is
common across all units. This yields a median seroreversion time of 109 days.

Validation: To validate the performance of our calibrated simulator, we use the tuned contact rates during
08–22April 2021 and run the simulator with these contact rates during 23April – 11May 2021. We validate
the simulator by comparing the simulator’s projections with the actual reported cases during 23April –
11May 2021. To quantify the uncertainty in our predictions, we compute the root mean squared error
between the projected number of cases and the actual reported cases between 23April – 11May 2021.

Experiment design: We use our simulator to estimate the number of reported cases for each unit in
Karnataka until 31December 2021. However, we caution that we do not have uncertainty quantifications for
the longer-term projections (beyond two weeks). The experiments are described below.

We first consider two sets of scenarios to study the effect of non-pharmaceutical interventions (NPIs).
These are the following.

• The first set is the setting of No-NPI. Here the mobility matrix during 02May 2021 – 31December 2021
is assumed to be Θ(t) = I, i.e., the same as that of the period 01April 2021 – 01May 2021 (violet
extrapolation in Figure 3).

• The second set consists of three scenarios with varying levels of NPI during 02 May 2021 – 31 December
2021:

(i) 1/3-NPI with mobility matrix Θ(t) = 2
3I;

(ii) 1/2-NPI with mobility matrix Θ(t) = 1
2I;

(iii) 2/3-NPI with mobility matrix Θ(t) = 1
3I.

The above scenarios are depicted in Figure 3. Note that Θ(t) = αI implies that the number α is the
reduction in the effective contact rate from a reference level of 1. We choose to study three different
levels to account for uncertainties in the actual level of NPI and compliance.
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Figure 3: Mobility scenarios considered for the simulation experiment design. The purple band indicates a
period when the mobility matrix is (1− ε)I + εJ . The mobility is I at all other times.

We also design three vaccination policies. Starting from 23April 2021, vaccines are allocated to units in
proportion to:

• The population of the units;

• The inverse of the model-predicted seroprevalence on 18February 2021; and

• The case-incidence rates during 01–15April 2021.

We have chosen 18February 2021 as the reference date for the inverse-seroprevalence strategy to match the
second seroprevalence study, which is in progress. For each policy above, starting from 23April 2021, we
assume that the daily budget of available vaccine doses is 167000 (which is the average daily number of first
doses of vaccines administered in the state of Karnataka during 01–15April 2021). Until 22April 2021, we
use the actual number of the first dose of the vaccine administered; this data is available in [16]. Since the
vaccination drive started with healthcare workers and subsequently extended to people above 60, 45 and
then 18 years of age, we assume that the vaccines allocated to a unit get equally distributed among the
age groups of 18+ during 16 January 2021 – 15March 2021 (healthcare workers), equally distributed among
the age groups of 40+ during 16March 2021 – 30April 2021, and equally distributed among the age groups
of 18+ after 01May 2021, respectively. Even though India has a significantly younger population, in our
simulator, the distribution of vaccines across age groups has a desirable natural bias towards the elderly,
who are more susceptible to COVID-19.

Finally, we also study two decreased and seven increased daily vaccination capacities where the 167000
is replaced by 100000, 133000, 200000, 233000, 267000, . . ., 400000 doses per day (first dose). See Table 2.

The outcomes of our experimental study are summarised using:

• The variation in the occurrence of the peak of daily reported cases across the units of Karnataka under
various NPIs;

• The short-term and long-term cumulative number of reported cases in the units of Karnataka under
the three vaccination policies; and

• The reduction in the number of projected cases with increase in the daily budget of available vaccine
doses for various NPIs.

The outcomes will quantify the public health benefit of NPIs over No-NPI, study the effectiveness of the
three vaccination policies, and highlight the limitations/benefits of reduced/increased vaccine allocations
across various levels of NPIs.
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(a) Linear scale (b) Log scale

Figure 4: Validation plots for the state of Karnataka. The vertical line in both plots separates the calibration
and the validation periods. The root mean squared error during the validation period is at most 9% for the
state of Karnataka.

Figure 5: Uncertainty quantification for the validation period in each unit of Karnataka. More than one-half of the
units have a root mean squared error of less than 20%. Five districts have errors between 40-50% which are due to
the sudden change in trends in the reported cases not captured by the model.

3 Results

Validation and uncertainty quantification: The prediction errors in the simulator’s projections for the
entire state of Karnataka are visualised in Figure 4. The projections are in blue and should be compared
with the actual reported cases in red on the right-hand side of the vertical line marking 22April 2021. Similar
validation plots for the individual units can be found in Figure 13. For the state of Karnataka, we find that
the root mean squared error between the projected number of cases and the reported number of cases is
about 9%. The percentage error for each unit is visualised in Figure 5. While the short-term prediction
errors for more than half of the units are within 20%, the error for some units such as Raichur and Vijayapura
are close to 50%. Longer-term prediction errors will only be larger. Further, there is a steep rise in the
prediction errors for the units Chikkaballapur, Kodagu, Kolar, Vijayapura and Raichur.

Future projections and peaks: Figure 6 depicts the daily and the cumulative number of reported cases
in Karnataka until 31December 2021 under various NPIs. In these plots, we assume that a daily budget of
167000 vaccine doses is available and distributed in proportion to each unit’s population. Note that these
are long term projections and should be interpreted with caution.

The units are classified as E1 < E2 < M1 < M2 < L1 < L2 with E standing for early peaks (May 2021),
M standing for mid-range peaks (June 2021), and L standing for late peaks (July 2021 and after). E1 and E2

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257836doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257836
http://creativecommons.org/licenses/by/4.0/


(a) Daily new reported cases. (b) Cumulative reported cases.

Figure 6: The projected number of new infections for the state of Karnataka under various NPIs. These
projections are for the vaccination policy that allocates 167000 vaccine doses per day proportional to each
unit’s population. Uncertainty bands are not indicated to reduce clutter. Recall the 9% root mean squared
error for a two-week ahead projection. The left figure is for the daily new reported cases, and the right figure
provides the cumulative reported cases.

Figure 7: The evolution of susceptible fraction in the state of Karnataka over time. These plots are for the vaccination
policy that allocates 167000 vaccine doses per day proportional to each unit’s population. Observe that the susceptible
fraction increase during the period August-November 2021 due to antibody waning.
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stand for the first and second half of May 2021, respectively, with similar interpretations for M1, M2, and
L1, L2.

Peaks – The counter-factual case of No-NPI: Under the counter-factual No-NPI scenario, the state-level peak
may have occurred during mid-May 2021. For the unit-wise daily and the cumulative number of reported
cases, see Figure 11. The model suggests that the units would have peaked at different times. Most of the
Bengaluru units are in the E category (either E1 or E2) and Kalaburagi, Bidar, Kodagu, and Tumakuru.
Except for Kodagu, these units saw an early resurgence. Kodagu saw a steep rise in infections, which suggests
an early peak. Bagalkote, Chitradurga, Haveri, Dharwad and Gadag are in the L category. See the top two
subfigures in Figure 9 for the No-NPI setting. The left-hand side figures present the E-M-L categorisation,
while the right-hand side figures present a spatial view of this categorisation.

Peaks – The various NPIs: Under 1/3-NPI, the model predicts that only about a third of the units will have
peaks after mid-May 2021 (E2 and beyond). Under 1/2-NPI and 2/3-NPI, the model predicts that cases
reduce from as early as mid-May 2021 in every unit and also in the state.

Projected cumulative cases on 31August 2021 – A comparison: The projected cumulative reported cases at
the end of August 2021 seem to have significant reduction due to these NPI assumptions, see Figure 6 and
Tables 4–7. These assume 167000 vaccination doses per day. Compared to No-NPI, on 31August 2021, the
model projects that 1/3-NPI may reduce the (cumulative reported) cases by roughly 926,000, 1/2-NPI may
reduce it by another 431,000 cases, and 2/3-NPI may reduce it by another 306,000 cases. This order of
magnitude reduction appears robust across all three vaccination policies, which we discuss next.

Comparison of the three vaccination policies: Table 5 provides a summary of the cumulative model-
projected reported cases on 15May 2021 and 31August 2021, respectively, starting from a reference level
taken to be zero on 01November 2020 (which is the reference date)5. This is under the three vaccination
policies assuming that (i) the daily budget of available vaccine doses is 167000 and (ii) 1/3-NPI is in force
starting from 02May 2021. The (short-term) model-projected cumulative number of reported cases in the
state on 31May 2021, starting from 01 November 2020, is 1.718, 1.720 and 1.705 million under the vacci-
nation policies of the population proportional, inverse seroprevalence proportional and case-incidence rate
proportional strategies, respectively. This suggests that all three vaccination strategies are similarly effec-
tive in the short term according to the model. Similarly, the model-projected cumulative reported cases on
31August 2021 are 2.222 million, 2.249 million and 2.254 million under the same three policies, respectively.

While the above was for 1/3-NPI, Table 4, Table 6 and Table 7 summarise the model-projected cases
under No-NPI, 1/2-NPI and 2/3-NPI, respectively. All of these are within 2% of each other. However, a finer
observation indicates that the incidence-rate proportional allocation is more effective in the short term, but
the population-proportional allocation is effective in the long-term when viewed at the level of the state6.
In the BBMP units, the incidence-rate proportional allocation continues to remain the most effective among
the three.

The benefit of increased daily vaccinations: Table 2 summarises the effect of increased/decreased
number of daily vaccinations under various NPIs, assuming that vaccines are allocated in proportion to
population. Under No-NPI, the second column in Table 2, we find that the cumulative number of projected
cases on 31August 2021 reduces from 3.27 million to 2.82 million as the number of daily vaccinations increases
from 100000 to 400000. Reductions are observed in the other NPIs as well. Going row-wise, for a fixed
daily vaccination budget, we find a significant reduction in the number of cumulative cases as NPIs are
strengthened, as expected. Going column-wise, an increase of vaccination capacity is most effective when
the intensity of NPI is low. Table 3 summarises the reductions in percentage with respect to the reference
number of cases under No-NPI and 100000 vaccinations per day.

Resurgence: Table 8 shows the susceptible population percentage (model-predicted) in each unit. We
note that with 100000 vaccination capacity per day, 15/38 units have more than 60% susceptible on
31August 2021. See also Figure 7 which shows that the susceptible fraction increases during August-
November 2021 due to antibody waning. Figure 6 shows a future peak between mid-November and mid-
December 2021. Figure 11 shows the resurgence in the units. Except for Bidar and Kalaburagi, all show

5To compare with the actual cumulative COVID-19 cases, one must add our increments from the reference date to the actual
cumulative cases of 827,064 on 01November 2020.

6In the case of 2/3-NPI, the incidence rate proportional allocation does marginally better.
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Table 2: The projected number of cumulative reported cases in the state of Karnataka on 31August 2021
under the four NPI intensities and various daily budgets of available vaccine doses. Vaccinations are assumed
to be allocated in proportion to the population of each unit.

Daily budget No-NPI 1/3-NPI 1/2-NPI 2/3-NPI
100000 3266600 2278100 1815200 1490700
133000 3206300 2249400 1803000 1487500
167000 3147900 2221800 1790400 1484600
200000 3094100 2196100 1779400 1480900
233000 3043300 2172400 1769400 1477400
267000 2993600 2148800 1758400 1474200
300000 2948300 2127600 1749200 1470900
333000 2905200 2107200 1740000 1468000
367000 2863000 2087000 1730900 1465500
400000 2824200 2069100 1722400 1462800

Table 3: Reduction in the number of cumulative projected cases on 31August 2021 under various NPI
intensities and daily vaccination budgets. Vaccinations are assumed to be allocated in proportion to the
population of each unit.

Daily budget No-NPI 1/3-NPI 1/2-NPI 2/3-NPI
100000 Reference 30.3% 44.4% 54.4%
133000 1.8% 31.1% 44.8% 54.5%
167000 3.6% 32.0% 45.2% 54.6%
200000 5.3% 32.8% 45.5% 54.7%
233000 6.8% 33.5% 45.8% 54.8%
267000 8.4% 34.2% 46.2% 54.9%
300000 9.7% 34.9% 46.5% 55.0%
333000 11.1% 35.5% 46.7% 55.1%
367000 12.4% 36.1% 47.0% 55.1%
400000 13.5% 36.7% 47.3% 55.2%

resurgence before December 2021. In our model, Bidar and Kalaburagi will show resurgence since the infec-
tion is never wiped out in the simulator. The resurgence in our model can be attributed to residual levels
of infection in the unit, which then begins to increase as immunity wanes. Mobility and variants that can
escape immunity are not taken into account.
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Figure 8: Surface plot (top figure) and contour plot (bottom figure) summarising the reduction in the number
of model-projected cases on 31August 2021 for varying daily vaccination budgets and NPI intensities. The
surface plot and the contours are based on linear interpolation from the data points in Table 3.
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Figure 9: Left subfigure: The time of occurrence of the peak number of reported cases for each unit under No-NPI,
1/3-NPI, 1/2-NPI and 2/3-NPI, respectively. E, M, L stand for early, mid, late peaks, and the ordering is: E1 <

E2 < M1 < M2 < L1 < L2. Right subfigure: Geo-spatial representations of the two scenarios. Spatial heterogeneity
manifests in the No-NPI setting. In the 1/2- and 2/3-NPI settings, the cases start to recede from mid-May 2021.
Note that the NPI intensities are held constant until 31December 2021 in our simulations.
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Table 4: Comparison of unit-wise cumulative reported cases (since 01November 2020) on 31May 2021 and
31August 2021 under No-NPI with a daily budget of 167000 vaccine doses.

Unit Population-
proportional
31May

InverseSero-
proportional
31May

IncidenceRate-
proportional
31May

Population-
proportional
31August

InverseSero-
proportional
31August

IncidenceRate-
proportional
31August

BBMP-Bommanahalli 93000 93200 89300 112500 113500 99200
BBMP-Dasarahalli 51100 50800 46800 69900 67800 53300
BBMP-East 148000 148800 146100 175800 181000 167500
BBMP-Mahadevpura 120400 120400 114100 151300 151000 127700
BBMP-RR-Nagar 81600 81100 76900 85700 84300 78200
BBMP-South 134100 134900 132900 141900 145100 138800
BBMP-West 133000 133700 128600 139300 141700 131000
BBMP-Yelahanka 79000 78600 72100 104100 102400 80700
Rest of Bengaluru-
Urban

103500 103500 99900 171900 173100 143900

Bagalkot 32900 33200 33500 106700 114100 122800
Ballari 86800 87700 88500 122600 127400 131700
Belgaum 40000 40600 40800 93000 103000 105100
Bengaluru-Rural 37600 37700 37600 44100 44500 44400
Bidar 18900 18700 18900 25800 24200 26400
Chamarajanagar 26100 26200 26500 31200 31600 32600
Chikkaballapur 60600 60600 61600 95800 95600 102200
Chikmagalur 24900 24700 25200 35900 35100 38000
Chitradurga 11500 11600 11700 30000 31800 34400
Dakshina-Kannada 52400 52900 53000 94400 101400 103700
Davanagere 28200 28500 28800 59600 62600 66200
Dharwad 42400 42100 42900 175300 160700 207000
Gadag 8900 8900 9000 47400 46000 60600
Hassan 47800 47500 48200 69100 67400 72900
Haveri 9600 9300 9700 35000 27200 41200
Kalaburagi 51100 51100 51500 68800 68900 72800
Kodagu 21200 21100 21300 22100 21900 22400
Kolar 44400 44800 45100 56600 58400 59600
Koppal 42100 41800 43000 76600 74300 83600
Mandya 54600 55300 55300 65300 68000 68300
Mysuru 128400 130300 130100 177600 190300 188800
Raichur 46900 47100 47900 57000 57600 60500
Ramanagar 21600 21500 21900 29100 28700 30800
Shivamogga 37000 37100 37500 90700 93500 102100
Tumakuru 61200 61500 61900 67300 68500 69800
Udupi 33600 33700 33700 54200 55400 56400
Uttara-Kannada 35400 35300 35900 78100 76400 84800
Vijayapura 28700 28900 29100 40600 42100 43900
Yadgir 30300 29300 30900 45700 41000 49000
Karnataka 2109100 2113900 2087600 3147900 3177300 3202500
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Table 5: Comparison of unit-wise cumulative reported cases (since 01November 2020) on 31May 2021 and
31August 2021 under 1/3-NPI with a daily budget of 167000 vaccine doses.

Unit Population-
proportional
31May

InverseSero-
proportional
31May

IncidenceRate-
proportional
31May

Population-
proportional
31August

InverseSero-
proportional
31August

IncidenceRate-
proportional
31August

BBMP-Bommanahalli 79900 79900 77900 90400 90900 83900
BBMP-Dasarahalli 42100 41900 39900 50800 50000 43300
BBMP-East 129100 129500 128100 143400 145600 139800
BBMP-Mahadevpura 102900 102800 99700 117300 117300 106900
BBMP-RR-Nagar 76500 76100 73600 79000 78300 74400
BBMP-South 125400 125900 124700 129800 131200 128300
BBMP-West 125400 125800 122700 129000 130100 124400
BBMP-Yelahanka 65700 65400 62200 77900 77200 66900
Rest of Bengaluru-
Urban

79500 79500 77900 111500 112300 99200

Bagalkot 21300 21400 21500 51700 56000 60700
Ballari 63600 64000 64400 93400 97500 100900
Belgaum 26900 27100 27200 54400 61000 62400
Bengaluru-Rural 32500 32600 32600 36300 36500 36400
Bidar 16600 16500 16600 18400 18000 18500
Chamarajanagar 21000 21000 21200 26000 26300 27100
Chikkaballapur 42400 42400 42900 70600 70800 76200
Chikmagalur 19100 19000 19200 26000 25500 27200
Chitradurga 8500 8500 8500 14800 15600 16600
Dakshina-Kannada 40800 41000 41000 56500 59000 59800
Davanagere 18900 19000 19200 37600 39900 42500
Dharwad 30100 30000 30300 56500 53900 62600
Gadag 6500 6500 6600 11000 10900 12000
Hassan 37700 37600 37900 49200 48400 51200
Haveri 6300 6200 6400 14900 12100 17700
Kalaburagi 43400 43400 43600 50000 50100 51200
Kodagu 19500 19400 19500 20400 20300 20600
Kolar 35400 35500 35700 44600 45900 46700
Koppal 28000 27800 28300 52800 51400 58600
Mandya 45300 45600 45700 53300 55100 55300
Mysuru 100000 101000 100800 132300 140300 139400
Raichur 37100 37100 37600 47000 47500 49900
Ramanagar 16100 16000 16300 22700 22500 24100
Shivamogga 25900 25900 26100 47700 49300 53200
Tumakuru 54500 54600 54900 58900 59500 60300
Udupi 26500 26500 26600 34700 35200 35600
Uttara-Kannada 24000 23900 24200 47400 46700 52100
Vijayapura 22500 22600 22700 29400 30300 31200
Yadgir 21300 20800 21600 34300 30800 37200
Karnataka 1718000 1720000 1705400 2221800 2249100 2254200
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Table 6: Comparison of unit-wise cumulative reported cases (since 01November 2020) on 31May 2021 and
31August 2021 under 1/2-NPI with a daily budget of 167000 vaccine doses.

Unit Population-
proportional
31May

InverseSero-
proportional
31May

IncidenceRate-
proportional
31May

Population-
proportional
31August

InverseSero-
proportional
31August

IncidenceRate-
proportional
31August

BBMP-Bommanahalli 73700 73800 72500 79500 79700 76100
BBMP-Dasarahalli 38100 38000 36700 42300 42000 38700
BBMP-East 120300 120500 119600 128100 129100 126300
BBMP-Mahadevpura 95000 95000 93000 102400 102400 97200
BBMP-RR-Nagar 73800 73600 71700 75400 75000 72400
BBMP-South 120900 121300 120500 123700 124500 122800
BBMP-West 121300 121600 119500 123700 124300 120700
BBMP-Yelahanka 59800 59800 57700 66000 65800 60400
Rest of Bengaluru-
Urban

69700 69800 68900 83800 84200 79000

Bagalkot 17200 17300 17300 27200 28400 29700
Ballari 52600 52900 53200 71200 73700 75700
Belgaum 22000 22200 22200 33000 35400 35900
Bengaluru-Rural 30100 30200 30200 32300 32400 32300
Bidar 15600 15600 15600 16400 16300 16400
Chamarajanagar 18100 18200 18300 21800 22000 22500
Chikkaballapur 34500 34500 34700 50900 51100 54200
Chikmagalur 16500 16500 16600 20100 19900 20700
Chitradurga 7400 7400 7400 9500 9700 9900
Dakshina-Kannada 36200 36300 36400 42500 43300 43600
Davanagere 15400 15400 15500 23600 24600 25600
Dharwad 25800 25800 26000 33400 32900 34700
Gadag 5700 5700 5700 6900 6900 7200
Hassan 33400 33300 33500 39000 38700 39900
Haveri 5200 5200 5300 7800 7100 8400
Kalaburagi 40200 40200 40300 43300 43300 43700
Kodagu 18300 18300 18400 19100 19000 19200
Kolar 30900 31000 31100 36600 37300 37700
Koppal 22200 22200 22400 35200 34600 38300
Mandya 40500 40800 40800 45600 46600 46700
Mysuru 87300 87800 87700 104900 108700 108200
Raichur 31600 31700 32000 38900 39300 40800
Ramanagar 13400 13400 13500 17700 17600 18600
Shivamogga 21800 21800 21900 29700 30200 31300
Tumakuru 50900 51000 51200 53800 54200 54600
Udupi 23700 23700 23700 27200 27400 27500
Uttara-Kannada 19700 19600 19800 29400 29200 31200
Vijayapura 19700 19800 19900 23300 23700 24100
Yadgir 17200 16900 17400 25200 23200 27000
Karnataka 1546100 1548000 1538200 1790400 1803300 1799100
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Table 7: Comparison of unit-wise cumulative reported cases (since 01November 2020) on 31May 2021 and
31August 2021 under 2/3-NPI with a daily budget of 167000 vaccine doses.

Unit Population-
proportional
31May

InverseSero-
proportional
31May

IncidenceRate-
proportional
31May

Population-
proportional
31August

InverseSero-
proportional
31August

IncidenceRate-
proportional
31August

BBMP-Bommanahalli 68200 68200 67500 70700 70700 69200
BBMP-Dasarahalli 34800 34700 34000 36400 36200 34900
BBMP-East 112400 112500 112000 115800 116100 115000
BBMP-Mahadevpura 88100 88100 86900 91200 91100 88900
BBMP-RR-Nagar 71200 71000 69800 72000 71800 70200
BBMP-South 116600 116800 116300 118100 118500 117600
BBMP-West 117400 117600 116200 118700 119000 117000
BBMP-Yelahanka 54900 54700 53600 57300 57000 54800
Rest of Bengaluru-
Urban

61800 61900 61400 66400 66500 65100

Bagalkot 14200 14200 14200 16500 16600 16800
Ballari 43300 43400 43500 50300 51000 51500
Belgaum 18300 18400 18400 21100 21500 21600
Bengaluru-Rural 27900 27900 27900 28800 28900 28900
Bidar 14800 14800 14800 15100 15100 15100
Chamarajanagar 15400 15500 15500 17100 17300 17400
Chikkaballapur 28000 28000 28100 33400 33400 34200
Chikmagalur 14400 14400 14400 15700 15600 15800
Chitradurga 6600 6600 6600 7100 7100 7100
Dakshina-Kannada 32500 32600 32600 34500 34700 34800
Davanagere 12600 12700 12700 14800 15000 15200
Dharwad 22600 22600 22600 24600 24400 24700
Gadag 5100 5100 5100 5400 5400 5400
Hassan 29700 29700 29700 31700 31600 31900
Haveri 4400 4400 4400 5000 4800 5000
Kalaburagi 37400 37400 37500 38600 38600 38800
Kodagu 17100 17100 17100 17600 17500 17600
Kolar 26900 26900 27000 29200 29500 29600
Koppal 17700 17600 17800 21500 21300 22100
Mandya 36100 36200 36200 38400 38800 38800
Mysuru 76100 76400 76300 82700 83800 83600
Raichur 26600 26600 26700 29900 30100 30600
Ramanagar 11000 11000 11100 12700 12700 13000
Shivamogga 18700 18700 18700 20800 20900 21000
Tumakuru 47400 47400 47500 48800 49000 49200
Udupi 21300 21300 21300 22500 22500 22600
Uttara-Kannada 16400 16300 16400 18900 18800 19200
Vijayapura 17400 17500 17500 18700 18800 18900
Yadgir 13800 13700 13800 16600 16000 17000
Karnataka 1399200 1399800 1393300 1484600 1487900 1480300
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Table 8: The unit-wise percentage of susceptible population on 31August 2021 with varying daily budgets
of available vaccine doses under the 1/3-NPI, when vaccines are allocated in proportion to the population of
each unit.

Unit 100K 133K 167K 200K 233K 267K 300K 333K 367K 400K

BBMP-
Bommanahalli

59.3 55.8 52.2 48.6 45.1 41.4 37.9 34.2 30.5 27.1

BBMP-Dasarahalli 61.7 58.3 54.8 51.1 47.6 44.0 40.4 36.8 33.1 29.6
BBMP-East 60.6 57.1 53.4 49.9 46.3 42.5 38.9 35.4 31.6 28.1
BBMP-Mahadevpura 60.6 57.1 53.5 49.9 46.3 42.6 39.0 35.3 31.5 28.6
BBMP-RR-Nagar 55.2 51.5 47.7 44.1 40.5 36.7 32.9 29.6 27.5 26.1
BBMP-South 59.0 55.3 51.6 47.9 44.3 40.5 36.8 33.1 29.4 26.9
BBMP-West 56.3 52.7 49.0 45.3 41.5 37.8 34.1 30.5 28.1 26.7
BBMP-Yelahanka 60.0 56.4 52.9 49.3 45.8 42.1 38.5 35.0 31.2 28.3
Bagalkot 60.5 57.6 54.6 51.6 48.5 45.3 42.1 38.9 35.6 32.3
Ballari 47.2 44.2 41.1 37.9 34.8 31.5 28.3 25.0 22.1 20.1
Belgaum 56.8 53.9 51.0 48.0 45.0 41.8 38.6 35.5 32.1 28.9
Bengaluru-Rural 57.6 54.1 50.5 47.0 43.3 39.6 36.0 32.5 28.8 25.9
Rest of Bengaluru-
Urban

62.0 58.8 55.4 52.0 48.7 45.2 41.7 38.3 34.6 31.2

Bidar 74.0 70.3 66.4 62.7 58.9 55.1 51.3 47.5 43.7 39.9
Chamarajanagar 45.0 41.8 38.5 35.3 32.0 28.6 25.3 22.3 20.6 19.5
Chikkaballapur 45.4 42.5 39.5 36.5 33.4 30.3 27.2 24.3 22.0 20.4
Chikmagalur 52.5 49.2 45.9 42.6 39.2 35.8 32.4 29.3 26.9 25.1
Chitradurga 64.8 61.6 58.3 55.0 51.7 48.3 44.9 41.5 37.9 34.5
Dakshina-Kannada 64.4 61.0 57.5 54.0 50.5 46.9 43.4 39.8 36.2 32.9
Davanagere 53.7 50.9 48.0 45.1 42.1 39.0 35.9 32.8 29.5 26.3
Dharwad 73.8 70.3 66.7 63.1 59.6 55.9 52.3 48.7 44.9 41.3
Gadag 78.2 74.5 70.6 66.9 63.2 59.3 55.5 51.8 47.9 44.1
Hassan 56.7 53.4 49.9 46.6 43.1 39.6 36.1 32.6 29.5 27.2
Haveri 66.3 63.3 60.1 57.0 53.8 50.5 47.2 43.9 40.4 37.1
Kalaburagi 67.7 64.1 60.4 56.7 53.1 49.4 45.7 42.0 38.2 34.6
Kodagu 46.4 43.1 39.4 35.9 32.4 29.2 26.6 24.8 23.3 22.2
Kolar 51.1 47.9 44.5 41.3 37.9 34.5 31.1 27.7 24.4 22.0
Koppal 48.2 45.5 42.5 39.7 36.7 33.5 30.5 27.4 24.3 21.9
Mandya 50.4 47.0 43.5 40.0 36.6 33.1 29.6 26.5 24.1 22.3
Mysuru 50.9 47.7 44.3 41.0 37.7 34.1 31.0 28.4 26.3 24.5
Raichur 43.2 40.0 36.7 33.5 30.2 26.8 24.1 22.0 20.3 19.3
Ramanagar 44.5 41.4 38.2 35.1 31.9 28.6 25.5 23.0 21.2 19.5
Shivamogga 61.6 58.6 55.3 52.1 48.9 45.5 42.1 38.8 35.3 32.1
Tumakuru 53.3 49.8 46.3 42.7 39.1 35.5 31.9 28.3 25.0 23.7
Udupi 61.9 58.5 54.9 51.4 47.9 44.2 40.7 37.1 33.9 31.3
Uttara-Kannada 53.4 50.6 47.6 44.6 41.6 38.4 35.3 32.1 29.0 26.7
Vijayapura 57.1 53.8 50.5 47.1 43.7 40.2 36.8 33.3 29.8 26.5
Yadgir 46.8 44.0 40.9 37.9 34.9 31.7 28.6 25.5 22.1 19.5
Karnataka 57.2 53.9 50.5 47.2 43.9 40.4 37.0 33.7 30.6 27.9
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Table 9: Projected mean ± StdDev of active cases in Karnataka under various NPIs and vaccination allo-
cation strategies during the months of June, July and August 2021 when the daily vaccination budget is
167000.

Population proportional Inverse seroprevalence
proportional

Incidence rate propor-
tional

NPI June July August June July August June July August
Mean 144900 45900 14500 147500 47200 14900 144000 51800 20100

No NPI Mean + StdDev 185000 62300 18600 187500 64100 19000 181100 67600 24700
Mean - StdDev 104800 29500 10400 107500 30300 10800 106900 36000 15500

Mean 72000 22100 7400 73400 23500 8600 71500 25200 10900
1/3 - NPI Mean + StdDev 94900 29700 9100 96100 31200 10400 92900 32400 12600

Mean - StdDev 49100 14500 5700 50700 15800 6800 50100 18000 9200
Mean 40700 9400 2600 41400 10000 3000 40200 10700 3900

1/2 - NPI Mean + StdDev 57600 13300 3300 58200 13900 3700 56200 14500 4600
Mean - StdDev 23800 5500 1900 24600 6100 2300 24200 6900 3200

Mean 18900 2400 400 19200 2500 400 18500 2600 500
2/3 - NPI Mean + StdDev 30000 3800 500 30300 3900 600 29200 3900 700

Mean - StdDev 7800 1000 300 8100 1100 200 7800 1300 300
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4 Discussion and Limitations

We first discuss the implications of our results. We then discuss limitations of our study arising from model
errors, uncertainty in the factors driving the resurgence in Karnataka, policy changes in response to the local
circumstances, and vaccine supply constraints.

4.1 Discussion of the results

The significant second surge has highlighted widespread susceptibility in early 2021. This could be due
to waning immunity, or limited spread of the first wave, or novel variants, or a combination thereof. An
expedited, effective, and equitable vaccine campaign remains the only feasible pathway to controlling COVID-
19 in India. Given supply constraints and India’s population size, tools for designing efficient vaccination
campaigns are essential. In this paper, we developed a model (using serosurvey data and on-the-ground
datasets) to study vaccination allocation strategies and the interplay of vaccination capacity and NPIs in
achieving sufficient immunity levels. The main messages of this work are the following:

• Heterogeneity across units under various NPI-scenarios: Our model suggests that there is heterogeneity
in the disease spread across units, e.g. under No-NPI the units would have peaked at different times.
The statewide uniform NPIs that are in place currently restrict mobility and thus limit the transmission
of the virus within/across units. Our model predicts that all units would see a downward trend in
reported cases after 15May 2021. Daily reported cases have indeed come down in most units. Further,
compared to No-NPI, on 31August 2021, the model projects that 1/3-NPI may reduce the (cumulative
reported) cases by roughly 926,000. Under 2/3-NPI and 167000 daily vaccinations, the percentage
of susceptible populations in the units varies from 36.7% (Raichur) and 70.6% (Gadag), indicating
significant heterogeneity across the units (see Table 8).

• Effectiveness of vaccination strategies: As for the three vaccination policies, our model indicates that
they are roughly equal in the short-term, but in the longer term, statewide allocation in proportion
to population leads to fewer cases. This conclusion is robust at the state level across various NPI
scenarios. If we focus on units with high incidence in April 2021, e.g. Bengaluru’s BBMP units,
these units benefit more from an allocation in proportion to the case-incidence rate. However, all
vaccination allocation strategies are within a 2% margin of each other. Given the robustness of the
results, population-based allocation strategies are likely to be as successful as any other strategy that
may be harder to implement.

• The interplay of vaccination and NPI on healthcare infrastructure capacity: With 167000 available
vaccine doses per day, we find that the number of cumulative cases on 31August 2021 reduces from
3.14 million under No-NPI to 1.48 million under 2/3-NPI. Table 3 and Figure 8 quantify the percentage
reduction in the number of cases with respect to the reference 100000 vaccine doses/day and No-NPI
setting. We have thus identified the key interplay between the intensity of the NPIs and the daily
vaccination capacity. Further Table 9 provides the mean ± StdDev of active cases in Karnataka under
various NPIs and vaccination allocation strategies during the months of June, July and August 2021.
These can be used either at the unit level or at the state level to design a desirable public health
response (choice of NPI, vaccination strategy, capacity). For example, if a mean of more than 60,000
active cases in a month would imply that the healthcare infrastructure in Karnataka is operating at
full capacity, then an appropriate public health response starting May 2021 could be to vaccinate at a

daily rate of 167000 and choose a social interaction between 1/3-NPI and 1/2-NPI. This will help to

minimise deaths and manage severity of illness occurring during the surge.

• Resurgence: Our model predicts a resurgence in cases in the form of a third wave during the months of
November-December 2021. This prediction is a conservative one since it is based on only seroreversion
and mobility being restricted to within units. In reality, the peak could be advanced or delayed due to
stochasticity and mobility and could be more prominent due to more transmissible variants.

Our model makes use of several real-time data sources – population data, age-distribution, age-stratified
contact rates, disease progression data, confirmed case trajectories across units, seroprevalence data, time
series of tests conducted, vaccination time-series, and efficacy of vaccines. Our compartmental ODE model
used patches that where made up of age and unit stratifications. We modelled mobility across subunits to
be independent of age. A future extension could be to use age-stratified mobility data.
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There are many models in the Indian context, e.g., [3] with four compartments and [1] with five compart-
ments that are explicitly modelling asymptomatic spread, [40] with nine compartments and explicit mod-
elling of age-stratification and serology-based cases-to-infections ratio factor, and the PDE model in [25].
Our SEIRV spatio-temporal model goes beyond these and includes mobility and seroreversion.

One could also consider agent-based models as in [2], but given the complexity of such a model for
Bengaluru alone (12.4 million population), scaling it up six times to the level of Karnataka will involve
significant (more-than-linear) complexity increase. Parsimonious SEIRV-based district-level age-stratified
ODE models incorporating mobility and seroreversion do provide a good tradeoff point between complexity
and the ability to gather insights for public health policy.

Recognising that we already have several parameters in our model – five phases of contact rates and
one contact rate per unit in each phase – we used only one constant contact rate per unit and scalings
thereof (NPI intensities) for the forward projections. The per-unit contact rates are estimated based on
the trajectory of the case during 08April – 01May 2021. Further, we quantified uncertainty by doing an
estimation during 08–22April 2021 and by doing a validation from 23April 2021 – 11May 2021. Statewide
root mean squared estimation error was 9% and included the estimation errors of 40-50% for the units
Chikkaballapur, Kodagu, Kolar, Vijaypura, and Raichur. The large errors in these units seem to be due a
change in the trend of the number of reported cases which could not be captured by the model.

In terms of the vaccination policy, one could also employ simulation optimisation approaches to derive, al-
gorithmically, vaccination schedules that minimise various epidemiologically relevant objectives under budget
constraints as done in [32,46]. Such models use simulation in the loop and can incorporate a forecast horizon
at which the vaccination policies are evaluated. When combined with data on vaccine acceptance [31], popu-
lation profile of co-morbidities [14] and logistical challenges in setting up mass/mobile vaccination sites, one
can obtain a realistic spatial distribution and allocation strategy that is executable, effective and equitable.

4.2 Limitations

Our first limitation is on the calibration of parameters – we have many contact rate parameters, one for each
unit and for each of the five different time horizons. Tuning all of them to match the ground truth may lead
to overfitting and loss of predictive power but still provides sufficient ground for scenario-based comparisons.

The selection of time points for contact rate calibration is based on observed regime changes for the
trajectory of the case in each unit (see Appendix 4.2). A more systematic approach to arrive at these change
points automatically can make the projections scalable to other states and the districts of India. Further,
the change in transmissibility, if attributable to an increase in the prevalence of the variant strains (e.g.,
B.1.1.7 or B.1.617.2), can be modelled using estimates of transmissibility advantage [15].

Despite NPIs, infections may continue to rise for some time. The impact of such interventions will
manifest only after some time if there are reporting delays. Our model used a delay of 1 week, assuming
a two-day sample collection delay and 5-day test-reporting delay. More data is needed to quantify these
delays. Another reason for the delayed impact of NPI could be household spread due to ineffective home
isolation. Until the home infections naturally go down, these infections may continue to rise. Such effects
are best modelled in agent-based simulators.

The exact cause of the resurgence is yet unclear. It could be due to antibody decay, parameters for
which are not yet fully understood, and associated reinfections. It could also be due to reinfections arising
from variants having modified spike protein configurations offering immune escape or a combination of these
reasons. As the recent studies using the Manaus, Brazil outbreak show [9,39], disentangling these factors may
be complex without additional data. Our approach to handling these factors is to move recovered individuals
into the susceptible pool based on best available information on waning immunity and to increase the contact
rates to capture some of the effects of novel variants; these explain the resurgence to some extent. A more
rigorous but also a more complex approach would be to bring in more compartments that represent disease
states associated with variants and to model variants and their transmissibility.

Our study is predicated on a constant daily vaccination capacity (which varied from 100000 - 400000).
However, there are significant vaccine supply shortages and day-to-day variations. This shortage had become
particularly acute starting 01May 2021 when those above 18 years of age became eligible for vaccination.
Further, some of the vaccination capacity is set aside for the prescribed second dose, an aspect which we
have not modelled in this work. Finally, the current vaccination campaign does not utilise the serostatus of
individuals as in [8], and so some proportion of the capacity is used up for those already immune. In our
implementation, for simplicity, vaccinations are focused on the susceptibles and optimistically moves 66% of
the daily vaccinated number into the vaccinated compartment after 14 days. Further study is required to
account for vaccine wastage and immunisation of those already infected.
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Appendix

More on the calibration and the piece-wise constant contact rate periods

Our entire model is a spatio-temporal age-stratified SEIRV compartmental model with mobility and antibody
waning. To determine the periods when the contact rates can be held constant, let us first turn to a simplified
model to make some insightful observations.

Decay and growth phases: Let us consider a simplified setting where we ignore mobility, age-stratified
interaction, vaccination and antibody waning. Focus on fractions of the population in each compartment
and write sj(t) = Sj(t)/Nj for the susceptible fraction in unit j at time t; similarly define ej(t), ij(t), rj(t)
in unit j at time t. Then the difference equations in (1)-(4) separate for each unit j. Let us suppress the
unit index j in the notation for this section. The difference equations constitute the Euler discretisation for
the ordinary differential equation system:

de

dt
= β(t)s(t)i(t)− αe(t)

ds

dt
= −β(t)s(t)i(t)

di

dt
= αe(t)− γi(t)

dr

dt
= γi(t).

Assuming β(t) and s(t) are constant7, setting β(t)s(t) ≡ β, we have the simpler linear system

ẋ(t) = Ax(t)

where

x(t) =

[

e
i

]

and A =

[

−α β
α −γ

]

.

It is easy to verify that A is diagonalisable for generic values of α, β, γ, and that its two eigenvalues are

λ1 =
−(α+ γ) +

√

(α+ γ)2 − 4α(γ − β)

2
and λ2 =

−(α+ γ)−
√

(α+ γ)2 − 4α(γ − β)

2
.

Then x(t) = eAtx(0) and hence i(t) (and also e(t)) will grow or will decay exponentially as i(t) ∼ Ceλ1t,
where λ1 is the larger of the two eigenvalues. This suggests that λ1 may be estimated as the slope using
linear regression on the trajectory log(i(t)) during the phase when β ≡ β(t)s(t) is constant. Using standard
methods in least squares regression, a 95%- confidence interval for the estimate of λ1 can be obtained using
Student’s t-distribution, in this simplified model.

From the plot in Figure 10, we see that the β is roughly constant during November 2020 to February 2021,
and then from mid-March 2021. These motivate the calibration periods used in this work.

The quantity β can be recovered from the eigenvalue as:

β = γ (1 + λ1/γ) (1 + λ1/α) .

Observe that the reproduction number for this oversimplified model is Rt = β/γ, which is given by Rt =
(1 + λ1/γ) (1 + λ1/α). Clearly Rt > 1 if λ1 > 0 and Rt < 1 if λ1 < 0, as expected.

These observations suggest a least-squares regression to estimate λ1 and then an inversion using the Rt

formula to obtain β. Further, a linear approximation can be used to obtain confidence intervals for β from
that of λ1, in this simplified model.

The actual implementation is a nonlinear least-squares regression that directly searches for the β. We
take the loss function to be minimised as the squared error objective

∑

t(log i(t)− log îβ(t))
2 where îβ(t) is

the model-predicted infections at time t for contact rate β, and the sum is taken over the period for which β(·)
is assumed constant (called a phase). Note that îβ(·) is a β-dependent solution to the difference equations
(1)-(4) and respects the actual number of susceptible individuals at each time instant. We implement an
iterative gradient descent algorithm to arrive at a good β for each unit. Further, since (1)-(4) is a coupled

7During the early exponential growth phase, the contact rate β(t) being static seems like a fair assumption. Further, during
this early exponential growth phase, the susceptible fraction is likely quite large and the s(t) changes at a slower time-scale.
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system of patches (units with age-stratification), in each phase, for each iteration, we update the βj in a
round-robin fashion across the units.

Calibration before resurgence: Between 01–31March 2021, we noted in our simulations that while there
were residual infections in the Bengaluru units, there was a need to seed infections in some other units to
match the timing of the resurgence in these units. The resurgences in these units were likely due to seeding
by mobility from other places where the infection was still prevalent. So we model a cross-unit mobility
Θ(t) = (1 − ε)I + ǫJ for the period of March 2021 with ε = 1/100. Once seeded, we conservatively model
only local transmission, and so we remove the cross-unit mobility from 01April 2021 onward.

There is also significant stochasticity during 01–31March 2021. Mean-field models like ours need to be
enhanced to handle this stochasticity during such phases. To compensate for the stochasticity, we divide the
period into two phases, where we estimate the contact rates. However, the estimation/calibration is only to
put the system in a realistic initial state (how many in each of the SEIRV compartments) to learn the best-fit
contact rates during the exponential growth phase starting 01April 2021. Some units see this exponential
phase from 15March 2021 itself, so splitting the month of March into two phases allows some units to fit
better the early upsurge (e.g., BBMP units). In summary, the two calibrations during this period is largely
to seed infections through mobility, handle stochasticity, and put the system in a more realistic initial state
prior to the exponential growth phase starting 01April 2021.
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Contact rates

Table 10: Calibrated contact rates for each unit. The time periods T1, . . . , T5 are 11–31October 2020,
01November 2020 – 28February 2021, 01–15March 2021, 16March – 07April 2021, 08April onward, respec-
tively.

Unit T1 T2 T3 T4 T5

BBMP-Bommanahalli 0.018 0.025 0.074 0.04 0.047
BBMP-Dasarahalli 0.016 0.022 0.056 0.038 0.042
BBMP-East 0.041 0.022 0.06 0.043 0.047
BBMP-Mahadevpura 0.013 0.021 0.062 0.042 0.043
BBMP-RR-Nagar 0.019 0.023 0.092 0.043 0.062
BBMP-South 0.033 0.026 0.084 0.048 0.058
BBMP-West 0.032 0.029 0.08 0.047 0.062
BBMP-Yelahanka 0.019 0.022 0.057 0.039 0.043
Bagalkot 0.006 0.017 0.018 0.008 0.043
Ballari 0.01 0.025 0.057 0.015 0.056
Belgaum 0.013 0.025 0.032 0.012 0.046
Bengaluru-Rural 0.019 0.025 0.061 0.046 0.049
Rest of Bengaluru-Urban 0.018 0.024 0.045 0.03 0.042
Bidar 0.019 0.025 0.045 0.045 0.029
Chamarajanagar 0.02 0.022 0.033 0.018 0.064
Chikkaballapur 0.014 0.021 0.022 0.011 0.056
Chikmagalur 0.014 0.024 0.031 0.031 0.048
Chitradurga 0.021 0.024 0.039 0.017 0.04
Dakshina-Kannada 0.014 0.025 0.054 0.029 0.039
Davanagere 0.014 0.028 0.019 0.013 0.048
Dharwad 0.01 0.02 0.021 0.012 0.035
Gadag 0.007 0.016 0.011 0.005 0.031
Hassan 0.017 0.023 0.047 0.035 0.045
Haveri 0.01 0.019 0.01 0.009 0.041
Kalaburagi 0.008 0.026 0.06 0.042 0.037
Kodagu 0.021 0.024 0.045 0.025 0.078
Kolar 0.017 0.021 0.045 0.026 0.055
Koppal 0.015 0.016 0.007 0.01 0.052
Mandya 0.023 0.021 0.036 0.036 0.055
Mysuru 0.017 0.024 0.047 0.026 0.05
Raichur 0.01 0.022 0.017 0.017 0.063
Ramanagar 0.011 0.02 0.031 0.016 0.058
Shivamogga 0.009 0.021 0.021 0.019 0.041
Tumakuru 0.017 0.024 0.08 0.034 0.059
Udupi 0.011 0.025 0.07 0.034 0.039
Uttara-Kannada 0.012 0.021 0.027 0.013 0.047
Vijayapura 0.025 0.026 0.051 0.033 0.046
Yadgir 0.007 0.022 0.032 0.011 0.057
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Seroprevalence from the model

Table 11: Seroprevalence from the model and the data. Once the second round serosurvey data is available
(both active infection and antibody prevalence estimates), the last two columns could be used for comparison
and calibration. Number are in percentages.

Unit Active Infection %
on 18February 2021
(Model)

Antibody(IgG)
Prevalence % on
18February 2021
(Model)

Antibody (IgG) Preva-
lence % (Round-1)

BBMP-Bommanahalli 0.039 12.359 12.5
BBMP-Dasarahalli 0.045 7.987 13.8
BBMP-East 0.068 9.906 15.5
BBMP-Mahadevpura 0.044 7.176 7
BBMP-RR-Nagar 0.048 12.143 9.1
BBMP-South 0.059 14.208 20.9
BBMP-West 0.072 15.53 25.1
BBMP-Yelahanka 0.05 8.404 13.9
Bagalkot 0.004 3.987 4.1
Ballari 0.01 10.858 22.1
Belgaum 0.04 7.84 23.7
Bengaluru-Rural 0.029 13.002 15.2
Rest of Bengaluru-
Urban

0.046 10.825 15

Bidar 0.07 4.672 18
Chamarajanagar 0.029 8.953 15.8
Chikkaballapur 0.045 6.708 6.4
Chikmagalur 0.02 12.011 12
Chitradurga 0.044 12.621 10.2
Dakshina-Kannada 0.046 10.419 14.5
Davanagere 0.019 13.527 16.4
Dharwad 0.017 2.673 7.1
Gadag 0.001 2.101 6.3
Hassan 0.025 12.012 8.2
Haveri 0.005 8.062 14.8
Kalaburagi 0.053 8.975 17.1
Kodagu 0.072 12.311 12
Kolar 0.034 8.17 10.1
Koppal 0.002 4.655 19.6
Mandya 0.014 9.631 18.5
Mysuru 0.05 9.665 18.8
Raichur 0.007 8.097 22.8
Ramanagar 0.006 8.735 13.9
Shivamogga 0.023 7.514 7.7
Tumakuru 0.045 12.424 6.8
Udupi 0.018 11.31 16.2
Uttara-Kannada 0.031 7.077 8.1
Vijayapura 0.019 13.731 23.9
Yadgir 0.01 8.551 15.4
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Figure 10: Log plot of the daily infections (averaged over seven days to avoid weekly periodicity issues). The

different phases are colour coded. During October 2020, we initialise the simulator. During 01November 2020 –

28February 2021, we capture the receding trend. As seen above, both are well-captured by straight lines. During

01March 2021 – 31March 2021, we calibrate to re-seed the infections across the units and handle stochasticity. From

01April 2021 - 01May 2021, we capture the resurgence and the λ1 associated with it. All projections are from

02May 2021 onward.
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Time series of daily and cumulative new infections

(a) BBMP-Bommanahalli (b) BBMP-Bommanahalli

(c) BBMP-Dasarahalli (d) BBMP-Dasarahalli

(e) BBMP-East (f) BBMP-East

(g) BBMP-Mahadevpura (h) BBMP-Mahadevpura
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(i) BBMP-RR-Nagar (j) BBMP-RR-Nagar

(k) BBMP-South (l) BBMP-South

(m) BBMP-West (n) BBMP-West

(o) BBMP-Yelahanka (p) BBMP-Yelahanka

32

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257836doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257836
http://creativecommons.org/licenses/by/4.0/


(q) Bagalkot (r) Bagalkot

(s) Ballari (t) Ballari

(u) Belgaum (v) Belgaum

(w) Bengaluru-Rural (x) Bengaluru-Rural
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(y) Rest of Bengaluru-Urban (z) Rest of Bengaluru-Urban

(aa) Bidar (ab) Bidar

(ac) Chamarajanagar (ad) Chamarajanagar

(ae) Chikkaballapur (af) Chikkaballapur
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(ag) Chikmagalur (ah) Chikmagalur

(ai) Chitradurga (aj) Chitradurga

(ak) Dakshina-Kannada (al) Dakshina-Kannada

(am) Davanagere (an) Davanagere
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(ao) Dharwad (ap) Dharwad

(aq) Gadag (ar) Gadag

(as) Hassan (at) Hassan

(au) Haveri (av) Haveri
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(aw) Kalaburagi (ax) Kalaburagi

(ay) Kodagu (az) Kodagu

(ba) Kolar (bb) Kolar

(bc) Koppal (bd) Koppal

37

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257836doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257836
http://creativecommons.org/licenses/by/4.0/


(be) Mandya (bf) Mandya

(bg) Mysuru (bh) Mysuru

(bi) Raichur (bj) Raichur

(bk) Ramanagar (bl) Ramanagar
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(bm) Shivamogga (bn) Shivamogga

(bo) Tumakuru (bp) Tumakuru

(bq) Udupi (br) Udupi

(bs) Uttara-Kannada (bt) Uttara-Kannada
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(bu) Vijayapura (bv) Vijayapura

(bw) Yadgir (bx) Yadgir

Figure 11: Daily predicted number of cases in each unit until 31December 2021 for various NPI intensities.
Vaccination capacity is 167000 per day allocated in proportion to population in the units.
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Susceptible fraction

(a) BBMP-Bommanahalli (b) BBMP-Dasarahalli

(c) BBMP-East (d) BBMP-Mahadevpura

(e) BBMP-RR-Nagar (f) BBBMP-South

(g) BBMP-West (h) BBMP-Yelahanka
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(i) Bagalkot (j) Ballari

(k) Belgaum (l) Bengaluru-Rural

(m) Rest of Bengaluru-Urban (n) Bidar

(o) Chamarajanagar (p) Chikkaballapur
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(q) Chikmagalur (r) Chitradurga

(s) Dakshina-Kannada (t) Davanagere

(u) Dharwad (v) Gadag

(w) Hassan (x) Haveri

43

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257836doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257836
http://creativecommons.org/licenses/by/4.0/


(y) Kalaburagi (z) Kodagu

(aa) Kolar (ab) Koppal

(ac) Mandya (ad) Mysuru

(ae) Raichur (af) Ramanagar
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(ag) Shivamogga (ah) Tumakuru

(ai) Udupi (aj) Uttara-Kannada

Figure 12: Susceptible fractions in each unit for various NPI intensities. Vaccination capacity is 167000 per
day allocated in proportion to population in the units.

45

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.26.21257836doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257836
http://creativecommons.org/licenses/by/4.0/


Validation Plots

(a) BBMP-Bommanahalli (b) BBMP-Bommanahalli

(c) BBMP-Dasarahalli (d) BBMP-Dasarahalli

(e) BBMP-East (f) BBMP-East

(g) BBMP-Mahadevpura (h) BBMP-Mahadevpura
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(i) BBMP-RR-Nagar (j) BBMP-RR-Nagar

(k) BBBMP-South (l) BBBMP-South

(m) BBMP-West (n) BBMP-West

(o) BBMP-Yelahanka (p) BBMP-Yelahanka
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(q) Bagalkot (r) Bagalkot

(s) Ballari (t) Ballari

(u) Belgaum (v) Belgaum

(w) Bengaluru-Rural (x) Bengaluru-Rural
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(y) Rest of Bengaluru-Urban (z) Rest of Bengaluru-Urban

(aa) Bidar (ab) Bidar

(ac) Chamarajanagar (ad) Chamarajanagar

(ae) Chikkaballapur (af) Chikkaballapur
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(ag) Chikmagalur (ah) Chikmagalur

(ai) Chitradurga (aj) Chitradurga

(ak) Dakshina-Kannada (al) Dakshina-Kannada

(am) Davanagere (an) Davanagere
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(ao) Dharwad (ap) Dharwad

(aq) Gadag (ar) Gadag

(as) Hassan (at) Hassan

(au) Haveri (av) Haveri
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(aw) Kalaburagi (ax) Kalaburagi

(ay) Kodagu (az) Kodagu

(ba) Kolar (bb) Kolar

(bc) Koppal (bd) Koppal
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(be) Mandya (bf) Mandya

(bg) Mysuru (bh) Mysuru

(bi) Raichur (bj) Raichur

(bk) Ramanagar (bl) Ramanagar
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(bm) Shivamogga (bn) Shivamogga

(bo) Tumakuru (bp) Tumakuru

(bq) Udupi (br) Udupi

(bs) Uttara-Kannada (bt) Uttara-Kannada
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(bu) Vijayapura (bv) Vijayapura

(bw) Yadgir (bx) Yadgir

Figure 13: Validation plots for each unit. Calibration has been performed from 08–22April 2021 and validated
during 23April – 11May 2021. The vertical line separates the calibration and the validation phases.
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