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Abstract
Achieving maximum parallel performance on multi-core CPUs and many-core 
GPUs is a challenging task depending on multiple factors. These include, for exam-
ple, the number and granularity of the computations or the use of the memories of 
the devices. In this paper, we assess those factors by evaluating and comparing dif-
ferent parallelizations of the same problem on a multiprocessor containing a CPU 
with 40 cores and four P100 GPUs with Pascal architecture. We use, as study case, 
the convolutional operation behind a non-standard finite element mesh truncation 
technique in the context of open region electromagnetic wave propagation problems. 
A total of six parallel algorithms implemented using OpenMP and CUDA have been 
used to carry out the comparison by leveraging the same levels of parallelism on 
both types of platforms. Three of the algorithms are presented for the first time in 
this paper, including a multi-GPU method, and two others are improved versions of 
algorithms previously developed by some of the authors. This paper presents a thor-
ough experimental evaluation of the parallel algorithms on a radar cross-sectional 
prediction problem. Results show that performance obtained on the GPU clearly 
overcomes those obtained in the CPU, much more so if we use multiple GPUs to 
distribute both data and computations. Accelerations close to 30 have been obtained 
on the CPU, while with the multi-GPU version accelerations larger than 250 have 
been achieved.
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1 Introduction

Achieving maximum performance of an application is a complex and multifactorial 
problem that depends on the characteristics of the application as well as the architec-
ture where it is executed. Decades of development of parallel algorithms applied to 
a huge number of very different applications (on diverse and continuously evolving 
parallel architectures) have led us to understand the main factors that determine the 
performance of parallel algorithms. These factors include, for example, the number 
of tasks that can be executed in parallel, their granularity and load balance, the need 
to synchronize them or the ratio between the cost of the calculations, the communi-
cations and the memory accesses.

On the other hand, most of the current fastest supercomputers are built from nodes 
containing several multi-core CPUs and one or several high-performance GPUs. 
Many computationally expensive problems can be tackled by appropriately leverag-
ing both kinds of processing element or a combination of them. A good example of 
robust but computationally expensive tool is the finite element method (FEM), used 
for the numerical solution of partial differential equations in a wide variety of engi-
neering disciplines and physics. When FEM is used to model electromagnetic wave 
propagation in open region domains, for example, in antenna analysis or in radar 
cross-sectional (RCS) prediction, the mesh generally needs to be truncated at some 
distance of the device/structure under analysis [1]. This kind of problems can also 
be found in other applications such as microwave tomographic imaging [2], geo-
physics [3], and nanotechnology [4]. Since a volumetric mesh is needed, the num-
ber of finite elements (and hence unknowns of the problem) increases rapidly with 
this truncation distance, exerting a severe impact on the computational resources 
required to solve the problem. On the other hand, the mesh truncation technique also 
affects the accuracy of the FEM solution [1].

Different approaches for mesh truncation in electromagnetic wave propagation 
have been proposed in the literature. One of the authors has proposed a non-standard 
mesh truncation technique called FE-IIEE (Finite Element-Iterative Integral Equa-
tion Evaluation), which was introduced in the context of hybridization with asymp-
totic high-frequency techniques (see [5–7]).

The FE-IIEE technique comprises convolutional type operations that can be 
implemented as three main nested loops and whose iterations are almost independ-
ent and involve massive computations on different data. This loop structure is also 
found in other widely used numerical methods (e.g., boundary element methods [8]) 
and applications related to electromagnetism such as, radiated/scattered field, and 
other fields. There are other fields where we can find the same structure: convolu-
tional neural networks [9], face recognition [10], image processing [11], data spec-
troscopy [12], among others. These operations are a good example of many algo-
rithms whose parallelism can be naturally exploited both on multi-core CPUs and on 
many-core GPUs [11, 13, 14].

This type of application offers us an excellent opportunity to explore what we can 
call the problem execution space. That is, the possibility of studying the effect of 
choosing a certain level of parallelism, associated with the granularity of the tasks to 
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be executed, and modifying the number of tasks to be carried out. In this paper, we 
will compare the effect of parallelizing each of the three nested loops of the applica-
tion and choosing the number of iterations of each of them. Depending on the spe-
cific problem to solve or the architecture to be employed, some restrictions could be 
imposed regarding the size of some of those loops.

The main contribution of this work is the comparison of the behaviour of multi-
core CPU and many-core GPU architectures in applications that offer the possibility 
of leveraging data parallelism with different levels of granularity. A mesh truncation 
algorithm that can be used as part of FEM has been used as a case study. A total of 
six parallel algorithms implemented using OpenMP for the CPU and CUDA for the 
GPU have been used to carry out the comparison leveraging the same levels of par-
allelism on both types of platform. Three of the algorithms are presented for the first 
time in this paper, and two others are new redesigned versions of algorithms previ-
ously developed by some of the authors [15, 16], whose performances are now sig-
nificantly improved. To tackle the thorough experimental analysis, we used an Intel 
Xeon CPU with 40 cores and four Nvidia Tesla P100 GPUs with 3584 cores each. 
We have used different optimization techniques to improve the performance of the 
OpenMP and CUDA algorithms. For example, we have leveraged the registers and 
shared memory of the GPUs and we have modified the way to perform the reduction 
of partial results to deal with very large vectors in OpenMP.

The rest of the paper is structured as follows: The following section reviews the 
FE-IIEE methodology and formulation together with a description of the data struc-
tures to be considered. Section 3 describes the parallelization strategies that are car-
ried out in both multi-core CPU and GPU. Experimental evaluation is devoted to 
Section 4. Finally, conclusions are drawn in Section 5.

2  FE‑IIEE method

The FE-IIEE Method [5] is based on a decomposition of the infinite domain into 
two overlapping subdomains limited by S and S′ respectively: one “interior” domain 
encloses the volume limited by S, while the other “exterior” domain takes the space 
from S′ to infinity (see Fig.  1a illustrating the analysis of a radiation problem-
antenna). FE-IIEE provides an (asymptotically exact) radiation boundary condition 
on S by iterative interaction between the solution of both domains. Thus, we need 
first to use the FEM formulation shown in [5] to solve for the electric field solution 
in the interior domain. For that purpose, a Cauchy boundary condition on the exte-
rior boundary S is used. Therefore, the values of the field (and its curl) on S must 
be given. At the first iteration, these values are initialized to appropriate values (see 
[5] for further details). Next, the field solution in the exterior domain (and specifi-
cally on S) is obtained using an integral equation representation of the electromag-
netic field based on the “equivalent currents” (basically, the FEM electric field solu-
tion and its curl evaluated on S′ ) and the Green’s function of the exterior domain. 
Actually, the kernel behind the representation of the integral equation of the field 
is of convolutional type (see [5] for further details). The field (and its curl) on S is 
used to update the boundary condition for the FEM interior problem and start a new 
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iteration cycle. The code devoted to the computation of the field solution on S due to 
the radiation of the equivalent currents on S′ is precisely the target for parallelization 
in this work.

The process is repeated until a threshold error (or a maximum number of itera-
tions) is achieved. The outcome of the method is that the truncation boundary S 
may be close to the radiating structure without losing accuracy. This establishes a 
trade-off between the size of the FEM domain and the number of iterations needed 
to achieve a given accuracy. An important advantage for the computer code imple-
mentation is that each iteration does not interfere with the workflow of the FEM 
code since it can be considered as a post-process of the final solution, which allows 
us to parallelize independently this part of the code.

2.1  Data structures and algorithm considerations

Figure 1a shows a flow diagram of the section of the code to be parallelized. It is 
illustrated with an antenna problem. The code consists of three nested loops. The 
outermost (red) loop, labelled as par_S’ (where par will be omp or cuda 
depending on the framework used) covers all the elements located on S′ , where we 
need to compute equivalent electric and magnetic currents at some sample points 
(used in the numerical integration of a convolution-like operator). This leads to an 

Fig. 1  a Flow diagram of the parallel code. b Logical structure and size of rad_fields computed by 
the algorithm
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array currents of dimension 3 × 2 × nS’ × nRHS , where nS’ is the number of sam-
ple points in each element of S′ , and nRHS is the number of inputs (or excitations, 
i.e. antenna elements, waveports, or planewaves falling from outside the domain, 
included in the problem as different right-hand sides) in the FEM problem. The 
value 3 corresponds to the number of components of each current, and the value 2 
is associated with the fact that we need electric and magnetic currents (related to the 
electric field and its curl). The intermediate loop (green), labelled par_S, is associ-
ated with the outer surface S, and involves the computation of the coupling between 
S and S′ . The variable coupling is a set of values that relate the sample points on 
S to the equivalent currents on each sample point on S′ and include the evaluation 
of the Green’s function on the corresponding integration points of S′ and S. Finally, 
the innermost (blue) loop, par_rhs, covers the nRHS inputs present in the problem. 
The output rad_fields of this loop uses the intermediate output variables cur-
rents and coupling and is the final output of the code to be parallelized. Note 
that a more detailed pseudo-code is available in our previous work [17].

The variable rad_fields is a huge array that contains the values of the three 
spatial components of the fields (the electric field and its curl) at each sample 
point on S for each of the nRHS excitations of the problem. The array rad_fields 
is used to update the boundary condition for the FEM interior problem and start 
a new iteration cycle of FE-IIEE. Thus, the size of the matrix rad_fields is 
3 × 2 × NS × nRHS . The value  3 is because of the three spatial components of the 
field (or its curl). The value 2 is because we have to store the field itself and its curl. 
The value NS is the total number of sample points on the surface S (and not only in 
each element of S), i.e., NS = nS× numS being nS the number of sample points in 
each finite element of S and numS the number of elements on S (see green loop of 
Fig. 1a). The number NS is the main factor affecting the size of rad_fields and 
that will play an important role on the different parallelization strategies as it will be 
clear later.

For the sake of clarity, the structure of the matrix rad_fields is depicted in 
Fig. 1b. The first dimension corresponds to nRHS , the second dimension to nS , and 
the third dimension to numS. The elements are stored sequentially in memory, but 
we adopt a 3D representation because it shows the different dimensions of the prob-
lem that we can parallelize. Each small square in Fig. 1b represents 3 × 2 complex 
elements of the vector modified by one iteration of the innermost loop correspond-
ing to a single right-hand side of the problem to solve. Every iteration of that loop 
involves dozens of products and additions of complex and real numbers that modify 
different elements of rad_fields, and that can be implemented as a kernel to run 
by different threads on a GPU platform. Note that the field contributions generated 
by the currents in each sample point of S′ are accumulated into the correspond-
ing small squares shown in the figure.
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3  Strategies of parallelization

FE-IIEE method is very attractive from a computational point of view, because it 
offers many options of parallelization, since most of its operations can be performed 
independently. Those options can be associated with different loops of the algo-
rithm. The loop we choose to parallelize determines the granularity of the computa-
tions performed by each thread and also the size of the data used by that thread.

If we choose to parallelize the loop for S or the loop for RHS, all the computa-
tions of each iteration can be performed fully in parallel. However, if we want to 
parallelize the loop for S′ , then each iteration can be performed in parallel by storing 
a local copy of the vector rad_fields for every thread. A final reduction must then 
be performed to add the contents of those copies.

We can take advantage of the different options of parallelization on different 
types of parallel platform. For example, if we have a multi-core CPU, we can use 
OpenMP to parallelize the loops. Alternatively, if we have a many-core GPU, we 
can use CUDA or OpenCL to implement kernels associated with the same loops.

3.1  OpenMP parallelization on CPU

We have implemented and evaluated three parallel versions of the FE-IIEE method 
using OpenMP. Each version parallelizes only one of the three main loops of the 
method.

• omp_S’: loop on the elements of the interior boundary.
• omp_S: loop on the elements of the exterior boundary.
• omp_rhs: loop on the right-hand sides.

The algorithm omp_S’ parallelizes the outermost loop of the algorithm. A first 
approach to this parallelization was previously introduced by some of the authors in 
[15], but this version has been redesigned from scratch. The most challenging step 
of this algorithm is the reduction of the partial values of the vector rad_fields 
calculated by each thread at the end of the loop. We cannot use the OpenMP built-in 
reduction clause over all the elements of rad_fields, because we are dealing 
with very large complex vectors and this kind of vector reduction is limited by the 
size of the stack. Therefore, we implemented the reduction by parallelizing the addi-
tion of the elements of the vectors computed by each thread. That is, for each copy 
of vector computed by each OpenMP thread, we use a parallel loop to distribute the 
addition of its elements to the global reduced rad_fields vector. The following 
pseudo-code shows how this reduction is performed.

for th in all OpenMP threads
#pragma omp parallel for
for i in all elements of the rad_fields vector

global_rad_fields[i] += local_rad_fields[th][i]
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Parallelizing the loop on the right-hand sides to obtain the algorithm omp_rhs 
is straightforward, as all its iterations are fully independent. However, this paral-
lelization can only be efficient if the problem involves thousands of right-hand sides 
(e.g., very large antenna arrays), which is not the usual case.

Alternatively, we can parallelize the loop on S, whose iterations are also fully 
independent. This idea can be leveraged even for only one right-hand side (e.g. a sin-
gle antenna). This loop corresponds to one layer in Fig. 1b and can consist of thou-
sands of iterations, allowing us to exploit multi-core CPUs and many-core GPUs.

We have tested different scheduling schemes for the three parallel algorithms and 
they offer very similar experimental results. As we are dealing in all cases with iter-
ations with a well-balanced cost, we use in all the experiments showed in this paper 
the default static scheduling, where equal-sized blocks of consecutive iterations are 
computed by each thread.

3.2  CUDA parallelization on GPU

Efficient GPU programming requires taking into account the particular character-
istics of this type of architectures. The most commonly used metric to assess GPU 
performance is occupancy, which is related to the degree of utilization of the cores. 
The architectural factors that limit the performance of the GPUs are related to the 
resources available on each Streaming Multiprocessor (SM). Specifically, the limit-
ing factors include the registers and shared memory available, or the maximum num-
ber of warps or thread blocks that can be launched on each multiprocessor. Other 
important factors to have into account are the reduction of data transfers between 
CPU and GPU, the preferential access to the fastest available memories (registers 
and shared memory) and the possibility of coalesced access to data.

Specifically, the main limiting factor for the efficient implementation of the FE-
IIEE algorithm on GPUs is the large amount of local data that needs to be handled 
on each thread. GPU cores are much simpler than CPU cores, and their maximum 
performance is usually obtained when running regular low-granularity computations 
that handle a limited amount of local data. However, in our case study, even the 
granularity of the computations carried out in each iteration of the innermost loop is 
very high. Each thread must perform a large number of floating point operations on 
a large amount of different data, the values of which need to be stored locally. There-
fore, every thread requires a very large number of registers to perform its computa-
tions, and this is the factor that considerably limits the maximum number of threads 
that can be executed in parallel and take advantage of the thousands of GPU cores. 
This problem is exacerbated when we parallelize the intermediate loop on S, which 
implies even higher granularity computations and more local data.

Efficient parallelization of each of the loops of the FE-IIEE algorithm poses 
specific challenges. For example, the computation granularity of iterations of 
the outermost loop on S′ is too large and the data size involved does not fit in the 
memory even of the most powerful GPUs. Thus, the CUDA parallelization will be 
only applied to the loops on S (cuda_S) and RHS (cuda_rhs). A preliminary 
straightforward GPU-based implementation of (cuda_rhs) that did not consider 
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optimization strategies associated with the GPU was proposed by some of the 
authors in [16].

The algorithm cuda_S, introduced in [17], is based on a kernel that implements 
all computations involved in each iteration of the loop on S. Therefore, we use a grid 
size equal to the number of iterations of the loop. The algorithm tries to optimize 
the management of the different kinds of GPU memory by leveraging the register 
file and the shared memory of the GPU. Specifically, we copy the elements of vector 
currents to the shared memory of each block of threads in order to reduce the 
number of accesses to global memory. Besides, we are not limited by the size of the 
problem, because on every iteration of the loop on RHS one of the threads of each 
block copies only the 6 complex elements (96 bytes) of vector currents used dur-
ing the iteration. In fact, we are only using 0,19% of the 48 KB of static shared 
memory per block available on the Volta architecture. We have also tested a version 
of the algorithm in which we used dynamic shared memory to store all the elements 
of vector currents and to read them all at once at the beginning of the kernel. Its 
performance was very similar to the final proposed implementation.

We have also improved the implementation of cuda_rhs. First, we reduce the 
number of data transfers between the CPU and the GPU. To this end, we transfer 
only once the entire computed rad_fields from the GPU to the CPU at the end 
of the algorithm, rather than transferring successive blocks of the same vector after 
each iteration of the loop on S, corresponding to a panel in Fig. 1b. Obviously, this 
optimization implies increasing the use of global GPU memory. Secondly, we repli-
cate some computations on each block of threads, instead of performing them in the 
CPU. This way, we avoid transferring all these vectors from CPU to GPU. Finally, 
we reduce the cost of accessing global memory by storing in the shared memory 
of the GPU some of the vectors used in each iteration of the RHS loop by all the 
threads.

3.3  Multi‑GPU parallelization

We have also implemented a multi-GPU version of the algorithm to distribute some 
tasks on multiple GPUs. We partition the iterations of the loop on S and distribute 
them on several GPUs. Each GPU uses the kernel of the cuda_S algorithm to per-
form the computations associated with its iterations. We use OpenMP to launch in 
parallel on the CPU one thread associated with each GPU. This thread transfers the 
data to the corresponding GPU, launches the CUDA kernel, and finally receives the 
elements of rad_fields computed by it.

4  Experimental evaluation

4.1  Experimental environment

Performance tests were carried out in a server containing a multi-core CPU and 
four high-performance GPUs. Specifically, the CPU consists of two Intel Xeon 
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E5-2698V4 processors, at 2.20 GHz, each with 20 cores, and a total of 512 GB of 
DDR4-2400 main memory. Each of the four GPUs is a Tesla P100 SXM2 GPU pow-
ered by the NVIDIA Pascal architecture [18]. This GPU is composed of 56 Stream-
ing Multiprocessor (SM) units with 64 CUDA cores per unit, i.e. 3,584 CUDA cores 
in total, a register file with 14,336 KB, an L2 cache with 4096 KB, and a global 
memory of 16 GB. The GPUs are connected to the CPU host using two PCIe Gen 
3x16 switches.

The original FEM code was developed in Fortran 2003 [15]. Thus, a C wrapper 
was required to launch the CUDA kernels. The experiments were performed with 
Linux Ubuntu 19.04. The code was compiled with the 2019 version of the Intel For-
tran and C compilers, and the CUDA version 10.1. We do not expect that the per-
formance of the algorithms will change significantly if we use other versions of the 
compilers, such as the ones included in the GNU Compiler Collection. A customiza-
tion layer over GiD is used to obtain FEM meshes and to plot the results [19].

In order to leverage the persistence of the GPU memory among successive calls 
from Fortran to the C kernel, we use static memory to allocate the vectors to store in 
the global GPU memory. The allocation is performed previously to the first iteration 
of the outermost loop, deallocating the memory at the end of that loop. We update 
the same allocated vector rad_fields among successive calls and only retrieve the 
final result from the GPU to the CPU after the last iteration of the outermost loop.

4.2  Scattering problem

We have used as a benchmark in all our experiments the computation of the RCS of 
an F117 plane. Multiple RHS are mandatory in the case of computing monostatic 
RCS for a sweep of spherical angles, as each angle of incidence corresponds to one 
right-hand side. The bistatic RCS of an incident wave at � = 0◦ is directed at the tip 
of the plane in horizontal polarization.

Five meshes, starting from 27,739 tetrahedra and introducing increasing levels of 
refinement, have been simulated. Cases with nRHS = 1, 10, 100 and 1000 are consid-
ered in the evaluation.

Table  1 shows the time corresponding to the sequential execution on the CPU 
using meshes with increasing number of exterior boundary elements numS. The 
number of interior boundary elements numSp is always 1,272. We can observe that 
the sequential time grows linearly not only with numS, but also with the number of 

Table 1  Sequential times in 
seconds for the RCS problem

numS nRHS

1 10 100 1000

1572 7.28 44.66 416.68 4150.27
3432 15.78 97.30 905.87 9133.59
8012 36.99 228.90 2135.05 22,124.53
14,696 67.92 422.14 3890.59 41,198.88
32,576 149.89 936.58 8906.99 91,669.12
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RHS. Note that we use these values as reference since the algorithms are the same 
for both OpenMP and GPU architectures. Regarding computational complexity, 
Table 2 shows the amount of floating point operations associated with different parts 
of the code: first, the loop par_rhs; second, the code executed from the start of the 
loop par_S to the start of the loop par_rhs; and, finally, the operations realized 
from the start of the loop par_S’ to the start of the loop par_S. These parts of the 
code are indicated in Table 2 as (1), (2), and (3), respectively. We skip two interme-
diate values of numS for space purposes and to show the trend. We used a value of 
4 and 8 flops for the square root and the exponential of real numbers, respectively. 
As expected, (1) grows linearly with nRHS , whereas (2) remains the same for the dif-
ferent nRHS , and grows linearly with numS. Regarding (3), its complexity changes 
with nRHS , since we calculate the variable currents, which is used in (1) and 
depends linearly on nRHS . Note that the computational load of (1) is much higher 
from nRHS = 10 , whereas the load in (3) is small compared to (1) and (2) even for 
large nRHS.

4.3  OpenMP results on CPU

We have compared the different parallel versions of the OpenMP algorithm evaluat-
ing the effect of modifying the number of iterations of the parallelized loops and 
also the number of CPU cores. Recall that we are running one OpenMP thread on 
each CPU core. Obviously, increasing the number of iterations of one of the loops 
increases the parallelism that can be leveraged by the algorithm that parallelizes it 
and also increases the granularity of the computations of the outer loops, if any. 

Table 2  Number of floating 
point operations (in millions) for 
the RCS problem

(1) refers to the operations within the innermost loop, (2) is the num-
ber of operations between the intermediate loop and the innermost 
loop, and (3) covers the operations between the outermost loop and 
the intermediate loop

nRHS numS

1572 8012 32,576

(1) 1 1.12 5.70 23.16
(2) 4.38 22.32 90.79
(3) 0.08 0.08 0.08
(1) 10 11.18 56.97 231.62
(2) 4.38 22.32 90.79
(3) 0.33 0.33 0.33
(1) 100 111.77 569.65 2316.15
(2) 4.38 22.32 90.79
(3) 2.89 2.89 2.89
(1) 1000 1117.69 5696.53 23,161.54
(2) 4.38 22.32 90.79
(3) 28.4 28.4 28.4
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However, this growth of iterations also increases the cost of the algorithms both in 
terms of time and space. In order to compare the performance of the parallel algo-
rithms running on the CPU an GPU we use as baseline the execution time of the 
sequential algorithm on one core of the CPU. We compute the acceleration of the 
different parallel algorithms with respect to this baseline. For OpenMP results, note 
that this acceleration is equivalent to the so-called speedup.

For example, Fig. 2a shows how increasing the number of elements in the interior 
boundary S′ improves the performance of algorithm omp_S’. If we use less than 
8 cores, we get almost optimal accelerations with all the problem sizes, but as we 
increase the number of cores the acceleration gradually moves away from optimum 
for the smallest problem sizes. Therefore, in the rest of the experiments, when com-
paring the parallel algorithms, we always run the omp_S’ algorithm with 1,272 ele-
ments on the interior boundary. We carried out the same analysis for the algorithm 
omp_S by increasing the number of elements on the exterior boundary, obtaining a 
similar behaviour.

Figure 2b compares the algorithms omp_S’ and omp_S with one and ten right-
hand sides and using all 40 CPU cores. We can see that if our problem involves only 
one right-hand side, it is better to parallelize the outermost loop omp_S’ as every 
iteration has a larger computational granularity. This effect is specially noticeable 
with the smallest problem, where omp_S gets an acceleration smaller than 20. If we 
increase the number of right-hand sides, the performance of both parallel algorithms 
tends to be equal, especially when we increase the number of elements in the exte-
rior boundary.

Regarding the algorithm omp_rhs, we need to use more than 1000 right-hand 
sides to obtain some acceleration. Figure  3a shows that even in this case we get 
acceleration much smaller with this parallel algorithm that with the two algorithms 
that parallelize the outermost loops. Our experiments show that to get accelera-
tion close to 20 using algorithm omp_rhs we need to have more than 6000 right-
hand sides. This behaviour is mainly due to the relatively small granularity of the 
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computations performed on each iteration of the loop on omp_rhs and the fact 
that we have to create the OpenMP threads on each of the hundreds of thousands or 
even millions of loop executions during the whole truncation process. Figure 3a also 
shows that if we use 32 or 40 cores, the acceleration of the algorithm omp_S’ dra-
matically drops with the largest problem, which does not happen if we use 24 cores 
or less. This behaviour highlights the main drawback of this parallel algorithm: its 
spatial cost. As we have to use a copy of rad_fields for each OpenMP thread, the 
spatial cost of the algorithm grows linearly with the number of threads and we can-
not use it with problems involving a large number of right-hand sides and elements 
on the exterior boundary. Specifically, the total size of 32 or more copies of rad_
fields is larger than the 512 GiB or RAM memory of the CPU, which involves the 
use of the much slower secondary memory to store them.

4.4  CUDA results on GPU

We evaluated the behaviour of both CUDA parallel algorithms with the same prob-
lems solved with the OpenMP algorithms. Figure  3b shows the performance of 
the algorithm cuda_S when we modify the number of elements on the exterior 
boundary S and use different numbers of the right-hand sides. First, we can see that 
the acceleration grows more slowly or even decreases when we increase ���� . We 
can also see that we get smaller accelerations as we increase the number of right-
hand sides. As we increase both parameters, the spatial cost of the algorithm also 
increases, and we exhaust the resources available in the GPU. As we pointed out 
in [17], the main factor that limits the performance of this parallel algorithm is the 
number of registers available in each streaming multiprocessor. The computations 
involved by each iteration of the loop on S involve the use of a very large number of 
small vectors and scalar variables local to every CUDA thread, which use up even 
the large number of registers available on most modern GPUs.

Our experiments show that one way to mitigate in some cases the negative 
effect of increasing the size of the problem is to decrease the thread block size. For 
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example, instead of using a number of threads multiple to the size of the warp, 32, 
we use 16 or even 8 threads per block.

Regarding algorithm cuda_rhs, Fig.  5b shows that parallelizing the inner-
most loop gets much smaller accelerations that using algorithm cuda_S. The poor 
performance obtained with 100 or even 1000 right-hand sides is mainly due to the 
small occupancy of the GPU. We do not use the thousands of CUDA cores of the 
GPU unless we have several thousands of right-hand sides. In addition, as with algo-
rithm omp_rhs, the relatively small granularity of the computations of each itera-
tion affects the performance negatively. Even more when we have to transfer some 
data from the CPU to the GPU just before starting the loop and also replicate some 
computations on every block of threads. Therefore, algorithm cuda_rhs gets even 
worse performances than algorithm omp_rhs if we do not solve problems with 
more than 6000 right-hand sides.
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4.5  Multi‑GPU algorithm results

A straightforward method to increase the performance of CUDA algorithms is to 
distribute the computations among several GPUs. This way we will not only mul-
tiply the number of cores performing the same computations, but also increase the 
memory available to store the information and solve some of the problems shown in 
previous section.

Figure  4a shows that using only one GPU the acceleration decreases with the 
largest problem. However, if we distribute the data among several GPUs, the accel-
eration increases even with the largest problem. In the best case, using 4 GPUs, we 
get accelerations larger than 250 over the sequential version of the algorithm run-
ning on one core of the CPU.

As expected, if we solve problems involving more than one right-hand side, thus 
increasing the spatial cost, we get worse accelerations (see the right-hand side of 
Fig. 4). However, even in this case the multi-GPU version of the algorithm clearly 
improves the results obtained with only one GPU in all cases. As a matter of fact, in 
this case, we are obtaining a larger benefit from distributing the data on the memo-
ries of several GPUs. This distribution allows us to obtain accelerations larger than 
the number of GPUs. For example, solving the largest problem with 4 GPUs is 5.57 
times faster than solving it with one GPU. This behaviour could be explained by 
a more efficient usage of the memory when every GPU has to deal with smaller 
vectors.

4.6  CUDA versus OpenMP parallel algorithms

We finish our experimental evaluation by comparing the OpenMP and CUDA par-
allel algorithms. Figure  5a shows that we obtain much larger accelerations using 
algorithm cuda_S to solve the scattering problem with one right-hand side on the 
GPU, than using all 40 cores of the CPU to run algorithms omp_S’ or omp_S. 
The advantage of the CUDA algorithm is even much larger when we use 4 GPUs 
to run it. The performances obtained on the CPU and the GPU are only equal with 
the smallest problem, when we cannot leverage the many-core architecture of the 
GPU. However, as we increase the number of elements on the exterior boundary, the 
CUDA algorithm clearly overcomes both OpenMP algorithms.

Table  3 shows the absolute maximum performance in GFLOPS of the parallel 
algorithms with nRHS = 1 . In all cases, this performance is obtained with the maxi-
mum value of numS used in the experiments, that is, with ���� = 32, 576 . While 
using the 40 cores of the CPU, we obtain almost 28 GFLOPS, using one GPU 
we obtain almost 100 GFLOPS and by leveraging the four GPUs we obtain more 
than 254 GFLOPS. Moreover, Fig.  4a shows that we could obtain even higher 

Table 3  Maximum absolute 
performance of the parallel 
algorithms with nRHS = 1

omp_S’ omp_S cuda_S multi-GPU

GFLOPS 27.94 22.28 99.35 254.30
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performance with the multi-GPU version with larger problem sizes, that is, by 
increasing numS.

If we increase the number of right-hand sides, the algorithm cuda_S also per-
forms better, as can be seen in Fig. 5b, even when solving one of the smallest prob-
lems. We can also see that the algorithms that parallelize the innermost loop on RHS 
get the worst performance, no matter whether we are using OpenMP on the CPU or 
CUDA on the GPU.

5  Conclusion

This work shows that the same levels of parallelism can be leveraged in many appli-
cations, both on multi-core CPUs and many-core GPUs, by efficiently employing 
the resources provided by each kind of processing device. Specifically, we have used 
OpenMP and CUDA to parallelize the three main nested loops of a FEM mesh trun-
cation technique whose code structure (convolutional type) is reproduced also in 
other widely used methods and applications. When choosing the loop to parallelize, 
it is necessary to have into account the number of iterations that can be run in paral-
lel, but also the granularity of the computations involved by each iteration, if they 
are balanced and also the data used by each thread. For example, the granularity of 
the outermost loop is too large to be tackled as a kernel running on a GPU core.

On the one hand, OpenMP provides a very flexible framework that allows the 
parallelization of the three loops of the method. On the other hand, CUDA allows 
only an efficient parallelization of the two innermost loops and leveraging the mem-
ory and thousands of cores of GPUs is more challenging.

However, experimental results show that performances obtained on the GPU 
clearly overcome those obtained on the CPU. The fastest version of the algorithm 
leverages the massive parallelism provided by modern GPUs. Besides, by distribut-
ing the iterations of the middle loop among several GPUs, we can overcome the 
memory limitations and get accelerations larger than 250 with respect to the sequen-
tial version of the algorithm.

Regarding the OpenMP versions of the algorithm, we obtain accelerations close 
to 30 by parallelizing the two outermost loops if they involve enough iterations. 
However, if we significantly increase the number of cores and right-hand sides, the 
additional spatial cost of copying the vector rad_fields on every thread is very 
detrimental to the algorithm that parallelizes the outermost loop (omp_S’). Finally, 
the parallelization of the innermost loop has the worst performance in both the GPU 
and the CPU. It only scales in the GPU if the application involves thousands of 
right-hand sides, which is quite uncommon.
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