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Abstract 

This mini-review examines the operational lifetime of light-emitting electrochemical cells 

(LECs). Under continuous operation, both polymer-based LECs (PLECs) and ionic transition 

metal complex (iTMC)-based LECs (iTMC-LECs) now exhibit a luminance half-life exceeding 

1,000 hours. This improved performance is accomplished with several effective strategies aimed 

at optimizing the operating scheme, the material composition, and the device architecture. These 

strategies are presented in detail with PLECs as an example. iTMC-LECs are also highlighted 

due to their excellent stress stability with regards to both luminance and operating voltage. The 

survey of literature data points to clear trends, as well as some unexpected results in LECs 

stressed for an extended period. Major challenges still exist, but long-lasting LECs are possible 

when the proven strategies are combined with innovative materials and device design.  
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I. Introduction 

Light-emitting electrochemical cells (LECs) are solid-state electroluminescent (EL) 

devices whose active medium is a luminescent, mixed ionic/electronic conductor.[1-3] The 

intentionally added mobile ions distinguish LECs from other types of molecular devices. First 

developed in the 90s as an alternative to the polymer light-emitting diodes (PLEDs), LECs now 

employ a variety of luminescent materials such as conjugated polymers (CPs),[4-11] organic 

small molecules (SMs),[12-14] and ionic transition metal complexes (iTMCs)[15-22]. LECs are 

attractive molecular devices for potential display and lighting applications due to their simple 

device structure, compatibility with low-cost solution processing techniques, and highly 

desirable device characteristics.[23,24] 

Prototypical PLECs are based on a composite of a luminescent CP and a polymer 

electrolyte.[25,26] The latter is typically a complex of polyethylene oxide (PEO) and a lithium 

triflate salt (LiTf). The presence of mobile ions, contributed by the polymer electrolyte, causes in 

situ electrochemical p- and n-doping of the luminescent CP when they interact with injected 

holes and electrons. The doped CP exhibits vastly increased conductivity. As a result, LECs are 

insensitive to electrode work functions and active layer thickness. This affords LECs an efficient 

single layer construction, thicker active layers, and air-stable electrode materials. Light emission 

in a LEC takes place when the contrarily moving doping fronts make contact to form a p-n or p-

i-n junction.  

The introduction of ionic charges, on the other hand, also complicates the LEC processes. 

The LEC doping process and junction structure continue to be an important subject of research 

all on their own.[27-33] Over the past twenty years, our understanding of LECs has greatly 

improved. LEC device performance, however, is still lagging behind that of PLEDs or OLEDs in 

the operational lifetime. For example, state-of-the-art, solution-processed PLEDs created by 

Cambridge Display Technology (CDT) exhibit a T95 lifetime (accelerated tests) of 5,800 hrs and 

7,500 hrs respectively for red and green-emitting devices with an initial luminance of 1,000 

cd/m
2
. The T50 lifetimes are on the order of hundreds of thousands of hours.[34] By comparison, 

the longest reported LEC lifetime is about two orders of magnitude lower. This review seeks to 

identify effective strategies that can address this key deficiency of LECs. PLECs will be used as 

a primary example and examined in detail. The review points to a challenging, yet also 

promising future for the realization of long-life LECs. The review is organized into nine sections. 



	 3	

In Section II, a literature survey of PLEC lifetime data is given. In Sections III-VI, various 

strategies for long-life PLECs are discussed. In Section VII, long-life iTMC-LECs are 

introduced. Section VIII outlines the challenges and opportunities for an improved LEC 

operational lifetime. Finally, Section IX provides conclusions and an overall outlook. 

II. Literature Survey of PLEC Lifetime Data 

Figure 1 captures representative PLEC operational lifetime data reported over the past 20 

years. The data are limited to studies with a sufficient test duration (≥10 hours) and/or peak 

luminance (100 cd/m
2
). In Figure 1(a), the PLEC lifetime is plotted against the year of 

publication. In general, PLEC operational lifetime data are quite scarce when compared with 

other performance figures of merit such as peak luminance or efficiency. This is especially true 

in the first decade after the invention of PLECs. The reporting of such data, however, increased 

in volume around 2009, when an operational lifetime of ~1,000 hours was first noted. It should 

be cautioned here that the PLECs in these studies differ significantly in their structures, 

materials, and test conditions. And the operational lifetime, as a key figure of merit, was not 

defined in the same way in these studies. Lifetime values are directly quoted from the 

publications without any attempt to extrapolate, calibrate, or normalize. Some represent the time 

needed for luminance to drop below a certain percentage (50%-95%) of peak luminance,[8,35-

45] while some are simply the test durations,[46-49] and some are defined as the duration 

wherein the luminance is above a certain level (100 cd/m
2
 or 300 cd/m

2
).[6,50-54]  

Despite the lack of a standard definition, clear patterns emerge when the lifetime data are 

plotted against the peak luminance of tested cells, as shown in Figure 1(b). The longest lasting 

PLECs, concentrated in the top left, were all operated at a low peak luminance of 100-200 

cd/m
2
.[6,50,52] As expected, operational lifetime decreases with the peak luminance of the tests. 

On the bottom right of the graph, one study stands out for its high peak brightness up to 5,500 

cd/m
2
.[42] When operated at 2,200 cd/m

2
, the cell exhibited a T75 lifetime of 102 hours. The 

extrapolated lifetime at 100 cd/m
2 
reached a record 27,000 hours. The details of these longest-

lasting cells are summarized in Figure 1 (c). Also included in Figure 1 (c) is a white PLEC with a 

very promising T80 lifetime of about 13 hours when tested with a high peak luminance of over 

1,200 cd/m
2
. Many considerations went into the design and testing of these high-performing 

PLECs. In the following sections, some of the design strategies will be examined regarding their 

rationale, merits, as well as drawbacks. In doing so, we hope to synthesize new routes that can 
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potentially lead to even longer lifetimes. 

    
Figure 1. (a) Published PLEC operational lifetime vs. year of publication. (b) Published PLEC lifetime vs. 

peak luminance of stress test. (c) Details of some long-life PLECs from references [6,42,50,52,55] 

III. Optimizing electrolyte loading 

Early PLECs typically contained a large quantity of electrolyte materials. For example, a 

weight ratio of PPV:PEO: LiTf =50:50:8.9 was used in one of the original PLECs.[25] This 

corresponds to an EO/ Li
+
 molar ratio of 20:1, which has been shown to exhibit the highest ionic 
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conductivity in PEO:LiTf complexes when the salt concentration is varied.[56] The PLECs, 

containing more that 50% electrolyte by weight in their active layers, exhibited symmetric light 

intensity vs. voltage (L vs. V) and antisymmetric current vs. voltage (I vs. V) characteristics that 

are unique to LECs. PLECs with high electrolyte loading, however, exhibited a T50 lifetime of 

only 6-10 hours and were slow to turn on. This has been attributed to the poor film quality of the 

PLEC active layer, which was comprised of two incompatible high polymers.[35]  

A 2009 study explored the effect of electrolyte loading on the operational lifetime of 

MEH-PPV:PEO:KCF3SO3 LECs.[50] Starting from an active layer composition of MEH 

PPV:PEO:KCF3SO3=1:1.35:0.25, which corresponded to a EO/K
+ 

molar ratio of 23:1, the salt 

content was progressively reduced to 1:1.35:0.03. Reducing the salt concentration was found to 

incur a minimal loss of power efficiency or a loss of operational lifetime. Next, the PEO content 

was reduced with the MEH-PPV and salt contents fixed at 1:0.03. This, however, resulted in a 

30-fold increase in the operational lifetime when the PEO content was lowered from 1:1.35 to 

1:0.085, as shown in Figure 2 (a). A record lifetime of nearly 1,000 hrs had been achieved with 

an optimized electrolyte amount. This is shown in Figure 2 (b). 

Because PLEDs based on an orange-emitting polymer similar to MEH-PPV exhibited a 

lifetime of over 10,000 hours,[57] it is highly probable that the poor lifetime of PLECs is caused 

by adverse reactions involving the electrolyte. Reducing the electrolyte loading, so long the 

doping process is not impeded, should benefit the stability of PLECs. The results of Figure 2 

demonstrate the effectiveness of such an approach. In fact, all PLECs listed in Figure 1 (c) had a 

low electrolyte content of about 10%-20% by weight. These PLECs also exhibited high 

efficiencies and characteristic LEC turn-on/activation behaviors. A tradeoff of this approach is a 

slow turn-on response under a fixed voltage bias, as shown in Figure 2 (a). This drawback can be 

overcome by activating the PLEC with a variable current driving scheme, as shown in Figure 2 

(b). Reducing the amount of electrolytes, however, does not solve the PLEC longevity problem 

in its entirety and is unsuited for application in extremely large planar PLECs. PLECs with 

reduced electrolyte loading also lose the symmetric/antisymmetric L-V/I-V characteristics. [58] 

The unique device behaviors of PLECs under reverse bias operation will be discussed in Section 

IV and Section VIII.  
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Figure 2. (a) The temporal evolution of the brightness of ITO/MEH-PPV:PEO:KCF3SO3/Al sandwich 

cells with different PEO concentration in the active material, as specified in the upper inset. The devices 

were tested at V=3 V and T=360 K. (b) The temporal evolution of the brightness (upper line) and the 

voltage (lower line) of an ITO/PEDOT-PSS/MEH PPV:PEO:KCF3SO3/Al sandwich cell with an active 

material mass ratio of 1:0.085:0.03. The device was operated at T=298 K and in galvanostatic mode. The 

initial ‘‘pre-bias’’current, Ipre-bias=0.005 A, was applied for t=0.5 h, and it was followed by long-term 

operation at I=0.001 A. Reprinted (adapted) with permission from (Fang, J., Matyba, P., and Edman, L., 

The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Advanced 

Functional Materials, 2009, 19, 2671-2676). Copyright (2009) WILEY-VCH. 

 

IV. Freezing or chemically fixing the PLEC junction 
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To completely overcome the main drawbacks of PLECs, namely fast degradation and a 

slow turn-on response, it is desirable that a PLEC, once activated, de-couples itself from any 

ionic processes. In other words, a PLEC with a fixed junction, much like an inorganic p-n or p-i-

n junction LED, is needed.  The route to a fixed PLEC junction lays with the polymer electrolyte, 

which has been the subject of intense research effort due to its applications in rechargeable 

batteries, fuel cells, and recently, dye-sensitized solar cells.[59,60] Ion transport in a polymer 

electrolyte has been known to be highly dependent on temperature. In PEO/Li
+
 complexes, for 

example, cation transport is enabled by polymer chain segmental motion, which forms and 

breaks coordination bonds between the Li
+ 

ion and the ether oxygen. The chain motion also 

creates “free volume” that provides space for ions to move into. The amorphous phase of the 

PEO/Li
+
 complex

 
is mainly responsible for the ion conductivity, whose temperature dependence 

can be described by an exponential relation known as the Vogel-Tamman-Fulcher (VFT) 

equation.[61] Since polymer chain segmental motion ceases below the glass transition 

temperature (Tg), a freeze-out of ion motion and conduction also occurs. This important polymer 

electrolyte property was exploited to create a “frozen-junction” LEC in 1997.[62] A ITO/MEH-

PPV:PEO:LiTf/Al PLEC was activated at room temperature and subsequently cooled to 100 K, 

which was well below the Tg of PEO:LiTf complex at about 208 K. 

Frozen-junction PLECs exhibit sub-microsecond response times and diode-like I-V and L-

V characteristics. Significant current flow and EL only occur when the bias polarity is the same 

as that of the activation voltage bias. More importantly, frozen-junction PLECs exhibit enhanced 

stability and minimal efficiency roll-off even when driven to a current density of 300 mA/cm
2
. 

When driven with a constant current density of 5 mA/cm
2
 at 200 K, EL intensity decreased only 

by 5% from the initial value after more than 10 hours of continuous operation.[38]  

Fluorescence imaging of extremely large planar PLECs offer direct evidence of a static 

doping profile at temperatures below Tg.[63] A stress test of such frozen planar PLECs initially 

yielded puzzling behaviors--both driving voltage and EL intensity increased rapidly over an 

extended period of more than 150 hours.[64] This was later attributed to the effect of self-heating 

by the device being tested.[65] The heating caused partial relaxation of the frozen junction, 

which in turn made the device more resistive but less quenched, hence the observed increase in 

both EL intensity and driving voltage. The relationship between doping-induced quenching and 

EL intensity/decay will be discussed in more detail in Section V. By fabricating the planar 
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PLECs on a sapphire substrate instead of a glass substrate, the real cell temperature was close to 

that of the cold finger due to sapphire’s excellent thermal conductivity. This resulted in a 

“normal” stress response in EL intensity and driving voltage, as shown in Figure 3.     

              

Figure 3. (a) Time evolution of EL intensity for identical 0.6 mm frozen-junction planar PLECs operated 

under various currents at 200K. (b) Time evolution of device driving voltage for cells operated in (a). 

Reprinted (adapted) with permission from (Zhang, Y. and Gao, J., Lifetime study of polymer light-

emitting electrochemical cells. Journal of Applied Physics 2006, 100, 084501). Copyright (2006) 

American Institute of Physics. 

 

The stress behaviors of these frozen-junction PLECs are very different from those of 

dynamic-junction PLECs operated at room temperature (RT). The EL intensity initially 
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experienced a sharp decline. Afterwards, both EL and driving voltage barely changed. The EL 

intensity, in particular, was nearly flat. A most remarkable fact about these stress tests is the 

extremely high current density used, up to 1,000 mA/cm
2
 for a 50 µA stress current. During the 

165-hour stress at 50 µA, 594,000 C/cm
2
 of charge had passed through the polymer 

film/junction. This corresponds to a very high degree of redox stability that is comparable to a 

PLED with a half-life of 20,000 hours stressed at 8.3 mA/cm
2
.[57]  

For practical applications, frozen-junction PLECs need to operate at RT. Two general 

approaches have been explored to realize an RT frozen-junction PLEC. The first exploits 

electrolyte materials with a melting or glass transition above RT. The PLECs are first activated 

via heating or self-heating to establish doping and a light-emitting junction. The PLECs are 

subsequently cooled to RT to freeze the junction. RT frozen-junction PLECs have been 

demonstrated with crown ether-based electrolytes,[66,67] a light-emitting polyelectrolyte[68], a 

high Tg random copolymer-lithium complex, [69] and an ionic liquid.[40] The second approach 

involves chemically fixing the PLEC junction after its formation via the use of cross-linkable or 

polymerizable materials.[70] One method uses polymerizable ion pairs or ionic liquids to fix the 

junction during the charging process.[71-74] Ion-transport materials such as a liquid ion 

conductor containing cross-linkable methacrylate groups can also be cross-linked to immobilize 

the dopant ions.[41,55,70] The various chemical stabilization techniques were compared, and the 

best overall results were obtained when both the counterions and the ion-transport materials were 

polymerized using a radical-initiator compound.[75] With a photo-sensitive initiator compound, 

junction stabilization can also be realized “on demand” with UV exposure.[76] Finally, a 

stabilized p-n heterojunction has been demonstrated using a two-layer structure that consists of a 

conjugated cationic polyelectrolyte and a neutral, anion-trapping conjugated polymer 

underlayer.[77]  

The various RT frozen-junction PLECs show promising device performance and junction 

stability. Some devices exhibit brightness and efficiency comparable to those of dynamic-

junction PLECs.[41,66] Using PEO capped with methacrylate end groups and the LiTf salt as an 

electrolyte, highly efficient PLECs were demonstrated to last for more than 100 hours at a peak 

luminance of 2,200 cd/m
2
. This excellent stress lifetime was attributed to a stabilized junction 

when the methacrylate groups are polymerized during operation.[42] The RT frozen junctions, 
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when left under an open-circuit condition, are stable for a test duration ranging from an hour 

[67,68], tens of hours [41,69,75,76], to two weeks.[77]  

While RT frozen junctions can be realized with novel electrolyte materials, an unexpected 

solution also exists. Consider again the prototypical ITO/MEH-PPV:PEO:LiTf/Al cell that was 

cooled to create the first frozen-junction PLEC. If PEO is entirely removed from the active layer, 

the resulting cell is not expected to function properly. MEH-PPV, which is non-polar and has a 

Tg above RT [78,79], is not a solvent of LiTf salt. Surprisingly, the ITO/MEH-PPV:LiTf/Al cells 

can be activated with a large voltage bias to emit under either a forward or a reverse bias. The 

activated cells displayed strong evidence of doping and photovoltaic response that was consistent 

with the formation of a doping-induced junction.[80,81] More importantly, the activated state 

was stable at RT. As shown in Figure 4 (a), the photovoltaic polarity was reversed after the cell 

was activated with a reverse bias. The signs of both open-circuit voltage (VOC) and a short-circuit 

current (ISC) were consistent with the polarity of the PLEC junction formed. The resulting 

positive ISC and negative VOC did not degrade appreciatively after a total storage time of about 

550 hours (Figure 4 (b)). In a green-emitting cell activated with a -21 V bias and tested 

subsequently with fast voltage scans between 0 and -16 V, the luminance measured at -16 V 

remained unchanged for 1,140 hours after an initial drop from 39 cd/m
2
 to 32 cd/m

2
. These 

results represent the RT frozen junction with the longest shelf life.  
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Figure 4. (a) Photovoltaic response (photocurrent vs. voltage) of a ITO/MEH-PPV:LiTf (10:1)/Al device, 

before and after activation under -20 V. (b) The shelf stability of VOC and ISC of an activated ITO/MEH-

PPV:LiTf (10:1)/Al device. The device was tested under AM1.5 illumination of 100 mW/cm
2
. For shelf 

stability tests, the device was stored at room temperature under open-circuit conditions. Reprinted 

(adapted) with permission from (Gautier, B., Wu, X., AlTal, F., Chen, S. and Gao, J., Reverse bias 

activation of salt-doped polymer light-emitting devices. Organic Electronics 2016, 28, 47-52). Copyright 

(2016) Elsevier. 

 

V. Pulsed and Intermittent Driving 

The operational lifetime of PLECs can be measured with either a constant voltage stress or 

a constant current stress. A constant current stress is now a more commonly used method, the 

benefits of which are to facilitate a faster turn on and to compensate for the loss of luminance 
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due to any increase in cell resistance. Not surprisingly, the longest-lasting PLECs shown in 

Figure 1(c) were all tested with a constant current stress. Figure 5 shows generic characteristic 

curves of a constant current stress test. The PLEC tested was an ITO/MEH-PPV:PEO:LiTf/Al 

sandwich cell.[45] This continuous test yielded a luminance half-life of about 230 hours at an 

applied constant current density of 167 mA/cm
2
. Plotting the time axis in log scale reveals three 

distinct stages of the degradation process. In stage I, doping led to an increasingly balanced 

charge injection and an increase in luminance. The increase in luminance was accompanied by a 

rapid decrease in driving voltage. In stage II, the level of doping continued to increase, as 

evidenced by the decrease, albeit slower, of the driving voltage. The luminance, however, began 

its initial decline. In stage III, the decrease of luminance was accompanied by an increase in 

driving voltage. The first two stages are unique to LECs, while the stage III behavior is also 

observed in the long-term decay characteristics of a PLED.  

 

Figure 5. (a) Time evolution of luminance and operating voltage of a ITO/MEH PPV:PEO:LiTf/Al 

sandwich LEC (Cell 1) operated at a constant current density of 167 mA/cm2. The cell was operated for 

the first time after the deposition of the top aluminum electrode. The test commenced after the deposition 

of the top aluminum electrode without delay. (b) The same data presented in (a) but plotted in a semi-log 

form with various regions of operation marked.Reprinted (adapted) with permission from (AlTal, F. and 

Gao, J., Long-term testing of polymer light-emitting electrochemical cells: Reversible doping and black 

spots. Organic Electronics 2015, 18, 1-7). Copyright (2015) Elsevier. 
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Stage II, which lasted about 100 hours in this device and accounted for a near 20% drop in 

luminance from the peak value, deserves special attention. Since in situ electrochemical doping 

is known to quench the photoluminescence (PL) of PLEC films even in a sandwich cell,[82,83] 

is it possible that the apparent luminance decay was caused by the doping process itself? If this is 

the case, the loss in luminance could be reversible if the PLEC film is allowed to dedope. An 

intermittent testing scheme provided a definitive answer to the above question. Figure 6 shows a 

PLEC, similar to the one shown in Figure 5, that has been tested five times, each test lasting 

between 66 hours and 71 hours in each of the tests.[43] After each test (run), the cell was stored 

under open-circuit conduction for a month. This long storage time led to significant dedoping 

and the complete recovery of lost luminance in runs 2-4. In each of the five runs, the luminance 

decay rate increased due to the appearance of black spots and/or residue doping. The remarkable 

recovery of lost luminance, by simple storage, suggests that the PLEC luminance decay is not 

entirely irreversible!  

 

 

Figure 6. Time evolution of luminance and driving voltage of a ITO/MEHPPV:PEO:LiTf/Al sandwich 

LEC operated at a constant current of 167 mA/cm
2
. The cell was stressed five times. The operating time 

indicates accumulated run time under a bias. For each run, the cell was stressed for 66-71 h. The cell was 

stored for a month (30±2 days) in the glove box at 25 °C after each run. The first run (virgin run) 

commenced after the deposition of the top aluminum electrode without delay. Photographs a, b, and c are 

electroluminescent images taken at the end of runs 1, 3, and 5, respectively. Identical camera settings 

were applied. The images show the bottom half of the cell. They have not been manipulated except for 

cropping. Reprinted (adapted) with permission from (Li, X., AlTal, F., Liu, G., and Gao, J., Long-term, 

intermittent testing of sandwich polymer light-emitting electrochemical cells. Applied Physics Letters 

2013, 103, 243303). Copyright (2013) American Institute of Physics. 
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The intermittent testing scheme shown above resembles a pulsed driving scheme with 

extremely long on and off durations. A conventional pulsed driving scheme can also be applied 

to PLECs, where fast pulses are used to decouple the slow ionic/doping processes from the fast 

electronic processes. For example, a long, initial pulse can be used to activate the PLEC, and a 

train of short pulses can be used for the injection of electronic charges.[84] Recently, pulsed 

driving was applied to a 10 µm-gap planar LEC made with a green-emitting co-polymer mixed 

with an ionic liquid.[85] As shown in Figure 7, the 1 ms pulses had a DC offset of 3 V to activate 

and maintain the PLEC junction. The planar PLEC reached an extraordinarily high current 

density of 1,036 A/cm
2
 at 30 V. By cooling the device down to -20 °C to freeze the junction, the 

PLEC showed reduced efficiency roll-off compared to RT operation. With an even narrower 

pulse width of 200 ns, the authors demonstrated a linear dependence between EL intensity and a 

record current density of 2 kA/cm
2
.  

 

 

 

Figure 7. a) Current density–voltage characteristics of a planar LEC driven by a 1 ms voltage pulse with 3 

V of base voltage. Standard DC measurements are also shown for comparison. Inset shows the same data 

replotted on a linear scale. b) Pulse-driving scheme for LEC. A constant base voltage, Vbase, of 3 V was 

applied to induce ion arrangement for p–n homojunction formation, and a 1 ms pulse voltage, Vpulse, was 

applied to inject electrons/holes for light emission. c) Optical microscopy of emitting LECs at Vbase = 3 V 

and Vpulse = 12 and 30 V. d) Normalized efficiency as a function of current density at room temperature 
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and at −20 °C, where the temperature is low enough to freeze ionic motion. The dashed line and dotted 

line represent J90% for polymer OLEDs in literature and for the LEC, respectively. Reprinted (adapted) 

with permission from (Sakanoue, T., Li, J., Tanaka, H., Ito, R., Ono, S., Kuroda, S., and Takenobu, T., 

High Current Injection into Dynamic p–n Homojunction in Polymer Light-Emitting Electrochemical 

Cells. Advanced Materials, 2017, 29, 1606392). Copyright (2017) WILEY-VCH. 

 

These remarkable results exemplify the importance of a driving scheme to the operational 

stability of PLECs. Intermittent testing reveals that the apparent luminance decay in a PLEC is 

partially reversible. The combination of pulsed driving and frozen-junction operation allows for 

a PLEC to be driven to record current densities with minimal efficiency roll-off.  

VI. Electrochemically stable emitters and electrolyte materials 

Although PLEDs and PLECs often use the same luminescent CPs, the PLEC operation 

places additional requirements on the emitters. In PLECs, CPs must possess the requisite ability 

to be p- and n-doped. An early study of ten soluble PPV derivatives showed that the doping 

potentials, as well as the reversibility of doping were dependent on the substituent groups.[86] 

Another study showed that the reversibility of MEH-PPV doping depended on the electrode 

metals used, the salt type/concentration and film thickness.[87] These results, obtained via cyclic 

voltammetry measurements in a liquid electrochemical cell, are mostly consistent with the 

observations in PLECs.[88-92] A majority of the long-life PLECs are based on Superyellow, 

which can be both p- and n-doped.[51] In general, a yellow/green emitter requires a lower 

driving current to reach the same luminance (a photometric quantity), in comparison to a red 

emitter such as MEH-PPV. This means that it will be more challenging to realize long-lasting 

blue, red and white PLECs, although many promising materials and devices have been reported.  

 Unlike PLEDs, PLECs also contain an electrolyte material that is as important as the 

emitting material. The general requirements for PLEC electrolyte materials are: (1) the ability to 

contribute a sufficient amount of mobile ions required for the redox doping reaction; and (2) a 

wide electrochemical stability window (ESW) so as not to compete with/interfere with the 

doping of the CP. A study of PLECs involving six PPV-based CPs and a PEO:KCF3SO3 

electrolyte showed that the irreversible oxidation of the electrolyte was likely responsible for the 

poor p-doping performance of LEPs with a high oxidation potential.[93] Moreover, cathodic side 

reactions involving the same electrolyte could occur in a MEH-PPV-based planar PLEC.[94] A 

trimethylolpropane (TMPE)-LiCF3SO3 electrolyte, with its superior cathodic stability, was 

responsible for a record operational lifetime of 1,375 hours.[52] The TMPE electrolyte was 
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further improved by optimizing the end group, which resulted in PLECs with a better overall 

performance.[6,95] Figure 8 shows the excellent performance of a PLEC made with alkyl 

carbonate-capped TMPE electrolytes. 

 

 
 

Figure 8. (a) Turn-on kinetics during the first minute of operation and (b) the long-term stability of 

ITO/SY + ion-transporter + LiCF3SO3/Al sandwich-cell LECs, with the device structure disclosed in the 

inset of (a). The devices were driven by j = 7.7 mA cm−2. (c) The long-term stability of a TMPE-OC 

device driven by a prebias of 7.7 mA cm−2 for 40 min and thereafter by 1.9 mA cm−2. (d) The temporal 

evolution of the efficiency for a TMPE-OC device equipped with a light-outcoupling film. The device 

was driven by a prebias of 7.7 mA cm−2 for 40 min and thereafter by 0.77 mA cm−2. Reprinted with 

permission from (Mindemark, M.;Tang, S.;Wang, J.; Kalhovirta, N.; Brandell, D. and Edman, L., High-

Performance Light-Emitting Electrochemical Cells by Electrolyte Design. Chemistry of Materials 2016, 

28 (8), 2618-2623). Copyright (2016) American Chemical Society. 

 

The miscibility of CPs and electrolyte materials is also important. In PLECs such as 

ITO/MEH-PPV:PEO:LiTf/Al, significant phase separation can occur between the non-polar CP 

and the polar PEO electrolyte. This creates a large physical separation between the CP to be 

doped and the counterions necessary for doping, and a consequently poor turn-on response and 

emission uniformity. Thermal annealing, followed by fast cooling, has been shown to effectively 

alleviate the problem.[96] By adding octylcyanoacetate, a surfactant-like additive to the PLEC 

blend, a fine, bi-continuous network morphology was realized. The resulting PLECs exhibit fast 

(ms) responses as well as a much-improved operational lifetime.[35] The latter work stimulated 
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great effort to create LECs with optimized phase morphology and the demonstration of PLECs 

made with crown ether (CE)-based electrolytes.[37] Being a small molecule and soluble in a 

non-polar solvent, CE-based electrolytes brought better compatibility with CPs and fast, efficient 

PLECs with a good stress lifetime. Ionic liquids (ILs), or RT molten salts, can provide the 

necessary counterions when added to a luminescent polymer.[97-100] The device performance 

of IL-based PLECs strongly depends on the type of ILs and their concentration. At high 

concentrations, however, the composite films again suffer from phase separation, fast 

degradation, and compromised mechanical integrity. An alternative is to use a polymeric ionic 

liquid (PIL). PLECs made with a PIL show excellent device performance with PIL loading up to 

50 wt%. [101] As introduced in Section III, some ILs can also be used to realize RT frozen-

junction PLECs owning to their high melting point or their ability to be polymerized. 

To further improve the phase morphology of PLEC active layers, a class of bi-functional 

polymers has been developed. Oligo(ethylene oxide) or crown ether groups are grafted as side 

groups to PPVs,[102-106] polythiophenes,[107] or fluorene copolymers[108,109]. Block 

copolymers containing both oligo(ethylene oxide) or crown ether segments and conjugated 

segments were created as an alternative.[110-113]	Due to the presence of ion solvating/transport 

moieties, these new polymers can transport both electronic and ionic charges. PLECs made with 

a bifunctional polymer and an added salt display characteristic LEC behaviors, such as low EL 

turn-on voltage and bipolar EL. Some exhibit a smoother and finer surface morphology, due to 

the elimination of ion-conducting polymers such as PEO.[103,106] Finally, luminescent 

conjugated polyelectrolytes (LCPE) [68,114-119] are multi-functional materials that are 

luminescent, electronically conductive, as well as being solid electrolytes. LCPEs have the 

advantage of being soluble in more environmentally benign polar solvents, such as water and 

alcohol, and allowing the fabrication of “single-component” PLECs. In general however, the 

device performance of these single- or two-component (polymer + salt) PLECs is inferior to 

conventional “three-component” PLECs. An exception is a fluorene polymer (BDOH-PF) with 

an ether side group.[36] When doped with LiTf salt, the resulting PLEC is highly efficient. 

Interestingly, adding PEO to the blend resulted in severe phase separations but a white light 

PLEC. Adding an iridium phosphorescent dye and lithium triflate to BDOH-PF resulted in a 

phosphorescent LEC which was much more efficient than PLEDs made with the same 

phosphorescent dye.[120] 
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VII. LECs with a non-polymer emitter 

While the preceding discussions concern only PLECs, or LECs with a polymeric emitter, 

LECs have also been demonstrated with emitters as diverse as organic small 

molecules(SMs),[121-128] quantum dots,[129-131] polymer/small molecule composites, and 

even perovskites.[125,132] LECs based on ionic transition metal complexes (iTMCs), in 

particular, stand out due to their excellent device performance. iTMCs have been the topic of 

numerous recent reviews.[2,133-136] iTMCs, such as ruthenium or iridium-based complexes, are 

multi-functional compounds satisfying all the basic requirements of an LEC material. iTMCs are 

efficient phosphorescent emitters, semiconductors, as well as ion conductors. They also exhibit 

reversible redox properties and are solution-processible.  Early reports of single-component, 

single-layer iTMC LECs show exceptional external quantum efficiency up to 5.5% and luminous 

efficiency more than 10 lm/W at low operating voltages.[137,138]Much higher efficiencies have 

been realized in iridium iTMC-based LECs.[139] iTMC-based LECs exhibit the same 

characteristic LEC transient behavior as that of PLECs.[140] The fluorescence imaging of 

functional planar cells confirms that iTMC-LECs,[141] along with SM-LECs [122] operate on 

the same basic principle as a PLEC-the electrochemical formation of a light-emitting p-n 

junction.  

iTMCs, however, are single-ion conductors with low ionic conductivities depending on the 

type of counter ions, despite being single-phase systems.[137] A reflection of this fact is the 

absence of large, millimeter-sized planar iTMC-LECs. Planar PLECs, on the other hand, can 

have an interelectrode spacing of more than 10 mm or be activated with a 5 V bias 

voltage.[142,143] In sandwich iTMC-LECs, low ion conductivity leads to slow turn-on 

responses and asymmetric luminance/current vs. voltage characteristics.[138,144] The response 

time of iTMC-LECs can be improved with the addition of ionic species,[18,145] the use of an 

optimal driving scheme, the use of a low work function cathode,[138] or separate electron/hole 

injection layers.[146,147] The latter two approaches however, partially negate the processing and 

structural advantages of LECs. And in general, there is a tradeoff between the turn-on time, when 

improved with added ionic species, and the operating lifetime of iTMCs, although significant 

exceptions do exist. [145,148] In device characteristics, iTMC-based LECs bear some 

similarities to PLECs with a low electrolyte loading. They likewise exhibit excellent operational 

stability, as shown in the example below.[149] 
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Figure 9. Layout of the LEC and chemical structures of the iTMC and the ionic liquid used in  

the active layer. Luminance, average voltage and power efficiency versus time for the LEC biased with a 

pulsed current using a block wave at a frequency of 1000 Hz and a duty cycle of 30% with an average 

current density of 185 A m
−2

. Reprinted (adapted) with permission from (Tordera, D., Meier, S., Lenes, 

M., Costa, R., Orti, E., Sarfert, W., and Bolink, H., Simple, Fast, Bright, and Stable Light Sources. 

Advanced Materials, 2012, 24, 897-900). Copyright (2012) WILEY-VCH. 

 

The LEC shown in Figure 9 has the structure of ITO/PEDOT:PSS/Iridium complex:ionic 

liquid/Al. The active layer consisted of bis(2-phenylpyridine-C,N)(4-(3,5-dimethoxyphenyl)-6-

phenyl-2,2′-bipyridine-N,N′)iridium(III) hexafluorophosphate, or  [Ir(ppy)2(Meppbpy)][PF6] and 

the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM
+
:PF6

−
] at a molar 

ratio of 4:1. The LEC exhibited an initial luminance of 670 cd/m
2
, which decreased to about 600 

cd/m
2 
during a continuous operation that lasted nearly 600 hours. A linear extrapolation yielded a 

T50 lifetime of more than 6,000 hours. Meanwhile, the power efficiency remained nearly 

constant and the (average) driving voltage decreased from over 3.5 V to less than 2 V. The 

excellent stability of this LEC exemplifies several effective strategies that have been commonly 

adopted in iTMC-LECs. First, the use of a pulsed, current driving scheme. The LEC of Figure 9 
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was driven with a pulsed current of 1 kHz and 30% duty cycle. The average current density was 

185 A/m
2
, or 18.5 mA/cm

2
. The current drive (vs. voltage drive) enabled a fast (less than 1s) 

turn-on of the cell to reach significant brightness. The pulsed driving scheme was mainly 

responsible for improved stability vs. a DC current driving scheme, as shown in Figure 9 (d). 

Second, the addition of an ionic liquid additive improvde the ionic conductivity and response 

time of the cell. Here, the particular ionic liquid did not adversely affect the stability of the 

LEC.[148] Third, the use of a PEDOT:PSS layer for efficient hole injection. Long lifetime 

iTMC-based LECs have also been reported with a modified Ru (bpy)3
2+

 complex,[137,150], 

several Ir complexes, [145,151,152] BODIPY-porphyrin dyads[126]. 

VIII. Challenges and Opportunities 

Experimental results presented in the preceding sections convey that the operational 

lifetime of both PLECs and iTMC-LECs have significantly improved in recent years. Long-

lasting LECs are realized with three general approaches: 1. An optimized driving scheme to 

activate the LEC, to fix the LEC junction, and/or to drive the LEC for an extended duration; 2. 

An optimized LEC active layer that includes the emitting material, the electrolyte material and 

additives; and 3. Optimized device architecture that includes additional layers such as a hole-

injection layer, a light out-coupling film, and/or the encapsulation of the LEC. Most of the 

longest lasting LECs, i.e., those that lasted at least 1,000 hours when operated 

continuously,[6,50,52,144,145,152-154] employ all three strategies. These strategies should also 

be used to optimize future LECs due to their proven effectiveness.  

Increasing the operating lifetime of LECs by another one or two orders of magnitude, 

however, represents a major challenge. In PLECs, an increase in driving voltage, as shown in 

Figures 2, 5 and 8, is an often-overlooked degradation behavior. When the PLEC is driven by a 

constant current, an increase in driving voltage indicates an increase in the overall resistance of 

the cell. When the driving voltage becomes too high, rapid device destruction occurs.[49,58] In 

LECs, a high operating voltage can result in not only Joule heating or a dielectric breakdown, but 

also runaway electrochemical reactions. It is therefore, important to understand the cause of a 

driving voltage drift in PLECs. An unexpected observation might provide important clues. In 

ITO/MEH-PPV:PEO:LiTf/Al LECs with 20 % electrolyte loading such as the one shown in 

Figure 5, a negative (reverse bias) current stress yielded peak luminance that tripled that reached 

in a positive current stress.[58] The reverse bias operation, however, was less stable due to a 
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rapidly increasing driving voltage. When the applied reverse bias current was 83.3 mA/cm
2
, the 

luminance decay completely decouples from the driving voltage, as shown in Figure 10. For over 

200 hours, the cell luminance stayed nearly constant between 451 cd/m
2
 and 486 cd/m

2
. The 

driving voltage, however, increased rapidly during the same period and was likely to cause 

catastrophic device failure due to the level reached. These strange results suggest that the doping 

profile (p-dominant vs. n-dominant) plays a major role in the stability of the driving voltage. 

Therefore, it is important to consider both luminance decay and a driving voltage increase in any 

assessment of the stability of PLECs. In particular, when an extrapolated lifetime is determined, 

the driving voltage should also be considered. When an apparent luminance decay is caused by 

PL quenching, a driving voltage is a more reliable marker of true device degradation.[45]  

 

 

Figure 10. Time evolution of luminance and operating voltage of a ITO/MEHPPV: PEO:LiTf/Al 

sandwich LEC operated under a constant current of -10mA (reverse bias). The cell is run twice with an 

idling period of approximately 4 days after the first run. Reprinted (adapted) with permission from (Gao, 

J. and AlTal, F., Decoupled luminance decay and voltage drift in polymer light-emitting electrochemical 

cells: Forward bias vs. reverse bias operation. Applied Physics Letters 2014, 104, 143301). Copyright 

(2014) American Institute of Physics. 

 

Interestingly, driving voltage increases have not been observed in some long-life iTMC 

LECs, as shown in Figure 8 and other studies.[145,155] When driven with a constant voltage 

bias, the cell current is observed to increase for over 1,000 hours.[144,152,154] This behavior 

has been attributed to the very low ionic mobility in these devices, causing them to experience a 
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prolonged activation process that obscures the decay process. Nevertheless, a stable or 

decreasing driving voltage represents a major advantage of iTMC-based LECs over PLECs when 

both are operated at RT.  

The LECs with a 1,000-hour operating lifetime were all operated at low or moderate 

current densities. The peak luminance of these devices, however, was no less than 100 cd/m
2
. 

This means that these long-lasting LECs were also very efficient. For example, a yellow-emitting 

PLEC operated for 1,400 hours had a power efficiency of 18.1 lm/W and a current efficiency of 

14.6 Cd/A (measured at 0.77 mA/cm
2
 on a champion device). This high efficiency allowed for 

the PLEC to operate at a very low current density of 1.9 mA/cm
2 
while reaching a peak 

luminance of about 200 cd/m
2
. The LEC efficiency, however, is still an order of magnitude lower 

than the state-of-the-art PLEDs of CDT. Although efficiency and operating lifetime are separate 

figures of merit concerning light-emitting devices, they appear to be closely related in LECs. 

Improving the efficiency, at least for PLECs, is a challenging but highly plausible route to a 

10,000-hour continuous operation lifetime.  

The various LEC materials can also be combined to exploit the excellent film-forming 

ability of polymers, the high intrinsic efficiencies of iTMCs, and the easy color tenability of 

small molecules and quantum dots. Indeed, hybrid LECs have been reported based on the 

composites of CP/QD [131], iTMC/QD,[130] SM/iTMC,[156]Polymer/iTMC[157], and 

PEO/iTMC[146]. Finally, novel device structures can be explored to benefit both the 

understanding of fundamental LEC processes and device performance. For example, LECs with 

coated or dispersed bipolar electrodes exhibit orders of magnitude improvement in both response 

times and light output due to the formation of a large-area, highly emissive “bulk 

homojunction.”[158,159] It would be challenging but extremely interesting to see whether the 

concept of bulk homojunction can be applied to sandwich LECs, although plasmonic 

enhancement of EL has been reported in iTMC-LECs with added gold nanoparticles.[160] At 

present, stacked tandem cells have been demonstrated with enhanced efficiencies or white light 

emission.[161-163] Significantly, when a tandem cell is operated at the same brightness as a 

single-layered cell made with the same emitter, it exhibits much-improved (by up to 50%) 

operational lifetime compared to the latter. This is due to the tandem cell’s higher external 

quantum efficiency, which allows it to be operated at approximately 60% of the current density 

of the single-layered cell to reach the same peak luminance of about 300 cd/m
2
.[161]  
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IX. Conclusions and outlook 

 The operation lifetime of PLECs and iTMC-LECs has been surveyed. Recent advances in 

materials and device design have led to an operating lifetime exceeding 1,000 hours. By 

examining the various factors affecting the LEC operating lifetime, three general strategies have 

been identified as responsible for the marked improvement over early LECs. These three 

strategies include an optimized driving scheme, an optimized LEC active layer, and an optimized 

device structure. An upwardly drifting operating voltage is a major challenge in PLECs under the 

stress of a constant current. On the other hand, a significant portion of the luminance decay 

observed in PLECs is caused by a reversible doping process and is largely recoverable. Also, 

planar PLECs with a cryogenically fixed junction exhibit similar redox stability to a PLED made 

with the same luminescent polymer. To further improve the operating lifetime of LECs for 

practical applications, the devices must be significantly more efficient. New materials, along 

with innovative device structures will be the most effective way forward.  
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