
Stratego: A Language for Program
Transformation based on Rewriting Strategies

System Description of Stratego 0.5

Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht,
P.O. Box 80089, 3508 TB Utrecht, The Netherlands
visser@acm.org, http://www.cs.uu.nl/~visser

1 Introduction

Program transformation is used in many areas of software engineering. Examples
include compilation, optimization, synthesis, refactoring, migration, normaliza-
tion and improvement [15]. Rewrite rules are a natural formalism for expressing
single program transformations. However, using a standard strategy for normal-
izing a program with a set of rewrite rules is not adequate for implementing
program transformation systems. It may be necessary to apply a rule only in
some phase of a transformation, to apply rules in some order, or to apply a
rule only to part of a program. These restrictions may be necessary to avoid
non-termination or to choose a specific path in a non-confluent rewrite system.

Stratego is a language for the specification of program transformation sys-
tems based on the paradigm of rewriting strategies. It supports the separation of
strategies from transformation rules, thus allowing careful control over the ap-
plication of these rules. As a result of this separation, transformation rules are
reusable in multiple different transformations and generic strategies capturing
patterns of control can be described independently of the transformation rules
they apply. Such strategies can even be formulated independently of the object
language by means of the generic term traversal capabilities of Stratego.

In this short paper I give a description of version 0.5 of the Stratego system,
discussing the features of the language (Section 2), the library (Section 3), the
compiler (Section 4) and some of the applications that have been built (Sec-
tion 5). Stratego is available as free software under the GNU General Public
License from http://www.stratego-language.org.

2 The Language

In the paradigm of program transformation with rewriting strategies [14] a spec-
ification of a program transformation consists of a signature, a set of rules and
a strategy for applying the rules. The abstract syntax trees of programs are rep-
resented by means of first-order terms. A signature declares the constructors of
such terms. Labeled conditional rewrite rules of the form L: l -> r where s,

To appear in A. Middeldorp (editor), Rewriting Techniques and Applications
(RTA’01), Utrecht, The Netherlands. volume 2051 of Lecture Notes in Computer
Science, pages 357–361. Springer-Verlag, May 2001.



module lambda-transform

imports lambda-sig lambda-vars iteration simple-traversal

rules

Beta : App(Abs(x, e1), e2) -> <lsubs>([(x,e2)], e1)

strategies

simplify = bottomup(try(Beta))

eager = rec eval(try(App(eval, eval)); try(Beta; eval))

whnf = rec eval(try(App(eval, id)); try(Beta; eval))

Fig. 1. A Stratego module defining several strategies for transforming lambda expres-
sions using beta reduction. Strategy simplify makes a bottom-up traversal over an
expression trying beta reduction at each subexpression once, even under lambda ab-
stractions. Strategy eager reduces the argument of a function before applying it, but
does not reduce under abstractions. Strategy whnf reduces an expression to weak head-
normal form, i.e., does not normalize under abstractions or in argument positions.
Strategies eager and whnf use the congruence operator App to traverse terms of the
form App(e1,e2), while strategy simplify uses the generic traversal bottomup. The
strategy lsubs is a strategy for substituting expressions for variables. It is implemented
in module lambda-vars using a generic substitution strategy.

with l and r patterns, express basic transformations on terms. A rewriting strat-
egy combines rules into a program that determines where and in what order the
rules are applied to a term. An example specification is shown in Figure 1.

A strategy is an operation that transforms a term into another term or fails.
Rules are basic strategies that perform the transformation specified by the rule
or fail when either the subject term does not match the left-hand side or the con-
dition fails. Strategies can be combined into more complex strategies by means
of a language of strategy operators. These operators can be divided into opera-
tors for sequential programming and operators for term traversal. The sequential
programming operators identity (id), failure (fail), sequential composition (;),
choice (+), negation (not), test, and recursive closure (rec x(s)) combine strate-
gies that apply to the root of a term. To achieve transformations throughout a
term, a number of term traversal primitives are provided. For each construc-
tor C/n, the corresponding congruence operator C(s1,...,sn) expresses the
application of strategies to the direct sub-terms of a term constructed with C.
Furthermore, a number of term traversal operators express generic traversal to
the direct sub-terms of a term without reference to the constructor of the term.
These constructs allow the generic definition of a wide range of traversals over
terms. For example, the strategy all(s) applies s to each direct sub-term of
a term. Using this operator one can define bottomup(s) = rec x(all(x); s),
which generically defines the notion of a post-order traversal that visits each
sub-term applying the parameter strategy s to it.

A number of abstraction mechanisms are supported. A strategy definition
of the form f(x1,...,xn) = s defines the new operator f with n parameters
as an abstraction of the strategy s. An overlay of the form C(x1,...,xn) = t
captures the pattern t in a new pseudo-constructor C [9]. Constructors and strat-

2



egy operators can be overloaded on arity. Strategies implemented in a foreign
language (e.g., for accessing the file system) can be called via the prim construct.

The distinction between rules and strategies is actually only idiomatic, that
is, rules are abbreviations for strategies that are composed from the actual prim-
itives of transformation: matching terms against patterns and building instantia-
tions of patterns. Thus, a rule L: l -> r where s is just an abbreviation of the
strategy L = {x1,...,xn: ?l; where(s); !r}, where the xi are the variables
used in the rule. The construct {xs: s} delimits the scope of the variables xs
to the strategy s. The strategy ?t matches the subject term against the pattern
t binding the variables in t to the corresponding sub-terms of the subject term.
The strategy !t builds an instantiation of the term pattern t by replacing the
variables in t by the terms to which they are bound. Decoupling pattern match-
ing and term construction from rules and scopes, and making these constructs
into first-class citizens, opens up a wide range of idioms such as contextual rules
and recursive patterns [9]. In these idioms a pattern match is passed on to a local
traversal strategy to match sub-terms at variable depth in the subject term.

Finally, specifications can be divided into modules that can import other
modules. The above constructs of Stratego together with its module system
make a powerful language that supports concise specification of program trans-
formations. An operational semantics of System S, the core of the language, can
be found in [13, 14]. A limitation of the current language is that only a weak
type system is implemented. Work is in progress to find a suitable type system
that reconciles genericity with type safety.

3 The Library

The Stratego Library [10] is a collection of modules (≈45) with reusable rules
(≈130) and strategies (≈300). Included in the library are strategies for sequential
control, generic traversal, built-in data type manipulation (numbers and strings),
standard data type manipulation (lists, tuples, optionals), generic language pro-
cessing, and system interfacing (I/O, process control, association tables).

The generic traversal strategies include one-pass traversals (such as topdown,
bottomup, oncetd, and spinetd), fixed point traversal (such as reduce, inner-
most, and outermost), and traversal with environments. The generic language
processing algorithms cover free variable extraction, bound variable renaming,
substitution, and syntactic unification [11]. These algorithms are parameterized
with the pattern of the relevant object language constructs and use the generic
traversal capabilities of Stratego to ignore all constructs not relevant for the op-
eration. For example, bound variable renaming is parameterized with the shape
of variables and the binding constructs of the language.

4 The Compiler

The Stratego Compiler translates specifications to C code. The run-time sys-
tem is based on the ATerm library [4], which supports the ATerm Format, a

3



representation for first-order terms with prefix application syntax. The library
implements writing and reading ATerms to and from the external format, which
is used to exchange terms between tools. This enables component-based devel-
opment of transformation tools. For example, a Stratego program can transform
abstract syntax trees produced by any parser as long as it produces an ATerm
representation of the abstract syntax tree for a program.

The compiler has been bootstrapped, that is, all components except the
parser are specified in Stratego itself. The compiler performs various optimiza-
tions, including extracting the definitions that are used in the main strategy,
aggressive inlining to enable further optimizations and merging of matching pat-
terns to avoid backtracking. A limitation of the current compiler is that it does
not support separate compilation and that compilation of the generated code by
gcc is rather slow, resulting in long compilation times (e.g., 3 minutes for a large
compiler component). Overcoming this limitation is the focus of current work.

5 Applications

Stratego is intended for use in a wide range of language processing applications
including source-to-source transformation, application generation, program op-
timization, compilation, and documentation generation. It is not intended for
interactive program transformation or theorem proving.

Examples of applications that use Stratego are XT, CodeBoost, HSX and
a Tiger compiler. XT is a bundle of program transformation tools [6] in which
Stratego is included as the main language for implementing program transforma-
tions. The bundle comes with a collection of grammars for standard languages
and many tools implemented in Stratego for generic syntax tree manipulation,
grammar analysis and transformation, and derivation of tools from grammars.
CodeBoost is a framework for the transformation of C++ programs [2] that is
developed for domain-specific optimization of C++ programs for numerical ap-
plications. HSX is a framework for the transformation of core Haskell programs
that has been developed for the implementation of the warm fusion algorithm
for deforesting functional programs [8]. The Tiger compiler translates Tiger pro-
grams [1] to MIPS assembly code [12]. The compiler includes translation to
intermediate representation, canonicalization of intermediate representation, in-
struction selection, and register allocation.

6 Related Work

The creation of Stratego was motivated by the limitations of a fixed (innermost)
strategy for rewriting, in particular based on experience with the algebraic spec-
ification formalism ASF+SDF [7]. The design of the strategy operators was in-
spired by the strategy language of ELAN [3], a specification language based on
the paradigm of rewriting logic [5]. For a comparison of Stratego with other sys-
tems see [13, 14]. A survey of program transformation systems in general can be
found in [15]. The contributions of Stratego include: generic traversal primitives

4



that allow definition of generic strategies; break-down of rules into primitives
match and build giving rise to first-class pattern matching; many programming
idioms for strategic rewriting; bootstrapped compilation of strategies; a foreign
function interface; component-based programming based on exchange of ATerms.

Acknowledgements I would like to thank Bas Luttik, Andrew Tolmach, Zino
Benaissa, Patricia Johann, Joost Visser, Merijn de Jonge, Otto Skrove Bagge,
Dick Kieburtz, Karina Olmos, Hedzer Westra, Eelco Dolstra and Arne de Bruijn
for their contributions to the design, implementation and application of Stratego.

References

1. A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

2. O. S. Bagge, M. Haveraaen, and E. Visser. CodeBoost: A framework for the
transformation of C++ programs. Technical report, Universiteit Utrecht, 2000.

3. P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. Elan:
A logical framework based on computational systems. In J. Meseguer, editor,
ENTCS, volume 4, 1996. Workshop on Rewriting Logic and Applications 1996.

4. M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient
annotated terms. Software—Practice & Experience, 30:259–291, 2000.

5. M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic. In
J. Meseguer, editor, ENTCS, volume 4, 1996. Workshop on Rewriting Logic and
its Applications 1996.

6. M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transformation
tools. In ENTCS, 2001. Language Descriptions, Tools and Applications 2001.

7. A. Van Deursen, J. Heering, and P. Klint, editors. Language Prototyping, volume 5
of AMAST Series in Computing. World Scientific, Singapore, 1996.

8. P. Johann and E. Visser. Warm fusion in Stratego: A case study in the gener-
ation of program transformation systems. Annals of Mathematics and Artificial
Intelligence. (To appear).

9. E. Visser. Strategic pattern matching. In P. Narendran and M. Rusinowitch,
editors, Rewriting Techniques and Applications (RTA’99), volume 1631 of Lecture
Notes in Computer Science, pages 30–44, Trento, Italy, July 1999. Springer-Verlag.

10. E. Visser. The Stratego Library. Institute of Information and Computing Sciences,
Universiteit Utrecht, Utrecht, The Netherlands, 1999.

11. E. Visser. Language independent traversals for program transformation. In J. Jeur-
ing, editor, Workshop on Generic Programming (WGP2000), Ponte de Lima, Por-
tugal, July 6, 2000. Technical Report UU-CS-2000-19, Universiteit Utrecht.

12. E. Visser. Tiger in Stratego: An exercise in compilation by transformation.
http://www.stratego-language.org/tiger/, 2000.

13. E. Visser and Z.-e.-A. Benaissa. A core language for rewriting. In C. Kirchner and
H. Kirchner, editors, ENTCS, volume 15, September 1998. Rewriting Logic and
its Applications 1998.

14. E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers with
rewriting strategies. ACM SIGPLAN Notices, 34(1):13–26, January 1999. Pro-
ceedings of the International Conference on Functional Programming (ICFP’98).

15. E. Visser et al. The online survey of program transformation.
http://www.program-transformation.org/survey.html.

5


