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Abstract In this paper, we study the strategy-proofness properties of the
randomized Condorcet voting system (RCVS). Discovered at several occasions
independently, the RCVS is arguably the natural extension of the Condorcet
method to cases where a deterministic Condorcet winner does not exists. In-
deed, it selects the always-existing and essentially unique Condorcet winner
of lotteries over alternatives. Our main result is that, in a certain class of vot-
ing systems based on pairwise comparisons of alternatives, the RCVS is the
only one to be Condorcet-proof. By Condorcet-proof, we mean that, when a
Condorcet winner exists, it must be selected and no voter has incentives to
misreport his preferences. We also prove two theorems about group-strategy-
proofness. On one hand, we prove that there is no group-strategy-proof voting
system that always selects existing Condorcet winners. On the other hand, we
prove that, when preferences have a one-dimensional structure, the RCVS is
group-strategy-proof.

Keywords Social choice · Condorcet winner · Strategy-proofness

1 Introduction

Social choice theory consists in choosing an alternative for a group of people
whose individual preferences may greatly differ from one another. One of the
first mathematicians to address this question was Condorcet (1785). Condorcet
argued that an alternative that is preferred to any other by the majority should
always be selected. Such an alternative is now known as a Condorcet winner.
Unfortunately, Condorcet went on proving that a Condorcet winner does not
necessarily exist, as he provided an example where the majority prefers x to
y, y to z and z to x. This example is now known as a Condorcet paradox.
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It has been the essence of several impossibility theorems since. Namely, first,
Arrow (1951) famously derived the impossibility of a ”fair” aggregation of
the preferences of the individuals into a preference of the group. Second, Gib-
bard (1973) and Satterthwaite (1975) proved that there is no strategy-proof,
anonymous neutral and deterministic voting system. A similar result has been
proved by Campbell and Kelly (1998) about the impossibility of combining
the Condorcet principle with strategy-proofness for deterministic social choice
rules that select one or two alternatives. Third, Gibbard (1977, 1978) proved
that random dictatorship was the only strategy-proof, anonymous, neutral and
unanimous voting system, assuming voters’ preferences satisfy the Von Neu-
mann and Morgenstern (1944) axioms.

Nevertheless, a natural extension of the concept of Condorcet winner to
lotteries has been introduced and widely studied by Kreweras (1965), Fish-
burn (1984), Felsenthal and Machover (1992), Laslier (1997), Laslier (2000),
Brandl et al (2016b), and relies on a remarkable existence and near-uniqueness
theorem proved independently by Fisher and Ryan (1992) and Laffond et al
(1993). Namely, it was proved that, provided there is no tie between any two
alternatives, and given a specific but natural extension of majority preferences
over candidates to preferences over lotteries, there always is a unique lottery
that the majority likes at least as much as any other lottery. We call such a
lottery the Condorcet winner of lotteries, or the randomized Condorcet win-
ner. Naturally, it is this randomized Condorcet winner that we propose to
select through the randomized Condorcet voting system (RCVS)1. The com-
pelling naturalness of the RCVS has been further supported by Brandl et al
(2016b) who characterized it as the only voting system satisfying two con-
sistency axioms. What is perhaps most exciting is the recent implementation
of the RCVS on the website https://pnyx.dss.in.tum.de. In Section 2, we
quickly redefine the RCVS and stress its naturalness.

In addition to this naturalness, the RCVS has been proved to possess ap-
pealing Pareto-efficiency properties2. Indeed, Aziz et al (2013) proved that
random dictatorship and RCVS are two extreme points of a tradeoff between
Pareto-efficiency and strategy-proofness. Loosely, random dictatorship is, in
some sense related to the class of preferences considered3, more strategy-proof
but less Pareto-efficient. Moreover, Aziz et al (2013, 2014) prove that, to a

1 This voting system has been given different names in previous papers, including ”game-
theory method” in Felsenthal and Machover (1992) which is not to be confused with the
slightly different game-theory method by Rivest and Shen (2010), ”symmetric two-party
competition game equilibrium” in Laslier (2000); Myerson (1996), ”maximal lottery” in
Fishburn (1984); Aziz et al (2013); Brandl et al (2016b) and ”Fishburn’s rule” on https:

//pnyx.dss.in.tum.de. Note that some of these papers also study variants where the margin
by which an alternative x is preferred to y is taken into account (whereas, here, only the
fact that is the majority prefers x matters). Finally, it should be added that the (support of
the) RCVS has also been studied under the names ”bipartisan set” and ”essential set”. We
believe, however, that our terminology yields greater insight into the nature of this lottery.

2 A voting system is Pareto-efficiency if there is no lottery x̃ such that everyone likes x̃ at
least as much as the selected lottery, and someone strictly prefers x̃ to the selected lottery.

3 There are several possible ways to extend preferences over alternatives to preferences
over lotteries, each leading to its own concepts of strategy-proofness and Pareto-efficiency.

https://pnyx.dss.in.tum.de
https://pnyx.dss.in.tum.de
https://pnyx.dss.in.tum.de
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large extent, strategy-proofness and Pareto-efficiency are incompatible, which
suggests that the RCVS can hardly be improved upon with respect to such
considerations. These results have been further generalized by Brandl et al
(2016a).

Unfortunately, the theorem by Gibbard (1977) implies that the RCVS is
not strategy-proof for von Neumann - Morgenstern preferences. The proof
of this, along with many similar results, relies on the concept of first-order
stochastic dominance, which allows to capture the whole diversity of von
Neumann - Morgenstern preferences. In particular, the harshness of Gibbard
(1977)’s result is precisely due to how constraining first-order stochastic dom-
inance is. Thus, if we relax this condition, we may be able to prove the (thus
weaker) strategy-proofness of some voting systems that are not random dicta-
torships. This is what has been proposed by Bogomolnaia and Moulin (2001)
and Balbuzanov (2016), who respectively introduced ordinal efficiency and
convex undomination. In this paper, we shall take another path, by studying
a very distinct (but still fairly natural) class of preferences based on pair-
wise comparisons of drawn alternatives, which was previously introduced by
Fishburn (1982) and Aziz et al (2015).

The main contribution of this paper is to show that, for this class of pair-
wise comparison preferences, the RCVS possesses enviable strategy-proofness
properties. We prove that the RCVS is Condorcet-proof, in the sense that,
when a Condorcet winner exists, the RCVS selects it and no voter has incen-
tives to misreport his preferences. We shall also show that, in a certain class
of voting systems based on pairwise comparisons of alternatives, the RCVS is
the only one that is Condorcet-proof. These properties are formally stated and
derived in Section 3. We shall argue that they are strong indications that the
RCVS has key properties that should favor its use over other voting systems.

Next, in Section 4, we study the group strategy-proofness of voting sys-
tems. We start with an impossibility result that asserts that no voting system
that selects Condorcet winners is group strategy-proof. Next and finally, we re-
strict ourselves to the cases where alternatives range on a one-dimensional axis,
which is mathematically described by two models known as single-peakedness
and single-crossing. It is well-known that, under these models, Condorcet win-
ners are guaranteed to exist (Black (1958); Roberts (1977); Rothstein (1990,
1991); Gans and Smart (1996)). While the median social rule introduced
by Moulin (1980) and generalized by Saporiti (2009) guarantees strategy-
proofness for one-dimensional preferences, it requires to explicitly and officially
locate alternatives on a one-dimensional line, and to forbid voters’ ballots
to be inconsistent with the assumed corresponding one-dimensional structure
of preferences. In many cases, like in politics, this may not be acceptable.
However, Penn et al (2011) proved that, when preferences are single-peaked
but ballots are not constrained to be single-peaked, a deterministic group-
strategy-proof voting system must be dictatorial. We shall prove that, under
single-peakedness or single-crossing preferences, the RCVS is group-strategy-
proof.



4 Lê Nguyên Hoang

Finally, Section 5 concludes by emphatically recommending the use of the
RCVS in practice.

2 The Randomized Condorcet Voting System

In this section, we briefly reintroduce the RCVS, which was repeatedly discov-
ered in the literature. We consider a finite set X of alternatives. A preference
θ ∈ O is an order4 over X. For simplicity, we shall restrict our analysis to
total order preferences, but there is no difficulty in generalizing our results to
partial orders. We denote θ : x � y the fact that a voter with preference θ
prefers alternative x to y. The anonymous preferences of a population of voters
can then be represented as a probability distribution θ̃ ∈ ∆(O) over prefer-
ences. Note that this representation of the preferences of a population does
not discriminate certain distinct settings, e.g. a population and two copies of
this population. However, it has the advantage of modeling as well situations
where different voters have different weights, e.g. in a company board of di-
rectors. Now, we say that the majority Mθ̃ prefers x to y if more people prefer
x to y, i.e.

Mθ̃ : x� y
4⇐⇒ Pθ∼θ̃ [θ : x � y] > Pθ∼θ̃ [θ : x ≺ y] ,

where Pθ∼θ̃[·] is the probability of an event ”·” regarding a random voter θ
drawn from the population θ̃. For convenience of notation, we use probability
notations for quantities often rather regarded as frequencies. The line above
can equivalently be read as the probability that a random voter prefers x to
y is greater than the probability that he prefers y to x, or as the fraction of
voters who prefer x to y being greater than the fraction of voters who prefer
y to x.

We shall use the notation ”�” instead of ”�” when the right-hand in-
equality features the greater-or-equal sign ”≥”.

Example 1 Consider X = {x, y, z}, and θ̃ ∈ ∆(O) defined by:

Pθ∼θ̃ [θ : x � y � z] = 27/100,
Pθ∼θ̃ [θ : z � x � y] = 31/100,
Pθ∼θ̃ [θ : y � x � z] = 42/100.

We then have Mθ̃ : x � y � z � x, which proves that the majority prefer-
ence Mθ̃ is not transitive and that there is no Condorcet winner. This is the
infamous Condorcet paradox.

4 An order is a binary relation that satisfies the following properties, for all x, y, z ∈ X:

– Antisymmetry: if θ : x � y and θ : y � x, then x = y.
– Transitivity: if θ : x � y and θ : y � z, then θ : x � z.

If, in addition, the order satisfies totality, i.e. θ : x � y or θ : y � x, then we say that the
order is total.
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Given the limitations of deterministic voting systems proved by Gibbard
(1973), Satterthwaite (1975) and Penn et al (2011), we turn our attention to
randomized voting systems, which have been gaining interests in recent years
(see, e.g. Ehlers et al (2002); Bogomolnaia et al (2005); Chatterji et al (2014)).
Instead of selecting an alternative, a randomized voting system selects a lot-
tery x̃ ∈ ∆(X), that is, a probability distribution over alternatives. A crucial
difficulty posed by the introduction of randomness in social choice theory is
the extension of preferences over deterministic alternatives to preferences over
lotteries. To introduce and justify the randomized Condorcet voting system,
it turns out to be sufficient to extend the majority preferences. We do this as
follows. We say that the majority Mθ̃ prefers a lottery x̃ to a lottery ỹ, if the
majority more often prefers the alternative drawn by x̃ to the one drawn by
ỹ, than the other way around, i.e.

Mθ̃ : x̃� ỹ
4⇐⇒ Px∼x̃,y∼ỹ

[
Mθ̃ : x� y

]
> Px∼x̃,y∼ỹ

[
Mθ̃ : x� y

]
,

where, as earlier, the notation x ∼ x̃ means that we are drawing x from the
probability distribution x̃. This extension of majority preferences to lotteries
shares strong similarities with the SSB preferences axiomatized by Fishburn
(1982), and even more with the pairwise comparison preferences studied by
Aziz et al (2014). We stress, however, that the majority preference Mθ̃ need
not be transitive over deterministic alternatives, which is evidently the essence
of the Condorcet paradox. Nevertheless, we argue that this extension of ma-
jority preferences over alternatives to majority preferences over lotteries is
fairly natural, especially given that we assume to only have access to ordinal
preferences of the voters.

The definition of majority preferences over lotteries can also be stated in
terms of an inequality with matrices. First, for any preferences θ̃ of the people,
let us define the referendum matrix R(θ̃) ∈ RX×X by

Rxy(θ̃) , Pθ∼θ̃ [θ : x � y]− Pθ∼θ̃ [θ : y � x] .

Intuitively, Rxy(θ̃) counts the relative proportion of voters that prefer x over
y, and thus, the hypothetical result of a referendum opposing x to y.

Now, let us define A(Mθ̃) ∈ RX×X the skew-symmetric matrix that only
remembers the signs of the entries of the referendum matrix. In other words,
A(Mθ̃) is defined by

Axy(Mθ̃) =

+1, Mθ̃ : x� y,
−1, Mθ̃ : x� y,
0, otherwise.

Moreover, we can represent any lottery x̃ by a vector p(x̃) ∈ RX defined by
px(x̃) = Py∼x̃[x = y]. Then,

Mθ̃ : x̃� ỹ ⇐⇒ p(x̃)TA(Mθ̃)p(ỹ) > 0,

Like earlier, we shall use the symbol ”�” when the right-hand side inequality
features the greater-or-equal sign.
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Remark 1 The definition of the majority preferences Mθ̃ over lotteries is not
to be confused with the fact that a random voter will more likely prefer x̃
to ỹ, nor with the fact that a random voter will more likely prefer a random
alternative drawn from x̃ to one drawn from ỹ.

Example 2 Let us reconsider Example 1. Recall that Mθ̃ : x � y � z � x.
Consider the lottery p̃ that assigns probability 2/3 to x and 1/3 to y, which we
shall compare to z (or, equivalently, the lottery δz which assigns probability
1 to z). Then, Pp∼p̃[Mθ̃ : p � z] = Pp∼p̃[p = y] = 1/3, while Pp∼p̃[Mθ̃ : z �
p] = Pp∼p̃[p = x] = 2/3. In other words, two out of three times, the majority
will prefer the alternative z to the one drawn by p̃, while only one third of the
times it will prefer the alternative drawn by p̃ to z. Therefore, the majority
prefers z to p̃, i.e. Mθ̃ : z � p̃.

Finally, we can generalize the concept of Condorcet winners of alternatives
to Condorcet winners of lotteries. We say that a lottery x̃ is a randomized
Condorcet winner if there is no other lottery that the majority prefers, i.e.
such that

∀ỹ ∈ ∆(X), Mθ̃ : x̃� ỹ.

This definition of the majority preferences over lotteries then allows to cir-
cumvent the Condorcet paradox in a very natural way, which relies on the
following restatement of a well-known theorem.

Theorem 1 (Fisher and Ryan (1992); Felsenthal and Machover (1992);
Laffond et al (1993)) There always exists a randomized Condorcet winner.
Plus, if there is no tie between any two alternatives, the randomized Condorcet
winner is unique.

On one hand, the proofs of this theorem are not very constructive nor in-
sightful. For instance, the existence is derived from the minimax theorem by
Von Neumann (1928) or the Nash (1951) theorem. On the other hand, though,
the randomized Condorcet winner can be efficiently computed. Indeed, the set
of randomized Condorcet winners is actually a polytope, whose variables are
the probabilities of selecting the different alternatives, and whose constraints
assert that the majority must like the randomized Condorcet winners at least
as much as any deterministic alternative. Thus, a randomized Condorcet win-
ner can be computed by solving a basic LP with O(|X|) variables and con-
straints. Naturally, it is this essentially unique randomized Condorcet winner
that we propose to select.

Definition 1 The randomized Condorcet voting system (RCVS) C : ∆(O)→
∆(X) selects the randomized Condorcet winner C (θ̃) of the majority prefer-
ences Mθ̃.

5.

5 In the case where the randomized Condorcet winner is not unique, a randomized Con-
dorcet winner could be randomly selected by the RCVS by maximizing a random linear
objective function over the polytope of randomized Condorcet winners.
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Note that any deterministic Condorcet winner is a randomized Condorcet
winner. Therefore, by the uniqueness property, if a deterministic Condorcet
winner exists, then the RCVS selects it deterministically. In any case, by con-
struction, the RCVS has the following characteristic property:

∀x̃ ∈ ∆(X), Mθ̃ : C (θ̃)� x̃,

that is, the majority always prefers the randomized Condorcet winner at least
as much as any lottery. From this property, it is immediate that the RCVS
satisfies independence of irrelevant alternatives, in the sense that if an alterna-
tive is not in the support of C (θ̃), then removing it from the set of alternatives
(which only implies reducing the set ∆(X)) does not affect the value of lottery
C (θ̃).

Example 3 We reconsider Example 1. Recall that Mθ̃ : x � y � z � x, so
that there was no deterministic Condorcet winner. In particular, note that
Mθ̃ : c � p if and only if (c, p) ∈ {(x, y), (y, z), (z, x)}. Here, the randomized
Condorcet winner C (θ̃) is the uniform distribution over X. Indeed, let p̃ the
lottery that assigns probabilities px, py and pz to alternatives x, y and z. Then,

Pc∼C (θ̃),p∼p̃
[
Mθ̃ : c� p

]
= P [(c, p) ∈ {(x, y), (y, z), (z, x)}]

= P [(c, p) = (x, y)] + P[(c, p) = (y, z)] + P[(c, p) = (z, x)]

=
py
3

+
pz
3

+
px
3

= P [(c, p) = (z, y)] + P[(c, p) = (x, z)] + P[(c, p) = (y, x)]
= P [(c, p) ∈ {(z, y), (x, z), (y, x)}]
= P

[
Mθ̃ : c� p

]
,

where all the probabilities are obtained by drawing c from C (θ̃) and p from p̃.
This proves that the majority Mθ̃ likes C (θ̃) just as much as p̃. In particular,
we have Mθ̃ : C (θ̃) � p̃, for any lottery p̃. This is the characteristic property
of the RCVS.

Example 4 As another example, assume X = {x, y, z1, z2, z3} and Mθ̃ : x �
y � zi � x for all i ∈ {1, 2, 3}, and that Mθ̃ : z1 � z2 � z3 � z1. Then
the randomized Condorcet winner assigns probability 1/3 to x and y, and
probability 1/9 to each zi for i ∈ {1, 2, 3}.

3 Condorcet-Proofness

As claimed in the introduction, the RCVS has appealing strategy-proofness
properties. In this section, we shall prove some of these properties. Namely, we
will show that the RCVS is Condorcet-proof, which means that, when a deter-
ministic Condorcet winner exists, the RCVS selects it and no voter has then
incentive to misreport his preferences. Moreover, we will prove that the RCVS
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is the only voting system to have this property in a class of voting systems
based on pairwise comparisons. To formalize these properties, we first intro-
duce the preferences and strategies that the definition of Condorcet-proofness
relies on.

3.1 Preferences and Strategies

While our preferences are so far well-defined over X, we need to determine
how they extend to pairwise comparisons of lotteries. There is not a unique
way to perform such an extension. In this paper, we do so as follows. We say
that a voter with preference θ ∈ O prefers lottery x̃ to ỹ if he is more likely
to prefer an alternative drawn by x̃ to one drawn by ỹ, than the other way
around, i.e.

θ : x̃ � ỹ 4⇐⇒ Px∼x̃,y∼ỹ [θ : x � y] ≥ Px∼x̃,y∼ỹ [θ : x ≺ y] .

These preferences are the pairwise comparison extensions introduced by Aziz
et al (2014). They are particular cases of the SSB preferences axiomatized by
Fishburn (1982)6. Note that they are nontransitive7 and thus do not satisfy
the axioms by Von Neumann and Morgenstern (1944). This explains why the
Gibbard (1977) theorem does not apply to our setting. Nevertheless, they can
be considered risk-neutral, in the sense that, if θ : x � y � z, if w̃ is the
uniform distribution over {x, y, z} and if w is drawn from w̃, then θ is equally
likely to prefer w over w̃ than the other way around. In practice, voters might
be more risk-averse than that, in which case the RCVS will turn out to be all
the more Condorcet-proof.

A helpful feature of such preferences is that they are perfectly determined
by their restriction to preferences over alternatives. In particular, combined to
the revelation principle derived by Gibbard (1973), this implies that, without
loss of generality, we can restrict ourselves to the analysis of voting systems
whose ballots are the total orders over X.

Now, in an actual election, the voters have the option of voting any ballot,
including those that do not represent their actual preferences. We capture
this by introducing the concept of strategies. Intuitively, a strategy of the
population tells how each voter, given his preferences, will vote. More formally,
a strategy s of the population is a mapping s : O → ∆(O), where s(θ) is the
mix of ballots chosen by voters of preference θ. A more relevant way to interpret
this mix of ballots is to regard it as the way the set of voters with preference
θ will spread its votes among the different possible ballots. What is more, we
extend the domain of s to the set ∆(O) by s(θ̃) , E[s(θ̃)], so that s is now a
function O → ∆(O). Then, given the preferences θ̃ of the people, s(θ̃) are the
ballots of the people when they follow strategy s.

6 A preference θ over lotteries is SSB if there exists a skew-symmetric matrix φ(θ) ∈ RX×X
such that θ : x̃ � ỹ if and only if p(x̃)Tφ(θ)p(ỹ) > 0, where p(x̃) ∈ RX is the vector of the

probabilities of the lottery x̃. In our case, φxy(θ) , 1 if θ : x � y, and −1 otherwise.
7 See, e.g. Grime (2010), for examples on such nontransitivity.
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Now, the strategy s determines a partition of the voters into two subsets
Truthful(s) and Manipulator(s) defined by

Truthful(s) = {θ ∈ O | s(θ) = δθ} ,
Manipulator(s) = {θ ∈ O | s(θ) 6= δθ} ,

where δθ is the Dirac distribution on θ. Finally, the truthful strategy struth is
evidently defined by struth(θ) = δθ for all θ ∈ O. Equivalently, a strategy s is
truthful when Truthful(s) = O.

3.2 Condorcet-proofness of the RCVS

We can now define formally what we mean by Condorcet-proofness. Recall
that a voting system V inputs the ballots of the population ã ∈ ∆(O) and
outputs a lottery V (ã) ∈ ∆(X). When the population with preferences θ̃ is
truthful, the ballots are ã = θ̃. When the population plays strategy s, its
ballots are ã = s(θ̃).

Definition 2 A voting system V : ∆(O) → ∆(X) is Condorcet-proof if,
whenever preferences θ̃ of the people yield a deterministic Condorcet winner x,
the voting system V selects x and there is no preference θ such that individuals
with preference θ have incentives to misreport their preferences altogether, i.e.

∀θ̃,
(
∃x,∀y,Mθ̃ : x� y

)
=⇒

{
V (θ̃) = δx,

Manipulator(s) = {θ} ⇒ θ : V (s(θ̃)) � V (θ̃).

In other words, a Condorcet-proof voting system is a Condorcet method
that prevents manipulations when a deterministic Condorcet winner exists.
Therefore, Condorcet-proofness does not entirely include strategy-proofness.
It only includes strategy-proofness for certain population preferences θ̃. Note,
in addition, that this strategy-proofness is slightly stronger than the more
usual dominant-strategy-proofness from the literature. Indeed, here, we allow
for more than one voter to deviate from truthfulness. However, we do require
is that all the voters that do deviate from truthfulness have the same prefer-
ence. Thus, Condorcet-proofness can be regarded as a weaker version of the
stronger group-Condorcet-proofness we shall discuss later on, which imposes
no restriction on the set of manipulators.

The following key theorem has been sketched by Peyre (2012c) in a popu-
larization article. Here, we provide a rigorous proof.

Theorem 2 (Peyre (2012c)) The RCVS is Condorcet-proof.

First note that, as we already said it earlier, the RCVS does select de-
terministic Condorcet winners whenever they exist. Therefore, all we need
to prove is the strategy-proofness part. Now, we prove an insightful lemma.
Loosely, it says that, when misreporting their preferences, manipulators can
only switch pairwise majority preferences that they agree with.
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Lemma 1 Assume Manipulator(s) = {θ} and Mθ̃ : x� y. The two following
implications hold:

– If θ : y � x, then Ms(θ̃) : x� y.
– If Ms(θ̃) : y � x, then θ : x � y.

Proof Let us prove the first implication. We assume θ : y � x. Then, the
manipulator θ cannot increase the number of ballots that favor y to x. Indeed,

Pa∼s(θ̃) [a : y � x] = Eθ̂∼θ̃
[
Pa∼s(θ̂) [a : y � x]

]
= Eθ̂∼θ̃

[
Pa∼s(θ̂) [a : y � x]

∣∣∣ θ̂ 6= θ
]

Pθ̂∼θ̃
[
θ̂ 6= θ

]
+ Pa∼s(θ) [a : y � x] Pθ̂∼θ̃

[
θ̂ = θ

]
≤
∑
a:y�x
a6=θ

Pθ̂∼θ̃
[
θ̂ = a

]
+ Pθ̂∼θ̃

[
θ̂ = θ

]

= Pθ̂∼θ̃
[
θ̂ : y � x

]
,

where we used the fact that s(θ̂) = δθ̂ for θ̂ 6= θ, and that Pa∼s(θ) [a : y � x] ≤
1. A similar computation shows that Pa∼s(θ̃) [a : x � y] ≥ Pθ̂∼θ̃

[
θ̂ : x � y

]
.

Thus,

Mθ̃ : x� y ⇐⇒ Pθ̂∼θ̃
[
θ̂ : x � y

]
> Pθ̂∼θ̃

[
θ̂ : y � x

]
=⇒ Pa∼s(θ̃) [a : x � y] > Pa∼s(θ̃) [a : y � x]

⇐⇒ Ms(θ̃) : x� y,

which is the first implication of the lemma. The second implication is essen-
tially the contraposition, using in addition the fact that if Mθ̃ : x� y implies
that x 6= y, and thus, if θ : x � y, then θ : x � y. ut

We can now prove the theorem.

Proof (Theorem 2) Assume that the preferences θ̃ of the people yield a Con-
dorcet winner x ∈ X and that Manipulator(s) = {θ}. Using the fundamental
property of the RCVS for s(θ̃) and the previous lemma, we have

Ms(θ̃) : C (s(θ̃))� x

⇐⇒ Py∼C (s(θ̃))

[
Ms(θ̃) : y � x

]
≥ Py∼C (s(θ̃))

[
Ms(θ̃) : x� y

]
=⇒ Py∼C (s(θ̃)) [θ : x � y] ≥ Py∼C (s(θ̃)) [θ : y � x]

⇐⇒ θ : x � C (s(θ̃)),

which proves that the manipulator θ does not gain by misreporting his pref-
erences. ut
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3.3 Near-Uniqueness

Condorcet-proofness is a very restrictive property, and it is a remarkable fact
that the RCVS satisfies it. Indeed, in this section, we shall prove that any
Condorcet-proof tournament-based8 voting system must agree with the RCVS
for a wide range of inputs. To do so, we first defined what a tournament-based
voting system is. Recall that the referendum matrix measured the margins by
which any alternative is preferred to any other alternative, while the skew-
symmetric matrix A(Mθ̃) computes the signs of the referendum matrix.

Definition 3 A pairwise (respectively, tournament-based) voting system is a
voting system whose outcome is entirely determined by the referendum matrix
(respectively, by the signs of the entries of the referendum matrix).

Moreover, let us define the `1-norm of the referendum matrix by

||R(θ̃)||1 ,
∑
x,y∈X

|Rxy(θ̃)|.

We can now state the uniqueness result.

Theorem 3 A Condorcet-proof pairwise voting system must agree with the
RCVS for all preferences θ̃ of the people such that ||R(θ̃)||1 < 2 and Rxy(θ̃) 6= 0
for all x 6= y. In particular, the RCVS is the only Condorcet-proof tournament-
based voting system.

Proof The proof is given in Appendix A. ut

While the theorem indicates a sort of uniqueness of Condorcet-proof voting
systems, at least in a neighborhood of the uniform distribution, I have not
succeeded in characterizing these Condorcet-proof voting systems. I suspect
them not to be unique though. My intuition is that some referendum matrices
R are so extreme that only a few ballots ã that could have led to them, in
which case strategy-proofness may not be restrictive enough to impose the
uniqueness of the choice of V (ã).

Two intuitive remarks can be added though to hint at the fact that this
theorem encompasses more cases than it seems to. First, ballots that almost
yield deterministic Condorcet winners are intuitively those that could likely
have been results of manipulations without which a deterministic Condorcet
winner existed. Therefore, quite likely, it will be necessary to impose many
constraints on the outcomes of these ballots to prevent possible manipula-
tions. This suggests that Condorcet-proofness imposes the winning lottery for
such ballots to be at least quite similar to the randomized Condorcet winner.
Second, if we add the constraint that the voting system must satisfy inde-
pendence of irrelevant alternatives, then there will likely be only a handful of

8 The terminology of tournaments is widely used in social choice theory, e.g. see Laslier
(1997). It corresponds to a (sometimes weighted) directed graph whose nodes are alterna-
tives, and with an arc from x to y if the majority prefers x to y. Equivalently, the graph can
be represented by the referendum matrix we use here.
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alternatives that actually matter. This means that Condorcet-proofness must
apply to a small induced graph, for which the assumptions of Theorem 3 are
more likely to apply.

To illustrate the rareness of Condorcet-proof voting systems, let us present
an example of a Condorcet method which fails to be Condorcet-proof.

Example 5 In the last decades, Schulze (2011) introduced a seductive deter-
ministic voting system based on weighted tournaments. Weighted tournaments
can be represented as weighted directed graphs whose nodes are alternatives.
We then draw an arcs from x to y, if the majority prefers x to y, and we
assign a weight to the arc proportional to Rxy(θ̃). Note that a determinis-
tic Condorcet winner in this setting is a node with no incoming arc. When
there is such a node, Schulze proposes to select this node. This means that
the Schulze method is a Condorcet method. When no deterministic Condorcet
winner exists, however, Schulze proposes to remove the arcs of the weighted
tournament which have the smallest weights until the tournament yields a
Condorcet winner.

Unfortunately, the Schulze method fails to be strategy-proof even when
a deterministic Condorcet winner exists, and even in the simplified setting
where preferences assumed both single-crossing and single-peaked9. To see
this, consider x < y < z three alternatives and preferences defined by

θ1 : x � y � z, θ2 : y � x � z, θ3 : y � z � x, θ4 : z � y � x.
(1)

Consider 15 voters whose preferences θ̃ ∈ ∆(O) are

15 θ̃ = 7θ1 + 3θ2 + 3θ3 + 2θ4. (2)

Given these preferences, y is the Condorcet winner of θ̃, and the one that the
Schulze method selects. But now consider that manipulators θ1 choose ballot
s(θ1) = δa, where a : x � z � y, and that other voters are truthful (i.e.
Manipulator(s) = {θ1}). Then,

15 s(θ̃) = 7a+ 3θ2 + 3θ3 + 2θ4. (3)

We now have a Condorcet paradox Ms(θ̃) : y � x� z � y. This is illustrated
in Figure 1.

At this point, the Schulze method consists in removing the arc with the
lowest weight, which is the arc from y to x. This leaves x with no incoming
arc, leading to the election of x. Since manipulators θ1 indeed prefer x to y,
they benefit from conspiring, which proves that the Schulze method is not
strategy-proof even highly structured preferences.

9 We give definitions to single-crossing and single-peakedness later on.
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Fig. 1 On the left is the tournament of the preferences, where y is Condorcet winner. The
arrow from y to x corresponds to the majority preference Mθ̃ : y � x. On the right is the
tournament of the ballots, for which the Schulze method elects x. Weights are the surplus
of voters that prefer one alternative to another.

4 Group-Condorcet-Proofness

Strategy-proofness as defined so far is restricted to a class of single-minded
voters deviating from truthfulness. A stronger form of strategy-proofness may
be desirable in settings where voters can easily communicate and plot more
complex group strategies. This leads us to the concept of group strategy-
proofness, which has for instance been studied in Saporiti (2009) and Penn
et al (2011).

Definition 4 A voting system V : ∆(O) → ∆(X) is group-Condorcet-proof
if, whenever preferences θ̃ of the people yield a Condorcet winner x, the voting
system V selects x and no subset of voters has strict incentives to collectively
misreport their preferences, i.e. for all such θ̃, we have V (θ̃) = δx and

∀s 6= struth,∃θ ∈ Manipulator(s), θ : V (s(θ̃)) � V (θ̃).

Group strategy-proofness is sometimes regarded as too strong a require-
ment. One contribution of this paper is to back this intuition, with the follow-
ing impossibility theorem.

Theorem 4 There is no group-Condorcet-proof voting system.

Proof The proof only requires 4 alternatives and 7 voters, among whom only 2
need to be assumed to be manipulators. Let X = {w, x, y, z} and the ballots:

a1 : x � y � z � w, a2 : z � x � y � w, (4)
a3 : x � w � y � z, a4 : y � w � z � x, a5 : z � w � x � y. (5)

We define the ballots of the people by

7ã = a1 + a2 + a3 + 2a4 + 2a5,

which means that 1 out of the 7 voters voted a1, 1 voted a2, and so on.
The weighted tournament of the ballots is depicted in Figure 1, where

weights have to be divided by 7, along with the referendum matrix R(ã).
Let V be a group-Condorcet-proof voting system. We will show that, for

any choice of V (ã) ∈ ∆(X), the ballots ã could have been produced by ma-
nipulators who had incentives to misreport their preferences, even when there



14 Lê Nguyên Hoang

7R(ã) =


0 1 −1 −1
−1 0 3 −3
1 −3 0 1
1 3 −1 0



Table 1 Pairwise comparisons of ballots ã.

was a Condorcet winner for the preferences. This will show that V cannot
exist. To do so, let us denote pv = Pv̂∼V (ã)[v̂ = v] for all v ∈ X.

Now, consider θy : z � w � y � x, and the preferences θ̃y ∈ ∆(O) of the
people defined by

7θ̃y = a1 + a2 + a3 + 2a4 + 2θy.

In other words, we are investigating the case where the two θy voters were
manipulators and voted a5 instead of θy. We have 7Ryx(θ̃y) = 1 > 0, yielding
Mθ̃y

: y � x. Plus, like for Mã, we have Mθ̃y
: y � z and Mθ̃y

: y � w.

Thus, y is Condorcet winner of θ̃y. To make sure that the two θy did not
have incentives to conspire, we must have θy : V (ã) � y. This means that
pw + pz ≤ px.

We then investigate a similar manipulation by θz : x � w � z � y when
the preferences of the people are θ̃z defined by

7θ̃z = a1 + a2 + θz + 2a4 + 2a5.

Similarly to above, we verify that z is the Condorcet winner of θ̃z. Strategy-
proofness then implies that pw + px ≤ py.

Now consider θx : y � x � w � z and θ̃x defined by

7θ̃x = a1 + a2 + a3 + 2θx + 2a5.

Alternative x is the Condorcet winner of θ̃x, implying py ≤ pw + pz.
Before going further, let us find out the implication of the three inequalities

we have seen so far. Using successively the second, third and first inequalities
yields:

pw + px ≤ py ≤ pw + pz ≤ px.
This leads to pw ≤ 0, and, since probabilities are non-negative, pw = 0. It then
follows that px = py = pz = 1/3. This determines uniquely the lottery that
V (ã) must be to guarantee individual Condorcet-proofness. Interestingly, this
is precisely the lottery prescribed by the RCVS.

However, we can show that this lottery is not compatible with group-
Condorcet-proofness. Indeed, consider θ1w : x � y � w � z and θ2w : z � x �
w � y and θ̃w defined by

7θ̃w = θ1w + θ2w + a3 + 2a4 + 2a5.
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Now, w is the Condorcet winner of θ̃w. But since we have 2/3 = px + py >
pz = 1/3 and 2/3 = px + pz > py = 1/3, both manipulators θ1w and θ2w had
incentives to conspire. Thus V is not group-Condorcet-proof, which proves the
theorem. ut

4.1 Median Voter

In practice, many social choice settings yield a natural one-dimensional struc-
ture, e.g. in politics. This means that alternatives can be located on a one-
dimensional line, and that the preferences of voters are somehow consistent
with the way alternatives are located on the line. The one-dimensionality of
alternatives can be represented by a total order relation on X, where x < y
means that x is ”on the left” of y. However, in the literature, we find two dis-
tinct definitions of the consistency of preferences with respect to the left-right
structure of alternatives.

Definition 5 The set OSP of single-peaked preferences is the set of prefer-
ences θ such that, denoting x∗(θ) the favorite alternative of θ, we have

(y < x < x∗(θ) or x∗(θ) < x < y) =⇒ θ : x � y,

for any two alternatives x and y.
A set OSC of preferences is single-crossing if there is an order relation ”<”

on OSC such that, whenever x1 < x2 and θ1 < θ2, we have(
θ1 : x2 � x1 ⇒ θ2 : x2 � x1

)
and

(
θ2 : x1 � x2 ⇒ θ1 : x1 � x2

)
.

These two definitions are incompatible, in the sense that there are single-
crossing sets of preferences that do not satisfy single-peakedness, and the set of
single-peaked preferences is not single-crossing. However, under any of these
two assumptions, we can define the concept of a median voter10. The well-
known median voter theorem then holds.

Theorem 5 (Black (1958); Dummett and Farquharson (1961); Roberts
(1977); Rothstein (1990, 1991); Gans and Smart (1996)) If preferences
are single-peaked or single-crossing and yield a median voter, then the median
voter’s favorite alternative is the Condorcet winner.

Note that Black (1958) proved that this allows a majority of the people to
secure the selection of the Condorcet winner. In other words, if the majority
agrees to select the Condorcet winner, no one outside the majority can mod-
ify the outcome. This property is called stability. Dummett and Farquharson
(1961) showed that it still held even if we slightly weaken the single-peakedness

10 In the case of single-peakedness, the median voter is ill-defined, but the favorite alter-
native of the median voter is well-defined, by considering the partial order on voters derived
by the left-right order between their favorite alternatives.
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assumption. However, stability is weaker than strategy-proofness, which re-
quires that no one, within the majority or not, can manipulate the vote to
obtain a better alternative. As pointed out by Penn et al (2011), the apparent
simplicity of the theorem above vanishes as we involve strategy-proofness. In-
deed, Penn et al (2011) proved that a deterministic group-strategy-proof voting
system must be dictatorial even when preferences are assumed single-peaked.

Now, Moulin (1980) did propose a strategy-proof voting system for single-
peaked preferences called the median rule, and Saporiti (2009) did prove the
group-strategy-proofness for single-crossing preferences of a variant of the me-
dian rule. However, to do so, alternatives must officially and unambiguously
be located on the left-right line, and voters must be forbidden from voting bal-
lots that are inconsistent with this left-right line. In fact, the mere concept of
the median voter requires assuming that everyone agrees on how alternatives
range on the left-right line. In many cases, e.g. politics, even when alterna-
tives and preferences mostly have some hidden left-right structure, alternatives
may refuse to be located on this left-right line, and voters may refuse to be
forbidden from casting non-single-crossing or non-single-peaked ballots.

Formally, this would require to define a voting system V : ∆(Θ)→ ∆(X),
even though we believe or know the support of θ̃ to be restricted to OSP or
some OSC . In particular, manipulations may still produce ballots s(θ̃) whose
support is not limited to OSP or some OSC , in which case a decision V (s(θ̃))
still needs to be made.

This subtle difficulty to design strategy-proof voting systems even under
one-dimensional preferences renders methods by Moulin (1980) and Saporiti
(2009) inapplicable in our setting. Meanwhile, we have seen in Example 5 that
the Schulze method fails to be strategy-proof even when preferences are both
single-peaked and single-crossing. This makes the following result all the more
remarkable.

Theorem 6 When the support of the preferences θ̃ is single-peaked or single-
crossing, the RCVS is group Condorcet-proof.

The proof is given in Appendix B.

5 Conclusion

In this paper, we have unveiled some remarkable strategy-proof properties of
the RCVS. Namely, we have proved the RCVS is Condorcet-proof, and that, in
a large class of voting systems, it is the only one to be Condorcet-proof. More-
over, when preferences are one-dimensionsal, it is even group-Condorcet-proof.
We have shown this to be a remarkable property by proving that, in the general
case, there is no group-Condorcet-proof voting system. Given that, in addition,
the RCVS is a natural and easily computable extension of Condorcet’s ideas,
it is tempting to assume that, considering Condorcet’ philosophical take on
social choice theory, his wide use of probability theory in diverse problems, and
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his concern of strategy-proofness, ”he would have endorsed [the RCVS] enthu-
siastically”, as already noted by Felsenthal and Machover (1992). For these
reasons, we end this paper by emphatically advocating its use in practice.
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A Proof of Theorem 3

First, we notice that ∆(O) can be regarded as the simplex of RO, and that the map R :
∆(O) → RX×X can be uniquely extended to a linear map R : RO → RX×X . This linear
map has the two following properties.

Lemma 2 The image of R coincides with the space of skew-symmetric matrices11.

Proof It is straightforward to see that the image of R is included in the space of skew-
symmetric matrices. Reciprocally, to show the equality, we need only show that any element
of the canonical basis of skew-symmetric matrices is in the image of referendum. Such an
element R ∈ RX×X is of the form Rxy = −Ryx = 1 for some two different alternatives
x, y ∈ X, and Rvw = 0 in any other case. Denote v1, . . . , vn the other alternatives. We
define θ̃ ∈ RO by θ̃ = (θ1 + θ2)/2, where

θ1 : x � y � v1 � . . . � vn and θ2 : vn � . . . � v1 � x � y.

We then have Rvw(θ̃) = 0 if (v, w) /∈ {(x, y), (y, x)} and Rxy(θ̃) = −Ryx(θ̃) = 1, which

proves that R = R(θ̃). ut

Lemma 3 R(∆(O)) contains all skew-symmetric matrices of `1-norm at most 2.

11 A skew-symmetric matrix R is a matrix whose transposition RT equals its opposite −R,
i.e. RT = −R

http://images.math.cnrs.fr/La-quete-du-Graal-electoral.html
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Proof In the proof of Lemma 2, we showed that each element of the canonical basis is the
image R(θ̃) of some preferences θ̃ ∈ ∆(O) of the people. Yet, such elements of the canonical
basis are of `1-norm 2. Since R is linear and ∆(O) convex, R(∆(O)) therefore contains
all convex combinations of the elements of the canonical basis of skew-symmetric matrices.
Plus, since, for any two distinct matrices of the canonical basis, the norm of the sum is
the sum of the norms, all skew-symmetric matrices of `1-norm 2 are images by R of some
preferences of ∆(O). Plus, the uniform distribution ũ ∈ ∆(O) on all ballots is trivially in the
kernel of R. A convex combination involving ũ then enables to obtain any skew-symmetric
matrix of `1-norm at most 2. ut

We still need another lemma before proving the theorem.

Lemma 4 Let the preferences θ̃ ∈ ∆(O), the ballots ã ∈ ∆(O) and a subset C ⊂ O of
manipulators. Then, there exists a strategy s ∈ S such that s(θ̃) = ã and Manipulator(s) = C
if and only if Pθ̃[D] ≤ Pã[D] for all subsets D ⊂ O − C. In particular, if X is finite, this

condition amounts to Pθ̃(θ̃ = a) ≤ Pã(ã = a) for all a /∈ C.

Proof First notice that θ̃ could have produced ã with a set C of manipulators if and only
if there exists a strategy s such that Manipulator(s) = C and s(θ̃) = ã. Consider that we
indeed have s(θ̃) = ã, and let us prove the direct implication of the lemma. Let D ⊂ O−C.
Then,

Pã[D] = Eθ̃
[
Ps(θ̃)[D]

]
= Eθ̃

[
Ps(θ̃)[D]

∣∣∣θ̃ ∈ D]Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ D]Pθ̃[O −D].

But since D ∩ C = ∅, for all θ ∈ D, we have θ /∈ C. Thus, s(θ) = struth(θ) = δθ. Thus,
Ps(θ)[D] = 1. Thus, the expression above simplifies to

Pã[D] = Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ D]Pθ̃[O −D].

Therefore, Pã[D] ≥ Pθ̃[D], hence proving the direct implication.

Reciprocally, if Pθ̃[C] = 0, then the inequality Pθ̃[D] ≥ Pã[D] implies θ̃ = ã. Thus,

struth(θ̃) = ã, which proves that θ̃ could have produced ã with the set C of manipulators.
Otherwise, Pθ̃[C] 6= 0. We define s : C → ∆(O) by Ps(θ)[C − {θ}] = 0,

1. ∀E ⊂ C,Ps(θ)[E] = Pã[E]/Pθ̃[C].
2. ∀D ⊂ O − C,Ps(θ)[D] =

(
Pã[D]− Pθ̃[D]

)
/Pθ̃[C].

Assuming Pθ̃[D] ≤ Pã[D] for all supsets D ⊃ O − C, the probabilities we have defined here
are all non-negative. It is straightforward to see that the additivity of the probability is
satisfied. Plus,

Pθ̃[O] = Pθ̃[C] + Pθ̃[O − C) =
Pã[C]
Pθ̃[C]

+
Pã[O − C)− Pθ̃[O − C]

Pθ̃[C]
= 1.

Therefore, s(θ) is a well-defined probability, and s a well-defined strategy of support C. Plus,
for D ⊂ O − C,

Ps(θ̃)[D] = Pθ̃[D] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ ∈ C]Pθ̃[C] + Eθ̃
[
Ps(θ̃)[D]

∣∣∣θ̃ /∈ C ∪ D]Pθ̃[O − C ∪ D]

= Pθ̃[D] +
Pã[D]− Pθ̃[D]

Pθ̃[C]
Pθ̃[C] = Pã[D],

and, similarly for any E ⊂ C, we have

Ps(θ̃)[E] = Eθ̃
[
Ps(θ̃)[E]

∣∣∣θ̃ ∈ C]Pθ̃[C] =
Pã[E]

Pθ̃[C]
Pθ̃[C] = Pã[E].

These two equalities prove that s(θ̃) = ã, which is what we had to prove. ut
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We can now prove Theorem 3.

Proof (Theorem 3) By contradiction, assume that V disagrees with the RCVS C for some
referendum matrix R of `1-norm less than 2. Let us consider ballots a+

vw, a
−
vw ∈ O defined

by

a+
vw : v � w � x1 � . . . � xn and a−vw : xn � . . . � x1 � v � w.

Like in the proof of Lemma 2, the choices of x1, . . . , xn are irrelevant. What matters to us is
the fact that R(a+

vw+a−vw) is a skew-symmetric matrix of the canonical basis. In particular,
the referendum matrix R that the pairwise voting system is based on can be obtained from
the ballots ã defined by

ã =
1

2

∑
v,w:Rvw>0

Rvwa
+
vw +

1

2

∑
v,w:Rvw>0

Rvwa
−
vw + δũ,

where δ = 1− 1
2
||R||1. By assumption on R, we have δ > 0.

Since, by assumption, Rxy 6= 0 for all x 6= y, the ballots ã yields a unique randomized
Condorcet winner. Therefore, the fact that V disagrees with C on R implies that V (ã) is
not the randomized Condorcet winner of ã. In other words, there must be some alternative
x ∈ X that the majority Mã strictly prefers to V(ã). Denoting Z = {z1, . . . , zn} and
Y = {y1, . . . , ym} the sets of alternatives that the majority Mã respectively prefers x to
(Mã : x � z) and prefers to x (Mã : y � x), this means that PV (ã) [Z] > PV (ã) [Y ].
Evidently, by definitions of sets Y and Z, we have Ryx > 0 and Rxz > 0 for all y ∈ Y and
z ∈ Z.

We then define the preference θ ∈ O of manipulators by

θ : z1 � . . . � zn � x � y1 � . . . � ym.

Notice that we have θ : V (ã) � x. We can now define the preferences θ̃ ∈ ∆(O) of the people
by

θ̃ =
1

2

∑
Mã:v�w

(v,w)/∈Y×{x}

Rvw(a+
vw + a−vw) +

1

2

∑
y∈Y

Ryxa
+
yx +

ε+
1

2

∑
y∈Y

Ryx

 θ + (δ − ε)ũ,

with 0 < ε < δ. Importantly, any ballot a ∈ O except θ is more frequent in ã than in θ̃.
Thus, by Lemma 4, manipulators θ can have produced the ballots ã. Moreover, we have:

∀z ∈ Z, Rxz(θ̃) = Rxz+
1

2

∑
y∈Y

Ryx −ε−
1

2

∑
y∈Y

Ryx = Rxz −ε,

∀y ∈ Y, Rxy(θ̃) = −
1

2

∑
y∈Y

Ryx +ε+
1

2

∑
y∈Y

Ryx = +ε.

Recall that Rxz > 0 for all z ∈ Z, hence we can choose ε smaller than all Rxz . By doing
so, we guarantee that Rxz(θ̃) and Rxy(θ̃) are positive for all z ∈ Z and y ∈ Y . Thus, x is

a Condorcet winner for θ̃. Yet, by creating ballots ã, manipulators θ have obtained strictly
better, as we have seen that θ : V (ã) � x. This shows that V is not Condorcet-proof. This
proves that a Condorcet-proof pairwise voting system must agree with the RCVS whenever
||R(θ̃)||1 < 2.

The uniqueness of Condorcet-proof tournament-based voting system is then immediately
derived by considering any skew-symmetric matrix R0, and by dividing each entry by the
`1-norm of the matrix, hence yielding a skew-symmetric matrix R of norm 1 to which the
previous part applies. ut
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B Proof of Theorem 5

We first prove the following lemma about the structure of the set of manipulators when
preferences are one-dimensional.

Lemma 5 When preferences are single-peaked or single-crossing with a unique median
voter, manipulators must either be all strictly on the left or all strictly on the right of the
median voter.

Proof Let V a voting system. Denote x the Condorcet winner of the single-peaked prefer-
ences θ̃ ∈ ∆(O). Denote Z and Y the sets of alternatives that are respectively on the left
and on the right of x. Now, consider a strategy s. We denote s(θ̃) = ã. The strict incentive
to conspire means that

∀θ ∈ Manipulator(s), θ : V (ã) � x.

If preferences are single-peaked or single-crossing and θ ∈ Manipulator(s) is on the right of the
median voter, we know that θ : x � z for all z ∈ Z. Indeed, if preferences are single-peaked,
this is due to θ’s ideal point being on the right of x. And if preferences are single-crossing,
this is because x cannot be switched with a left alternative as we look preferences on the
right of the median voter. Since the median voter ranked x better than any z ∈ Z, all voters
on its right must do so too.

Thus, {z ∈ X | θ : x � z} ⊃ Z, and, as a result, {y ∈ X ‖ θ : y � x} ⊂ Y . Therefore,

0 < Pv∼V (ã) [θ : v � x]− Pv∼V (ã) [θ : v ≺ x] ≤ PV (ã)[Y ]− PV (ã)[Z].

Therefore, we have PV (ã)[Y ] > PV (ã)[Z]. But if θ ∈ Manipulator(s) is on the left of the
median voter, we must have the opposite inequality. Both cases cannot occur simultaneously,
which proves that all manipulators must be on the same side of the left-right spectrum with
regards to the median voter. This proves the lemma. ut

We can now prove Theorem 5. The proof slightly differs depending on the assumption
of one-dimensionality of preferences that is considered. For clarity, we write the proofs of
the two cases in separate blocks.

Proof (Theorem 5 for single-peakedness preferences) Let C denote the randomized Con-
dorcet voting system. We use the same notations x, θ̃, Y, Z, s and ã as in the proof of Lemma
5. Without loss of generality, we can assume that manipulators are all strictly on the right
of the median voter.

Let z ∈ Z. As we have seen in the previous proof, we have θ : x � z for all θ ∈
Manipulator(s). Since manipulators agree with Mθ̃ : x� z for z ∈ Z, according to Lemma 1,
they cannot invert these pairwise comparisons. Therefore, Mã : x� z. Yet, for manipulators
to gain by conspiring, C (ã) must differ from x, which means that there must be some y ∈ Y
such that Mã : y � x. Let y∗ the most leftist alternative that the majority of ballots prefers
to x, i.e.

y∗ = min{y ∈ Y |Mã : y � x},

where the minimum corresponds to the order relation ”<” on alternatives. We denote Y− ,
{y− ∈ Y | x < y− < y∗} and Y+ , Y − Y− = {y+ ∈ Y | y∗ ≤ y+}.

Since x is Condorcet winner of θ̃, we know that Mθ̃ : x� y∗. Thus, manipulators must
have inverted the majority preference of x over y∗. Since, according to Lemma 1, manipu-
lators can only invert arcs they agree with, this means that there must be a manipulator
θ ∈ Manipulator(s) who agrees with Mθ̃ : x� y∗. This manipulator thus thinks θ : x � y∗.
We will show that assuming that he had incentive to conspire leads to a contradiction.

On one hand, by definition of y∗, we have Mã : x� y for all y ∈ Y−, i.e.

Y− ⊂
{
w ∈ X |Mã : x� w

}
and {w ∈ X |Mã : w � x} ⊂ Z ∪ Y+.
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Combining this with the property Mã : C (ã) � x satisfied by the randomized Condorcet
voting system yields

PC(ã)[Y−] ≤ Pw∼C(ã) [Mã : x� w]

≤ Pw∼C(ã) [Mã : w � x]

≤ PC(ã) [Z ∪ Y+] .

On the other hand, strict incentives to conspire for θ imply that

Pw∼C(ã) [θ : w � x] > Pw∼C(ã) [θ : x � w] .

Since θ : x � y∗, we know that the ideal point of θ is necessarily on the left of y∗. As a
result, for y ∈ Y+, we have θ : x � y∗ � y. Therefore,{

w ∈ X | θ : x � w
}
⊃ Z ∪ Y+ and Y− ⊃

{
w ∈ X | θ : w � x

}
,

which leads to PC(ã)[Y−] > PC(ã) [Z ∪ Y+]. This contradicts equation (??), and proves the
theorem for single-peaked preferences. ut

Proof (Theorem 5 for single-crossing preferences) We reuse the same notations x, θ̃, Y, Z, s
and ã as in the proof of Lemma 5. Let θm the median voter. Lemma 5 allows us to assume
without loss of generality that the manipulators are all on the right of θm, i.e. θ > θm for
all θ ∈ Manipulator(s). Then, we have, once again, Mã : x� z for all z ∈ Z.

Let now θ = min Manipulator(s) the most leftist manipulator. Denote Y + and Y −

defined by
Y + = {y ∈ Y | θ : y � x} and Y − = {y ∈ Y | θ : x � y}.

Contrary to the proof for single-peakedness, Y + now corresponds to the alternatives some
manipulators prefer to x, as the sign ” + ” now refers to θ’s preference rather than the
left-right line of alternatives.

Let y+ ∈ Y +. Since for any θ′ ∈ Manipulator(s), we have θ < θ′, single-crossing implies
that θ′ : y+ � x. Therefore, manipulators all disagree with the majority preference Mθ̃ :

x� y+, and hence, by Lemma 5, cannot invert it. Therefore, Mã : x� y+. Since this holds
for all y+ ∈ Y +, we have

Y + ⊂ {w ∈ X |Mã : x� w} and {w ∈ X |Mã : w � x} ⊂ Z ∪ Y −.

Yet, the fundamental property of the RCVS applied to x then implies

PC(ã)[Y
+] ≤ Pw∼C(ã) [Mã : x� w]

≤ Pw∼C(ã) [Mã : w � x]

≤ PC(ã)

[
Z ∪ Y −

]
.

But this contradicts the strict incentives for θ to conspire, i.e. PC(ã)[Y
+] > PC(ã)

[
Z ∪ Y −

]
.

Thus, we reach the same conclusion for single-crossing preferences as we did for single-peaked
ones. ut
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