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Abstract
We introduce amodel of judgment aggregation in which individuals do not necessarily
have full information regarding the judgments held by their peers. This intuitively
limits an individual’s ability to strategically manipulate the aggregation process. Our
results confirm this basic intuition. Specifically, we show that known impossibility
results concerning the existence of reasonable strategyproof judgment aggregation
rules break down once we abandon the classical assumption of full information. For
instance, the simple plurality rule is strategyproof in case individuals do not have
any information about their peers, while the well-known premise-based rule can be
rendered strategyproof by withholding only a negligible amount of information.

1 Introduction

The framework of logic-based judgment aggregation introduced by List and Pettit
(2002) provides a rich environment in which to study collective decision making. It
has been founduseful by researchers inLegalTheory, Philosophy,Logic,Mathematics,
Economics, Political Science, Computer Science, andArtificial Intelligence (alike see,
e.g. List and Puppe 2009; List 2012; Grossi and Pigozzi 2014; Endriss 2016). While
there now is a substantial and significant body of literature on a variety of topics in
judgment aggregation, the analysis of the incentives of individuals tomisrepresent their
own judgments has only received limited attention to date. One aspect in particular so
far has been ignored entirely, namely the fact that in practice an individual considering
to manipulate the outcome of a judgment aggregation rule typically will not have full
information regarding the judgments to be submitted by her peers, which intuitively
constrains her own ability to manipulate successfully. To address this shortcoming,
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in this paper, we propose a model of strategic manipulation in judgment aggregation
under partial information.
Example. To illustrate the basic idea, we begin with an example, inspired by Bovens
and Rabinowicz (2006). Suppose a committee of five professors—Alice, Bob, Carol,
Deniz, and Enrique—has to decide whether one of their junior colleagues should
receive tenure. Regulations stipulate that the candidate needs to be found to perform at
an excellent levelwith regards to research, teaching, and service to the profession. They
also stipulate that on each of these issues the committee should decide by majority,
and tenure should be granted if and only if there is a majority for each of the three
issues. The private views of the committee members are shown in the following table:

Committee Research? Teaching? Service? Tenure?

Alice Yes No Yes No
Bob Yes Yes Yes Yes
Carol Yes Yes Yes Yes
Deniz No No No No
Enrique No Yes Yes No

Let us refer to the issues of excellence in research, teaching, and service as the
premises and to the issue of whether tenure will be granted as the conclusion. Thus,
the committee is using the well-known premise-based rule (Pettit 2001; Dietrich and
Mongin 2010). If all committee members provide truthful judgments, then tenure will
be granted, as there will be a majority on each of the three premises.

Now consider Alice, who would not be entirely happy with this outcome. If she—
somehow—knows the others will vote as shown in the table, then she can lie and claim
that she believes the candidate’s performance on research to be insufficient. In that
case, the majority decision on research would come out negative and tenure would
not be granted. Thus, given full information and assuming Alice only cares about the
conclusion, she has an incentive to manipulate. In fact, this does not change if she has
less information. Even if she has no information at all about the expected judgments
of her colleagues, she could simply vote “No” on all three premises, which would be a
safe strategy that would avoid the candidate getting tenure whenever Alice’s judgment
is pivotal on any of the premises she truthfully accepts, and it would simply not change
the outcome on the conclusion in all other cases.

But for the actual scenario above, a lie by Alice on the candidate’s performance
regarding service would be an ineffective lie, as the majority in favour is too strong
to begin with. Now suppose Alice cares not only about the conclusion: the outcome
on the conclusion is what is most important to her but, all else being equal, she would
rather have the collective judgment on the premises recorded in the official minutes of
the meeting to be as close as possible to her own truthful judgments. Thus, if it does
not affect the conclusion, she would not want to lie about a given premise. Hence, if
Alice does not have full information and is unsure whether she is pivotal on the issues
of research and service, then she cannot safely manipulate.
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Strategyproof judgment aggregation under partial information 417

Related work The idea of modelling strategic individuals who may manipulate by
misrepresenting their truthful judgmentswas introduced into the judgment aggregation
literature by Dietrich and List (2007c).1 Adopting an axiomatic perspective, Dietrich
andList characterise the family of all strategyproof judgment aggregation rules, i.e., all
rules that are immune to strategic manipulation, but also show that all rules that have
certain desirable properties must be manipulable. These—largely negative—results
presuppose full information on the part of any potential manipulator.

In search for more positive news, one route to take is to impose domain restrictions,
i.e., to limit the range of judgments that a group can submit. For example, if the
group’s judgments are always unidimensionally aligned,2 then the majority rule—
which is known to be strategyproof (Dietrich and List 2007c)—does not suffer from
the familiar problem of sometimes returning inconsistent outcomes (List 2003). A
second approach is to look for aggregation rules for which strategic manipulation
may be mathematically (hence theoretically) possible, but computationally (hence
practically) intractable. Such computational barriers against strategic manipulation
in judgment aggregationwere first considered byEndriss et al. (2012). For example, the
problem of deciding whether the premise-based rule can be manipulated successfully
in a given profile is NP-complete. Further results of this kind have been obtained by
Baumeister et al. (2015) and de Haan (2017).

But arguably the most natural approach towards containing strategic manipula-
tion, namely informational barriers against manipulation, so far has been neglected in
research on judgment aggregation. The situation is somewhat different in other areas
of social choice theory. While voting and preference aggregation suffer from similarly
negative results in the general case—starting with the seminal Gibbard-Sattherwhate
Theorem (Gibbard 1973; Satterthwaite 1975)—and while domain restrictions (Gaert-
ner 2001) and computational barriers to manipulation (Conitzer andWalsh 2016) have
been investigated extensively in this domain as well, in the context of voting there also
have been several attempts at capturing the notion the partiality of the information
available to a manipulator in an election.

For instance, Osborne and Rubinstein (2003) propose a model under which every
voter knows the preferences of a small sample of the electorate and believes that this
sample is representative. Chopra et al. (2004) work with a directed graph, called the
knowledge graph, where voter i is taken to know the preferences of voter j if there
is an edge from node i to node j in the graph. Conitzer et al. (2011) investigate a
more general setting, where the set of possible preference profiles Wi that a voter i
deems possible is given explicitly. This model is developed further by Reijngoud and

1 Somewhat further removed from the concerns of this paper, other authors have investigated other forms
of strategic behaviour in judgment aggregation, notably group manipulation (Botan et al. 2016), bribery
(Baumeister et al. 2015), and agenda setting (Dietrich 2016).Moreover, in the context of epistemic judgment
aggregation, i.e., when a ground truth can be assumed to exist about the issues under consideration, the
strategic behaviour of partially informed individuals has been investigated by Bozbay et al. (2014). For a
broader perspective, we refer to the recent survey by Baumeister et al. (2017), which specifically emphasises
algorithmic considerations.
2 The judgments submitted by a group are said to be unidimensionally aligned, if the members of that
group can be lined up from left to right, such that, for every issue upon which judgments are expressed,
all the individuals that have the same opinion are either all on the left or all on the right side of those that
disagree with them (List 2003).
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Endriss (2012), who assume that the information available to each voter is induced by
some opinion poll. This model, also employed by Endriss et al. (2016), is the closest
to the one we are going to develop in this paper. Finally, in a related model explored
by Meir et al. (2014), each voter is taken to consider possible the set of preference
profiles in some neighbourhood of the true profile. Most of these authors, like us in
this paper, assume that individuals are extremely risk-averse, in the sense that they will
only consider manipulating if, given the information available to them, they consider
it certain that the outcome will not be worse than if they vote truthfully and they
consider it possible that the outcome will be strictly better.

Our contribution In this paper, we introduce a model of strategic manipulation in
judgment aggregation under partial information and show that some—but not all—
known negative results concerning the existence of reasonable strategyproof judgment
aggregation rules break down once we abandon the classical assumption of full infor-
mation. Concretely, the simple plurality rule, which selects the overall judgment
chosen by the largest number of individuals and which fails to be strategyproof under
full information (Dietrich and List 2007c)—is immune to strategic manipulation if
individuals do not have any information about the judgments of others at all. While
assuming zero information is a strong assumption, another result shows that we can
always find an aggregation rule that fails to be strategyproof under full information
but is strategyproof under partial (but nonzero) information.

Our results regarding one of the most important judgment aggregation rules used in
practice, the premise-based rule, heavily depend on the assumptions we wish to make
regarding the preferences of the individuals, which—together with the information
they have access to and the aggregation rule in use—determine their incentives to
manipulate. Specifically, we distinguish whether individuals only care about certain
issues or whether they care about different issues to different degrees. Our results show
that (i) when individuals care much more about conclusions than premises, then the
premise-based rule can be rendered strategyproof by withholding only a negligible
amount of information and that (ii) when individuals care equally about all issues,
then the premise-based rule is strategyproof under both full and partial information.
These results provide an interesting contrast with a result due to Dietrich and List
(2007c), which shows that when individuals care only about the conclusion, then the
premise-based rule fails to be strategyproof (this also is true under both full and partial
information).

Paper overview The remainder of this paper is organised as follows. In Sect. 2, we
summarise some of the fundamentals of judgment aggregation and fix our notation. In
Sect. 3, we first recall relevant definitions and results due to Dietrich and List (2007c)
and then introduce our model of strategic manipulation under partial information. Sev-
eral results highlighting the differences between full and partial information are given
in Sect. 4, while Sect. 5 focuses on results regarding the premise-based rule.3 Section 6
concludes. Proofs of all technical results have been relegated to the “Appendix”.

3 Further results pertaining to ourmodel may be found in theMaster’s thesis of the first author (Terzopoulou
2017).
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2 The framework of judgment aggregation

In this section, we recall the standard model of judgment aggregation (List and Puppe
2009; List 2012; Grossi and Pigozzi 2014; Endriss 2016), originally introduced by
List and Pettit (2002).

Consider a finite set of individuals N = {1, 2, . . . , n}, with n ≥ 2, that consti-
tute a group whose judgments are to be aggregated into one collective decision. The
judgments of the individuals are represented as formulas in classical propositional
logic.4

2.1 Agendas

The domain of decision making is an agenda, a nonempty set of formulas of the form
Φ = Φ+ ∪ {¬ϕ : ϕ ∈ Φ+}, where the pre-agenda Φ+ consists of non-negated
formulas only.

Several restrictions can be imposed on the structure of an agenda, in order to better
capture the essence of specific aggregation situations.5 For instance, a conjunctive
agenda Φ consists of a set of premises Φ p and a single conclusion (together with its
negation). The latter is understood to be satisfied if and only if all premises are (Dietrich
andList 2007c). The example given in the introductionuses an instanceof a conjunctive
agenda, as domany examples discussed in the literature (see, e.g., List and Pettit 2002;
Hartmann and Sprenger 2012). Formally, the pre-agenda of a conjunctive agenda is
of the form Φ+ = {p1, . . . , pk, c}, with the p j being propositional variables and
c = (p1∧· · ·∧pk).Analogously, in adisjunctive agenda the conclusion is equivalent to
the disjunction of all the (non-negated) premises. Conjunctive and disjunctive agendas
appear in situations in which a final decision has to be made on a conclusion, but the
reasons that lead to that choice, described by the premises, are also important.

Amore general class of agendas,which includes conjunctive and disjunctive ones, is
that of the path-connected agendas (Dietrich and List 2007a), related to the concept of
total-blockedness (Nehring and Puppe 2007). An agenda is path-connected if any two
of its formulas are logically connected with each other, either directly or indirectly, via
a sequence of conditional logical entailments. Formula ϕ conditionally entails formula
ψ if {ϕ,¬ψ} ∪ Ψ is logically inconsistent for some Ψ ⊆ Φ logically consistent with
ϕ and with ¬ψ . The agenda Φ is path-connected if for all propositions ϕ,ψ ∈ Φ

that are neither tautologies nor contradictions, there is a sequence of propositions
ϕ1, ϕ2, . . . , ϕk ∈ Φ with ϕ = ϕ1 and ψ = ϕk such that ϕi−1 conditionally entails ϕi ,
for every i ∈ {2, . . . k}. Many standard and interesting agendas are path-connected,
but note that conjunctive agendas and disjunctive agendas are not path-connected: in
a conjunctive agenda there are no conditional entailments from non-negated towards
negated formulas.

4 An extended model of judgment aggregation which captures propositions expressed in richer logical
languages, such as predicate logic, modal logic, and multivalued or fuzzy logic has been developed by
Dietrich (2007).
5 Another reason to focus on agendas with certain properties is to ensure good behaviour of aggregation
rules, particularly the logical consistency of the collective outcome (see, e.g., Nehring and Puppe 2007;
Dietrich and List 2007a; Endriss et al. 2012).
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2.2 Aggregating individual judgments

Each individual i has a judgment set Ji ⊆ Φ, the set of formulas she accepts. We
assume that all individual judgment sets are consistent, i.e., logically consistent sets
of formulas, and complete, i.e., ϕ ∈ Ji or ¬ϕ ∈ Ji for every ϕ ∈ Φ+.6 The set
of all consistent and complete subsets of the agenda is denoted as J (Φ). A profile
J = (J1, . . . , Jn) ∈ J (Φ)n is a vector of all the individual judgment sets, and J−i

stands for the partial profile of judgments of the whole group besides individual i . We
denote with N J

ϕ the set {i : ϕ ∈ Ji } of individuals who accept formula ϕ in profile J .
We write J for the complement Φ\J of any given judgment set J ⊆ Φ. Furthermore,
we say that the judgment set J agrees with the judgment set J ′ on formula ϕ whenever
ϕ ∈ J ∩ J ′ or ϕ ∈ J ∩ J ′, and that J disagrees with J ′ otherwise.

There are various methods to aggregate the judgments of a group, which lead to
different collective outcomes. An aggregation rule F is a function that maps every
profile of judgments J ∈ J (Φ)n to a nonempty set of nonempty collective judgments,
i.e., to a nonempty subset of 2Φ\∅, where 2Φ is the powerset ofΦ. Thus, theremay be a
tie between several “best” judgment sets and these judgment sets need not be consistent
or complete. When F(J) is always a singleton, that is, when F : J (Φ)n → 2Φ\∅,
the rule F is called resolute. In practice, the aim of an aggregation rule is to provide us
with an answer about what the collective decision of the individuals is, or should be.
Hence, resoluteness is essential, andwe can guarantee it by considering a lexicographic
tie-breaking rule to resolve the ties between the suggested collective opinions.7

2.3 Specific aggregation rules

A straightforward judgment aggregation rule is the majority rule, which accepts a
formula in the agenda if and only if at least half of the individuals accept it. The quota
rules generalise this idea. According to them, a formula ϕ is part of the collective
decision if and only if at least a certain proportion of the individuals (meeting the
relevant quota qϕ ∈ [0, n + 1]) agrees with accepting ϕ. Formally, the quota rule Fq

is such that, for any profile J :

ϕ ∈ Fq(J) if and only if
∣
∣
∣N J

ϕ

∣
∣
∣ ≥ qϕ.

Unfortunately, when a quota rule is used, the collective outcome may end up being
logically inconsistent. This is the case, for instance, for the example given in the intro-

6 For a discussion of the relaxation of the completeness assumption, we refer to the work of Gärdenfors
(2006), Dietrich and List (2008), and Terzopoulou et al. (2018).
7 An alternative technique of breaking ties could exploit random tie-breaking. However,we restrict attention
to lexicographic tie-breaking orders. One reason is that breaking ties with the help of a fixed linear order
satisfies the independence of irrelevant alternatives principle (Ray 1973). The independence of irrelevant
alternatives principle, also known as Sen’s property α (Sen 1969, 1970), states that if an alternative J is
chosen from a set S, and J is also an element of a subset S′ of S, then J must be chosen from S′. That is,
eliminating some of the unchosen alternatives should not affect the selection of J . We find this condition
normatively desirable as far as the tie-breaking rule is concerned.
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duction (when the individuals are asked to provide judgments on research, teaching,
service, and tenure), if the quota rule Fq with, say, qϕ = 3 for all ϕ is applied.

The most popular way to resolve this problem is to use the premise-based rule Fpr

(Pettit 2001; Chapman 2002; Dietrich and List 2007b; Dietrich and Mongin 2010;
Hartmann and Sprenger 2012), which we define here with regard to conjunctive agen-
das only. First, a collective decision is made on the premises with respect to the (strict)
majority rule. Concretely, for all pi ∈ Φ p ∩ Φ+, pi ∈ Fpr(J) if |N J

p | > n
2 , and¬p ∈ Fpr(J) otherwise. Then, the conclusion is accepted by the group if and only if

all the premises are: c ∈ Fpr(J) if p ∈ Fpr(J) for all p ∈ Φ p∩Φ+, and¬c ∈ Fpr(J)

otherwise. Since c = (p1 ∧ · · · ∧ pk), a consistent outcome is then guaranteed. The
definition for disjunctive agendas is analogous.

The premise-based rule applied to conjunctive agendas has received noticeable
attention by economists and philosophers, especially because of its significance in
the domains of politics and law (Pettit 2001; Chapman 2002). A famous argument
in favour of the premise-based way of aggregating individual judgments relates to
deliberative democracy (Elster 1998), supporting the view that collective decisions on
conclusions should be determined by the group’s opinions on the premises.

Next, we turn to a family of aggregation rules that most will find objectionable, the
dictatorships. Living up to its name, a dictatorship is connected to a single individual,
the dictator, whose judgment is taken to be the collective judgment independently of
the input profile. So, F is a dictatorship if and only if there exists an individual i ∈ N
such that F(J) = {Ji }, for every profile J = (J1, . . . , Jn).

Observe that the quota rules, the premise-based rule, and the dictatorships are all
resolute by construction.

A dictatorship vacuously guarantees that the collective judgment will satisfy all
the nice properties of individual judgments, like completeness and consistency. Fortu-
nately, there are several other aggregation rules that also exhibit this advantage. Such
an aggregation rule, directly inspired by voting theory (see, e.g., Zwicker 2016), is the
plurality rule. The plurality rule Fp� considers the aggregated outcome to be the judg-
ment set(s) submitted by the largest number of individuals, i.e., for J = (J1, . . . , Jn)
we get:

Fp�(J) = argmax
J⊆Φ

|{i ∈ N : J = Ji }|.

The plurality rule presents certain theoretical limitations. For instance, it does not
capture the internal logical structure of the judgment sets. Moreover, in settings with
few individuals but many alternative judgments, it is very probable that several judg-
ment sets receive the same amount of support, only by one individual, and hence
the tie-breaking rule plays an overly important role in deciding the final outcome.
Nonetheless, the plurality rule is of course widely used in political elections. Further-
more, in a different context motivated by applications to crowdsourcing, Caragiannis
et al. (2014) show that an aggregation rule that they call modal ranking, and that is
equivalent to the plurality rule (for judgment sets corresponding to rankings), is the
unique one satisfying certain desirable truth-tracking properties. Later on we will see
that the plurality rule also plays an important role in strategyproof judgment aggrega-
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tion, since it turns out to be immune to strategic manipulation for partially informed
individuals.

Finally, another rule that—like the dictatorships and the plurality rule—always
selects from the judgment sets submitted by the individuals is the average-voter rule
(Endriss and Grandi 2014). The average-voter rule Fav takes into account a notion of
distance between judgment sets and specifies thewinners to be the individual judgment
sets that minimise the average distance to the elements of the profile submitted by the
group. Specifically, theHamming-distance of two judgment sets J , J ′ ∈ 2Φ is defined
as the number of formulas in Φ on which they disagree:

H(J , J ′) = |Φ| − |J ∩ J ′| − |J ∩ J ′|.

The Hamming-distance H(J, J ) of the profile J = (J1, . . . , Jn) and the judgment
set J is the sum of the Hamming distances of all judgment sets in J and J . That is,
H(J, J ) = ∑

i∈N H(Ji , J ). Then, given the profile J ,

Fav(J) = argmin
Ji∈{J1,...,Jn}

H(J, Ji ).

2.4 Properties of aggregation rules

Under a descriptive perspective, axioms provide a structured way of looking into
aggregation rules, by helping us to compare them and better understand them. Under
a normative perspective, axioms can guide the design of aggregation rules, as they
directly reflect the properties we wish our rules to satisfy. Here, we refer to axiomatic
characteristics of resolute rules only.

We are going to make use of the following axioms, all of which have been widely
discussed in the literature (see, e.g., Grossi and Pigozzi 2014):

– We call an aggregation rule F responsive if it gives a chance to every proposition
to be accepted by the group. Formally, F is responsive if, for every formula ϕ that
is not a tautology nor a contradiction, there exist a profile J such that ϕ ∈ F(J)

and another profile J ′ such that ϕ /∈ F(J ′).8
– Monotonicity prescribes that extra support for a formula ϕ ∈ Φ can never be
damaging. Formally, F is monotonic if ϕ ∈ J ′

i \Ji entails that ϕ ∈ F(Ji , J−i ) ⇒
ϕ ∈ F(J ′

i , J−i ), for all (Ji , J−i ) ∈ J (Φ)n and J ′
i ∈ J (Φ).

– A more controversial property is independence, according to which each for-
mula ϕ in Φ is to be treated separately by the aggregation rule F . Formally,
F is independent if for all profiles J, J ′, it is the case that N J

ϕ = N J ′
ϕ implies

ϕ ∈ F(J) ⇔ ϕ ∈ F(J ′). It is easy to see that, for instance, the plurality rule and
the premise-based rule are not independent.

Besides enforcing axioms such as these, we can also constrain the manner in which
a rule can operate by imposing conditions on the outcomes it is expected to return. In
particular, an aggregation rule F is said to be complete (similarly consistent) if F(J)

is complete (consistent) for every J ∈ J (Φ)n .

8 An alternative name of the responsiveness axiom in the literature is nonimposition.
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3 Strategic manipulation

Let us interpret a given aggregation problem as a strategic situation, where individuals
prefer certain collective decisions more than others. In this section, we introduce a
model for representing such situations that emphasises the information available to
each of the individuals. We start by modelling individual preferences.

3.1 Preferences

We assume that every individual i comes equipped with a preference relation �i ,
defined over all the possible collective judgment sets J ∈ 2Φ . By writing J �i J ′,
we mean that individual i wants the collective decision to be judgment J at least as
much as she wants it to be judgment J ′. Considering all judgment sets J , J ′, J ′′ ∈ 2Φ ,
we take the relation �i to be reflexive (J �i J ), transitive (J �i J ′ and J ′ �i J ′′
implies J �i J ′′), and complete (either J �i J ′ or J ′ �i J ). Thus, we assume that
individuals rank all pairs of possible outcomes relative to each other; no two outcomes
are going to be incomparable.9 Finally, we write J ∼i J ′ if J �i J ′ and J ′ �i J , and
we denote by J �i J ′ the strict component of J �i J ′, i.e., the case where J �i J ′,
but not J ′ �i J .

The type of preferences that the individuals hold will play a crucial role in our
analysis. So, let us reflect on some further assumptions that we can make about them.
For example, in many aggregation contexts it is natural to suppose that the preferences
of an individual depend on the truthful judgment set that this individual holds. Recall,
for instance, the example presented in the introduction. In such a situation, it would
be reasonable to assume that each individual would like the final collective decision to
match her own judgment. Hence, following Dietrich and List (2007c), we restrict our
study to cases where individual judgments and preferences over collective outcomes
are expected to be related.A full identification of scenarios that satisfy our assumptions
is an empirical problem, which certainly deserves further investigation.

A preference relation �i respects closeness to Ji if, for any two judgment sets J
and J ′, J �i J ′ whenever J ∩ Ji ⊇ J ′ ∩ Ji . For each judgment set Ji , let C(Ji ) be
the set of all preference relations �i that respect closeness to Ji . Then, C = {C(Ji ) :
Ji ∈ J (Φ)} is the class of closeness-respecting preferences. Roughly, individuals
with closeness-respecting preferences rank higher the collective judgments that agree
with their individual ones.

9 The requirement of completeness of preferences has triggered lot of discussion (e.g., Jeffrey 1983), and
one of the main arguments against it is directly reflected in the judgment aggregation framework. The
possible collective outcomes will usually be exponentially as many as the formulas in the agenda, and
the individuals have to be able to compare all of them. Nonetheless, one justification of the completeness
constraint is based on our interpretation of the individuals’ preferences over the collective decisions. For
example, we may think of preferences expressing “conceivable” acts and not “actual” ones, in the sense that
they represent the choice dispositions of the individuals (Sen 1973; Gilboa 2009). From this perspective,
completeness does not imply that the individuals should be able to rank a large number of options prior to
making a decision about them; instead, it may mean that they possess an intrapersonal method to rank the
different judgment sets when these judgments are presented in pairs, which induces a complete ordering.
An instance of a plausible such method is defined later in this paper, and is constructed via the Hamming-
distance.
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3.2 Full information

Along the lines of Dietrich and List (2007c), we now develop a definition of strate-
gyproofness of an aggregation rule, relative to a given class of preferences (such as
the class of all closeness-respecting preferences). However, unlike these authors, we
do not distinguish between being able to affect the outcome of an aggregation rule
and the incentive of doing so, but only model strategic behaviour. Like Dietrich and
List, we initially assume that every individual has full information about the profile of
judgments.

When does an individual have an incentive to submit a dishonest judgment in
an aggregation problem, under the assumption that she is fully informed about the
judgments of her peers? This is the question we focus on next.

Definition 1 Consider a profile of judgments J = (J1, . . . , Jn) and an aggregation
rule F . Individual i ∈ N with preferences �i has an incentive to manipulate in profile
J if there exists a judgment set J ∗

i ∈ J (Φ) such that F(J ∗
i , J−i ) �i F(Ji , J−i ).

In words, if by submitting an untruthful judgment set an individual can change the
outcome into a judgment set she strictly prefers, then she has an incentive tomanipulate
in this manner.

Consider a functionPR that assigns to each individual i and judgment set Ji ∈ J (Φ)

a non-empty set PR(Ji ) of reflexive, transitive and complete preference relations �i .
Then, by a slight abuse of notation, we also denote with PR the class of preferences
constructible by that function, i.e., PR = {PR(Ji ) : Ji ∈ J (Φ)} (an example of such
a class is the class of closeness-respecting preferences).

Definition 2 The aggregation rule F is manipulable for the class of preferences PR
if there exist a profile J ∈ J (Φ)n and an individual i ∈ N holding preferences
�i ∈ PR(Ji ) such that i has an incentive to manipulate in J .

Next, the notion of strategyproofness of an aggregation rule captures the absence
of all incentives for manipulation.10

Definition 3 The aggregation rule F is strategyproof for the class of preferences PR
if, for all individuals i ∈ N , all profiles J = (J1, . . . , Jn) ∈ J (Φ)n , all preference
relations�i ∈ PR(Ji ), and all judgment sets J ∗

i ∈ J (Φ), F(Ji , J−i ) �i F(J ∗
i , J−i ).

Thus the rule F is strategyproof for the class of preferences PR if and only if F is
not manipulable for PR. This holds only because preference relations are taken to be
complete. We will also refer to strategyproofness as immunity to manipulation and to
manipulability as susceptibility to manipulation.

Definition 3 implies that the individuals have a noticeable truth-bias. That is, in case
where they equally like the outcomes obtained by the truthful and possible untruthful

10 Note that in the original terminology of Dietrich and List (2007c), manipulability—as opposed to
strategyproofness—is a preference-less concept (i.e., it only depends on the individuals’ truthful judgments
and not on their possible preferences). In this paper though, we use this term with respect to a definition
of preferences. More details on the preference-less notion of manipulability can be found in the proof of
Theorem 1 in the “Appendix”.
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judgments, they will choose to be honest. Said differently, they will only lie if by
doing so they can obtain a strictly better outcome. Obraztsova et al. (2013) justify
this assumption by remarking that strategising can be costly for the individuals, for
example in time and cognitive effort, so they would remain truthful when they cannot
unilaterally affect the outcome (so when they have nothing to gain). Nevertheless, they
will still try to manipulate if they can obtain a preferable result, assuming that their
reward then will exceed the cost of strategising.

Dietrich and List (2007c) axiomatised the strategyproof aggregation rules, consid-
ering groups of individuals with closeness-respecting preferences that are reflexive
and transitive. They proved that the strategyproof aggregation rules are exactly those
that are both independent and monotonic. Next, we establish that this characterisation
result remains valid for individuals whose preferences are furthermore complete.

Theorem 1 An aggregation rule F is strategyproof for all closeness-respecting pref-
erences that are reflexive, transitive and complete if and only if F is both independent
and monotonic.

As an immediate consequence of the result of Dietrich and List, we have that every
independent and monotonic aggregation rule must be strategyproof for every subset
of the class of all closeness-respecting preferences that are reflexive and transitive
(and the class of all closeness-respecting preferences that are reflexive, transitive and
complete obviously is such a subset). The interest in the above result thus lies in the
fact that the converse is also true.

Hence, strategyproof rules exist, but they belong to a fairly narrow family of rules.
The problem with rules that are independent is that they typically are not consistent
and thus of limited interest in practice. For the large class of path-connected agen-
das, Dietrich and List (2007c) went one step further and showed that there exist no
reasonable rules that are strategyproof:

Theorem 2 (Dietrich and List 2007c) For a path-connected agendaΦ, an aggregation
rule F is complete, consistent, responsive and strategyproof for the class of (reflexive
and transitive) closeness-respecting preferences if and only if F is a dictatorship.

3.3 Partial information

Assuming that individuals in every situation know everything about the judgments
of their peers is clearly rather stringent, particularly when we consider large groups
of individuals or agendas with confidential issues. In practice, the information the
individuals hold in an aggregation problem may be of different types. For example, a
given individualmayhave the information of howmany others hold a specific judgment
set J , but she may not necessarily know which individuals do (which is common in
election polls), or she may know everyone’s judgment on formula ϕ, but not onψ , and
so forth. Moreover, in a different setting where individuals are connected via a social
network, an individual may know the judgments of some of the others (her neighbours
in the network), but she may be completely uncertain about the rest.

We call I the set of all possible pieces of information regarding a profile of judg-
ment sets an individual could possibly be informed about, before the final reporting
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of judgments. Following Reijngoud and Endriss (2012), who introduce a similar
concept in the context of voting, we define a judgment information function (JIF)
π : N×J (Φ)n → I as a function mapping individuals and profiles of judgment
sets to elements of I. Intuitively, a JIF represents the available information for every
individual, given the profile of judgments of the group. To simplify notation, we write
πi (J) for the information of individual i about profile J . The following are some
natural choices for I and the corresponding JIF π .

– Full The full-JIF returns precisely the input profile for every individual:

πi (J) = J for all i ∈ N and J ∈ J (Φ)n .

– All_but_Y For Y = (Y1, . . . ,Yn), the all_but_Y -JIF returns for each individual i
the judgments of the rest of the group on each formula except for the formulas in
Yi ⊆ Φ:

πi (J) =
(

N J
ϕ

)

ϕ∈Φ\Yi
for all i ∈ N and J ∈ J (Φ)n .

– Besides_I For I = (I1, . . . , In), the besides_I-JIF returns for each individual i
the judgments of the other individuals besides those in Ii ⊆ N\{i}:

πi (J) = (J j ) j∈N\Ii for all i ∈ N and J ∈ J (Φ)n .

– Zero The zero-JIF does not return any information; it just gives us a constant
value:

πi (J) = 0 for all i ∈ N and J ∈ J (Φ)n .

Note that the full-JIF and the zero-JIF are extreme cases both of the all_but_Y -
JIF and of the besides_I-JIF. Full information is captured when Y = (∅, . . . ,∅)

and I = (∅, . . . ,∅), while we get zero information for Y = (Φ, . . . , Φ) and I =
(N\{1}, . . . , N\{n}).

Our framework also allows for the above JIFs to be combined, letting different
individuals have access to different types of information. Now, having the information
expressed by a JIFπ and a profile of judgments J , we define the set of (partial) profiles
that individual i considers possible:

Wπ,J
i = {

J ′−i : πi (Ji , J ′−i ) = πi (J)
}

.

That is,Wπ,J
i contains all the judgments of the rest of the group that are compatible

with individual i’s information. In the special cases where the individuals are fully
informed or completely uninformed, we of course get W full,(Ji ,J−i )

i = {J−i } and

Wzero,(Ji ,J−i )

i = J (Φ)n−1 for all i ∈ N respectively.
Coming back to the tenure-example of the introduction, suppose that Alice (individ-

ual i), before the voting process has talked with the other members of the committee
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about the performance of the candidate regarding research (r) and teaching (t), so
she already knows their relevant judgments on those two criteria. On the other hand,
the service to the profession (s) of the candidate has only been discussed between
Alice, Bob, Carol and Deniz, but not Enrique. Call π the appropriate JIF captur-
ing the situation and suppose that the actual judgments of the five professors are as
depicted in the table of the introduction. Then, the partial profiles that Alice considers
possible only differ on the judgment of Enrique concerning s. Formally, it will be
Wπ,J

i = {J−i , J ′−i }, where J−i = ({r , t, s}, {r , t, s}, {¬r ,¬t,¬s}, {¬r , t, s}) and
J ′−i = ({r , t, s}, {r , t, s}, {¬r ,¬t,¬s}, {¬r , t,¬s}).

Note that we only deal with qualitative beliefs. We assume that the individuals
cannot or do not want to assign any numerical value (probability) to their beliefs
about the possibility of the occurrence of each scenario concerning the judgments
of the group. We observe that Wπ,J

i satisfies the three axioms of reflexivity (REF),
symmetry (SYM), and transitivity (TRA), and hence it forms an equivalence relation.
In other words, for every individual i and judgment set Ji , the JIF π induces a partition
of the set J (Φ)n−1. Clearly, the finest partition corresponds to the full-information
case and the coarsest one to zero information.11 Formally, for all judgment sets Ji and
for all (partial) profiles J−i , J∗−i , J

∗∗−i , the following hold:

(REF) J−i ∈ Wπ,(Ji ,J−i )

i

(SYM) J−i ∈ Wπ,(Ji ,J∗−i )

i implies J∗−i ∈ Wπ,(Ji ,J−i )

i

(TRA) J−i ∈ Wπ,(Ji ,J∗−i )

i and J∗−i ∈ Wπ,(Ji ,J∗∗−i )

i imply J−i ∈ Wπ,(Ji ,J∗∗−i )

i ,

Axiom (REF) expresses that every individual always deems possible the truthful
profile of judgments. Axioms (SYM) and (TRA) together state that whenever an
individual considers some profile possible, then that profile would induce the same
information set as her current one.

We can now refine the standard definitions of strategyproofness, accounting for
individuals with incomplete information.

Definition 4 Consider an aggregation rule F , a JIF π , and a truthful profile J =
(J1, . . . , Jn) ∈ J (Φ)n . Individual i ∈ N with preferences �i has an incentive to
π-manipulate in J if there exists a judgment set J ∗

i ∈ J (Φ) such that

1. F(J ∗
i , J ′−i ) �i F(Ji , J ′−i ), for some J ′−i ∈ Wπ,J

i and,

2. F(J ∗
i , J ′′−i ) �i F(Ji , J ′′−i ), for all other J

′′−i ∈ Wπ,J
i .

This means that an individual has an incentive to manipulate under the (partial)
information provided by the JIF π by reporting an untruthful judgment if there is a
scenario consistent with her information that will result in a more desirable collective
decision for her and there is no scenario where she will be worse off than when
reporting a truthful judgment. That is, we adopt a pessimistic perspective (from the
individual’s standpoint), according to which an individual is willing to lie only if it

11 Chopra et al. (2004), Reijngoud and Endriss (2012), and van Ditmarsch et al. (2013) make analogous
observations in the context of voting.
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is totally safe to do so. Said differently, the individuals are taken to be risk-averse: if
there is at least one possible scenario where lying induces a less desirable result, then
they remain truthful.

If there is a profile J where at least one individual has an incentive to π -manipulate,
then we say that the aggregation rule is π -manipulable:

Definition 5 Consider a JIF π . The aggregation rule F is π -manipulable for the class
of preferences PR if there are a profile J = (Ji , J−i ) ∈ J (Φ)n and an individual i ∈
N holding preferences�i ∈ PR(Ji ) such that i has an incentive to π -manipulate in J .

The aggregation rule F is π -strategyproof for the class of preferences PR if and
only if F is not π -manipulable for PR:12

Definition 6 Consider a JIFπ . The aggregation rule F isπ-strategyproof for the class
of preferencesPR if, for all individuals i ∈ N , all profiles J = (J1, . . . , Jn) ∈ J (Φ)n ,
all preference relations �i ∈ PR(Ji ), and all judgment sets J ∗

i ∈ J (Φ), at least one
of the following conditions holds:

1. F(Ji , J ′−i ) ∼i F(J ∗
i , J ′−i ), for all J

′−i ∈ Wπ,J
i or,

2. F(Ji , J ′′−i ) �i F(J ∗
i , J ′′−i ), for some J ′′−i ∈ Wπ,J

i .

The first condition of Definition 6 brings out a further assumption concerning the
truth-bias of the individuals. Justifying it as in the case of full information, whenever
an individual cannot unilaterally change the outcome, then she chooses to be honest,
so that she does not have to bear the possible cost of strategising without being able
to gain any profit. The second condition of Definition 6 is related to risk-aversion. If
being sincere can induce a preferable collective decision in some scenario, then an
individual will not lie and risk losing that desirable outcome.13

Obviously, when π is the full-JIF, π -strategyproofness (π -manipulation) is equiv-
alent to strategyproofness (manipulation) under full information. We can further
understand the importance of partial information on strategyproofness as follows.
Consider an individual i . If this individual possesses full information about the judg-
ments of the rest of the group, then she will manipulate with no second thought in
case she finds an untruthful judgment that makes her better off. However, finding such
an insincere judgment is not sufficient to make individual i manipulate under partial
information. Then, an extra condition needs to be satisfied: for all possible scenarios,
the untruthful judgment should induce a result at least as good as the one induced by
the individual’s truthful judgment. Loosely speaking, this second condition provides
an additional layer of safety against manipulation for an aggregation rule.

12 In order to obtain Definition 6 as a contrapositive of Definition 5, we once again make use of our
assumption that preference relations are complete.
13 Note that according to Definition 3 of simple strategyproofness, the aggregation rule F is said to be
strategyproof if the first condition of Definition 6 holds, taking π to be the zero-JIF. After making this
observation, one could also give an alternative interpretation to the original Definition 3. That is, it may
be seen as not imposing any requirements on the information that the individuals hold, but instead asking
for truthfulness to be a best response to any possible judgments of the others (namely a dominant-strategy
equilibrium rather than only a Nash equilibrium). For the rest of this paper though we will stick to our first
interpretation of Definition 3, which is associated with full information.
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4 Comparingmanipulation under full and partial information

This section presents the main theoretical results of our model. We proceed with
establishing an essential bridge between the framework of manipulation under full
information and the richer one that incorporates settings of partial information. Sub-
sequently, we demonstrate how partial information can escape the manipulability of
aggregation rules, which haunts the standard model of full information. Throughout
this section we assume that all individuals have complete and closeness-respecting
preferences.

4.1 Connecting full and partial information

Westart with clarifying howknown results about fully informed individuals can extend
to partial information cases.

Let us call a JIF π at least as informative as another JIF σ if for all profiles J and
all individuals i ,Wπ,J

i ⊆ Wσ,J
i .14 For example, the full-JIF is at least as informative

as the all_but_Y -JIF for every Y , which is at least as informative as the zero-JIF.
As one may naturally expect, we can show that, if a less informed individual has
an incentive to manipulate an aggregation rule, then she also has an incentive to
manipulate the same rule when holding more information. Interestingly though, these
incentives do not necessarily coincide. That is, the profile that triggers themanipulation
under less information may be different than the one causing the manipulation under
more information [consult Reijngoud (2011) for the voting-counterpart of this result].

Proposition 3 If a JIF π is at least as informative as another JIF σ , then all aggrega-
tion rules that are σ -manipulable for a class of preferences PR are alsoπ -manipulable
for PR.

Corollary 4 If a JIF π is at least as informative as another JIF σ , then all aggregation
rules that are π -strategyproof for a class of preferences PR are also σ -strategyproof
for PR.

Hence, we have now settled that for any JIF π , all aggregation rules that are full-
strategyproof are also π -strategyproof. Roughly speaking, withholding information
from the individuals can never damage the strategyproofness of an aggregation rule. By
Theorem 1, this implies that for any JIF π , all independent and monotonic aggregation
rules are π -strategyproof for the class of closeness-respecting preferences.

Corollary 5 An aggregation rule F is π -strategyproof for all JIFs π for the class of
closeness-respecting preferences if and only if F is both independent and monotonic.

Specifically, since quota rules are independent and monotonic (Dietrich and List
2007b), they are π -strategyproof for all JIFs π , for the class of closeness-respecting
preferences.

14 Equivalently, π is at least as informative as σ if for all individuals i and judgment sets Ji the partition
on J (Φ)n−1 induced by π is finer than the one induced by σ .
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4.2 Partial informationmakes a difference

Next, we ponder: Is it possible to get qualitatively different results regarding the
manipulability of aggregation rules by introducing the model of partial information?
As we will shortly see, the answer is clearly positive. To begin with, we can guarantee
the existence of a strategyproof aggregation rule for scenarios where the individuals
are missing a reasonable part of the information concerning the judgments of their
peers, even when the same rule is manipulable for fully informed individuals.

Theorem 6 For any agendaΦ, there exist an aggregation rule F and a JIF π different
than the zero-JIF, such that F is π -strategyproof but not full-strategyproof for the class
of closeness-respecting preferences.

Theorem 6 ensures that for any agenda Φ, if we have control over the information
that a group of individuals has access to, then we can suggest the use of an aggregation
rule that no-one will be able to manipulate. Moreover, it is worth stressing that our
result does not require totally ignorant individuals; rather, having only two individuals
that lack information about the judgments of each other already is a sufficient condition
(consult the proof in the “Appendix” for the technical details).

To illustrate, suppose that the members of a political party in Greece need to decide
about whether a new secretary should be hired in their central office. Among the party
members, everyone would of course like to hire their cousin in case the secretary
position is open, but only the party’s top members, the leader and the sub-leader, have
a realistic chance of doing so. However, these two individuals have a known history
of not getting along well (especially when their personal interests are at stake). So, as
the decision-making consultant of the party, we could wisely suggest the use of the
following aggregation rule for the vote: the secretary position will be approved if and
only if exactly one of the two people on the top votes in favour of it (so no fight between
the leader and the sub-leader will create instability in the party in case they both want
the opening) and at least half of the other members also believe it is a good idea to
have the new position (suggesting that it is a reasonable choice to make). Now, if we
could also guarantee that the two top members will not have access to each other’s
judgments about the position before the vote, then we can make sure that no-one who
wants the opening to be approved will have an incentive to lie; for instance, if the
leader attempts to do so, she would immediately risk to have the position rejected
in case the sub-leader does not have a cousin available for hiring at the moment and
thus is opposed to the opening. On the other hand, if the leader is informed that the
sub-leader is planning to vote positively, then she could untruthfully vote negatively
and, after the position is approved, get in the fight about hiring her preferred person.

As a next step, we show that partial information can facilitate strategyproofness
also in case there are specific restrictions regarding the choice of the aggregation
rule. Remarkably, even if additional constraints (formulated as desirable axiomatic
properties) have to be fulfilled by the aggregation rule, immunity to manipulation
can nevertheless be achieved. In particular, Theorem 2, the impossibility theorem of
Dietrich and List (2007c), breaks down.
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Theorem 7 For any agenda Φ and any number of individuals n ≥ 7, the plurality
rule Fp� along with any lexicographic tie-breaking rule is nondictatorial, complete,
consistent, responsive, and immune to zero-manipulation for the class of closeness-
respecting preferences.

Corresponding results have been proved for the plurality rule in voting, albeit under
stronger assumptions regarding the number of individuals (Conitzer et al. 2011; Rei-
jngoud and Endriss 2012). The main insight in the proof of Theorem 7 is that when
the plurality rule is applied, an individual has an incentive to manipulate if and only if
she knows with certainty that her judgment is pivotal to the achievement of a strictly
preferable outcome. When the individual is fully aware of the judgments of her peers,
there are profiles where such an incentive is obvious. However, by restraining the
information that the individual holds, her incentives to manipulate disappear.

But it is important to emphasise that Theorem7 does not trivially rely on the features
of zero information. To convince the reader of this fact, we inspect the average-voter
rule, which satisfies all the demands of Theorem 2 besides strategyproofness, and we
show that zero-information does not solve the problem of manipulability in this case.

Proposition 8 There exist an agenda Φ and a group N for which the average-voter
rule Fav together with a lexicographic tie-breaking order is susceptible to zero-
manipulation for the class of closeness-respecting preferences.

Proposition 8 together with the fact that adding more information can only harm
strategyproofness (Proposition 3) makes it evident that there is no class of JIFs for
which immunity to manipulation is guaranteed for every rule.

Corollary 9 There is no JIF π for which every aggregation rule F is π -strategyproof
for the class of closeness-respecting preferences.

5 The premise-based rule

This section examines an aggregation rule that is popular due to its practical use and
the properties of which have been extensively studied in the literature on judgment
aggregation, namely the premise-based rule (Pettit 2001; Bovens and Rabinowicz
2006; Dietrich and List 2007c; Dietrich and Mongin 2010; Hartmann and Sprenger
2012). We restrict attention to the most relevant agendas for the application of the
premise-based rule, namely the conjunctive agendas. However, all our results hold for
disjunctive agendas too. Throughout our analysis, we are going to keep assuming that
the preferences of the individuals are always complete.

As has become evident in the introduction, the premise-based rule can be manip-
ulated by an individual who wants the conclusion of the conjunctive agenda to be
rejected, but who nevertheless truthfully accepts one premise, say premise p. In case
such an individual knows that her judgment on p is pivotal concerning the collec-
tive decision on the conclusion, i.e., that by untruthfully rejecting p the—previously
accepted—conclusion will be rejected by the group, the individual will prefer to
lie. This observation was formalised by Dietrich and List (2007c), who showed
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that the premise-based rule is full-manipulable for the class of closeness-respecting
preferences. In particular, the result of Dietrich and List hinges on individuals with
preferences that are only interested in the conclusion of the agenda and completely
ignore the collective decision on the premises. Dietrich and List refer to these prefer-
ences as outcome-oriented (we will call them conclusion-oriented instead) and justify
them by assuming that only the conclusion and not the premises carries consequences
that the individuals care about. Concretely, for every judgment set Ji , let O(Ji ) be
the set of preferences �i such that for all judgment sets J , J ′ ∈ 2Φ , J �i J ′
if and only if J ′ agreeing on c with Ji implies that J agrees on c with Ji . Then,
O = {O(Ji ) : Ji ∈ J (Φ)} is the class of conclusion-oriented preferences.

Proposition 10 (Dietrich and List 2007c) For a conjunctive agenda, the premise-
based rule is full-manipulable for the class of conclusion-oriented preferences.

Even though the news concerning the manipulability of the premise-based rule is
negative at first sight, several assumptions associated with it deserve further investi-
gation. These are the questions we shall focus on:

– Is the premise-based rulemanipulable by individualswho have limited information
about the judgments of their peers?

– Do individuals with specific and reasonable types of preferences, different from
the conclusion-oriented ones, still have incentives tomanipulate the premise-based
rule?

Unfortunately, if we address the first question while restricting attention only to
individualswith conclusion-oriented preferences, thenwe continue to obtain a negative
result—even under the assumption that the manipulator does not have access to any
kind of information.

Lemma 11 For any conjunctive agenda, the premise-based rule is zero-manipulable
for the class of conclusion-oriented preferences.

By Proposition 3 and the above lemma, we obtain the following generalisation of
Proposition 10:

Proposition 12 For any conjunctive agenda and for any JIF π , the premise-based rule
is π -manipulable for the class of conclusion-oriented preferences.

So, conclusion-oriented individuals have incentives to manipulate under any kind
of information that they may hold about the judgments of their peers. This provides us
with an extra motivation to study the strategic behaviour of individuals with different
preferences, still reasonable for the scenarios addressed by the premise-based rule.
Dietrich and List (2007c) initiated this discussion by considering individuals with
reason-based preferences, i.e., preferences that aim at maximising the agreement
between the individual’s truthful judgment and the collective decision on the premises
only, disregarding the conclusion. Although the work of Dietrich and List (2007c)
brought to light a positive result regarding the strategyproofness of the premise-based
rule, their assumption of reason-based preferences is rather restrictive. In the sequel,
instead we are going to demonstrate different ways of obtaining strong positive results,
by exploiting our framework of partial information in combination with various kinds
of preferences.
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5.1 Conclusion-prioritising preferences

The class of conclusion-prioritising preferences P refines the class of conclusion-
oriented preferences. Consider a conjunctive agenda Φ, where Φ p is the set of its
premises. The preference relations in P capture the idea that the individuals give
highest priority to the outcomeon the conclusion, and secondarily, they try tomaximise
the agreement on the premises. Formally, for each judgment set Ji , let P(Ji ) be the
set of complete preferences �i such that for all judgment sets J , J ′ ∈ 2Φ , J �i J ′
if and only if (i) J agrees with Ji on c but J ′ disagrees with Ji on c , or (i i) both
J and J ′ agree or disagree with Ji on c and |Φ p ∩ J ∩ Ji | > |Φ p ∩ J ′ ∩ Ji |. Then,
P = {P(Ji ) : Ji ∈ J (Φ)} is the class of conclusion-prioritising preferences.

We can show that the premise-based rule is full-manipulable for conclusion-
prioritising preferences, similarly to conclusion-oriented preferences. However, under
partial information the balance changes. The premise-based rule is immune to
manipulation for conclusion-prioritising preferences, while it is still manipulable for
conclusion-oriented preferences. Furthermore, the amount of information that needs
to be absent in order to achieve strategyproofness is remarkably small. Speaking
informally, for large agendas truthfulness is guaranteed even when the individuals
know almost everything about the judgments of the rest of the group, i.e., when their
uncertainty tends to 0. Before stating our result formally, we define a measure of the
uncertainty related to a JIF π .

Definition 7 The uncertainty of individual i ∈ N induced by JIF π in profile J ∈
J (Φ)n is defined as follows:

U J
i (π) = |Wπ,J

i | − 1

|J (Φ)n−1| − 1
if |J (Φ)| > 1 and U J

i (π) = 0 otherwise.

The uncertainty of a JIF π is the maximal uncertainty it can induce:

U (π) = max
i∈N max

J∈J (Φ)n
U J
i (π).

Thus, the uncertainty that the JIF π induces for an individual on a profile is a
real number between 0 and 1, i.e., 0 ≤ U J

i (π) ≤ 1, where 0 denotes full certainty
and 1 total uncertainty. The more partial profiles are possible for the individuals, the
more uncertainty increases. For example, according to the full-JIF the individuals only
consider possible the truthful partial profile, thus the uncertainty of the full-JIF is 0.
At the other extreme, the uncertainty of the zero-JIF is 1, because according to it the
individuals deem possible all the partial profiles.

Lemma 13 Consider a conjunctive agendaΦ with at least two premises p1, p2 ∈ Φ p.
For Y = {p1, p2,¬p1,¬p2} and Y = (Y , . . . ,Y ), the premise-based rule is immune
to all_but_Y -manipulation for the class of conclusion-prioritising preferences.

Theorem 14 Consider a conjunctive agenda Φ with at least two premises. The
premise-based rule Fpr is susceptible to full-manipulation for the class of conclusion-
prioritising preferences P. However, there is a family of JIFs {π x : x ∈ N} with
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limx→∞ U (π x ) = 0 such that Fpr is immune to πm-manipulation for P, where
m = |Φ|.

Lemma 13 establishes that, even when the preferences of the individuals priori-
tise the conclusion in a conjunctive agenda—but when they do not totally overlook
the premises—strategyproofness of the premise-based rule is guaranteed in combi-
nation with certain modest assumptions on the uncertainty of individuals. This result
is important for at least two reasons. First, it shows that caring about the conclusion
is not necessarily detrimental to the strategyproofness of the premise-based rule, as
the result of Dietrich and List (2007c) seems to imply; and second, it confirms that
aiming for zero information is not the only way of achieving positive results. Then,
Theorem 14 stresses an additional intriguing observation: that determining exactly
how much information causes the manipulability of an aggregation rule can be quite
an intricate challenge. Specifically, it proves that for big agendas, a rule can be sus-
ceptible to manipulation under full information but strategyproof under almost-full
information.

5.2 Hamming-distance preferences

One particular example of commonly used closeness-respecting preferences in the
literature are the Hamming-distance preferences (Dietrich and List 2007c; Endriss
et al. 2012; Baumeister et al. 2015; Botan et al. 2016). These preferences are widely
adopted in settings where the individuals are expected to care equally about all the
formulas in the agenda. For every individual i , theHamming-distance naturally induces
a (reflexive, transitive and complete) preference relation �i on judgment sets. Let
H(Ji ) be the set of preferences �i such that, for all judgment sets J , J ′ ∈ 2Φ it is
the case that J �i J ′ if and only if H(J , Ji ) ≤ H(J ′, Ji ). Then, H = {H(Ji ) : Ji ∈
J (Φ)} is the class of Hamming-distance preferences.

We now show that, if the individuals have Hamming-distance preferences, then
the strategyproofness of the premise-based rule is guaranteed, independently of the
amount of information that the individuals possess.

Lemma 15 For any conjunctive agenda Φ, the premise-based rule is immune to full-
manipulation for the class of Hamming-distance preferences.

By Corollary 4 and the above lemma, we thus obtain:

Theorem 16 For any conjunctive agenda Φ and any JIF π , the premise-based rule is
immune to π -manipulation for the class of Hamming-distance preferences.

Overall, we have underlined the gravity of the assumptions that onemakes about the
preferences of the individuals in an aggregation scenario as far as the manipulability of
aggregation rules is concerned, especially when partial information comes into play.
It now has become explicit that the manipulability of the premise-based rule is based
on a special subset of the closeness-respecting preferences, namely the conclusion-
oriented preferences, and narrowing down our analysis to individuals that completely
overlook the conclusion in the agenda is not the only way to achieve strategyproofness.
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Notably, the non-independent premise-based rule is strategyproof under full informa-
tion for a different subclass of the closeness-respecting preferences, consisting of the
Hamming-distance preferences (Theorem 16).15 Moreover, by adding an extra layer
of uncertainty, the premise-based rule is also strategyproof for a third subclass of
the closeness-respecting preferences, namely the class of the conclusion-prioritising
preferences (Theorem 14).

6 Conclusion

We have introduced a novel model of strategic manipulation in judgment aggregation
that weakens the standard assumption of every potential manipulator having full infor-
mation regarding the judgments of her peers. Our technical results clarify the relation-
ship between the standard model of full information and our model of partial informa-
tion and demonstrate that, bymoving tomore realistic assumptions regarding the infor-
mation available to individuals, we can avoid some of the negative results proved in
the literature and instead obtain strategyproof judgment aggregation rules. This is true,
in particular, for the important premise-based rule, which turns out to be strategyproof
under two sets of assumptions that may be deemed reasonable in certain domains.

Whilewe have introduced a general framework formodelling the information avail-
able to an individual who might engage in strategic manipulation, our results mostly
relate to very specific instances of this general model, such as the case of zero infor-
mation. In the future, more work will be needed to identify and analyse more realistic
choices of judgment information functions that are relevant to specific applications.
For example, as previously mentioned, building on the ideas of Chopra et al. (2004)
one could assume that individuals are part of a social network and have full informa-
tion on their immediate neighbours, but no information on those individuals further
removed in the network. Finally, an other important direction of research expanding
on our work concerns obtaining deeper technical results, for instance characterising
for what—if any—types of partial information the impossibility of Dietrich and List
(2007c) is reproduced.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proofs

Proof of Theorem 1 We only show the non-trivial direction, which states that if an
aggregation rule F is strategyproof for all reflexive, transitive and complete closeness-
respecting preferences, then F is independent and monotonic.

15 This observation relates to a more general discussion by Botan et al. (2016), who remark that (one
direction of) the characterisation ofDietrich andList (2007c) fails for certain subsets of closeness-respecting
preferences.
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We need an intermediate result by Dietrich and List (2007c). These authors define
a preference-free notion of strategyproofness. They call the aggregation rule F
(preference-free) manipulable at the profile of judgments J = (Ji , J−i ) by indi-
vidual i if there is a formula ϕ in the pre-agenda Φ+ such that F(J) disagrees with Ji
on ϕ, but F(J ∗

i , J−i ) agrees with Ji on ϕ, for some untruthful judgment J ∗
i . Based on

this definition, Dietrich and List (2007c) prove that every aggregation rule is immune
to (preference-free) manipulation if and only if it is independent and monotonic.

Back to our proof, it now suffices to demonstrate that if an aggregation rule F is strat-
egyproof for all reflexive, transitive and complete closeness-respecting preferences,
then F is immune to (preference-free)manipulation. So, assume that strategyproofness
is the case. To show immunity to (preference-free) manipulation, consider a formula
ϕ ∈ Φ, an individual i ∈ N , and a truthful profile J = (Ji , J−i ) such that F(Ji , J−i )

disagrees with Ji on ϕ. We need to prove that F(J ∗
i , J−i ) still disagrees with Ji on ϕ,

for every dishonest judgment J ∗
i . We define a preference relation �i over all possible

collective outcomes such that J �i J ′ if and only if Ji agrees on ϕ with J but not
with J ′, or Ji agrees on ϕ with both J and J ′, or it disagrees with both. Intuitively,
this would be the case if individual i only cares about the formula ϕ in the agenda.
It is easy to verify that �i is reflexive, transitive, complete, and closeness-respecting.
Hence, by strategyproofness it will be F(Ji , J−i ) �i F(J ∗

i , J−i ) for all untruthful
judgments J ∗

i . But as F(Ji , J−i ) disagrees with Ji on ϕ, the definition of �i implies
that F(J ∗

i , J−i ) also disagrees with Ji on ϕ, for every dishonest judgment J ∗
i . ��

Proof of Proposition 3 Consider a JIF π that is at least as informative as another JIF σ

and an aggregation rule F that is σ -manipulable. We will show that F is also π -
manipulable. Byσ -manipulabilitywe know that there are an individual i ∈ N , a profile
J = (J1, . . . , Jn) ∈ J (Φ)n , a preference relation �i ∈ PR(Ji ), and an insincere
judgment J ∗

i such that (i) F(J ∗
i , J ′−i ) �i F(Ji , J ′−i ), for some J ′−i ∈ Wσ,J

i , and

(ii) F(J ∗
i , J ′′−i ) �i F(Ji , J ′′−i ), for all other J

′′−i ∈ Wσ,J
i .

Now, consider the profile J ′ = (Ji , J ′−i ). We will show that if the truthful profile
is J ′, then the individual i has an incentive to π -manipulate by reporting the untruthful
judgment set J ∗

i . It suffices to show two things: (i ′) J ′−i ∈ Wπ,J ′
i and (i i ′) Wπ,J ′

i ⊆
Wσ,J

i . Indeed, the formermeans that i considers J ′−i possible, which togetherwith (i)
means that there is a possible profile for which she would be strictly better off. And
the latter means that (i i) also holds for all J ′′−i ∈ Wπ,J ′

i .
But we know that (i ′) holds, due to the reflexivity ofW . So it remains to prove (i i ′).

In fact, since Wπ,J ′
i ⊆ Wσ,J ′

i due to π being at least informative as σ , it suffices to

show Wσ,J ′
i ⊆ Wσ,J

i . So take any J ′′−i ∈ Wσ,J ′
i = Wσ,(Ji ,J ′−i )

i . Together with

J ′−i ∈ Wσ,(Ji ,J−i )

i , which holds due reflexivity, an application of transitivity yields

J ′′−i ∈ Wσ,(Ji ,J−i )

i = Wσ,J
i and we are done. ��

Proof of Theorem 6 Consider a formula ψ ∈ Φ, two individuals i, j ∈ N , and the
aggregation rule F such that for all profiles J = (Ji , J−i ) and formulas ϕ ∈ Φ, it is
the case that (i) ϕ ∈ F(J) if and only if |N J

ϕ | ≥ n
2 for all ϕ �= ψ and (i i) ψ ∈ F(J)

if and only if (ψ ∈ Ji\J j or ψ ∈ J j\Ji ) and |{k ∈ N\{i, j} | ψ ∈ Jk}| ≥ n−2
2 .

Loosely speaking, F requires the majority’s acceptance for all “standard” formulas,
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and regarding the “special” formula ψ , F can only accept it when exactly one of
the “special” individuals i, j do so, and in addition the majority of the rest of the
individuals approve it.16 Now, take the JIFπ underwhich each individual k ∈ N\{i, j}
is completely informed about the judgments of the others, while individuals i and j
are only ignorant about each other’s opinion (and fully know all other judgments).
Formally, π is the besides_I-JIF, where I = (I1, . . . , In) is such that Ik = ∅ for
all k ∈ N\{i, j}, Ii = { j} and I j = {i}. The aggregation rule F is obviously not
monotonic, so we know by Theorem 1 that it is not full-strategyproof for the class
of closeness-respecting preferences. However, we can show that F is π -strategyproof
for the same class of preferences.

Clearly, the individuals in N besides i and j have no incentives to manipulate
(since the rule is independent and also behaves monotonically with respect to their
judgments). Consider now,without loss of generality, individual i , a profile (Ji , J−i ), a
judgment set J ∗

i , and a preference relation�i ∈ C(Ji ). Furthermore, suppose that there

is a judgment set J ∗
i such that F(J ∗

i , J ′−i ) �i F(Ji , J ′−i ), for some J ′−i ∈ Wπ,J
i .

By the definition of closeness-respecting preferences, this means that there is some
ϕ ∈ Ji such that ϕ ∈ F(J ∗

i , J ′−i ) and ϕ /∈ F(Ji , J ′−i ). But by the definition of
the rule F this can only happen if ϕ = ψ , ψ /∈ J ∗

i , and ψ ∈ J ′
j (where J ′

j is the
judgment set of individual j in profile J ′−i ). Then, since ψ /∈ J ∗

i , we know that
ψ �= �. So there exists a model M of propositional logic such that M � ψ . Hence
we can consider a different (complete and consistent) judgment set of individual j ,
which individual i deems possible, based on the formulas that are verified by M :
J ′′
j = {ϕ ∈ Φ : M � ϕ}. Then, ψ /∈ J ′′

j . Preserving the judgments of the rest of
the group in the partial profile J ′−i and replacing the judgment of individual j , with

J ′′
j , we have the new partial profile J ′′−i ∈ Wπ,J

i . Thus by the definition of the rule
F , it holds that F(Ji , J ′′−i ) = F(J ∗

i , J ′−i ) and F(J ∗
i , J ′′−i ) = F(Ji , J ′′−i ), which

means that F(Ji , J ′′−i ) �i F(J ∗
i , J ′′−i ). To sum up, we found a possible judgment

of individual j that will make the risk-averse individual i unwilling to manipulate.
Using the same argument, we can prove that individual j does not have an incentive
to manipulate either, and we conclude that our rule is strategyproof. ��
Proof of Theorem 7 Suppose that the number of individuals n is odd, n = 2k + 1, for
some integer k ≥ 3 (the case for even n is analogous). The properties of nondictator-
ship, completeness, consistency and responsiveness are easily checked to be satisfied
for the plurality rule Fp� together with a lexicographic tie-breaking rule. Thus, we
only have to show that Fp� is immune to zero-manipulation for the class of closeness-
respecting preferences. Consider an arbitrary individual i , a profile (Ji , J−i ), and a
closeness-respecting preference �i ∈ C(Ji ), and suppose that there is a judgment set
J ∗
i such that Fp�(J ∗

i , J ′−i ) �i Fp�(Ji , J ′−i ), for some partial profile J ′−i (otherwise
the rule is already immune to manipulation). By definition of closeness-respecting
preferences and the plurality rule, this can happen only if the collective outcome
Fp�(Ji , J ′−i ) induced by individual i’s truthful judgment is some judgment set J and
the manipulated result Fp�(J ∗

i , J ′−i ) is the judgment set J ∗
i . Thus, it must be the case

16 For amotivating scenario where this would be an applicable rule, see the discussion following Theorem 6
in the body of the paper.
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that J ∗
i �i J . Moreover, due to�i being closeness-respective, we have that Ji �i J ∗

i ,
and by transitivity of preferences it holds that Ji �i J . We distinguish the following
two cases, to account for all tie-breaking rules.

Case 1 The tie-breaking rule ranks Ji above J . Consider the profile J ′′ = (Ji , J ′′−i ),
where k individuals (including i) submit the judgment set Ji , one reports J ∗

i , and k
other individuals submit the judgment set J . Then, Fp�(Ji , J ′′−i ) = Ji . However, if
individual i were to report the insincere judgment J ∗

i , therewould be k−1 submissions
of Ji , two of J ∗

i , and k submissions of J , leading to Fp�(J ∗
i , J ′′−i ) = J . We conclude

that Fp�(Ji , J ′′−i ) �i Fp�(J ∗
i , J ′′−i ), so i will not bewilling tomanipulate by reporting

the untruthful judgment J ∗
i .

17

Case 2 The tie-breaking rule ranks J above Ji . Then, consider the profile where
k + 1 individuals submit the judgment set Ji , no-one submits J ∗

i , and k individuals
submit J . The proof proceeds as in case 1. ��
Proof of Proposition 8 The idea goes as follows. Imagine that some individual in the
group has only one undesirable judgment set and this judgment set evaluates all the
formulas in the exact opposite way from some dishonest judgment J of hers. If this
individual decides to untruthfully submit J without knowing the judgments of her
peers, then she can be sure that the Hamming distance between the collective outcome
and her unwanted outcome can never be strictly smaller than when she tells the truth.
Thus, reporting J can never harm the individual when the average-voter rule is applied,
while it can still make her better off in some possible scenario.

Such a case can be materialised if we consider a group of three individ-
uals18 and an agenda Φ = {ϕ1, ϕ2, ϕ3,¬ϕ1,¬ϕ2,¬ϕ3} such that J (Φ) =
{{ϕ1, ϕ2,¬ϕ3}, {ϕ1,¬ϕ2,¬ϕ3}, {ϕ1,¬ϕ2, ϕ3}, {¬ϕ1, ϕ2, ϕ3}}.19 Moreover, let us con-
sider the tie-breaking rule based on the linear order {¬ϕ1, ϕ2, ϕ3} > {ϕ1, ϕ2,¬ϕ3} >

{ϕ1,¬ϕ2, ϕ3} > {ϕ1,¬ϕ2,¬ϕ3}. Then, assume that individual 1 holds the truth-
ful judgment J1 = {ϕ1, ϕ2,¬ϕ3} and the closeness-respecting preference �1
such that {ϕ1, ϕ2,¬ϕ3} ∼1 {ϕ1,¬ϕ2,¬ϕ3} ∼1 {ϕ1,¬ϕ2, ϕ3} �1 {¬ϕ1, ϕ2, ϕ3}.
Now, suppose that the profile J = (J1, J2, J3) is such that J2 = {¬ϕ1, ϕ2, ϕ3}
and J3 = {ϕ1,¬ϕ2, ϕ3}. Then, Fav(J) = {¬ϕ1, ϕ2, ϕ3}. However, for the pro-
file J∗ = (J ∗

1 , J2, J3) where J ∗
1 = {ϕ1,¬ϕ2,¬ϕ3}, it holds that Fav(J∗) =

{ϕ1,¬ϕ2, ϕ3} �i Fav(J). Finally, just by doing the calculations, one can be per-
suaded that Fav(J ∗

1 , J ′
2, J

′
3) �1 Fav(J1, J ′

2, J
′
3), for all other partial profiles (J ′

2, J
′
3) ∈

J (Φ)2. ��
Proof of Lemma 11 Consider an individual i that truthfully rejects the conclusion of
the conjunctive agenda, but accepts some premise p in it. Suppose further that i is

17 Note that for this part of the proof to work, the assumption that k ≥ 3 (which means that n ≥ 7) is
necessary. Suppose that k = 2, the closeness-respecting preference �i is such that Ji ∼i J∗

i , and the
tie-breaking rule prioritises J∗

i over J . Then, in the profile J ′′ = (Ji , J ′′−i ) two individuals would submit

Ji , one would submit J∗
i , and two other individuals would report J , so Fp�(Ji , J ′′−i ) = Ji . Then, in case

individual i reported J∗
i instead of Ji , it would hold that F

p�(J∗
i , J ′′−i ) = J∗

i ∼i F
p�(Ji , J ′′−i ).

18 The same proof would work for any number of individuals that is a multiple of three.
19 We know that such an agenda can be constructed by Dokow and Holzman (2009).
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conclusion-oriented, which means that she desires a collective rejection of the con-
clusion. If individual i has zero information about the judgments of her peers, that
is, if she deems all profiles possible to be submitted by the group, then she has an
incentive to reject all the premises. Indeed, if the conclusion was already rejected by
the truthful profile of the group, individual i has nothing to lose—with less support
on some of the premises, the conclusion will still be rejected. But there is always a
possible profile for which the conclusion is accepted in case the individual is honest,
while it is rejected if the individual lies. To see this, assume that the number of indi-
viduals is odd: n = 2k+1 (the proof for an even number of individuals is analogous).
Then, consider the profile where all of i’s peers accept all the other premises besides
p, and exactly k of them reject p. Since k + 1 individuals (including i) accept p, all
the premises will be accepted by the group and hence the conclusion will be accepted
too. However, if i were to reject p, then a majority of individuals would reject p and
the conclusion would be rejected as well. ��

Proof of Lemma 13 Consider an arbitrary individual i . If i truthfully accepts the con-
clusion in the agenda, then obviously she has no incentive to manipulate. Suppose,
then, that i truthfully rejects the conclusion. If i truthfully rejects all the premises,
then she has no incentive to manipulate either. So, we assume without loss of gener-
ality that i accepts some premise p, while she rejects the conclusion. Then, the only
way that i could become better off is by altering a collective decision that accepts the
conclusion, by untruthfully rejecting p and thus making the group reject p too. Now
consider p′ ∈ {p1, p2}\{p}. Since i does not know the judgments of her peers on p′,
she considers possible the case where everyone else rejects p′. In such a scenario, the
collective outcome would already agree with her on (i.e., reject) the conclusion. So in
this case, if individual i rejects p, she will not affect the collective outcome regarding
the conclusion. However, she will cause a decrease on the number of premises that
the group’s judgment and her own individual judgment agree on. This means that
individual i has no incentive to manipulate. ��

Proof of Theorem 14 The premise-based rule Fpr is susceptible tomanipulation for the
class of conclusion-prioritising preferences P under full information, because there is
a profile where an individual i can change the collective result on the conclusion from
disagreeing with her truthful judgment to agreeing with it by lying on a premise (see
the proof of Lemma 11 for the construction of such a profile). However, as we will
see next, Fpr is immune to manipulation under partial information.

We construct a family of JIFs {π x : x ∈ N}, where each π x is defined based on
an agenda X with size x as follows. Take an arbitrary conjunctive agenda X with size
x and at least two premises. Fixing two arbitrary premises p1, p2 ∈ X , we define
Y = {p1, p2,¬p1,¬p2}, and π x equal to the all_but_Y -JIF. Then, by Lemma 13 we
have that the premise-based rule is immune to π x -manipulation. Moreover, we will
show that limx→∞ U (π x ) = 0. We observe that when x tends to infinity, the number
of all the possible (partial) profiles on an agenda X with size x tends to infinity too,
i.e., limx→∞ |J (X)n−1| = ∞. Let us now consider an individual i and a profile
J = (Ji , J−i ). The number of all the partial profiles that individual i deems possible
according to π x is finite. Specifically, |Wπ x ,J

i | = 22(n−1), since only the judgments
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of the other n − 1 individuals with regard to the premises p1 and p2 are unknown to
individual i . Thus,

lim
x→∞U J

i (π x ) = lim
x→∞

∣
∣
∣Wπ x ,J ′

i

∣
∣
∣ − 1

|J (X)n−1| − 1
= lim

x→∞
4n−1 − 1

|J (X)n−1| − 1
= 0.

Finally, since i and J were arbitrary, we have that limx→∞ U (π x ) = 0. ��
Proof of Lemma 15 Suppose, aiming for a contradiction, that there exist an individual i
with Hamming-distance preferences �i and a profile J = (Ji , J−i ) in which i has an
incentive to manipulate. Then there is a judgment set J ∗

i such that Fpr(J ∗
i , J−i ) �i

Fpr(Ji ,� J−i ), which by definition of the Hamming-distance preferences means that
the judgment set Fpr(J ∗

i , J−i ) has strictly more formulas in common with Ji than the
judgment set Fpr(Ji , J−i ) has. But according to the premise-based rule, if individual i
switches from reporting her truthful judgment Ji to reporting the untruthful judgment
J ∗
i , it is not possible to obtain a collective decision that is agreeing on a premise

with Ji if the initial collective judgment was not agreeing on that premise with Ji
too. Hence, the only way for Fpr(J ∗

i , J−i ) to have a formula in common with Ji that
Fpr(Ji , J−i ) does not have is if that formula is the conclusion. However, in order to
achieve this, J ∗

i should be untruthful and change the collective judgment on at least
one of the premises that Ji and Fpr(Ji , J−i ) agree on. In total, Fpr(J ∗

i , J−i ) cannot
have strictly more formulas in common with Ji than the judgment set Fpr(Ji , J−i )

has, thereby contradicting our initial assumption. ��
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