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1 Introduction

The theory of matching has been extensively developed for markets in which the agents (stu-
dents/schools, hospitals/residents, workers/firms) havemaximum quotas that cannot be exceeded.1

However, in many real-world markets, minimum quotas may also be relevant, and there is a lack of
mechanisms that take minimum quotas into account, and of strategyproof minimum quota mech-
anisms in particular. This paper fills this gap by providing new strategyproof mechanisms that fill
all minimum quotas, while satisfying other important desiderata (fairness and efficiency) as much
as possible.

There are many examples of matching problems in which minimum quotas are present. School
districts may need at least a certain number of students in each school in order for the school to
operate, as in college admissions in Hungary (Biró et al. (2010)). In the market for Japanese medical
residents studied by Kamada and Kojima (2011), the Japanese government desires more doctors be
assigned to hospitals in rural areas, and imposing minimum quotas on such rural hospitals is one
possible approach. In the early 2000s, the United States Military Academy (USMA) solicited cadet
preferences over assignments to various branches and imposed minimum and maximum quotas on
the number of students who could be assigned to each branch (Sönmez and Switzer (2011); Sönmez
(2011)). In the context of schools, minimum quotas may be important not only in assigning
students across schools, but also in assigning students to classes within schools. For example,
computer science students at Kyushu University must all complete a laboratory requirement.
Students are able to submit preferences over the labs, but each lab has certain minimum and
maximum quotas that must be respected.2

The fact that there are few mechanisms that satisfy minimum quotas may lead many markets
to artificially lower the maximum quotas so that any standard matching that satisfies such artificial
caps will satisfy the true minimum quotas as well. Once this is done, an “off-the-shelf” mechanism
that respects only maximum quotas can be used. For example, the Japanese medical resident
market imposes explicit regional caps and then uses a DA procedure in the hopes of assigning
more doctors to rural hospitals. After reforms in 2007, the Army decided to set the maximum
quotas in such a way that there was no longer any flexibility.3 To the extent that this was done
only to ensure the true minimum quotas would be implicitly satisfied, it may lead to efficiency

1See Roth and Sotomayor (1990) for a comprehensive survey of many results in this literature.
2Diversity constraints at schools can also be considered as a minimum quota problem, where school districts

impose a minimum quota for each type of student at each school. While not explored in this paper, this is an
extremely important application, and the extension of our results to this class of problems is the subject of ongoing
work (Fragiadakis and Troyan (2012)).

3See the October 1, 2007 memorandum from the Department of the Army to the USMA superintendent.
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losses, as some positions in high demand will end up below their true capacity, making it possible
to reassign the agents and make everyone better off. In many other markets, we may not see
minimum quotas only because designers are not able to handle them, and so choose the simple
solution of imposing artificial caps, making it appear as if there were only maximum quotas. Once
successful minimum quota mechanisms are available, they may begin to appear in more markets.

The goal of this paper is to recover some of the efficiency losses caused by imposing artificial
caps by providing minimum quota mechanisms that allocate the extra seats more flexibly based
on realized demand. More specifically, we first show that with minimum quotas, no mechanism
can be simultaneously strategyproof, fair,4 and nonwasteful. Because the matching literature has
found strategyproofness to be an extremely important property (see, for example, Pathak and
Sönmez (2012)), and there is a lack of strategyproof mechanisms for matching problems with
minimum quotas, we take strategyproofness as a necessary criterion.5 We thus introduce new
definitions of fairness and nonwastefulness that take the minimum quota restrictions into account.
Since we cannot achieve full fairness, we develop a new fairness criterion by which we can rank
mechanisms. We then introduce new mechanisms and show that they are maximally fair in the class
of (constrained) nonwasteful and strategyproof mechanisms. We lastly use computer simulations to
show that since our mechanisms are able to more flexibly allocate seats based on student demand,
they waste far fewer seats than imposing artificial caps and are overwhelmingly preferred by the
students, in the sense that the rank distributions for our mechanisms first-order stochastically
dominate that of imposing artificial caps.

Without minimum quotas, the standard DA mechanism is widely used because it is strate-
gyproof, fair, and nonwasateful. Thus, adhering closely to this algorithm while still somehow
satisfying all minimum quotas seems like a fruitful approach. Our first modification of DA, which
we call extended-seat DA (ESDA), does this by dividing the school seats into two classes.6 At
each school, a number of seats equal to the school’s minimum quota are assigned according to the
school’s priority list, while the assignment of seats above the minimum quota must be restricted
in such a way that ensures that the minimum quotas at all other schools are also satisfied.

4Fairness means that if one student envies the assignment of another, then the second student must have a
higher priority at her assigned school than the first. It is also called “no justified envy” or “stability” in the matching
literature. See Section 2 for a formal definition.

5We do not mean to suggest that strategyproofness should be imposed above all else. While Abdulkadiroğlu
et al. (2005), Chen and Sönmez (2006), Pathak and Sönmez (2008), and Ergin and Sönmez (2006) discuss negative
consequences of the highly manipulable Boston mechanism and recommend shifting to a strategyproof mechanism
in school choice settings, other papers such as Abdulkadiroğlu et al. (2011), Featherstone and Niederle (2011), and
Troyan (2012) show that non-strategyproof mechanisms may sometimes outperform strategyproof ones.

6We use the language of school choice throughout the paper, but our results can obviously be applied to many
other allocation problems.
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When the minimum quotas are close to the maximum quotas, ESDA produces an allocation that
is close to standard DA. However, when the minimum quotas are low, ESDA tends to ignore the
individual school priorities, and the output is similar to a serial dictatorship. For these situations,
we introduce a second modification, the multi-stage DA algorithm (MSDA), which first “reserves”
a number of students equal to the sum of the minimum quotas and assigns the remaining students
according to standard DA. This process is repeated until we reach a final assignment. Opposite
to ESDA, when the minimum quotas are low, MSDA will reserve few students, and the outcome
will approach standard DA (and will approach a serial dictatorship when the minimum quotas are
high). Thus, this provides some guidance to policymakers on mechanism selection depending on
the relative sizes of the minimum and maximum quotas.

Because the introduction of minimum quotas leads to the incompatibility of many theoretical
properties, we also use computer simulations to study our mechanisms. We show that both ESDA
and MSDA waste significantly fewer seats than imposing artificial caps, and are overwhelmingly
preferred by the students. In addition, we show that as the minimum quotas approach the max-
imum quotas, ESDA becomes more and more fair in the traditional sense (i.e., it produces few
blocking pairs), while as the minimum quotas approach 0, the same holds for MSDA.7

Lastly, we note that when school priorities are given a milder interpretation, markets often
use the top-trading cycles (TTC) mechanism of Shapley and Scarf (1974).8 We show that our
extended-seat and multi-stage ideas can be applied to TTC as well, giving the ESTTC and MSTTC
mechanisms, which will be similar to the standard TTC mechanism but will satisfy all minimum
quotas. ESTTC and MSTTC will be strongly group strategyproof and Pareto efficient. Just
as in the standard model, if the designer is more concerned with Pareto efficiency, a TTC-based
mechanism should be chosen, while if fairness is a more important criterion, either ESDA or MSDA
should be used.

Related Literature

While minimum quotas seem like a natural extension to the standard matching models, there
is little work on the topic, most likely because the problem becomes difficult and many of the
results from previous literature have been negative. The papers most related to this one are Ehlers

7A similar approach is taken by Abdulkadiroğlu et al. (2009), who also use computer simulations and argue that
the greater the number of blocking pairs a matching algorithm produces, the less successful it is expected to be
empirically. With a similar motivation, Hamada et al. (2011) study the problem of actually minimizing the number
of blocking pairs.

8See Abdulkadiroğlu and Sonmez (2003) for the first application of TTC to school choice. The New Orleans
school district has recently adopted a TTC mechanism to allocate students. Hatfield et al. (2011) study how DA
and TTC-based mechanisms affect incentives for school competition.
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(2010) and Ehlers et al. (2011). In those papers, the authors study a problem equivalent to ours,
allowing for multiple types of students (so that the minimum quotas correspond to affirmative
action constraints in school choice). They also note several impossibility results once minimum
quotas are introduced, but instead choose to forego strategyproofness and provide mechanisms
that will be fair and constrained nonwasteful, though they will also be manipulable. We fill this
gap by providing strategyproof mechanisms for problems with minimum quotas. Abdulkadiroğlu
(2010) studies another model similar to the one here but chooses to relax feasibility constraints
by not requiring that all students be enrolled at a school. Kojima (2012) and Halafir et al. (2011)
show that some types of affirmative action quotas may actually hurt the very minorities they are
supposed to help.

Biró et al. (2010) study college admissions in Hungary, in which colleges may declare minimum
quotas for their programs. They study the difficulty (from a computer science perspective) of
finding stable matchings when minimum quotas are introduced, but do not provide explicit mech-
anisms or consider incentive or efficiency issues, as we do here. Hamada et al. (2011) also study
matching with minimum quotas from a computer science perspective, showing that minimizing
the number of blocking pairs is an NP-hard problem when minimum quotas are imposed.

While the military cadet-branch matching problem studied in Sönmez and Switzer (2011) and
Sönmez (2011) does not have explicit minimum quotas, to the extent that the maximum quotas
imposed by the military are artificial caps and not true maximum quotas (see the above discussion
and the memorandum cited in footnote 3), our mechanisms may allow for more flexibility and
improve outcomes. Additionally, the Army is particularly concerned about diversity constraints,
and the extension of our mechanisms to minimum quotas for multiple types of agents is the subject
of ongoing work. Kominers and Sönmez (2012) have a related model with slot-specific priorities
in which they achieve diversity by giving certain students higher priority for different slots within
each branch.

As a final possible application, consider the medical residency market studied first by Roth
(1984). In these markets, the shortage of doctors in rural areas is a well-known problem, and
the so-called rural hospitals theorem suggests it is difficult to solve (see Roth (1986), Martinez
et al. (2000), and Hatfield and Milgrom (2005)). Kamada and Kojima (2011) discuss one possible
solution used in Japan: capping the number of residents who can be assigned to a given region.
Again, to the extent that these caps are simply an ad-hoc way to ensure the true minimum
quotas are satisfied, imposing the minimum quotas directly and using one of our mechanisms is
another possible approach. As Kamada and Kojima note in their paper, introducing minimum
quotas causes considerable difficulties, as stable matches (according to the classical definition of
stability) will generally not exist. However, stable matches also may not exist after regional caps
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are imposed, which leads Kamada and Kojima to propose weaker definitions of stability (as we must
do in this paper as well) and define a new mechanism which takes the regional caps into account.
The use of our modified DA-based algorithms will produce outcomes that directly satisfy all of
the minimum quotas while still adhering closely to the standard deferred acceptance algorithm.
Which mechanisms will work better in practice is an empirical question.

Methodologically, our approach of ranking mechanisms that cannot achieve full fairness on the
entire preference domain is similar to approaches taken by Pathak and Sönmez (2012) and Carroll
(2011), who introduce methods for ranking nonstrategyproof school choice and voting mechanisms
(respectively) by their degree of vulnerability to manipulation.

The remainder of this paper is organized as follows. In Section 2, we present a basic model with
minimum and maximum quotas and discuss some common desirable properties such as efficiency,
nonwastefulness, and fairness. We show that many of the standard properties are incompatible,
which leads us to introduce several new definitions. In Section 3, motivated by our new desiderata,
we describe our two modifications of the DA algorithm in detail. In Section 4, we show that our
new mechanisms will outperform the ad hoc approach of imposing “artificial caps” to satisfy the
minimum quotas. Section 5 applies our minimum quota modifications to the top trading cycles
(TTC) algorithm. Section 6 concludes. All proofs are in the appendix, unless otherwise stated.

2 Matching with minimum quotas

2.1 Basic Model

Amarket consists of (S,C, p, q,�S,�C). S = {s1, s2, . . . , sn} is a set of n students, C = {c1, c2, . . . , cm}
a set of m schools (“colleges”), and p = (pc1 , . . . , pcm) and q = (qc1 , . . . , qcm) are vectors of minimum
and maximum quotas, respectively, for each school. We assume pc ≥ 0, qc > 0, and pc ≤ qc for all
c ∈ C and

∑
c∈C pc < n <

∑
c∈C qc to ensure a feasible matching exists.9 Define e = n−

∑
c∈C pc to

be the number of “excess students” above the sum of the minimum quotas. To make the problem
interesting, we additionally assume the following:10

(A1) m > 2

(A2) pc < qc for at least two schools
(A3) pc > 0 for at least two schools

9We assume both inequalities strict because if n =
∑
c∈C pc or

∑
c∈C qc there is no flexibility in the seats to be

assigned and the standard DA algorithm can be used.
10These assumptions are likely to be satisfied in any real-world market of reasonable size. The special cases where

these assumptions do not hold are dealt with in Appendix I.
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Each student s has a strict preference relation �s over C, while each school c has a strict priority
relation �c over S. Vectors of such relations, one for each agent, are denoted �S = (�s)s∈S for the
students and �C = (�c)c∈C for the schools. Let P denote the set of possible preference relations
over C, and P |S| denote the set of all preference vectors for all students. As is standard in the
school choice literature, the school priorities are fixed and known to all students (in applications,
priorities are often related to such things as the distance a student lives from a school or whether
or not a student has a sibling attending the school). We assume that all schools are acceptable to
all students and vice versa.11

A matching is a mapping µ : S ∪ C → 2S∪C that satisfies: (i) µ(s) ∈ C for all s ∈ S, (ii)
µ(c) ⊆ S for all c ∈ C, and (iii) for any s ∈ S and c ∈ C, we have µ(s) = c if and only if s ∈ µ(c). A
matching is feasible if pc ≤ |µ(c)| ≤ qc for all c ∈ C. LetM denote the set of feasible matchings.

A mechanism χ : P |S| → M is a function that takes as an input any possible preference
profile of the students and gives as an output a feasible matching of students to schools. If the
students submit preference profile �S∈ P |S|, then χ(�S) is the assigned matching, and we write
χi(�S) for the assignment to agent i ∈ S ∪C. If i ∈ S, then χi(�S) ∈ C is the school student i is
assigned to, while if i ∈ C, then χi(�S) ⊆ S is the set of students assigned to school i.12

2.2 Desirable properties of matchings and mechanisms

The matching literature has identified a number of desirable properties of matchings and mecha-
nisms. In general, not all of these properties will be compatible, and this problem is compounded
by the introduction of minimum quotas. We introduce these desirable properties here and discuss
some impossibility results.

The first natural requirement for any matching is Pareto efficiency.

Definition 1. A matching µ is Pareto efficient if there is no other feasible matching µ′ such
that µ′(s) �s µ(s) for all s ∈ S and µ′(s) �s µ(s) for some s ∈ S.

Note that our definition of Pareto efficiency considers only the welfare of the students. This is
consistent with the interpretation that the seats are objects to be consumed by the students and
that �C represents a priority relation, rather than a preference relation for the schools.

11If agents on one side of the market were allowed to report agents on the other side as unacceptable, it would be
impossible to guarantee the existence of an individually rational matching that satisfied all minimum quotas. See
Ehlers (2010) and Ehlers et al. (2011) who impose the same assumption in a model with minimum quotas.

12Since student preferences are the only private information, we only explicitly write this as a function of �S ;
however, this function of course implicitly depends on C, p, q, and �C as well.
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Another requirement often studied in the matching literature is fairness or no justified envy
(also known as stability in some two-sided matching models). To define fairness, we first introduce
the notion of a blocking pair.

Definition 2. Given a matching µ, student-school pair (s, c) form a blocking pair if c �s µ(s)

and s �c s′ for some s′ ∈ µ(c).

In words, student s would rather be matched to school c than her current match µ(s), and
she has higher priority at c than some student s′ who is currently assigned there; thus, s has a
claim on a seat at c over student s′. In some papers, it is said that s has justified envy towards
s′, and we will often use these terms interchangeably. Priorities are often based on criteria such
as distance between a student and the school or test scores, and if one student justifiably envies
another, she may be able to take legal action against the school district (see Abdulkadiroğlu and
Sonmez (2003)). Thus, an important goal of many school districts is for a matching to contain no
such blocking pairs. When this is true, we say that the matching is fair.13

Definition 3. A matching µ is fair (or eliminates all justified envy) if no student-school (s, c)

can form a blocking pair.

Even without minimum quotas, Pareto efficient and fair matchings will not exist in general,
as two students may be prevented from engaging in a Pareto improving trade because the new
assignment would cause a third student to form a blocking pair with one of the schools that was
traded. For this reason, Pareto efficiency is often weakened to nonwastefulness when fairness is an
important consideration. The next definition adapts the notion of nonwastefulness to our setting
with minimum quotas.

Definition 4. Fix a matching µ. We say student s claims an empty seat at school c if (i)
c �s µ(s) (ii) |µ(c)| < qc and (iii) |µ(µ(s))| > pµ(s). If no student claims an empty seat at any
school, then matching µ is nonwasteful.

In words, this definition says that if student s prefers school c to her current assignment µ(s),
school c has an empty seat, and the number of students assigned to her current school µ(s)

is strictly above its minimum quota, then student s should be moved to that school. Part (iii)
differentiates this definition from the standard definition of nonwastefulness. If (iii) is not satisfied,
then moving s would violate feasibility.

13For example, fairness was an extremely important criterion to administrators of the Boston school district when
they were redesigning their school assignment mechanism. See Abdulkadiroğlu et al. (2005).
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All of the properties of matchings above have counterparts for mechanisms. We say that
mechanism χ is efficient if it produces an efficient matching for every possible preference profile.
Similarly, we say χ is fair if for every preference profile it produces a fair matching, and χ is
nonwasteful if for every preference profile it produces a nonwasteful matching.

The last property we study concerns the incentives of the students to report their preferences
truthfully. Obviously, all else equal, designers would like to use a mechanism that elicits the true
preferences of the students. The easiest way to do so is to use a mechanism that is strategyproof.

Definition 5. A mechanism χ is strategyproof if χs(�S) �s χs(�′s,�S\{s}) for all �S ∈ P |S|,
s ∈ S, and �′s∈ P, .

In words, a mechanism is strategyproof if no student ever has any incentive to misreport
her preferences, no matter what the other students report. As discussed in the introduction,
strategyproofness has been found to be a very important property in the success of matching
mechanisms, and thus we take it as a necessary criterion in our search for mechanisms. All of
the mechanisms we propose will be strategyproof. In addition, our mechanisms will be immune to
certain types of group manipulations. We define two forms of group strategyproofness below.

Definition 6. A mechanism χ is weakly group strategyproof if there does not exist a preference
profile �S ∈ P |S|, a group of students S ′ ⊆ S, and a preference profile (�′s)s∈S′ ≡ �′S′ such that
χs(�′S′ ,�S\S′) �s χs(�S) for all s ∈ S ′.

Definition 7. A mechanism χ is strongly group strategyproof if there does not exist a prefer-
ence profile �S ∈ P |S|, a group of students S ′ ⊆ S, and a preference profile (�′s)s∈S′ ≡ �′S′ such
that χs(�′S′ ,�S\S′) �s χs(�S) for all s ∈ S ′ and χs(�′S′ ,�S\S′) �s χs(�S) for at least one s ∈ S ′.

Clearly, strong group strategyproofness =⇒ weak group strategyproofness =⇒ strate-
gyproofness. It is well known in the literature that without minimum quotas, DA is weakly group
strategyproof (Hatfield and Kojima (2009)), while TTC is strongly group strategyproof (Pápai
(2000)). Similarly, all of our DA-based mechanisms will be weakly group strategyproof, while all
of our TTC-based mechanisms will be strongly group strategyproof.

A necessary condition for strategyproofness which will be useful in proving many of the re-
sults below is monotonicity. Informally, this means that if we begin with some matching χ(�S)

and consider another preference profile under which each student’s original assignment χs(�S) is
promoted in her ranking, then the assignment must remain the same. Formally, say that �′S is
a monotonic transformation of �S with respect to χ(�S) if, for all c and all s, we have:
χs(�S) �s c =⇒ χs(�S) �′s c. The result below is well-known in the literature, but we state it
here for completeness (see, for example, Maskin (1999)).
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Proposition 1. Let χ be a strategyproof mechanism. If �′S is a monotonic transformation of �S
with respect to χ(�S), then χ(�′S) = χ(�S).

2.3 Impossibility results

Ideally, we would like a mechanism that is simultaneously strategyproof, fair, and Pareto efficient.
However, as mentioned above, even without minimum quotas, Pareto efficiency and fairness alone
are in conflict. If we weaken Pareto efficiency to nonwastefulness and consider only maximum
quotas, the well-known deferred acceptance algorithm will be strategyproof, fair, and nonwasteful.
However, once minimum quotas are introduced, this will no longer be true, as shown in the
impossibility result below, which was first proven by Ehlers et al. (2011).

Theorem 1. With minimum quotas, the set of feasible matchings that are fair and nonwasteful
may be empty.

We repeat the counterexample used to show this result since it is instructive in showing the
problems minimum quotas introduce. Consider the following market of two students and three
schools:14

�c1 �c2 �c3
s2 s2 s1

s1 s1 s2

pc 1 0 0
qc 1 1 1

�s1 �s2
c2 c3

c3 c2

c1 c1

The minimum quota requirement at c1 means that one of s1 or s2 must be assigned there;
nonwastefulness then requires that the other student be assigned his most preferred school. How-
ever, the student assigned c1 will then justifiably envy the other student. For example, in the
allocation indicated by the boxes, s1 prefers c3 and has higher priority than s2 there, and thus
forms a blocking pair. The case where s2 is assigned c1 is similar.

Because of this impossibility, we must weaken either nonwastefulness or fairness. There are
many possible ways to do this, and we discuss some alternatives (and why they fail) later. For now,
consider a definition of (constrained) nonwastefulness based on the following sequence of events.
If a student s1 claims an empty seat, then, if the school district grants his request, there will be
a student s2 who will request the seat s1 vacates. If the school district grants s2’s request, there

14Though we assume for most of the paper that pc > 0 for at least 2 schools, this is not true in this counterexample
for simplicity. The market below can be embedded in a larger market of 3 students where the added student is
ranked first on the priority list of every school and school c2 has pc2 = 1 and qc2 = 2, and the result still holds.
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will be a student s3 who will request the seat s2 vacates. Eventually, this chain should end with a
student who cannot be moved because the minimum quotas would be violated at his school (school
cK in the definition below). Thus, the school district has some justification for not granting such
requests.

Definition 8. A matching µ is constrained nonwasteful if for every student s1 who claims an
empty seat at some school c0, there exists a chain of students and schools (s1, c1, s2, c2, . . . , sK , cK)

such that for all k ∈ {1, 2, . . . , K}: (i) µ(sk) = ck (ii) ck−1 �sk ck and (iii) |µ(cK)| = pcK .

We say that mechanism χ is constrained nonwasteful if it produces a constrained nonwasteful
matching for every possible preference profile. While constrained nonwastefulness seems like a very
weak requirement, it is unfortunately also incompatible with strategyproofness and fairness.

Theorem 2. With minimum quotas, there is no mechanism that is strategyproof, fair, and con-
strained nonwasteful.

The above definition of constrained nonwastefulness may seem weak, but it at least gives school
districts some justification for denying student requests for empty seats, as it would leave to an
avalanche of requests from other students. Another obvious way to weaken nonwastefulness would
be to deny student s’s request to move to an empty seat at c if the resulting matching would cause
some other student s′ to justifiably envy student s’s new assignment. Unfortunately, this definition
of constrained nonwastefulness is also incompatible with strategyproofness and fairness, and in
fact is even incompatible with significant weakenings of fairness, and so we do not pursue such
constrained nonwasteful mechanisms further. For further discussion of these alternative definitions,
see Appendix J.

Given these impossibilities, we must either weaken nonwastefulness further or, alternatively,
weaken fairness. These approaches are next discussed in turn.

2.4 Artificial caps deferred acceptance (ACDA)

If we are willing to give up on nonwastefulness entirely, there is a mechanism that is strategyproof
and fair, namely, the artificial caps deferred acceptance (ACDA) described in the introduction.15

Artificial caps deferred acceptance proceeds by imposing artificial maximum quotas at every school.
Then, deferred acceptance is run with only these maximum quotas, ignoring the minimum quotas.
By imposing sufficiently stringent artificial caps, we can ensure that no matter how the students

15The deferred acceptance algorithm is well-known in the literature, and it is also a special case of the new
mechanisms we define in section 3, and so we do not give its definition here. See Gale and Shapley (1962) for the
original description, or Abdulkadiroğlu and Sonmez (2003) for a discussion of DA in the context of school choice.
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are allocated, the minimum quotas will be satisfied. Because the standard DA algorithm with
maximum quotas is strategyproof and fair, ACDA will be strategyproof and fair as well.

As an example, consider a market of n = 100 students and m = 10 schools, each with pc = 5

and qc = 20. Now, imagine imposing artificial caps of q∗c = 10 at each school and running the
standard DA algorithm. By doing so, exactly 10 students will be assigned to each school, thereby
satisfying all minimum and maximum quotas. However, this may be very wasteful if, for example,
there is high demand for c1, because many students could be moved there and made better off
without violating any quotas. The problem is that the mechanism has no flexibility, and eliminates
seats without regard to student preferences. In section 4, we use computer simulations to show that
while ACDA is fair, it tends to be extremely wasteful. The new mechanisms that we introduce
compromise some fairness, but overall seem to perform much better than ACDA, and will be
overwhelmingly preferred by the students.

2.5 σ-fairness

Because the ACDA mechanism may be very wasteful, we search for other mechanisms that will
waste less seats. At the same time, we do not want to give up fairness entirely, which requires
introducing a new way to think about how to rank mechanisms according to fairness. Theorem 2
shows that any mechanism that is constrained nonwasteful (and strategyproof) tends to produce
too many blocking pairs. Therefore, our new notion of fairness, which we will call σ-fairness, must
eliminate some potential blocking pairs.16

Standard blocking pairs (s, c) are defined with relation to the idiosyncratic school priority lists.
However, the idiosyncratic priority lists are insufficient for situations in which the preferred schools
of two students are willing to accept them individually, but the mechanism must choose one of
these students to fill a minimum quota seat at another school. This is the case in the example
above: c2 and c3 can accommodate s1 and s2 individually, but the mechanism must remove one of
these students from their most preferred school and assign them to c1. The within-school priority
lists �c cannot be used for this purpose; what we need is an additional ordering that works across
schools to decide whether s1 or s2 will be compelled to attend c1. The mechanism itself is then in

16Another approach is to give up fairness entirely, which will allow us to achieve not only (constrained) nonwaste-
fulness, but in fact full Pareto efficiency by using TTC-based mechanisms. Whether this is acceptable depends on
the interpretation of the school priorities. If a high priority at a school is interpreted as an opportunity to get into
a school, all else being equal, but not necessarily a right to that school, then using a TTC based mechanism which
allows students to trade priorities may be best. Kesten (2010), for example, allows students to trade priorities to
achieve efficiency if possible objecting students consent, as this trade does not harm the objecting student, who
is assigned the same school whether or not the trade takes place. While our main focus is on situations in which
fairness is a relevant concern, we briefly explore such TTC-based mechanisms in Section 5.
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some sense giving a lower priority to the student who is assigned to c1.
For the general case of n students, we introduce a list of all n students which will similarly

be used to ensure all minimum quotas are met. We call this ordering the master list (ML),
and without loss of generality, we let s1 �ML s2 �ML · · · �ML sn. Intuitively, this ordering can
be thought of as a type of tiebreaker when two students cannot both be assigned their preferred
schools (even though they have open seats) because of minimum quota restrictions at other schools.

Such lists may arise naturally in many matching settings. For example, in the military, all
cadets are ordered according to a single order of merit list based on academic performance, physical
fitness, and military performance (Sönmez and Switzer (2011); Sönmez (2011)). Irving et al. (2008)
note that in the Medical Training Application Service that assigns junior doctors to medical posts
in the UK, a master preference list based on academic records and other criteria is used. In many
countries, such as China, Australia, Turkey, etc., college admissions are centralized and students
all take a common entrance exam, which is a natural candidate for a master list (see Abizada and
Chen (2011)). If no objective ranking of the students outside of the individual school priority lists
is available, we can form a master list by assigning each student a random number. Such random
numbers are often used in school choice problems to eliminate envy when there are ties in priority
levels.17,18

Given the master list, we can then use it to eliminate potential blocking pairs as follows. Given
a matching µ and some integer σc ≤ qc, we say that (s, c) form a σc-blocking pair if the following
three conditions are met for some s′ ∈ µ(c):

(i) c �s µ(s)

(ii) s �c s′

(iii) If |µ(c)| > σc, then s �ML s
′

Parts (i) and (ii) are the standard definition of a blocking pair. Part (iii) is an additional
requirement that restricts when student s’s envy towards s′ is justified: if more than σc students
are assigned to school c, then in order to form a blocking pair, s must also be higher than s′ on
the master list. In effect, the more highly demanded school c is, the more difficult it will be for
students to form a blocking pair with c because other students can claim seats at c based on their
high priority on the master list.

Note that σc-blocking pairs are generalizations of standard blocking pairs. As σc is increased,
condition (iii) becomes less binding, and it becomes easier for students to form blocking pairs.
When σc = qc, σc-blocking pairs reduce to standard blocking pairs.

17See also Perach et al. (2007) and Perach and Rothblum (2010) for the use of master lists in problems of allocating
university housing.

18Alternatively, it may also be possible to define a notion of “ex-ante fairness” similar to Afacan (2012).
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Remark 1. If, for some matching µ, (s, c) is a σc−blocking pair for some σc, then (s, c) is a
σ′c−blocking pair for all σ′c ≥ σc. However, the reverse does not hold: (s, c) may be a σc-blocking
pair but not a σ′c-blocking pair for σ′c < σc.

Let Σ denote the set of all vectors of integers σ = (σc1 , . . . , σcm) such that σc ≤ qc for all c ∈ C.19

We can now generalize the standard definition of fairness to one that eliminates σ-blocking pairs.
In light Remark 1, if a matching eliminates all σc-blocking pairs, it also eliminates all σ′c-blocking
pairs for all σ′c ≤ σc. Thus, in measuring the fairness of a matching µ (or a mechanism), we only
need consider the largest σ vector (with respect to the product order) for which there are no
σc-blocking pairs.

For example, consider Figure 1, which represents a market with 2 schools with minimum quota
vector p = (1, 2) and maximum quota vector q = (3, 5). If a matching eliminates all 2-blocking
pairs at c1 and all 4-blocking pairs at c2, then it will also eliminate all σ-blocking pairs for all σ
vectors in the shaded region. If the matching does produce a 3-blocking pair at c1 and a 5-blocking
pair at c2, then σ′ = (2, 4) is the largest vector for which all σ-blocking pairs are eliminated, and
we will call the matching σ′-fair.

Definition 9. Fix a matching µ. If σ = max{σ′ ∈ Σ : µ contains no σ′c-blocking pairs} exists
(where the maximum is taken with respect to the product order), then we say that µ is σ-fair.

Note that such a σ may not exist if the matching contains some σc blocking pair for all σ ∈ Σ. In
this case, the matching is not σ-fair for any σ. A similar statement can be applied to mechanisms.

Definition 10. Consider a mechanism χ. If σ = max{σ′ ∈ Σ : χ(�S) is a σ′−fair matching for
all �S∈ P |S|} exists, then we say that χ is σ−fair.

In both definitions above, the maximum is taken with respect to the product order.
Since a σc-blocking pair becomes a standard blocking pair when σc = qc, if σ = (qc1 , . . . , qcm),

σ-fairness reduces to the standard notion of fairness from Definition 3. This is the strongest
definition of fairness, in that the most student envy is eliminated. As the elements of the vector σ
increase, σ-fairness will allow more (potential) student objections, and so if the mechanism itself
eliminates all potential blocking pairs, higher σ’s mean that the mechanism is more fair. Visually,
as a mechanism becomes more fair, the shaded region in Figure 1 grows larger and larger, until
σ′ = q.

On the other hand, the weakest definition of fairness is one for which σ is a vector of zeros.
Define the notation σ0 = (0, . . . , 0). Then, σ0-fairness is the weakest definition fairness, and

19For σc > qc, a σc−blocking pair is equivalent to a qc−blocking pair, and so we restrictσc to be weakly less than
qc.
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Figure 1: An illustration of σ-fairness.

corresponds to a situation in which, for a student to form a blocking pair with a school c, he must
always be ranked higher than some s′ assigned to c on both �c and �ML, i.e., it is very difficult
for students to form blocking pairs.

We should also note that there is some degeneracy in the defintion of σ0-fairness. Because all
mechanisms assign at least pc students to each school, if a mechanism is σ0-fair, it is also σ−fair
for σ = (pc1 − 1, . . . , pcm − 1), and for all σ′ in between σ0 and σ. For ease of notation, we use σ0

to represent this entire equivalence class, and simply call such mechanisms σ0-fair.
Another important case is when σ = p. When σ = p, this means that to form a blocking pair

with c, a student s must be higher than some s′ according to �ML only if |µ(c)| > pc, i.e., if any
of the flexible seats were given to school c. When c is filled exactly to its minimum quota pc, only
the individual school priority list is relevant for forming blocking pairs. The master list is used
only if some of the flexible seats were assigned to school c.

Using these ideas, we can formally rank mechanisms according to fairness. It should be noted
that while in general, mechanisms such as DA and our new mechanisms below can be applied to
markets of any size, it is only meaningful to compare two mechanisms with respect to fairness for
fixed minimum and maximum quota vectors p and q.

Definition 11. Fix quota vectors p and q, and consider two mechanisms χ and ψ which are σχ−
and σψ-fair, respectively. If σχ ≥ σψ, then we say that χ is more fair than ψ.

Again, the comparison in the above definition is taken with respect to the product order.
Because we use the product order, the relation is not complete: it may be that given two mech-
anisms, neither is more fair than the other. While this is allowed a priori, in the next section we
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are in fact able to find mechanisms that are maximally fair in the classes of strategyproof and
nonwasteful/constrained nonwasteful mechanisms.

3 New mechanisms

Recall our original desiderata: strategyproofness, fairness, and nonwastefulness. Without minimum
quotas, the standard deferred acceptance (DA) algorithm satisfies all of these properties, and
so, even though these properties are incompatible with minimum quotas, developing “DA-like”
algorithms that satisfy these properties as much as possible seems to be a sensible approach. Our
first mechanism, extended-seat DA, will be strategyproof, constrained nonwasteful, and as fair
as possible. Our second mechanism, multistage DA, will perform slightly worse with respect to
fairness, but will be fully nonwasteful.

3.1 Extended-seat DA (ESDA)

To define the ESDA algorithm, we take the original market (S,C, p, q,�S,�C) and define a cor-
responding “extended market”: (S, C̃, q̃, �̃S, �̃C̃ ,�ML). When extending the market, the set of
students is unchanged. Consider a school c in the original market with a minimum and maximum
quota of pc and qc, respectively. When extending the market, we divide c into two smaller schools:
a “standard school”, which, with slight abuse of notation, we label c, and that has a maximum
quota of q̃c = pc, and an “extended school” c∗ which has a maximum quota of q̃c∗ = qc − pc. Thus,
the set of schools is now C̃ = C ∪ C∗ = {c1, . . . , cm, c

∗
1, . . . , c

∗
m} and the vector of maximum quotas

is q̃ = {q̃c′}c′∈C̃ . Note that the extended market has no minimum quotas. By assigning no more
than e = n−

∑
c∈C pc students to extended schools, all standard schools will be filled to capacity,

thereby satisfying all minimum quotas in the original market.
For the school priorities, if c is a standard school, then �̃c = �c. Because the extended seats

are linked in the sense that the total number of extended seats that can be assigned across all
schools is e, they must all use the same priority relation, and so if c∗ is an extended school, then
�̃c∗ = �ML. Thus, the master list can be thought of as a tie-breaker when two students apply to
extended seats at different schools.

For the students, preferences over C ∪C∗ are created by taking the original preference relation
�s and inserting school c∗j immediately after school cj. That is,

preference relation �s: cj �s ck · · · becomes �̃s : cj �̃s c∗j �̃s ck �̃s c∗k · · ·
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The ESDA mechanism then simply applies DA to this fictitious market. The pc standard seats
at each school will be assigned according to �c, while all of the extended seats at all schools will
be assigned according to �ML. By limiting the number of extended seats in each round to e, the
algorithm will ensure that all of the standard seats will also be assigned and thus all minimum
quotas will be satisfied. The master list must be used to decide which students to reject when
more than e students apply to all of the extended seats in a given round. Formally:

Extended-seat deferred acceptance

Round 1

1. Each student applies to her most preferred school according to �̃s.

2. Each school c ∈ C̃ tentatively accepts its most preferred set of students who applied to it up
to its quota q̃c, rejecting the rest.

3. Let µ1(c) be the set of students tentatively accepted by school c, and let µ∗1 = ∪c∗∈C∗µ1(c∗)

be the set of students tentatively accepted by any extended school c∗ ∈ C∗. If |µ∗1| > e, then
the lowest-ranked |µ∗1| − e students in µ∗1 (according to �ML) are rejected from the schools
they applied to in round 1.

Round k > 1

1. Each student rejected in k− 1 applies to the most preferred school that has not yet rejected
her.

2. Each school c ∈ C̃ considers all new applicants and those held from round k − 1, and
tentatively accepts its most preferred set of students up to its quota q̃c, rejecting the rest.

3. Let µk(c) be the set of students tentatively accepted by school c, and let µ∗k = ∪c∗∈C∗µk(c∗)
be the set of students tentatively accepted by any extended school c∗ ∈ C∗. If |µ∗k| > e, then
the lowest-ranked |µ∗k| − e students in µ∗k (according to �ML) are rejected from the schools
they applied to in round k.

Let µ̃ denote the resulting matching in the extended market. We then define µ, the output of ESDA
in the original market, as follows: (i) If µ̃(s) = cj ∈ C, then µ(s) = cj and (ii) If µ̃(s) = c∗j ∈ C∗,
then µ(s) = cj. We now show an example of how ESDA runs.

Example 1. There are five students s1, . . . , s5 and three schools c1, c2, c3. The preferences and
priorities are shown in the table below. Recall that the master list ranks s1 �ML · · · �ML s5.
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�c1 �c2 �c3
s5 s3 s3

s3 s4 s4

s1 s1 s2

s2 s2 s5

s4 s5 s1

p 1 1 1
q 2 3 1

�s1 �s2 �s3 �s4 �s5
c2 c2 c1 c2 c1

c1 c1 c2 c3 c2

c3 c3 c3 c1 c3

To run ESDA, our extended market uses schools C ∪ C∗ = {c1, c2, c3, c
∗
1, c
∗
2, c
∗
3}. The maximum

quotas are q̃c1 = q̃c2 = q̃c3 = 1, and q̃c∗1 = 1, q̃c∗2 = 2 and q̃c∗3 = 0. Note that there are no minimum
quotas in the extended market. We additionally modify all students’ preferences by inserting school
c∗j after school cj. For example, the modified preferences of student s1 are as follows:

�̃s1 : c2 �̃s1 c∗2 �̃s1 c1 �̃s1 c∗1 �̃s1 c3 �̃s1 c∗3.

For the school priorities, we set �̃c = �c for c ∈ C, while for c∗ ∈ C∗, we set �̃c∗ = �ML. This
leads to the following extended market, where the changes are shown in red:

�s1 �s2 �s3 �s4 �s5
c2 c2 c1 c2 c1

c∗2 c∗2 c∗1 c∗2 c∗1

c1 c1 c2 c3 c2

c∗1 c∗1 c∗2 c∗3 c∗2

c3 c3 c3 c1 c3

c∗3 c∗3 c∗3 c∗1 c∗3

�c1 �c∗1 �c2 �c∗2 �c3 �c∗3
s5 s1 s3 s1 s3 s1

s3 s2 s4 s2 s4 s2

s1 s3 s1 s3 s2 s3

s2 s4 s2 s4 s5 s4

s4 s5 s5 s5 s1 s5

q 1 1 1 2 1 0

In round 1 of ESDA, students s1, s2 and s4 apply to school c2 and students s3 and s5 apply to
school c1. Schools c1 and c2 tentatively accept s5 and s4, respectively. Everyone else is rejected.

In round 2, students s1 and s2 apply to c∗2 and s3 applies to c∗1. Note that according to the
school specific quotas q̃c∗1 and q̃c∗2 , all three students can be accommodated. However, since only
e = 2 students can be assigned to extended schools at the final matching, we reject the lowest
ranked student who applied to any school in C∗ according to �ML, which is s3. s3 then applies to
c2, which rejects s4, who applies to c∗2. s4 is rejected from c∗2, and finally applies to c3, is accepted,
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and the mechanism ends. At the end, the following matching is produced:(
c1 c∗1 c2 c∗2 c3 c∗3

s5 ∅ s3 {s1, s2} s4 ∅

)

Mapping this back to a matching in the original market:(
c1 c2 c3

s5 {s1, s2, s3} s4

)

We now discuss how ESDA performs on each of our metrics. Recall that p = (pc1 , . . . , pcm).
We have the following theorem.

Theorem 3. The ESDA mechanism is
(i) (weakly group) strategyproof
(ii) constrained nonwasteful and
(iii) p−fair.

Strategyproofness is readily inherited from the standard DA mechanism. In fact, to prove
(group) strategyproofness, we associate the extended market with the matching with contracts
model of Hatfield and Milgrom (2005), considering the set of extended schools C∗ as one single
“umbrella” school which has a capacity of e. A contract then specifies a student and the school
to which she is assigned, and the contracts are ranked according to the master list. Hatfield and
Milgrom (2005) show that if the choice function of all schools satisfy a substitutes condition, then
the DA algorithm in the matching with contracts model is strategyproof, while Hatfield and Kojima
(2009) show that it is in addition weakly group strategyproof. The standard schools obviously have
substitutable choice functions. In the proof, we show that the “umbrella” extended school also has
a substitutable choice function, which implies that ESDA is weakly group strategyproof.

Example 1 shows that ESDA may be wasteful, because we can move student s3 to an open seat
at school c1 without violating the minimum quotas at the school he is assigned to, c2. However, if
student s3 is moved, this opens a seat at c2, which would then be claimed by student s4. Then,
moving s4 to this open seat would violate the minimum quota at c3. Thus, ESDA may still be
constrained nonwasteful, and this is in fact the case.

What remains is a discussion of fairness. In ESDA, standard schools use the school specific
priorities and extended schools use the master list. If s is rejected from a standard school c,
every student at that c must have a higher priority at that school than s. If at the completion of
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the algorithm (and back in the original market) c has exactly pc students, then no students were
assigned to c∗, and hence the master list was never used to allocate students to c. If there are
more than pc students assigned to c, then s has a lower priority on �ML than any student who
received c∗ and a lower priority on �c than any student who received c. Because seats are assigned
according to �ML at c only if |µ(c)| > pc, ESDA is p-fair.

Recall from the previous section that as σ is raised, the definition of σ-fairness becomes stronger
and moves closer to the full fairness of Definition 3, which is achieved when σ = q. Since ESDA is
only p-fair, the question remains whether we can find another mechanism that is more fair. The
following theorem shows that p-fairness is the best we can achieve, if we insist on strategyproofness
and even only constrained nonwastefulness. Note that the result is actually quite strong: even
though the “more fair” relation is not complete, ESDA does in fact fairness-dominate every other
strategyproof and constrained nonwasteful mechanism.

Theorem 4. Fix quota vectors p and q. If a strategyproof and constrained nonwasteful mechanism
is σ-fair, then σc ≤ pc for all c ∈ C.

The proof is given in Appendix C. The following corollary is immediate.

Corollary 1. ESDA is more fair than any other strategyproof and constrained nonwasteful mech-
anism.

3.2 Multi-stage DA (MSDA)

Our second modification, the multistage deferred acceptance (MSDA) algorithm, satisfies only a
weaker definition of fairness, but will also be fully nonwasteful. As the name suggests, MSDA is run
in several stages. At the beginning of any stage we temporarily reserve a group of students from the
market and run standard DA on the remaining submarket. The number of students participating
in the submarket is never too many to jeopardize the feasibility of the overall match; no matter
how they are allocated, the sum of the minimum quotas remaining after the given stage will never
exceed the number of students that remain unmatched after that stage. The assignments from
the given stage are made final, and we reduce the minimum and maximum quotas accordingly.
Now, we are left with a subproblem of unmatched students and updated minimum and maximum
quotas. We repeat the process until all students are assigned. The master list is used to determine
what students will be reserved.

To formally define MSDA, we return to the original market (S,C, p, q,�S,�C). Recall that
without loss of generality, the master list ranks students s1 �ML s2 �ML · · · �ML sn. Start by
setting R0 = S, p1

c = pc, and q1
c = qc for all c ∈ C. Let r1 =

∑
c∈C p

1
c be the number of students
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that will be reserved in R1. Let µ denote the matching that will be produced at the end of MSDA.
Initially, set µ(i) = ∅ for all i ∈ S ∪ C.

Multi-stage deferred acceptance

Stage k ≥ 1

1. Set Rk = {sn−rk+1, sn−rk+2, . . . , sn}, i.e., Rk is the is the set of rk students with the lowest
priority according to �ML.

(a) If Rk−1 \ Rk 6= ∅, run the standard DA mechanism on the students in Rk−1 \ Rk with
maximum quotas for the schools equal to (qkc )c∈C .

(b) If Rk−1\Rk = ∅, run the standard DA mechanism on the students in Rk with maximum
quotas for the schools equal to (pkc )c∈C .

2. Let µk be the matching from step 2, and set µ = µ ∪ µk.

3. Define new quotas for each school:

(a) qk+1
c = qkc − |µk(c)|,

(b) pk+1
c = max{0, pkc − |µk(c)|}.

(c) rk+1 =
∑

c∈C p
k+1
c .

The two substages of step 1 (1(a) and 1(b)) warrant some explanation. Most rounds will use step
1(a), except for possibly the last round of the algorithm. Step 1(b) is inserted to ensure that the
algorithm technically finishes. In 1(a), if, once we remove enough students to satisfy the minimum
quotas, there are still students left (Rk−1 \Rk 6= ∅), we run the standard DA mechanism on those
students who were not removed. However, if it happens at any stage that the number of students
remaining is exactly equal to the minimum quotas, then “removing” these students would leave us
with an empty set and the algorithm would run indefinitely. This explains step 1(b). Also note
that the first time step 1(b) is executed will be the last round of the algorithm.

In the above description, we determine the number of students who must be removed in each
round as the sum of the minimum quotas. We may, however, be able to remove even fewer
students and still ensure feasibility. For example, assume there are 15 students and 10 schools,
with all minimum quotas equal to 1 and all maximum quotas equal to 2. Then, we actually need
only to remove 4 students, not 10, because no matter how the first 11 students are allocated, the
minimum quotas of at least 6 schools must be satisfied, and the remaining 4 students can fill the
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minimum quotas of the other 4 schools. We have thus developed a dynamic programming based
method to precisely calculate the smallest possible value for rk, which will make MSDA close to
standard DA as possible. This procedure is described in Appendix H.

We now provide an example of how MSDA works.

Example 2. We use the same instance of Example 1 to illustrate how MSDA works. Since
the sum of the minimum quotas is

∑
c∈C pc = 3, we temporarily remove students s3, s4, and s5

according to ML. We then run the standard DA mechanism with no minimum quotas on students
s1 and s2. At the end of this first stage, the assignments are as follows:(

c1 c2 c3

∅ {s1, s2} ∅

)

Thus, there are three students remaining, and neither c1 or c3 have reached their minimum
quotas. We temporarily remove s4 and s5, and run DA on s3 alone. At the end of this stage, the
assignments are as follows: (

c1 c2 c3

s3 {s1, s2} ∅

)
Now, only c3 has not reached its minimum quota, so we reserve s5 and run DA on s4 alone,

who chooses to attend c2. Finally, the only student remaining is s5, and minimum quota of 1 at
c3 still needs to be filled, so s5 is assigned c3. The final outcome is then(

c1 c2 c3

s3 {s1, s2, s4} s5

)

Recall the notation that σ0 = (0, . . . , 0).

Theorem 5. The MSDA mechanism is:
(i) (weakly group) strategyproof
(ii) nonwasteful and
(iii) σ0-fair

Strategyproofness follows because within each stage the standard DA algorithm is fair, and,
fixing the preferences of the other students, no student s can affect the stage at which she partici-
pates in the algorithm. Nonwastefulness holds because the only time a student would be unable to
get into a school with empty seats is the last round of the algorithm, in which case she is forced to
go to a school that will be filled exactly to its minimum quota and thus cannot be feasibly moved.
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For fairness, consider a student s who prefers c to his assignment. If c was full by the end of a
stage before the one in which s participated, then all students at c are higher than s on the master
list. Suppose c still has at least one seat available by the stage that s participates, and label this
stage k. Since s does not obtain c, c must have rejected s in k. This means that every student
matched to c in k must have a higher priority at c than s. Therefore, every student at c must
either have a higher priority than s according to either �c or �ML, and so no student can form a
σ0-blocking pair.

σ0-fairness is strictly weaker than p−fairness, which is satisfied by ESDA. While σ0-fairness is
a weak concept in that it very stringently limits the number of blocking pairs students are allowed
to form, it is the price of nonwastefulness. We can once again ask whether we can do better than
σ0-fairnes while still retaining strategyproofness and nonwastefulness. Analogous to the case for
ESDA, the result below shows that such a mechanism does not exist. It is interesting to note that
simply imposing nonwastefulness alone is enough to limit a mechanism to being at most σ0-fair;
strategyproofness is not used in the result below.

Theorem 6. Fix quota vectors p and q. If χ is nonwasteful and σ−fair, then σ = σ0.

This again leads to the following corollary:

Corollary 2. MSDA is more fair than any other nonwasteful mechanism.

3.3 Relationship to the standard DA and serial dictatorship algorithms

Both the ESDA algorithm and MSDA algorithm are closely related to the standard DA algorithm,
and in fact approach the standard DA algorithm as the minimum quotas are varied. For example,
for ESDA, as the minimum quotas are increased, more and more seats are assigned according to the
idiosyncratic school priority lists and less to the master lists. When pc = qc for all c ∈ C, all seats
are assigned according to the school priority lists, and ESDA=DA. On the other hand, when the
minimum quotas are decreased, more and more seats are assigned according to �ML. When pc = 0

for all c ∈ C, ESDA assigns all seats according to �ML, and becomes the simple serial dictatorship
(SD) mechanism. When p is close to 0, ESDA is close to the serial dictatorship with minimum
quotas (SDMQ), which proceeds just as the standard serial dictatorship, allowing students to
choose in some predetermined order (�ML) their most preferred school with seats remaining, as
long as after the student is assigned, there are enough students left to fill all remaining minimum
quota seats. If this is not the case, then the student is restricted to choose only from those schools
which have not yet reached their minimum quota. (When pc = 0 for all c ∈ C, SD, SDMQ, and
ESDA are all equivalent.)
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Figure 2: ESDA and MSDA lie on a spectrum from SDMQ to DA. The arrows point in the direction
the corresponding mechanism moves as the minimum quotas are increased.

The MSDA algorithm is the counterpart to ESDA: when the minimum quotas are high, many
students are reserved in stage 1, and the mechanism approaches SDMQ. On the other hand, when
minimum quotas are low, almost all students participate in round 1 of the algorithm, and MSDA
approaches standard DA, and the two in fact coincide when pc = 0 for all c ∈ C, since no students
are reserved. Thus, ESDA and MSDA try to remain as close to the standard DA algorithm as
possible, while making slight adjustments that ensure all minimum quotas are satisfied. It may be
helpful to think of the algorithms as part of a spectrum that has SDMQ at one end and standard
DA at the other, as in Figure 2. The arrows point in the direction the corresponding mechanism
moves as the minimum quotas increase.

4 Comparing with Artificial Caps

The new mechanisms we introduced in the previous section show the boundaries of fairness a
mechanism can achieve if we insist on at least some degree of nonwastefulness. As mentioned in
section 2.4, if we give up nonwastefulness entirely, we can simply impose artificial maximum quotas
(caps) on the schools and run standard DA, which will be strategyproof and fair. This may seem
like a natural and easy solution to the problem of minimum quotas, and is in fact used in many
matching markets, including the Japanese Medical Resident Program and possibly military cadet
matching. It may also be in use in other markets but be unobserved, because it would look like
these markets only have maximum quotas. While simple, this ad-hoc way of imposing minimum
quotas intuitively seems lacking, as it is very rigid and allows for no flexibility in assigning the
“extra” seats depending on student preferences. In this section we show that our more flexible
mechanisms which do allow for such flexibility improve upon imposing artificial caps.

The model is essentially the same as before. Once again, pc denotes the true minimum quota
at school c and qc denotes the true maximum quota at c. However, for each school c, the district
may impose an artificial maximum quota q∗c . By choosing the vector q∗ = (q∗c1 , . . . , q

∗
cm) wisely, the
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school district can ensure that no matter how the students are allocated, as long the artificial caps
q∗ are satisfied, the true quota vectors p and q will be satisfied as well.

Definition 12. The vector q∗ ensures a feasible matching if |µ(c)| ≤ q∗c ∀c ∈ C =⇒ pc ≤
|µ(c)| ≤ qc ∀c ∈ C.

In words, this definition simply says that q∗ ensures a feasible matching if, whenever matching
µ satisfies the artificial caps q∗, it also satisfies the true minimum and maximum quotas p and q.

We next identify a necessary and sufficient condition for q∗ to ensure the existence of a feasible
matching.

Definition 13. The vector q∗ is consistent with quotas p and q if the following hold for all
c ∈ C: (i) pc ≤ q∗c ≤ qc and (ii) pc ≤ n−

∑
d∈C\{c} q

∗
d.

In words, consistency requires that for every school c: (i) the artificial cap is between the true
maximum and minimum quotas (an obvious requirement) and (ii) if all other schools d are filled to
the artificial cap q∗d, then there are still enough students remaining to satisfy the minimum quota
at c. The lemma below shows that consistency is both a necessary and sufficient condition for q∗

to always ensure a feasible matching according to the true quotas p and q.

Lemma 1. q∗ ensures a feasible matching if and only if it is is consistent with quotas p and q.

Proof. For the “if” direction, assume pc ≤ q∗c ≤ qc and pc ≤ n −
∑

d∈C\{c} q
∗
d for all c ∈ C, and

that |µ(c)| ≤ q∗c for all c. |µ(c)| ≤ qc is obvious. Assume that |µ(d)| < pd for some d. We know
that

∑
c∈C |µ(c)| = n, so that

∑
c∈C\{d} |µ(c)| = n− |µ(d)| > n− pd. The first and last expressions

imply that pd > n−
∑

c∈C\{d} |µ(c)| ≥ n−
∑

c∈C\{d} q
∗
c , which is a contradiction.

For the “only if” direction, we first note that q∗c ≤ qc is immediate from the fact that q∗ ensures
a feasible matching. So, assume that |µ(c)| ≤ q∗c∀c ∈ C =⇒ pc ≤ |µ(c)| ≤ qc∀c ∈ C. Next,
assume that pd +

∑
c∈C\{d} q

∗
c > n for some d ∈ C and that |µ(c)| = q∗c∀c ∈ C \ {d}. This implies

pd +
∑

c∈C\{d} |µ(c)| > n. Now, this together with |µ(d)| ≥ pd implies that
∑

c∈C |µ(c)| > n, which
is a contradiction. Lastly, assume that pd > q∗d for some d ∈ C. In this case, it is obvious that
|µ(c)| ≤ q∗c for all c ∈ C implies |µ(d)| ≤ q∗d < pd, which is a contradiction.

We then have the following simple corollary.

Corollary 3. Let χq∗ be a mechanism such that for all �S∈ P |S|, χq
∗
(�S) respects maximum

quotas q∗ (but doe not necessarily respect any minimum quotas). If q∗ is consistent with quotas p
and q, then χq∗(�S) is a feasible matching for all �S∈ P |S|.
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Corollary 3 implies that to ensure a feasible matching, a school district can use, for example,
standard DA or TTC with maximum quotas for the schools equal to q∗. Doing so will ensure that
all of the true minimum quotas will be satisfied, and so the resulting matching will be feasible.
Note that there may be many choices of q∗ that are consistent with p and q, and at least one such
q∗ will always exist.20

While imposing artificial caps q∗ and using standard DA is feasible and will be fair, it is less
flexible than our mechanisms, since it may leave some schools below their true maximum quotas,
even though students would prefer to be moved there. This leads us to ask which mechanisms will
actually be preferred by the students. The strongest possible result we could hope to achieve is
that (either one of) our mechanisms run with the true quotas p and q Pareto dominates standard
DA with artificial caps q∗. Unfortunately, this is not the case even if all of the schools use the same
priority relation (equal, without loss of generality, to �ML). When this is true, our mechanisms
reduce to the SDMQ mechanism introduced in Section 3.

For any maximum quotas q∗, we can also define the q∗−serial dictatorship (q∗-SD), which just
runs the standard serial dictatorship with maximum quotas q∗ and no minimum quotas. Note that
q∗-SD will only produce a feasible matching if q∗ is consistent with p and q. When all schools use
the same priority relation, the standard DA algorithm (with no minimum quotas) reduces to the
q∗-serial dictatorship.

We now show that with minimum quotas, neither q∗-SD nor SDMQ Pareto dominates the
other. Let there be four schools c1, c2, c3 and c4 with minimum and maximum quota vectors
p = (1, 1, 0, 0) and q = (1, 1, 1, 1). Let there be three students s1, s2 and s3. The preferences are
as follows:

�s1 �s2 �s3
c3 c4 c2

c1 c2 c1

...
...

...

Imposing caps of q∗ = (1, 1, 0, 1) will ensure that, no matter how students are assigned, the
true minimum quotas p = (1, 1, 0, 0) will be satisfied. Running the standard serial dictatorship
with maximum quotas q∗, we find that the assignment is(

c1 c2 c3 c4

s1 s3 ∅ s2

)
20For example, take any feasible matching µ and set q∗c = |µ(c)| for all c ∈ C.
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Next, let us run the SDMQ mechanism with the true quota vectors p and q. The outcome in this
case is (

c1 c2 c3 c4

s3 s2 s1 ∅

)
This example shows that neither mechanism Pareto-dominates the other since s1 strictly prefers
the outcome of the SDMQmechanism, whereas s2 and s3 strictly prefer using the serial dictatorship
with artificial caps q∗ = (1, 1, 0, 1).21

Simulations

As the previous section showed, analytical results regarding student welfare are difficult to obtain,
and so we turn to computer simulations. To run our computer simulations, we consider a market
of n = 400 students and m = 50 schools. The maximum quotas will be equal to 15 at each school,
while the minimum quotas will be the same across schools, and will be varied from 1 to 7.22

In order to study how correlation in student preferences affects outcomes, the student prefer-
ences are constructed using a linear combination of a common value vector of cardinal utilities
and a private vector for each student. More specifically, we draw one common vector of cardinal
utilities from the set [0, 1]m uniformly at random. Label this vector uc. Then, for each student
s, we randomly draw a private vector of cardinal utilities from the same set, again uniformly at
random. Label this vector us. Then, we construct cardinal utilities for all m schools for student
s as αuc + (1− α)us, for some α ∈ [0, 1]. We then convert these cardinal utilities into an ordinal
preference relation for each student. The higher the value of α, the more correlated the student
preferences. School priorities �c are drawn uniformly at random, and the master list is without
loss of generality set to s1 �ML · · · �ML sn.

Our first experiment studies how wasteful the ACDA mechanism is compared to ESDA and
MSDA. Figure 3 plots the number of wasted seats as a function of the minimum quotas. For
ACDA, we choose artificial caps of q∗ = 8.23 The figures show that both ESDA and MSDA are
significantly less wasteful than ACDA, for both low and high correlation and for all values of
the minimum quota. Of course, MSDA is nonwasteful, and so always produces 0 wasted seats.
However, even though ESDA is only constrained nonwasteful, it still performs significantly better

21Featherstone (2011) suggests rank efficiency as an alternative welfare criterion, where mechanism χ rank-
dominates mechanism ψ if more students get their kth or higher choice under χ than under ψ for all k and all
preferences. While in the example above SDMQ rank dominates SD, this will not be true in general. However, our
simulation results below do show that on average, our mechanisms do rank-dominate imposing artificial caps.

22Minimum quotas of 7 at each school is the largest possible value that still allows for some flexibility. If pc = 8
at all c, then

∑
c∈C pc = 400 = n, and standard DA can be used.

23This is the largest (symmetric) value for the artificial caps that is consistent with quotas p and q.
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Figure 3: Nonwastefulness for α = 0.3 (left) and α = 0.6 (right).

than ACDA on this metric.
Perhaps an even better metric by which to compare these mechanisms is to look directly at

which mechanism the students prefer, in terms of the ranking of the school they receive. We
measure student welfare by plotting cumulative distribution functions of the (average) number
of students who received their kth or higher ranked school under each mechanism. For example,
in Figure 4, under ACDA with α = 0.3, about 10% of students get their first choice, 20% of
students get their first or second choice, 30% get their first or second or third choice, and so on.
Under ESDA or MSDA, significantly more students get their first choice (about 40% and 50%,
respectively, in the left-hand panel), and in fact, the rank distributions for ESDA and MSDA both
first-order stochastically dominate that for ACDA.24 Intuitively, this is happening because ESDA
and MSDA are allocating the extra seats more flexibly, taking into account student demand, and
so are able to provide students with higher choices, while ACDA simply eliminates these seats
ex-ante, forcing these students to be assigned to lower ranked schools. In summary, the students
will, on average, unambiguously prefer our more flexible mechanisms to imposing artificial caps.

As a final experiment, we compute the number of standard blocking pairs produced by our
mechanisms (in the original sense of Definition 2). Even when it is not possible to eliminate all
such blocking pairs (if, for example, we desire even a weak notion of nonwastefulness), the number
of blocking pairs is often considered a useful criterion by which to rank mechanisms, because less
blocking pairs means there will be less incentive for students to file complaints with the school
district and/or circumvent the match. Many papers have, given a set of submitted preferences,
simply looked for the allocation that minimizes the number of blocking pairs (e.g., Biró et al.
(2010) and Hamada et al. (2011)), while Abdulkadiroğlu et al. (2009) follow a similar approach

24For presentation purposes, the figures only show up to k = 15, but ESDA and MSDA do in fact first-order
stochastically dominate ACDA.
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Figure 5: Counting the number of blocking pairs under each mechanism for α = 0.3 (left) and
α = 0.6 (right).

and use the number of blocking pairs produced as a way to rank mechanisms in the context of the
New York City High School Match.

The results are shown in Figure 5 for ESDA, MSDA, and, for comparison, SDMQ. (Note that
since ACDA is fair, it will always produce 0 blocking pairs, but as discussed above, will be much
worse for the students from a welfare perspective.) From the figure, we see that MSDA performs
well when the minimum quotas are low, while ESDA performs well when the minimum quotas
are high. Both tend to perform much better than SDMQ. The intuition for these results can
be summarized by referring back to Figure 2: when the minimum quotas are low, MSDA≈DA,
and so tends to produce few blocking pairs, while ESDA≈SDMQ, and so tends to produce many
blocking pairs. When the minimum quotas are high, these results are reversed. Thus, one policy
recommendation is if blocking pairs are a large concern and the minimum quotas are low in a
market, MSDA should be used, while if the minimum quotas are high, ESDA should be chosen.

The results of our simulations can be summarized as follows. While our mechanisms do not
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eliminate all standard blocking pairs, ESDA produces relatively few blocking pairs when the mini-
mum quotas are high, while MSDA does the same when the minimum quotas are low. As a tradeoff
for allowing some standard blocking pairs, we are rewarded with a much smaller number of wasted
seats than produced by ACDA. Perhaps most importantly, MSDA and ESDA perform significantly
better on welfare grounds, as demonstrated by the CDFs. Thus, by taking into consideration the
size of the minimum quotas, we can choose a mechanism that is close to standard DA, wastes few
seats, and makes the students (relatively) well off.

5 TTC-based mechanisms

Since Gale’s top trading cycle (TTC) algorithm is also a very commonly used mechanism in
various allocation problems, and in school choice settings in particular, we now briefly note that
our extended-seat and multistage modifications can be easily applied to TTC to ensure that all
minimum quotas are satisfied. TTC-based mechanisms are useful when priorities are given a
milder interpretation and the designer is more concerned with Pareto efficiency than fairness. In
the standard model (without minimum quotas), TTC satisfies strong group strategyproofness and
Pareto efficiency. It is interesting to note that, unlike for the DA-based mechanisms, modifying
TTC for minimum quotas does not require us to weaken either of these properties: both ESTTC
and MSTTC will still be strongly group strategyproof and Pareto efficient.

5.1 Extended-seat TTC (ESTTC)

To define the ESTTC mechanism, we again consider the extended market (S, C̃, q̃, �̃S, �̃C) from
section 3. We endow all of the standard seats at school c to the student with the highest priority
according to �c, and all of the extended seats at all schools to the person with the highest
priority according to �ML. We then run the standard TTC algorithm on this market, with the
slight modification that once e extended seats have been assigned, the remaining extended seats
are taken off the market, without being assigned to anyone.

Formally, ESTTC is defined as follows.

Round 1

1. Endow all of the seats at each school c ∈ C ∪ C∗ to the student with the highest priority
according to �̃c. Each student points to the student who is endowed with the seats to her
most preferred school according to �̃s.
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2. There is at least one cycle. Assign all students involved in each cycle to the their most
preferred school and remove them. Reduce the quota of each assigned school by 1.

3. If the sum of the extended school seats assigned is weakly greater than e, then take all
remaining extended school seats off the market (without assigning them to anyone).

Round k > 1

1. All remaining seats at school c ∈ C ∪ C∗ are endowed to the highest priority student
according to �̃c. Each remaining student points to the student who is endowed with the
seats to her most preferred remaining school according to �̃s.

2. There is at least one cycle. Assign all students involved in each cycle to the corresponding
schools and remove them. Reduce the quotas of each assigned school by 1.

3. If the sum of extended school seats assigned in rounds 1 through k is weakly greater than
e, then take any remaining extended school seats off the market (without assigning them to
anyone).

Let µ̃ denote the resulting matching in the extended market. We then define µ, the output of
ESTTC in the original market, as follows: (i) If µ̃(s) = cj ∈ C, then µ(s) = cj and (ii) If
µ̃(s) = c∗j ∈ C∗, then µ(s) = cj.

Note that since all c∗ ∈ C∗ use the same preference ordering, all seats at all extended schools
are assigned to the same student, and so at most one extended seat can be assigned in each round.
This is necessary to ensure that ESTTC always produces a feasible matching and assigns exactly
e students to extended schools.

Example 3. We consider the same instance as Example 1 to illustrate the ESTTC mechanism.
In round 1 of ESTTC, student s1 holds all of the extended seats in his endowment, which we denote
c∗ in the figure below. In round 1, there is only 1 cycle (a self-cycle with s5), and s5 is assigned
the lone standard seat at c1:

In round 2 of the ESTTC mechanism, there are no more standard seats at c1, so s3 points to
c∗1, which is owned by s1. Student s1 points to c2, which is owned by s3, and a cycle is formed
between s1 and s3:
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In round 3, since there are no more standard seats at c2, s2 points to c∗2 and forms a cycle with
herself:

Since two students have been assigned to extended seats, the remaining extended seat at c∗3 is
taken off of the market. Thus, in the final round, s4 is endowed only with a standard seat at c3.
She points to herself and is assigned this seat. This gives the following matching in the extended
market

µ̃ =

(
c1 c∗1 c2 c∗2 c3 c∗3

s5 s3 s1 s2 s4 ∅

)
.

Mapping this back to the original market, the final output of ESTTC is

µ =

(
c1 c2 c3

{s3, s5} {s1, s2} s4

)
.

Just as for standard TTC, ESTTC will be strongly group strategyproof and Pareto efficient.
Since Pareto efficiency implies nonwastefulness, ESTTC is also nonwasteful. Of course, ESTTC
will not satisfy any of our definitions of fairness.

Theorem 7. The ESTTC mechanism is:
(i) strongly group strategyproof and
(ii) Pareto efficient.

The proof of group strategyproofness follows a similar argument to Pápai (2000). We should
additionally note that, since TTC-based mechanisms dispense with fairness entirely, the master
list need not have any inherent meaning in ranking the students. We simply need such a list to
run the mechanism, because we must have an endowment ordering for the extended seats. The
master list could then be decided purely randomly to make the mechanism as fair as possible from
an ex-ante perspective.

32



5.2 Multi-stage TTC (MSTTC)

The MSTTC mechanism is defined in exactly the same way as the MSDA mechanism, only replac-
ing “DA” with “TTC” everywhere in the definition of MSDA.25 Just as for ESTTC, MSTTC will
be both strongly group strategyproof and Pareto efficient.

Theorem 8. The MSTTC mechanism is:
(i) strongly group strategyproof and
(ii) Pareto efficient.

6 Conclusions

This paper has introduced minimum quotas into a standard school choice model and filled a gap in
the literature by providing strategyproof mechanisms that also perform well on other metrics (ef-
ficiency, fairness, and nonwastefulness) and are greatly preferred by the students to the commonly
used solution of imposing artificial caps.

The matching problem with minimum quotas is complex. No one mechanism will be able to
satisfy all desirable properties, and so we conclude by providing some guidance to policymakers
on which mechanism to choose, depending on the details of the setting and the goals they have in
mind. If fairness is not at all a concern, then either ESTTC or MSTTC are the proper choice, as
they will be strongly group strategyproof and Pareto efficient. However, in many settings, fairness
is important, and in these situations the choice of mechanism becomes more complicated, as both
fairness and nonwastefulness cannot be achieved simultaneously. Our ESDA and MSDA mecha-
nisms were designed to be as fair as possible, while still providing some degree of nonwastefulness.
As a simple heuristic, when the minimum quotas tend to be low, the MSDA mechanism should be
chosen, as it will be close to the standard DA mechanism; when the minimum quotas tend to be
high, on the other hand, the ESDA mechanism approaches the standard DA mechanism, and thus
will tend to be more fair.
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A Proof of Theorem 2

The proof is by example. Let there be 3 students s1, s2, s3 and three schools c1, c2, c3. The priorities
and quotas at the schools are as follows:

�c1 �c2 �c3
s1 s1 s1

s3 s3 s2

s2 s2 s3

pc 1 1 0
qc 1 2 1

Consider the following preferences:

�s1 �s2 �s3
c2 c3 c3

c1 c2 c2

c3 c1 c1

Since s1 is ranked highest by each school, fairness requires that he be assigned a seat at his
most preferred school c2. (If he is not, then at least one student is assigned there since pc2 = 1, and
so (s1, c1) would be a blocking pair.) Then, by feasibility, exactly one s2 or s3 must be assigned
to the remaining minimum quota seat at c1. First consider the case in which s2 is assigned to c1.
Then, s3 cannot be assigned to c3, because s2 would then form a blocking pair with c3 (since she
has higher priority than s3 at c3). Thus, the assignment must be that shown in the boxes above.
Now, consider the following monotonic transformation of these preferences:

�s1 �′s2 �s3
c2 c1 c3

c1 c3 c2

c3 c2 c1
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Since this is a monotonic transformation of the original preferences, the assignment cannot
change, and must remain that shown by the boxes. However, under these preferences, the boxed
assignment is not constrained nonwasteful, which is a contradiction. The case in which s3 is
assigned to c1 is proved similarly.

B Proof of Theorem 3

Proof of constrained nonwastefulness
To show constrained nonwastefulness, we first generalize Definition 4 to claiming an empty seat

in round k of the ESDA algorithm. Recall that µk denotes the (tentative) matching at the end of
round k, and µ∗k denotes the set of students assigned to extended seats at the end of round k.

Definition 14. Say that student s claims an empty seat at school c in round k if s has been
rejected from c by the end of round k and |µk(c)| < q̃c.

Additionally, let r be the earliest round for which |µ∗r| = e, and define sk = mins∈µ∗k s and
s̄k = max{s ∈ S : s claims an empty seat at some school cin round k}, where the min and max
are both taken with respect to �ML. That is, sk is the worst student (accroding to ML) who is
assigned an extended seat in round k, and s̄k is the best student who claims an empty seat at the
end of round k.

We note some useful facts which are trivial properties of the ESDA mechanism.
Fact 1. |µ∗r′ | = e for all r′ ≥ r.
Fact 2. If r′′ ≥ r′ ≥ r, then, sr′′ �ML sr′ .
Fact 3. If sr′ �ML s for some s ∈ S and some r′ ≥ r, then µr′′(s) ∈ C for all r′′ ≥ r′, and, in

particular, µ̃(s) ∈ C (i.e., s is never again assigned an extended seat).
To prove part (i), we first show the following lemma.

Lemma 2. (a) If there exists some student s who claims an empty seat at some school c in round
k ≥ r, then, for all k′ ≥ k, there exists a pair (s′, c′) ∈ S × C̃ such that s′ claims an empty seat at
school c′ in round k′.

(b) If k ≥ r, then sk �ML s̄k.
(c) s̄k+1 �ML s̄k for all k ≥ r.

Proof. Part (a): It is clear that no student ever claims an empty seat at any standard school
c ∈ C, so we only consider c∗ ∈ C∗. The proof is by induction. Consider the first statement.
Let s claim an empty seat at c∗ in round k, and consider k′ = k + 1. If |µk′(c∗)| < q̃c∗ , then the
statement is obviously true. Thus, consider the case where |µk′(c∗)| = q̃c∗ . Some student must
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have applied (and been accepted) at school c∗, so that |µk′(c∗)| > |µk(c∗)|. Since k ≥ r, we have∑m
j=1 |µk(c∗j)| = e =

∑m
j=1 |µk′(c∗j)|. This, together with |µk′(c∗)| > |µk(c∗)| implies that there

exists some school c′∗ such that q̃c′∗ ≥ |µk(c′∗)| > |µk′(c′∗)|, i.e., some student s′ was rejected from
c′∗, which now has an empty seat. So, s′ claims an empty seat at c′∗ in round k′, which proves the
first statement.

Part (b): Let c∗ be the school at which s̄k claims an empty seat in round k. There are two cases.
First, assume that s̄k was rejected from c∗ in a round r′ ≤ k in which c∗ was below its capacity
q̃c∗ . In this case, it must be that s̄k was rejected because e other students ranked higher on the
master list were accepted at other schools in C∗, which means sr′ �ML s̄k. Fact 2 then implies
that sk �ML s̄k. Next, assume that s̄k was rejected from c∗ in a round r′ ≤ k in which c∗ was
exactly at its minimum quota. If r′ ≥ r, then an argument exactly as in the previous case shows
the result. Thus, the last case we need to consider is when r′ < r. When this is true, then s̄k was
rejected from c∗ because it was filled with q̃c∗ other students ranked higher than s̄k on �ML. There
must be some round r′′ such that r′ < r ≤ r′′ ≤ k at which some student s′′ is rejected from c∗

and the number of students assigned to c∗ drops strictly below q̃c∗ . This happens because e other
students are assigned to schools in C∗, i.e., sr′′ �ML s

′′. However, we also have that s′′ �ML s̄k ,
and Fact 2 then gives sk �ML s̄k.

Part (c): Again consider some k ≥ r and k′ = k + 1, and assume that s̄k �ML s̄k′ . Let c∗ be
the school that s̄k claims an empty seat at in round k. Then, s̄k must no longer claim an empty
seat at this school in round k′. So, q̃c∗ = |µk′(c∗)| > |µk(c∗)|. By an argument similar to part (a),
there is a student s′ such that s′ ∈ µ∗k, but s′ /∈ µ∗k′ and s′ claims an empty seat at some school
c′∗ in round k′. Part (b) implies that s′ �ML s̄k. However, the fact that s′ claims a seat at school
c′∗ in round k′ imply that s̄k′ �ML s

′. This, together with the assumption that s̄k �ML s̄k′ , imply
that s̄k �ML s

′, which is a contradiction.

Consider the student s1 with the highest priority according to �ML who claims an empty seat.
(If no such student exists, the matching is clearly nonwasteful.) Let the school he claims a seat at
be denoted c0, and his assignment under the ESDA algorithm be denoted µ(s1) = c1. Let r1 be
the round of ESDA at which s1 is rejected from c0∗.

Note that r1 ≥ r, and that sr1 �ML s
1. (If neither of these holds, then s1 was rejected from c0∗

because it was filled to capacity with q̃c0∗ = qc0∗ − pc0∗ students ranked higher than s1 according
to �ML. But, since c0∗ has an empty seat at the end of the algorithm, one of these students must
have been rejected at some round, which contradicts the fact that s1 is the highest priority student
who claims an empty seat.)

If |µ(c1)| = pc1 , then we are done. If not, then some student is assigned to c1∗ in the extended

39



market. We first show that this implies that there exists some student s2 who was rejected from
c1∗.

Assume not. We know that some student s2 6= s1 applies to c1∗ at some round r2 > r1.26 Since
we assumed that s2 was accepted at c1∗, we know that some other student s′ was rejected at round
r2 from some school c′∗ at which he claims an empty seat in round r2 + 1. Note that s′ �ML s

1.
Also, by definition, s̄r2+1 �ML s

′. Let rend be the last round of the ESDA algorithm. By Lemma
2, we have that s̄rend

�ML s̄r2+1 �ML s
′ �ML s

1. However, this contradicts the fact that s1 is the
highest ranked student on ML that claims an empty seat. So, there exists some student s2 6= s1

who was rejected from c1∗ at some round r2 > r1.
Let µ(s2) = c2. If |µ(c2)| = pc2 , we are done. If not, then some student is assigned to c2∗

in the extended market. As previously, we can show that this implies there exists some student
s3 6= s1, s2 who was rejected from c2∗.

Assume not. Then, we know that some s3 6= s1, s2 applies to c2∗ in some round r3 > r2, by
a similar argument as in Footnote 26. Since we assumed that s3 was not rejected from c2∗, we
know that some other student s′ was rejected from some school c′∗, at which he claims an empty
seat in round r3 + 1. We again have s′ �ML s

1, and, as above, s̄rend
�ML s̄r3+1 �ML s

′ �ML s
1,

which contradicts the fact that s1 was the highest ranked student on ML that claims an empty
seat. Thus, there exists some s3 6= s1, s2 who is rejected from c2∗ at some round r3 > r2 > r1.

Continuing this line of reasoning, we eventually find a chain of students and schools
(c0, s1, c1, s2, c2, . . . , sK , cK) such that sk is rejected from c(k−1)∗ and µ(sk) = ck, where |µ(cK)| =

pcK .
Proof of strategyproofness
We consider the extended market and allow students to misreport their preferences over both

standard and extended seats. If no student has a profitable deviation in the extended market, it
immediately follows that no student has a profitable deviation in the original market.

To show strategyproofness in the extended market, we associate it with the many-to-one match-
ing with contracts model of Hatfield and Milgrom (2005). In this model, there are three types
of agents: on one side of the market is the students S = {s1, . . . , sn}. On the other side is
a set of schools, which are divided into two types. There are m standard schools in the set
C = {c1, . . . , cm}. There is also one additional school λ, which captures all of the extended seats.
Thus, the set of agents in the extended model is S∪C∪{λ}. There is in addition a set of contracts,

26Let r̂1 be the round at which s1 applies to his final match c1 (note that by Fact 3, s1 must be assigned a
standard seat at c1). If c1 is filled entering round r̂1, then some s2 is rejected and applies to c1∗ in r2 = r̂1+1 > r1.
If c1 is not full entering r̂1, then no student has yet applied to c1∗. However, since we assume that some student is
assigned to c1∗, we know that some student must apply to c1∗ at some r2 ≥ r̂1 > r1.
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X = S×{C∪C∗}. Each contract x specifies a student and the school he is assigned. Each contract
is associated with one student xS ∈ S and one school xC∪{λ} ∈ C ∪ {λ}.

It is important to note the distinction between agents (S∪C∪{λ}) and contracts (S×{C∪C∗}),
even though similar notation is used for both. In particular, while the extended schools C∗ may
be involved in a contract x ∈ X, they are not agents in this model. For example, consider the
contract that assigns student s1 to a standard seat at school c1. This contract would be written
x = (s1, c1), and is associated with student s1 and school c1 (xS = s1 and xC∪{λ} = c1). However,
now consider the contract x′ = (s1, c

∗
1) that assigns student s1 to an extended-seat at school c∗1.

While student s1 is assigned to school c∗1 under this contract, contract x′ is associated with the
fictitious school λ, since c∗1 is no longer an agent (that is, x′S = s1, but x′C∪{λ} = λ, not c∗1).

Given �̃s, we define preferences over contracts in the standard way. For two contracts x = (s, c)

and x′ = (s, c′), then (with slight abuse of notation) we say x �̃s x′ in the model with contracts if
and only if c �̃s c′ in the extended market.

For each school c ∈ C ∪ {λ}, we define a choice rule, Chc(·), which specifies the contracts that
c would choose when offered a set of contracts. If c is a standard school (c ∈ C), then, for X ′ ⊆ X,
Chc(X ′) is simply the pc contracts associated with c corresponding to the most preferred students
according to �c.

If c = λ, we must be slightly more careful. Given two contracts x and x′ associated with
λ, define a relation �̃λ lexicographically, first ordering contracts according to the rank of the
associated student on �ML and breaking ties with any arbitrary ordering of the schools, which we
denote �C̃ .27 Formally, for any two contracts x = (s, c) and x′ = (s′, c′), define �̃λ as follows:

(s, c)�̃λ(s′, c′) ⇐⇒ s �ML s
′ or (s = s′ and c �C̃ c

′)

Then, given any subset of contracts X ′ ⊆ X, Chλ(X ′) is the e highest �̃λ−ranked contracts
such that:

(i) xC∪{λ} = λ for all x ∈ Chλ(X ′)
(ii) |{(s, c) ∈ Chλ(X ′) : c = c∗j}| ≤ q̃c∗j for all c∗j ∈ C∗

(iii) x, x′ ∈ Chλ(X ′) and x 6= x′ =⇒ xS 6= x′S.
In words, (i) says that every contract chosen must be associated with school λ; (ii) says that

each extended school can accept no more than its maximum quota of students, q̃c∗j ; and (iii) says
that each student can be chosen only once.

The following definitions are taken from Hatfield and Milgrom.
27Practically, the ordering �C̃ is irrelevant, as each student will only offer one contract at a time, and hence �ML

is all that will be needed to order the contracts; however, �C̃ is needed to formally define Chλ(·).
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Definition 15. A choice rule Chc(·) satisfies the substitutes condition if there do not exist contracts
x, x′ ∈ X and a set of contracts X ′ ⊆ X such that x′ /∈ Chc(X ′ ∪ {x′}) and x′ ∈ Chc(X ′ ∪ {x, x′}).

Definition 16. A choice rule Chc(·) satisfies the law of aggregate demand if for all X ′ ⊆ X ′′ ⊆ X,
we have |Chc(X ′)| ≤ |Chc(X ′′)|.

It is clear that if c 6= λ, Chc(·) satisfies both the substitutes condition and the law of aggregate
demand. The following lemma shows the case where c = λ.

Lemma 3. Chλ(·) satisfies both substitutes and the law of aggregate demand.

Proof. That Chλ(·) satisfies the law of aggregate demand is trivial. For substitutes, consider a set
X ′ and a contract x′ such that x′ /∈ Chλ(X ′ ∪ {x′}). Then, consider the set X ′ ∪ {x′, x}. The
addition of x means that, when the contracts in X ′∪{x′, x} are ordered according to �̃λ, contract
x′ is assigned a (weakly) lower ranking than it was when only the contracts in X ′ ∪ {x′} were
considered. Thus, by the definition of the choice rule, contract x′ /∈ Chλ(X ′ ∪ {x′, x}).

The lemma above is required to use Theorem 11 of Hatfield and Milgrom (2005). In addition,
we must define an appropriate notion of stability and student optimal stable match. Note that
the stability defintion below applies only to the model with contracts, and is not related to our
fairness criteria. To make this point clear, we use the terminology “Hatfield-Milgrom stable”.

Definition 17. A set of contracts X ′ ⊆ X = S×{C ∪C∗} is Hatfield-Milgrom stable (HM-stable)
if (i) it is individually rational, (ii) there exists no standard school c ∈ C and student s ∈ S such
that (s, c)�̃sx and (s, c) ∈ Chc(X ′ ∪ {(s, c)}), where x is the contract s receives in X ′ (if any)
and is ∅ otherwise, and (iii) there exists no c∗ ∈ C∗ and student s ∈ S such that (s, c∗)�̃sx and
(s, c∗) ∈ Chλ(X ′ ∪ {(s, c∗)}), where x is the contract s receives in X ′ (if any) and is ∅ otherwise.

Given a set of individually rational contracts X ′, define the corresponding matching in the
extended model by setting µ̃(s) = c if and only if (s, c) ∈ X ′. Lastly, we must show that ESDA is
equivalent to the student optimal HM-stable mechanism in the associated model with contracts.
For a definition of the student optimal HM-stable mechanism, see Hatfield and Milgrom (2005).

Theorem 9. ESDA produces the same matching as the student optimal HM-stable mechanism in
the associated model with contracts.

Proof. As shown in Hatfield and Milgrom (2005), the student optimal HM-stable match in the
matching with contracts model can be found via the cumulative offer process. Then, note that
each round of ESDA corresponds to a round of the cumulative offer process. More precisely, if s
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applies to school c ∈ C∪C∗ at some round of ESDA, then at the same round of the cumulative offer
process, contract (s, c) is proposed. Lastly, for each standard school c, the set of students held at a
round of ESDA corresponds to the set of contracts held by that school at the corresponding round
of the cumulative offer process. For school λ, the set of students accepted at the extended schools
at a round of ESDA corresponds to the set of contracts held by agent λ at the corresponding round
of the cumulative offer process.

Theorem 10. The ESDA mechanism is weakly group strategyproof for students.

Proof. Under substitutes and the law of aggregate demand, any mechanism that selects the student
optimal HM-stable match in the associated model with contracts is weakly group strategyproof
(Hatfield and Milgrom (2005); Hatfield and Kojima (2009); Hatfield and Kominers (2012)). Since
ESDA selects the student optimal HM-stable match, it is weakly group strategyproof for the
students.

Proof of p−fairness
We show that no student s can form a p−blocking pair with any school c′. Consider any pair

of students s and s′ such that c′ �s µ(s), where c′ = µ(s′).
Case (i): |µ(c′)| > pc′. If µ̃(s′) ∈ C, student s must have applied to school µ̃(s′) in the extended

market and been rejected, which means s′ �c′ s. Thus, (s, c′) cannot form a p-blocking pair. If
student µ̃(s′) ∈ C∗, then we have s′ �ML s, and, since |µ(c′)| > pc′ , (s, c′) once again do not form
a p−blocking pair.

Case (ii): |µ(c′)| = pc. Since |µ(c′)| = pc, we know that µ̃(s′) ∈ C. Thus, student s must have
applied to µ̃(s′) in the extended market and been rejected, which means s′ �c′ s and again (s, c′)

cannot form a p−blocking pair.

C Proof of Theorem 4

The proof proceeds by reducing the market of n students and m schools to a smaller market of
two students and three schools. We construct preferences and priorities for students s1, . . . , sn−2

such that σ−fairness pins down their assignments. These students can then be removed from
the problem, leaving students sn−1 and sn to be assigned. We then examine all possible feasible
allocations for these students, and show none of these allocations are simultaneously σ-fair and
(constrained) nonwasteful.

Before beginning the main proof, let us show the following lemma, which will allow us to
determine in the submarket which schools have minimum quota seats remaining and which schools
have flexible seats remaining.
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Lemma 4. Given any school x, there exist distinct schools y, z 6= x such that py > 0 and pz < qz.

Proof. There are three possible cases: (i) px = 0; (ii) 0 < px < qx; and (iii) 0 < px = qx.
First, assume that (i) holds. Since px = 0, we know that px < qx (or else just delete school

x from the problem). By assumptions (A2) and (A3), we know that there exist distinct schools
u, v 6= x such that pu > 0 and pv > 0, and that there exists some school w 6= x such that pw < qw.
Define z := w. If w = u, then let y := v. If w = v, let y := u. If w 6= u, v, let y := w.

Next, assume (ii) holds. Assumptions (A2) and (A3) imply that there exists a school u 6= x

such that pu > 0 and a school v 6= x such that pv < qv. If the result is false, it must be that u = v

and all other schools w 6= x, u are such that both pw = 0 and pw = qw, i.e., qw = 0, which is a
contradiction.

Last, assume 0 < px = qx. Then, we know that there exist distinct u, v 6= x such that pu < qu

and pv < qv, and there exists some school w 6= x such that pw > 0. Define y := w. If w = u, then
define z := v; if w = v, then let z := u.

Now we proceed to the main proof.
The proof is by contradiction. Let χ be strategyproof, constrained nonwasteful, and σ−fair

for some σ such that σc > pc for at least one c ∈ C, and note that this implies that pc < qc.
Without loss of generality, denote this school as school c2. From the previous lemma, we know
there exist schools two other schools which we call c1 and c3 such that pc1 > 0 and pc3 < qc3 .
Consider a market with n = 1 +

∑
c∈C pc students. Recall s1 �ML · · · �ML sn. For the remainder

of the proof, consider a priority profile for which s1 �ci · · · �ci sn for i 6= 2, and for c2, we have
s1 �c2 · · · �c2 sn−2 �c2 sn �c2 sn−1 (i.e., the positions of sn and sn−1 are reversed).

Let S ′ ≡ S \ {sn−1, sn}. We partition the set S ′ into m sets, S ′1 . . . S ′m, one corresponding to
each school. Let S ′1 consist of the pc1 − 1 highest ranked students in S ′ according to �c1 . Then, let
S ′2 consist of the pc2 highest ranked students in S ′ \S ′1 according to �c2 . Continuing, let S ′i consist
of the pci highest ranked students in S ′i = S ′ \ (∪i−1

k=1S
′
k) for i = 3, . . . ,m.

For the remainder of the proof, we consider preference profiles such that for all i = 1 . . .m,
if s ∈ S ′i, then s ranks ci first (the rankings of the remaing schools are irrelevant). Since S ′1
contains the highest ranked students in S according to �c1 and all students in S ′1 prefer c1 the
most, σ−fairness implies that all students in S ′1 must be assigned to c1. If not, some student
s ∈ S ′1 is assigned to a school worse than c1 for him, and some s′ /∈ S ′1 is assigned c1 (since we
know at least pc1 students are assigned to c1 in any feasible matching). But then, (s, c1) form a
σc1−blocking pair (for any σc1), which contradicts that the mechanism was σ-fair. Then, since S ′2
contains the highest ranked students in S ′ \ S ′1 according to �c2 and all students in S ′2 rank c2
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first, by σ-fairnesss again, all students in S ′2 must be assigned to c2. Continuing in this manner,
all students in S ′i must be assigned to school ci for all i, regardless of the preferences of sn−1 and
sn.

Last, we consider the assignments of sn−1 and sn under various preferences for these two
students. Thus, we effectively have a subproblem with 3 schools with the following quotas: school
c1 has one minimum quota seat that must be filled, while all other schools are filled exactly to their
minimum quota. Because we know pc2 < qc2 and pc3 < qc3 , schools c2 and c3 each have (at least)
one seat remaining. Consider the following preferences, and the priorities as described above:28

�sn−1 �sn
c2 c3

c3 c2

c1 c1

...
...

�c1 �c2 �c3
...

...
...

sn−1 sn sn−1

sn sn−1 sn

Given quotas, it is clear that exactly one student must be assigned to c1.29

Begin with the case that sn−1 is assigned to c1. If sn were assigned to c3, then (sn−1, c3) would
form a σc3−blocking pair. Thus, the mechanism must choose the (sub)matching shown in the
boxes above. Now, consider the following monotonic transformation of (�sn−1 ,�sn):

�′sn−1
�sn

c1 c3

c2 c2

c3 c1

...
...

Because the mechanism is strategyproof and this is a monotonic transformation, the assignment
must remain that shown in the boxes. However, this is not constrained nonwasteful.

Lastly, consider the case that sn is assigned to c1 under the original preferences (�sn−1 ,�sn).
If sn−1 is assigned to c2, then (sn, c2) would form a σc2−blocking pair because sn �c2 sn−1 and
σc2 > pc2 by assumption, and under the matching indicated, pc2 + 1 agents receive c2 (so part (iii)
of the definition of a σc-blocking pair holds vacuously). Thus, the choice must be that shown in
boxes below:

28The ordering of the remaining schools is irrelevant, and so we indicate only the ordering of c1,c2 and c3.
29Since c1 has an empty minimum quota seat, at least one student must be assigned there. However, assigning

both students to c1 would not be constrained nonwasteful. It is also not constrained nonwasteful to assign either
of the students to a school other than c1, c2, or c3.
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�sn−1 �sn
c2 c3

c3 c2

c1 c1

...
...

Once again consider a monotonic transformation of these preferences:

�sn−1 �′sn
c2 c1

c3 c3

c1 c2

...
...

By strategyproofness, the assignment must remain that in the boxes. However, this is clearly
not constrained nonwasteful.

D Proof of Theorem 5

Proof of weak group strategyproofness
To show weak group strategyproofness, note that in each stage of MSDA, the standard DA

algorithm is used, the latter being weakly group strategyproof (Hatfield and Kojima (2009)).
Assume the theorem is false, and consider a set of students S ′ that collectively do strictly better
by misreporting �′S′ than by reporting the truth, �S′ . Let S ′′ ⊆ S ′ be the set of students that
are matched in the earliest stage under the true preferences �S′ , and denote this stage as stage k.
Note that there is no way in which S ′ can misreport so that a member of S ′ is matched earlier than
stage k. Thus, under any misreport, the students in S ′′ will be assigned in stage k. However, all
of the students in S ′′ becoming strictly better off by misreporting �′S′′ in stage k is a contradiction
to the fact that the standard DA algorithm is weakly group strategyproof. Thus, MSDA is weakly
group strategyproof.

Proof of nonwastefulness
Next, we show that MSDA is nonwasteful. Assume not. Then, there exists a student s who

justifiably claims an empty seat at some school c. Let k be the stage of the mechanism at which
student s participates, and qkc be the quotas at school c during that stage. There are two cases.

(i) In stage k, step 1(a) of the algorithm is executed. In this case, the quotas for the standard
DA algorithm run in stage k are qkc = qk−1

c −|µk−1(c)| = qc−
∑

k′<k |µk
′
(c)|. Since s is not assigned
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a seat at c in k, then, since we are just using DA, it must be that qkc students were assigned at
stage k to school c. However, adding this to the number of students assigned in stages k′ < k, we
see that |µ(c)| = qc, and thus there are no empty seats at school c.

(ii) In stage k, step 1(b) of the algorithm is executed. In this case, the quotas are max{0, pc −∑
k′<k |µk

′
(c)|}. In particular, we have |µ(µ(s))| = pµ(s) for all s assigned in stage k. Thus, student

s cannot be moved without violating the minimum quotas at µ(s), and so s cannot justifiably
claim an empty seat at c.

Proof of σ0−fairness
That MSDA is σ0-fair is shown in the discussion immediately following Theorem 5.

E Proof of Theorem 6

The structure of the proof is similar to Theorem 4: we will reduce the problem to a submarket of
3 students and 3 schools, and show that there is no way to allocate these three students that is
nonwasteful and σ-fair for any σ 6= σ0.

Let χ be nonwasteful and σ-fair, and assume that σc > 0 for at least one c ∈ C. We will
show that this leads to a contradiction. Without loss of generality, denote this school c2, and
let σc2 = max{1, pc2}.30 By Lemma 4 (setting x = c2 in the lemma), we know that there exists
two other schools, which we label c1 and c3, such that pc1 > 0 and pc3 < qc3 . Consider a market
with n = 1 +

∑
c∈C pc students. Recall that s1 �ML · · · �ML sn. For the remainder of the

proof, we consider the following priority profile: �c=�ML for all c 6= c2, while �c2 is defined as
s1 �c2 s2 �c2 · · · �c2 sn �c2 sn−1 �c2 sn−2 (i.e., the priority of the last three students is reversed).

There are two cases, depending on whether pc2 is equal to 0 or not.
Case (i): pc2 > 0

Let S ′ = S \ {sn−2, sn−1, sn}. We partition S ′ into m sets, S ′1, . . . , S ′m as follows: S ′1 consists of
the pc1−1 highest ranked students according to �c1 (=�ML) and S ′2 consists of the pc2−1 highest
ranked students in S ′ \ S ′1 according to �c2 . For the remaining schools, let S ′k consist of the pck
highest ranked students in the set S ′ \ ∪k−1

i=1 S
′
k according to �ck .

For the remainder of the proof, we consider preference profiles such that for all k = 1, . . . ,m, if
s ∈ S ′k, then s ranks school ck first. Since S ′1 contains the highest ranked students in S according
to �c1 and all student in S ′1 rank c1 first, σ-fairness implies that all students in S ′1 are assigned
to c1. If this were not the case, then some student s ∈ S ′1 is assigned to a school worse than c1

for him, and some s′ /∈ S ′1 is assigned c1 (since we know at least pc1 students are assigned to c1).
30The max function is needed here for the case in which pc2 = 0. By remark 1, defining σc2 in this way is sufficient

to show the impossibility.
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But then, (s, c1) forms a σc1-blocking pair (for any σc1), which contradicts that the mechanism
was σ-fair. Now, S ′2 contains the highest ranked students in S ′ \ S ′1 according to �c2 , and so, by
similar logic, all students in S ′2 must be assigned to c2. Continuing in this manner, all students in
S ′k must be assigned to school ck for all k, regardless of the preferences of {sn−2, sn−1, sn}.

Last, we consider the assignments of {sn−2, sn−1, sn}. Now, we know that schools c1, c2 and c3

satisfy the following (where µ′ denotes the tenative matching, before {sn−2, sn−1, sn} are assigned,
as described in the previous paragraph): |µ′(c1)| = pc1 − 1 < qc1 , |µ′(c2)| = pc2 − 1 < qc2 , and
pc3 = |µ′(c3)| < qc3 . So, we have effectively reduced the problem to a subproblem with three
students and three schools in which c1 and c2 have one minimum quota seat remaining and c3 has
at least one empty seat. Consider the following preferences for {sn−2, sn−1, sn} and the priorities
for the schools, as given above:

sn−2 sn−1 sn

c2 c3 c3

c3 c2 c2

c1 c1 c1

...
...

...

c1 c2 c3

...
...

...
sn−2 sn sn−2

sn−1 sn−1 sn−1

sn sn sn

Clearly, two of the three students must be assigned to the minimum quota seats, one at c1 and
the other at c2. There are 3 possible ways to choose these two students:31

Subcase (a): sn−2 and sn−1 are assigned minimum quota seats. Nonwastefulness then
requires that sn be assigned c3, and so there are two possible allocations here. One is shown by
the boxes, the other by the circles.

sn−2 sn−1 sn

c2 c3 c3©
c3 c2© c2

c1© c1 c1

...
...

...

Note, however, that under the circled allocation, both sn−2 and sn−1 can form a σc3-blocking
pair with c3 for any σc3 , since they are both ranked higher than sn according to �ML and �c3 .
Likewise, under the boxed allocation, sn−1 can again form a σc3-blocking pair with c3. Thus,
neither matching is σ-fair.

Subcase (b): sn−2 and sn are assigned the minimum quota seats. In this case, sn−1

must be assigned to c3 by nonwastefulness, and there are again two possible allocations:
31Note that in what follows, exactly one student must be assigned to c1, or else the matching would be wasteful.
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sn−2 sn−1 sn

c2 c3© c3

c3 c2 c2©
c1© c1 c1

...
...

...

Here, under the circled allocation, sn−2 forms a σc3-blocking pair with c3. Under the boxed
allocation, sn forms a σc2-blocking pair with c2, because sn �c2 sn−2 and |µ(c2)| = pc2 = σc2 , and
so sn need not be higher on �ML to form a blocking pair. Thus, neither matching is σ-fair.

Subcase (c): sn−1 and sn are assigned the minimum quota seats. Here, nonwastefulness
requires sn−2 be assigned c2. Once again, the two possible allocations are boxed/circled.

sn−2 sn−1 sn

c2© c3 c3

c3 c2 c2©
c1 c1© c1

...
...

...

However, here it is simple to see that under either allocation, |µ(c2)| = pc2 + 1, and thus both
matchings are not nonwastaeful, as either sn−1 or sn can be feasibly moved to the more preferred
c3.

Case (ii): pc2 = 0

Recall that here, σc2 = max{1, pc2} = 1. Everything is the same as before, except that we let
define S ′ = S \ {sn−1, sn} (i.e., sn−2 now belongs to S ′), and S ′2 is empty. This then leaves us
with a smaller submarket of two students, sn−1 and sn, and three schools, c1, c2, and c3, where
|µ′(c1)| = pc1 − 1 (so c1 has one minimum quota seat left to fill) and pc2 ≤ |µ′(c2)| < qc2 (so c2 has
no minimum quotas to fill, but has at least one empty seat), and |µ′(c3)| < qc3 . Again, consider
the following preferences for sn−1 and sn, and the priorities from above:

sn−1 sn

c2 c3

c3 c2

c1 c1

...
...

c1 c2 c3

...
...

...
sn−2 sn sn−2

sn−1 sn−1 sn−1

sn sn−2 sn

There are again two cases, depending who is assigned to the minimum quota seat at c1. If sn−1

is assigned to c1, then nonwastefulness requires that sn be assigned to c3. However, sn−1 would
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then form a σc3-blocking pair with c3 for any σc3 , because sn−1 �ML sn and sn−1 �c3 sn. If sn is
assigned to c1, then nonwastefulness requires that sn−1 be assigned to c2. However, sn then forms
a σc2−blocking pair with c2 because sn �c2 sn−1 and |µ(c2)| = 1 = σc2 , so part (iii) of the definition
of a σc2-blocking pair holds vacuously (i.e., sn need not be higher on �ML).

F Proof of Theorem 7

Part (i)
Before beginning the proof of this theorem, let us introduce some notation similar to Pápai

(2000). In the original market, we let χ(�) denote the matching under preferences �. In the
extended market, we represent the corresponding matching as ψ(�̃) where �̃ are derived from
�. Because �̃ and � can be unambiguously inferred from each other, we henceforth suppress the
notation �̃ and exclusively write �. We keep the two functions ψ and χ to distinguish between
assignments in the extended and original markets: χ(�) are the final assignments in the original
market and ψ(�) are the final assignments in the extended market under �. Let us define Wk(�)

as the set of individuals assigned in round k and W k(�) as the set of individuals assigned in all
rounds weakly earlier than k. Thus,W k′(�) =

⋃k′

z=1Wz(�). Let us define Fk(�) as the set of seats
taken off the market32 in round k and define the union as F k′(�) =

⋃k′

z=1 Fz(�). Let Tk(j,�) be
j’s most preferred available school in round k under preferences �. The cycle to which a student
s belongs in a round k under preferences � is denoted Sk(s,�). Suppose there is a cycle involving
s and s′ under � at round k where s points to s′. When we cut the cycle between s and s′, we
obtain a “chain” starting at s′ and ending at s, which we denote as Hk(s

′, s,�). Given profile
�, os(�S\{s}) is the set of schools (in the extended market) that s can obtain by reporting any
preferences. Ek(s,�) denotes the endowment (both extended and standard seats) for individual s
at the start of round k given preferences �. Finally, the function N(x, y, z) is how many seats in
school(s) x are off the market by the end of round y under submitted profile z. So, for example,
N(ca ∪ c∗a, k,�) = qca means that by the end of k, when submitted preferences are �, there are no
more seats available at schools ca or c∗a. The following two definitions are from Pápai (2000).

Definition 18. The Assurance Rule (AR): Suppose under preferences �, school c ∈ C̃ is in the
endowment of s ∈ S in round k, i.e. c ∈ Ek(s,�). Then, if s is not assigned in k, c ∈ Ek+1(s,�).

Definition 19. The Twin Inheritance Rule (TIR): Consider two sets of preferences, � and �′,
such that for some k, (i) for all k′ ≤ k, W k′(�) = W k′(�′), (ii) for all s ∈ W k(�), ψs(�

32A seat is “taken off the market” if it is assigned to an individual or if it is an unassigned extended seat that
must be but made unavailable to every unmatched student in order to achieve feasibility.
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) = ψs(�′), and (iii) �Wk(�) = �′
Wk(�′). Then, for all s unassigned by the end of round k,

Ek+1(s,�) = Ek+1(s,�′).

AR and TIR are properties of endowment structures. AR states that a student never loses
seats from her endowment as long as she is unassigned. She may “inherit” seats as the algorithm
proceeds; if so, these seats must not be assigned to any students and come from the endowments
of students just assigned in the round prior to the inheritance. TIR states that as long as the
matches made under two sets of preferences “look the same” in each round up to the start of a
given round k, then the endowments of all unassigned students are the same at the start of round
r as well.

Note that TIR implies something in particular for two preferences �≡ (�s,�S\{s}) and �′≡
(�′s,�S\{s}). If k ≡ min{r, r′} − 1 where r and r′ are the rounds in which s is matched under
� and �′ respectively, then since all students other than s have the same preferences under both
profiles, (i) for all k′ ≤ k, W k′(�) = W k′(�′), (ii) for all s ∈ W k(�), ψs(�) = ψs(�′), and (iii)
�Wk(�) = �′

Wk(�′). Hence, by TIR, for all s unassigned by the end of round k, Ek+1(s,�) =

Ek+1(s,�′).

Lemma 5. The ESTTC mechanism satisfies the assurance rule and the twin inheritance rule.

Proof. Suppose c ∈ Ek(s,�). By definition, no student unassigned by the start of round k has
a higher priority at c than s. As the algorithm proceeds, the subset of unassigned students
gets weakly smaller, hence, for all k′ ≥ k, if s is unassigned by the start of k′, then s must
still have the highest priority at c of all unassigned students at the start of round k′, and thus
c ∈ Ek′(s,�). Suppose � and �′ are two sets of preferences such that for some k, (i) for all
z ≤ k, W z(�) = W z(�′), (ii) for all i ∈ W k(�), ψi(�) = ψi(�′), and (iii) �Wk(�) = �′

Wk(�′).
Furthermore, suppose that c ∈ Ek+1(s,�). Then, c still has seats on the market by the start
of round k + 1 under �. Because the sets of students matched until this point in the algorithm
(along with their assignments) are equivalent under both sets of preferences, c still has seats on
the market by the start of round k + 1 under �′. Furthermore, c ∈ Ek+1(s,�) implies no student
unassigned by the start of round k+ 1 has a higher priority at c than s under �. Because the sets
of unassigned students by the start of round k + 1 are equivalent under both sets of preferences,
no student unassigned by the start of round k+ 1 has a higher priority at c than s under �′, thus
implying c ∈ Ek+1(s,�′) by definition of how ESTTC runs.

Definition 20. A mechanism χ is nonbossy if for any �, s, and (�′s,�S\{s}) such that χs(�) =

χs(�′s,�S\{s}), χ(�) = χ(�′s,�S\{s}).

Pápai (2000) proves the following lemma.
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Lemma 6. A mechanism χ is strongly group-strategyproof if and only if it is strategyproof and
nonbossy.

Given the above lemma, we prove that ESTTC is both strategyproof and nonbossy in order to
prove strong group strategyproofness. We start by proving that if a student s is unassigned by the
end of round k of ESTTC and all of the seats at school ca are taken off the market by the end of
round k given some set of reported preferences by all other students and the preferences reported
by s, then ca is unobtainable for s regardless of any other preferences reported by s provided that
the other students do not change their reports. Lemma 7 states this property formally. With this
lemma, proving strategyproofness is straightforward. We then proceed to prove nonbossiness.

Lemma 7. If s /∈ W k(�) and N(ca ∪ c∗a, k,�) = qca, then we have {ca, c∗a} ∩ os(�S\{s}) = ∅.

Proof. Fix �, s, and k as in the statement. Suppose there exists �′s such that ψs(�′s,�S\{s}
) ∈ {ca, c∗a}. Let k′ be such that s ∈ Wk′+1(�′s,�S\{s}). Let us show that k′ < k always holds.
Note that � and (�′s,�S\{s}) are equivalent up to the end of round min{k, k′}. Assume k ≤ k′.
Then, since s is unmatched by the end of k under both profiles, N(ca ∪ c∗a, k,�) = qca , implies
N(ca ∪ c∗a, k, (�′s,�S\{s})) = qca , which is a contradiction. So k′ < k.

Second, by TIR, both profiles have identical endowments at the start of k′ + 1. Since N(ca ∪
c∗a, k

′, (�′s,�S\{s})) < qca , we have N(ca∪c∗a, k′,�) < qca and there must exist s′ such that {ca, c∗a}∩
Ek′+1(s′,�) 6= ∅. If s′ = s so that {ca, c∗a}∩Ek′+1(s,�) 6= ∅, then by AR, {ca, c∗a}∩Ek+1(s,�) 6= ∅
since s /∈ W k(�). This, however, contradicts the assumption that N(ca ∪ c∗a, k,�) = qca . If s′ 6= s,
then since s gets ca or c∗a in k′ + 1 under (�′s,�S\{s}), there must be a cycle of individuals such
that in round k′ + 1, s′ and s are removed under (�′s,�S\{s}). The cycle includes s pointing to s′.
If we cut the cycle between s and s′ so that it becomes a chain with s′ at one end and s at the
other, the chain is directed from s′ all the way to s. Call this chain Hk′+1(s′, s, (�′s,�S\{s})).

The same schools have been assigned by the end of round k′ under both profiles. As a result,
when k′ + 1 starts, everyone other than s has the same top remaining choice under both profiles.
Thus, there exists a chain Hk′+1(s′, s,�). AR implies that the chain Hk′+1(s′, s,�) will persist
as long as s is unassigned. Given that s /∈ W k(�), the chain Hk+1(s′, s,�) will form, meaning
s′ /∈ W k(�) . However, {ca, c∗a} ∩ Ek+1(s′,�) 6= ∅ contradicts N(ca ∪ c∗a, k,�) = qca .

Theorem 11. ESTTC is strategyproof.

Proof. Suppose that χ is a manipulable ESTTC rule. Then there exist s, � and �′s such that
χs(�′s,�S\{s}) �s χs(�). Let χs(�′s,�S\{s}) = ca and χs(�) = cb for notational simplification.
Because ca �s cb, there exists k such that s /∈ W k(�) and N(ca ∪ c∗a, k,�) = qca . In other words,
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s was not able to obtain ca or c∗a by the time he was matched. Therefore {ca, c∗a} ∩ os(�S\{s}) = ∅
by Lemma 7, which is a contradiction.

Theorem 12. ESTTC is nonbossy.

Proof. Fix �, s, and �′s such that χs(�) = χs(�′s,�S\{s}). Let s ∈ Wk(�) and s ∈ Wk′(�′s,�S\{s}).
We prove nonbossiness by showing for any �, s, and (�′s,�S\{s}) such that ψs(�) = ψs(�′s,�S\{s}),
we have ψ(�) = ψ(�′s,�S\{s}). Without loss of generality, we assume k ≤ k′. We know that for
all s′ ∈ W k−1(�), ψs′(�) = ψs′(�′s,�S\{s}). We will first show that ψs′(�) = ψs′(�′s,�S\{s}) for
all s′ ∈ Wk(�). We then proceed by induction to show that for all rounds z > k, ψs′(�) = ψs′(�′s
,�S\{s}) for all s′ ∈ W z(�).

Showing ψs′(�) = ψs′(�′s,�S\{s}) for all s′ ∈ Wk(�):

We know F k−1(�) = F k−1(�′s,�S\{s}) implies that for all s′ /∈ W k−1(�) ∪ {s} that Tk(s′,�
) = Tk(s

′, (�′s,�S\{s})) (i.e. everybody in round k, except student s, points to the same school
under � and (�′s,�S\{s}) because the same seats and schools are remaining at the start of k under
� and (�′s,�S\{s})). Hence, Wk(�) \ Sk(s,�) ⊆ Wk(�′s,�S\{s}). (If k = k′, then we know that
χs(�) = χs(�′s,�S\{s}) implies it’s a strict subset; if k < k′, then the sets are equal.) For all
s′ ∈ Wk(�) \ Sk(s,�), ψs′(�) = ψs′(�′s,�S\{s}).

Case 1: k = k′

If k = k′, then χs(�) = χs(�′s,�S\{s}) implies ψs(�) = ψs(�′s,�S\{s}).33 Then, we have
Wk(�) = Wk(�′s,�S\{s}), and for all s′ ∈ Wk(�), ψs′(�) = ψs′(�′s,�S\{s}).

Case 2: k < k′

If k < k′, thenWk(�′s,�S\{s}) = Wk(�)\Sk(s,�). Since s ∈ Wk′(�′s,�S\{s}), Ek(s,�) = Ek(s, (�′s
,�S\{s})), and Ek(s, (�′s,�S\{s})) ⊆ Ek′(s, (�′s,�S\{s})), we have Ek(s,�) ⊆ Ek(s, (�′s,�S\{s})).

Subcase 1: Sk(s,�) = {s}
If ψs(�) = χs(�), then it must be that ψs(�′s,�S\{s}) = χs(�′s,�S\{s}). If ψs(�) 6= χs(�), then it
must be that ψs(�′s,�S\{s}) 6= χs(�′s,�S\{s}). Thus, in either case, we have ψs(�) = ψs(�′s,�S\{s}
).

33Note that this argument rests on t = t′. For two profiles � and �′ and student i, it is always the case that
ψi(�) = ψi(�′) implies χi(�) = χi(�′). However, the converse is not always true.
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Subcase 2: Sk(s,�) = {s, . . . , s′} where s 6= s′

Suppose ψs(�) ∈ Ek(s′,�). Then, we know there exists a chain directed from s′ ∈ Sk(s,�) all the
way to s, and that this chain is the same under both profiles: Hk(s

′, s,�) = Hk(s
′, s, (�′s,�S\{s})).

By AR, we know that this chain will persist such that Hk(s
′, s, (�′s,�S\{s})) = Hk(s

′, s, (�′s,�S\{s}
)). We know that under �, s pointed to s′ in round k and the cycle Sk(s,�) was removed. If
ψs(�) = χs(�), then we know that χs(�) = χs(�′s,�S\{s}) implies that s must point to s′ in k′

under (�′s,�S\{s}), and thus, ψs(�) = ψs(�′s,�S\{s}). If ψs(�) 6= χs(�), then we know that by
the start of round k, there were no more regular seats on the market at school χs(�) under both
profiles. s points to s′ in round k under � and the extended seats are in the endowment of s′.
Thus, χs(�) = χs(�′s,�S\{s}) implies that s must get an extended seat by pointing to s′ in k′

under (�′s,�S\{s}), and thus, ψs(�) = ψs(�′s,�S\{s}).

Therefore, we have shown that k < k′ implies ψs(�) = ψs(�′s,�S\{s}), and thus, that the cycle
Sk(s,�) carries through and is removed in k′.

Thus, we have shown that ψs′(�) = ψs′(�′s,�S\{s}) for all s′ ∈ Wk(�). Assume k is not the
last round under �, since otherwise the proof would be finished.

Showing that for all rounds z > k, ψs′(�) = ψs′(�′s,�S\{s}) for all s′ ∈ W z(�):

We now show by induction that all assignments made in later rounds are the same under
both profiles. Fix z > k such that Wz(�) 6= ∅ (so someone is matched in stage z). Assume
that for all s′ ∈ W z−1(�), ψs′(�) = ψs′(�′s,�S\{s}) (inductive step). There exists some cy-
cle Sz(h1,�) = {h1, . . . , hg} such that for all i = 1, . . . , g, ψhi(�) ∈ Ez(hi+1,�), where we let
hg+1 = h1. Note that s /∈ Sz(h1,�) (because s was matched in round k under �, and z > k).
Fix ī ≤ g (where ī − 1 = g if ī = 1). Then ψhī−1

(�) ∈ Ez(hī,�). Then, for any student s′

with higher priority at school ψhī−1
(�) than student hī, we know that s′ ∈ W z−1(�), and hence,

ψs′(�) = ψs′(�′s,�S\{s}).

Then, for all z′ such that hī /∈ W z′−1(�′s,�S\{s}), we either have ψhī−1
(�) ∈ Ez′(hī, (�′s,�S\{s}))

or ψhī−1
(�) ∈ Ez′(s′, (�′s,�S\{s})) for some s′ 6= hs̄, where s′ is a student with higher priority at

ψhī−1
(�) than hī. This means that

N(ψhī−1
(�), z′ − 1, (�′s,�S\{s})) < q̃ψhī−1

(�)
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Since this holds for all hi with i = 1, . . . , g, then for all z′ such that hi /∈ W z′−1(�′s,�S\{s}), we
have,

N(ψhi(�), z′ − 1, (�′s,�S\{s})) < q̃ψhi
(�)

For all i = 1, . . . , g, we define zi such that hi ∈ Wzi(�′s,�S\{s}) holds. Since for all s′ ∈ W z−1(�
), ψs′(�) = ψs′(�′s,�S\{s}), we have for all i that ψhi(�) �̃hi ψhi(�′s,�S\{s}). If there was some
i such that ψhi(�′s,�S\{s})�̃hiψhi(�), then it must be that ψhi(�′s,�S\{s}) was not available in
z under �. In other words, the assignments of the set of subjects comprising W z−1(�) are such
that no other student can receive ψhi(�′s,�S\{s}) and have the final matching be feasible. Hence,
if the students comprising W z−1(�) get the same assignments under (�′s,�S\{s}), then there is
no way that hi could obtain ψhi(�′s,�S\{s}) under (�′s,�S\{s}), which is clearly a contradiction.
Therefore, we must have that ψhi(�) �̃hi ψhi(�′s,�S\{s}).

Suppose that ψhi(�) �̃hi ψhi(�′s,�S\{s}). Then, it must be that ψhi(�) is no longer available
by the time that hi is matched under (�′s,�S\{s}). This means that N(ψhi(�), zi − 1, (�′s,�S\{s}
)) = q̃ψhi

(�). This, however, contradicts our previous result that for all hi with i = 1, . . . , g and for
all z′ such that hi /∈ W z′−1(�′s,�S\{s}), we have

N(ψhi(�), z′ − 1, (�′s,�S\{s})) < q̃ψhi
(�)

Consequently, for all i, ψhi(�) = ψhi(�′s,�S\{s}). Since this holds for every Sz(h1,�) 6= ∅, it
follows that for all s′ ∈ W z(�), ψs′(�) = ψs′(�′s,�S\{s}). Therefore, ψ(�) = ψ(�′s,�S\{s}) by
induction, and thus, χ(�) = χ(�′s,�S\{s}).

For the final step, we apply Lemma 6 to conclude that ESTTC is strongly group strategyproof.
Part (ii)
Let µ denote the output of ESTTC, and suppose that it is inefficient. Then, there must be

some alternative matching ν such that ν(s) �s µ(s) for all s, strictly for some s. Let S ′ = {s ∈
S : ν(s) �s µ(s)} be the set of students who are strictly better off under ν, and let S ′′ ⊆ S ′ be
the students such that no student in S ′ was matched at an earlier round of ESTTC (there may be
several such students). Call the round at which the students in S ′′ were assigned k, choose some
s′ ∈ S ′′, and let ν(s′) = c. Then, since s′ did not receive c under matching µ, it must be that, the
following are true (in the extended market):

(i) |µk−1(c)| = q̃c
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and either:
(ii) |µk−1(c∗)| = q̃c∗ or (iii) |µ∗k−1| = e

Note that both (ii) and (iii) may hold. By (i), there are q̃c students assigned to (regular) school
c by the beginning of round k. Note that each of these students must also receive c under ν (they
must be weakly better off under ν by Pareto dominance, and cannot be strictly so since they are
not members of S ′′, and thus must receive the same school under µ and ν).

Finally, there are two cases, depending on whether (ii) or (iii) holds. First, assume that (ii)
holds. By a similar argument, each of the q̃c∗ students assigned to c∗ by the beginning of round k
must also receive c (in the original market) under ν. Combining this with the previous paragraph,
we see that under ν, there are q̃c + q̃c∗ + 1 = qc + 1 students assigned to c (where the +1 comes
from student s′), which is a contradiction to the feasibility of ν.

Last, assume that (iii) holds. Let C ′ = {c′ ∈ C : ∃s ∈ S s.t. µ̃(s) = c′∗} be the set of schools
such that some student is assigned to them through an extended seat under ESTTC. Since all
extended seats are assigned before round k, we know that all students assigned schools in C ′ must
receive the same school under ν. Thus, note that |ν(c′)| ≥ |µ(c′)| for all c′ ∈ C ′ and, at school c,
we have |ν(c)| ≥ |µ(c)|+ 1. These two inequalities give:

|ν(c)|+
∑

c′∈C′\{c}

|ν(c′)| > |µ(c)|+
∑

c′∈C′\{c}

|µ(c′)|

For all c′ /∈ C ′ ∪ {c}, we have |µ(c′)| = pc′ , and, since ν is feasible, we need |ν(c′)| ≥ |µ(c′)| for all
such schools. Adding this to the equation above, we get

|ν(c)|+
∑

c′∈C′\{c}

|ν(c′)|+
∑

c′ /∈C′∪{c}

|ν(c′)| > |µ(c)|+
∑

c′∈C′\{c}

|µ(c′)|+
∑

c′ /∈C∪{c}

|µ(c′)|

The RHS is equal to n, and so we have

|ν(c)|+
∑

c′∈C′\{c}

|ν(c′)|+
∑

c′ /∈C′∪{c}

|ν(c′)| > n

which is clearly a contradiction.

G Proof of Theorem 8

Part (i)
Lemma 6 shows that strong group strategyproofness is equivalent to strategyproofness and
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nonbossiness. We first show that MSTTC is strategyproof. Consider a student s and preference
profiles � and (�′s,�S\{s}). Student s cannot affect the stage in which he is matched,34 and so is
matched in stage k under both profiles. Furthermore, the assignments made in all stages before
k are identical under both profiles, and so the submarket at stage k in which s participates is the
same under both profiles. It is well-known that TTC is strategyproof on this submarket (see, for
example, Abdulkadiroğlu and Sonmez (2003)), and thus MSTTC is strategyproof as well.

For nonbossiness, let χ denote the MSTTC algorithm, and suppose that χs(�′s,�S\{s}) = χs(�
). Let k be the stage in which s is assigned when he submits his true preferences �s. Note that for
all s′ assigned in stages k′ < k, we have χs′(�′s,�S\{s}) = χs′(�). This implies that the submarkets
in which s participates in stage k are equivalent under both profiles. Since the problem that s faces
in stage k is equivalent to a standard multiple-copy TTC problem, which is nonbossy, we know that
χs(�′s,�S\{s}) = χs(�) implies that, for all s′ participating in stage k, χs′(�′s,�S\{s}) = χs′(�).
Finally, this also implies that at the end of stage k, the set of students and schools remaining is
identical under the two profiles, and so the algorithm continues in the same manner under � or
(�′s,�S\{s}), i.e., all students s′ assigned in stages k′′ > k also have χs′(�′s,�S\{s}) = χs′(�). So,
χ(�′s,�S\{s}) = χ(�) (i.e., χ is nonbossy), and, by Lemma 6, χ is strongly group strategyproof.

The proof of part (ii), that MSTTC is efficient, follows standard TTC efficiency arguments,
and is thus omitted.

H Procedure for minimizing rk in the multi-stage mecha-

nisms

We describe a procedure to obtain the smallest rk for current minimum/maximum quotas pk =

(pkc1 , . . . , p
k
cm), qk = (qkc1 , . . . , q

k
cm), where the number of remaining students is nk = n −

∑
c |µ(c)|.

Our goal is to identify the smallest rk, such that no matter how nk − rk students are allocated, by
allocating remaining rk students appropriately, we can fill all of the remaining minimum quotas.
If we set rk =

∑
c p

k
c , it is clear that we can satisfy all of the minimum quotas. Our procedure

checks whether we can set rk smaller than
∑

c p
k
c . Let us assume when we decide to allocate n′

students, an adversary chooses the worst outcome, i.e., the adversary selects an assignment of n′

students such that minimum quotas are least satisfied. For a given n′, let us denote v(n′) as the
total number of students that are effective to reduce minimum quotas in the assignment of the

34Note that “stage” refers to the multiple stages in the MSTTC algorithm. Within each stage, there are a series
of rounds where we remove cycles, i.e. run standard TTC with multiple copies. Although s may be removed in
different rounds under the profiles, both of these rounds must be part of stage k.
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adversary. If we know v(n′) for each n′ where nk −
∑

c p
k
c ≤ n′ ≤ nk, we can select the largest

n′ such that
∑

c p
k
c − v(n′) ≤ nk − n′ holds. Then, rk is chosen as nk − n′. Now, the remaining

question is how to obtain v(·). Let us assume the adversary first solves the following optimization
problem. For a given p′, which is the total number of students that are effective to reduce minimum
quotas, find u(p′), which is the largest number of students that can be assigned without further
reducing minimum quotas. If we know u(·), we can define v(n′) as follows: v(n′) = p′, where p′

is the smallest number where u(p′) ≥ n′. We can formalize the optimization problem of finding
u(·) as the well-known knapsack problem Kellerer et al. (2004). In this formalization, we assume
that p′ represents the capacity of a knapsack. Also, we assume each school c is an item, whose
capacity is pc and its value is qc. Furthermore, since we can partially assign students to a school,
we assume there exist enough additional items, where the capacity/value of an additional item is 1.
The goal of a knapsack problem is to select items such that the total value is maximized under the
capacity constraint. When the capacity of the knapsack is bounded (which is true in our case), this
problem can be solved efficiently using a standard dynamic programming procedure. Let us show an
example. Assume there are 15 students and 10 schools. For each school c, pkc = 1 and qkc = 2. Here,∑

c p
k
c = 10. Then, we obtain u(0) = 0, u(1) = 2, u(2) = 4, . . . , u(5) = 10, u(6) = 12, . . . , u(10) =

20. Thus, we obtain v(1) = 1, v(2) = 1, v(3) = 2, v(4) = 2, . . . , v(11) = 6, v(12) = 6, . . .. Thus,
if we set n′ = 11,

∑
c p

k
c − v(n′) = 10 − 6 = 4. This is equal to nk − n′ = 15 − 11 = 4. On the

other hand, if we set n′ = 12,
∑

c p
k
c − v(n′) = 10 − 6 = 4 > 3 = 15 − 12 = nk − n′. Thus, the

largest n′ is 11 and the smallest rk is 4. In other words, if the adversary allocates 11 students, the
adversary ends up filling at least 6 seats that are effective to reduce minimum quotas. Then, the
total number of remaining minimum quotas is 4. Thus, we can assign remaining 4 students to fill
these remaining minimum quotas.

I Special cases: m = 2 or pc < qc for at most one school or

pc > 0 for at most one school

First, consider the case of m = 2. When there are only two schools, we can simply impose artificial
caps of q̃c1 = min{n− pc2 , qc1} and q̃c2 = min{n− pc1 , qc2}.35 Again, fairness and strategyproofness
are immediate from the properties of DA. In this special case we also get nonwastefulness, because
if a student s is rejected from her first choice ci, it is because ci is filled with q̃ci students in the

35Note that q̃ is consistent with quotas p and q according to Definition 13, and so by Corollary 3, DA with
maximum quotas q̃ will always produce a feasible matching. When m > 2, the natural extension of these caps,
namely q̃cj = min{qck , n−

∑
k 6=j pck}, will in general not be consistent with p and q.
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first round of DA. If q̃ci = qci , there are no empty seats at ci and so s cannot claim an empty seat;
on the other hand, if q̃ci = n− p2, then it must be that |µ(cj)| = p2, and so s cannot be moved to
ci without violating thte minimum quota at cj. It is only in the special case of m = 2 that we can
find artificial caps that will always deliver a nonwasteful assignment: when m ≥ 3, it is in general
not obvious which school should be ex-ante capped to ensure the minimum quotas at other schools
are satisfied, and if a popular school is capped, the assignment may be very wasteful.

Next, consider the case pci < qci for only ci (and pcj = qcj for all i 6= j). Here, any feasible
matching will be such that |µ(cj)| = qcj for j 6= i and |µ(ci)| = n −

∑
j 6=i pcj . Since we know

exactly how many seats will be assigned at every school in any feasible matching, standard DA
with maximum quotas q̃cj = qcj(= pcj) for j 6= i and q̃ci = n −

∑
j 6=i pcj will produce a feasible

matching for any preference profile. This will clearly be strategyproof and fair; it is nonwasteful
as well because the only “empty” seats will be at school ci. If a student s claims an empty seat,
she must be at a school cj 6= ci for which |µ(cj)| = q̃cj = pcj , i.e., s cannot be moved without
violating the minimum quota at cj.

Last, consider the case when pc > 0 for at most one school. When this is the case, consider
the following mechanism: run the ESDA mechanism, but, since c is the only school for which
pc > 0, let school c consist only of regular seats assigned according to �c. Students apply just as
for regular ESDA, but now, at most n −

∑
c∈C pc seats will be assigned at schools other than c

(which all consist of extended seats). In particular, this leaves open the possibility of strictly less
than this number of seats being assigned at other schools, if there is high demand for school c.
This mechanism will be strategyproof, nonwasteful, and more fair than both ESDA and MSDA
when pc < qc.36 Of course, such a mechanism is not feasible if there is another school c′ such that
pc′ > 0, because when there is high demand for school c, this may not leave enough students to fill
the minimum quota slots at c′.

J Alternate Definitions of Constrained Nonwastefulness

As mentioned in section 2.3, there are other natural definitions of constrained nonwastefulness
one might consider. In this section, we discuss these definitions, and show that they lead to
impossibility results, thus further justifying the definition used in the paper.

The most natural way to weaken nonwastefulness, which is followed by Ehlers et al. (2011), is to
deny a student s the opportunity to move to an empty seat if doing so would cause some other stu-
dent s′ to justifiably envy s’s new assignment. Call this property constrained nonwastefulness-

36While this mechanism is more fair than ESDA and MSDA, it is clearly not fully fair, as most of the seats are
assigned according to �ML.
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A (cnw-A). Ehlers et al. (2011) shows that this definition is in fact incompatible with strate-
gyproofness and fairness. Here, we strengthen this result by showing that it is in fact incompatible
with all but σ0-fairness. To do so, we add an additional requirement that the mechanism always
produce a matching that is Pareto efficient up to fairness: that is, µ is Pareto efficient up to
fairness if there is no other fair matching ν such that ν(s) �s µ(s) for all s ∈ S, strictly so for
some s ∈ S. In words, this says that if two students would like to trade their assignments, and this
trade does not violate the priority of any other student (not involved in the trade), then this trade
should be allowed to take place. This seems like a reasonable requirement (since the only reason
many markets forego Pareto efficiency is to achieve fairness), and indeed the MSDA mechanism
will satisfy this property. Then, since MSDA is already a mechanism that is σ0-fair, Pareto efficient
up to fairness, and fully nonwasteful (and thus is also cnw-A), there is no need to search for other
cnw-A mechanisms.

Proposition 2. Let χ be strategyproof, Pareto efficient up to fairness, and cnw-A. If χ is also
σ-fair, then σ = σ0.

Proof. Assume that χ is σ-fair for some σ ∈ Σ such that σc > 0 for some c ∈ C. Label this school
c2, and define σc2 = max{1, pc2}. The problem can be reduced to a submarket the exact same way
as in the proof of Theorem 6 (given in Appendix E).

First, consider the case where pc2 > 0. The problem can be reduced to a subproblem with three
students sn−2, sn−1 and sn and three schools c1, c2 and c3 where c1 and c2 each have one minimum
quota seat left and c2 and c3 each have (at least) one seat remaining overall. Consider the following
preferences for {sn−2, sn−1, sn} and the corresponding quotas and priorities for the schools (again,
see Appendix E for details):

sn−2 sn−1 sn

c2 c3 c3

c3 c2 c2

c1 c1 c1

...
...

...

c1 c2 c3

...
...

...
sn−2 sn sn−2

sn−1 sn−2 sn−1

sn sn−1 sn

Clearly, two of the three students must be assigned to the minimum quota seats, one at c1 and
the other at c2. There are 3 possible ways to choose these two students:37

Case (i): sn−2 and sn−1 are assigned minimum quota seats. There are two subcases
here. In the first, sn is assigned to c3, and there are two possible allocations here. One is shown
by the boxes, the other by the circles.

37Note that in what follows, we can never assign two agents to c1 since this would not be cnw-A.
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sn−2 sn−1 sn

c2 c3 c3©
c3 c2© c2

c1© c1 c1

...
...

...

Note, however, that under the circled allocation, both sn−2 and sn−1 can form a σc3-blocking
pair with c3 for any σc3 , since they are both ranked higher than sn according to �ML and �c3 .
Likewise, under the boxed allocation, sn−1 can again form a σc3-blocking pair with c3. Thus,
neither matching is σ-fair.

In the second subcase, sn is assigned to c2. There are again two possible allocations, indicated
by boxes and circles:

sn−2 sn−1 sn

c2 c3 c3

c3 c2© c2©
c1© c1 c1

...
...

...

Now, consider the following monotonic transformation of the above:

sn−2 sn−1 sn

c2 c2© c3

c1© c1 c2©
c3 c3 c1

...
...

...

By strategyproofness, the assignments cannot change. But now, neither the boxed nor the
circled allocations are cnw-A, since sn can be feasibly moved to c3 without causing any justified
envy.

Case (ii): sn−2 and sn are assigned the minimum quota seats. Now, there are two
possible subcases depending on the assignment for sn−1. First, let sn−1 be assigned to c3. There
are two allocations, indicated by boxes and circles:
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sn−2 sn−1 sn

c2 c3© c3

c3 c2 c2©
c1© c1 c1

...
...

...

Here, under the circled allocation, sn−2 forms a σc3-blocking pair with c3. Under the boxed
allocation, sn forms a σc2-blocking pair with c2, because sn �c2 sn−2 and |µ(c2)| = pc2 = σc2 , and
so sn need not be higher on �ML to form a blocking pair. Thus, neither matching is σ-fair.

Now, consider the subcase in which sn−1 is assigned to c2. The two possible allocations are
again indicated by circles and boxes:

sn−2 sn−1 sn

c2 c3 c3

c3 c2© c2©
c1© c1 c1

...
...

...

The boxed allocation is not cnw-A because sn−1 can be moved to c3 without causing any
justified envy. For the circled allocation, again consider the following monotonic transformation:

sn−2 sn−1 sn

c2 c2© c3

c1© c3 c2©
c3 c1 c1

...
...

...

The circled allocation is now not cnw-A, since sn can be moved to c3 without causing any
justified envy.

Case (iii): sn−1 and sn are assigned the minimum quota seats. There are again two
subcases. First consider that sn−2 is assigned to c2.

sn−2 sn−1 sn

c2© c3 c3

c3 c2 c2©
c1 c1© c1

...
...

...
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Under the boxed allocation, sn−1 can be moved to c3 without causing justified envy, and so the
matching is not cnw-A. For the circled allocation, consider the following monotonic transformation:

sn−2 sn−1 sn

c2© c1© c3

c3 c2 c2©
c1 c3 c1

...
...

...

By strategyproofness, the allocation must remain the circled one, but now this is not cnw-A,
since sn can be moved to c3.

Last, consider the subcase where sn−2 is assigned to c3.

sn−2 sn−1 sn

c2 c3 c3

c3© c2 c2©
c1 c1© c1

...
...

...

Under the boxed allocation, sn forms a σc2-blocking pair with c2, since |µ(c2)| = pc2 .

As for the circled allocation, consider the following monotonic transformation:

sn−2 sn−1 sn

c2 c1© c3

c3© c2 c2©
c1 c3 c1

...
...

...

Now, the circled allocation is not Pareto efficient up to fairness, because sn−2 and sn would
prefer to trade their seats, and this can be done without causing justified envy from sn−1.

Last, we consider the case when pc2 = 0, and recall that now, towards a contradiction, we
have σc2 = max{1, pc2} = 1. Everything is the same as before, except that we let define S ′ =

S \ {sn−1, sn} (i.e., sn−2 now belongs to S ′), and S ′2 is empty. This then leaves us with a smaller
submarket of two students, sn−1 and sn, and three schools, c1, c2, and c3, where |µ′(c1)| = pc1 − 1

(so c1 has one minimum quota seat left to fill) and pc2 ≤ |µ′(c2)| < qc2 (so c2 has no minimum
quotas to fill, but has at least one empty seat), and |µ′(c3)| < qc3 . Again, consider the following
preferences for sn−1 and sn, and the priorities from above:

63



sn−1 sn

c2 c3

c3 c2

c1 c1

...
...

c1 c2 c3

...
...

...
sn−2 sn sn−2

sn−1 sn−1 sn−1

sn sn−2 sn

There are again two cases, depending who is assigned to the minimum quota seat at c1. First,
assume that sn−1 is assigned to c1. Then, sn cannot be assigned c3, since sn−1 would form a
σc3−blocking pair. Thus, the allocation must be that shown in the boxes below:

sn−1 sn

c2 c3

c3 c2

c1 c1

...
...

Then, consider the following monotonic transformation:

sn−1 sn

c2 c3

c1 c2

c3 c1

...
...

Now, note that this is not cnw-A because sn can be moved to c3 without causing justified envy
from sn−1.

Last, assume that we began by assigning the minimum quota seat at c1 to sn. Then, sn−1

cannot be assigned to c2, because |µ(c2)| = 1 = σc2 , and so sn can form a σc2−blocking pair. Thus,
the allocation must be:

sn−1 sn

c2 c3

c3 c2

c1 c1

...
...

However, the following monotonic transformation then is not nonwasteful, as sn−1 can now be
moved to c2 without causing justified envy from sn:
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sn−1 sn

c2 c3

c3 c1

c1 c2

...
...

Nonwastefulness can be weakened even further by denying a student s an opportunity to move to
an empty seat if doing so would cause some other student s′ to justifiably envy the new assignment
of student s according to either �c or �ML. Formally, we say that matching µ is constrained
nonwasteful-B (cnw-B) if, whenever s claims an empty seat at some school c, there exists
another student s′ such that c �s′ µ(s′) and (i) s′ �c s or (ii) s′ �ML s. Unfortunately, cnw-B is
also incompatible with strategyproofness and all but σ0-fairness:

Theorem 13. Let χ be strategyproof, Pareto efficient up to fairness, and cnw-B. If χ is also σ-fair,
then σ = σ0.

Proof. The argument is the same as the proof of Proposition 2. Simply note that every allocation
that was not cnw-A in that proof is also not cnw-B.

Thus, since MSDA is already a mechanism that is strategyproof, Pareto efficient up to fair-
ness, σ0-fair, and fully nonwasteful, the above theorems show that there is no need to search for
mechanisms that are cnw-A or B. We can weaken nonwastefulness as in the text and find a more
fair mechanism than MSDA (namely, ESDA). However, there is no other (obvious) way to weaken
nonwastefulness that will allow us to find a more fair mechanism, and so can just use MSDA.

65


