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Stratifications with respect to actions of

real reductive groups

Peter Heinzner, Gerald W. Schwarz and Henrik Stötzel

Abstract

We study the action of a real reductive group G on a real submanifold X of a Kähler
manifold Z. We suppose that the action of G extends holomorphically to an action of the
complexified group GC and that with respect to a compatible maximal compact subgroup
U of GC the action on Z is Hamiltonian. There is a corresponding gradient map µp : X →
p∗ where g = k ⊕ p is a Cartan decomposition of g. We obtain a Morse-like function
ηp := ‖µp‖2 on X. Associated with critical points of ηp are various sets of semistable
points which we study in great detail. In particular, we have G-stable submanifolds Sβ

of X which are called pre-strata. In cases where µp is proper, the pre-strata form a
decomposition of X and in cases where X is compact they are the strata of a Morse-type
stratification of X. Our results are generalizations of results of Kirwan obtained in the
case where G = UC and X = Z is compact.

1. Introduction

In this paper we continue our study of actions of real reductive groups on Kähler manifolds [HS07a,
HS07b]. Roughly speaking, we extend Kirwan’s results on actions of complex reductive groups
[Kir84a] (see also [Nes84] for the projective case) to the real reductive case. We also obtain new
results in the complex reductive case.

Let G be a closed subgroup of the complex reductive group H. We say that G is real reductive
if there is a maximal compact subgroup U of H such that K × p → G, (k, β) �→ k exp β, is a
diffeomorphism. Here K := G ∩ U is a maximal compact subgroup of G and p := g ∩ iu where u

denotes the Lie algebra of U and g the Lie algebra of G. The Lie algebra h of H is the direct sum
u ⊕ iu. We also say that G is compatible with the Cartan decomposition H = UC = U exp iu of H.
In this paper we fix U and the real reductive subgroup G ⊂ H.

Assume that H acts holomorphically on a complex Kähler manifold Z, that the Kähler form ω
is U -invariant and that there is a U -equivariant moment mapping µ : Z → u∗. For ξ ∈ u and z ∈ Z
we set µξ(z) := 〈µ(z), ξ〉 := µ(z)(ξ). The inclusion ip ↪→ u induces by restriction a K-equivariant
map µip : Z → (ip)∗. Using a U -invariant inner product on h we can identify (ip)∗ and p, so we view
µip as a map µp : Z → p. For β ∈ p let µβ

p denote µ−iβ. Then grad µβ
p = βZ where βZ is the vector

field on Z corresponding to β and grad is computed with respect to the Riemannian metric induced
by the Kähler structure. We call µp the G-gradient map associated with µ.
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For the rest of this paper we fix a G-stable locally closed real submanifold X of Z. We may
consider µp as a mapping µp : X → p such that

grad µβ
p = βX

where the gradient is now computed with respect to the induced Riemannian metric on X. Since
X is G-stable we have βZ(z) = βX(z) for z ∈ X. Using the inner product on p ⊂ iu we define
ηp(z) := 1

2‖µp(z)‖2, z ∈ X. Let Cp be the set of critical points of ηp and Bp := µp(Cp) ⊂ p.

A strategy for analyzing the G-action on X is to view ηp as a generalized Morse function in
order to obtain a smooth G-stable stratification of X and to study its properties, as follows. Let ϕt

denote the flow of the vector field grad ηp. For β ∈ Bp consider the set S′
β := {x ∈ X | ϕt(x) has a

limit point in Cp ∩ µ
−1

p (K · β) as t goes to −∞}. From the Morse theoretical point of view, the set
S′

β is a candidate for a Morse-stratum associated with ηp. Difficulties arise, since Cp is almost never
smooth, the flow ϕt may not exist for all t � 0 and if it exists a limit point might not be unique.

We get around these difficulties by defining the relevant sets, which we call pre-strata, in terms
of semistability. Set Mp := µ−1

p (0) and SG(Mp) := {z ∈ X : G · z ∩ µ−1
p (0) �= ∅}, the (open) set of

semistable points in X. If β = 0 ∈ Bp, then we define Sβ = S0 = SG(Mp). We define Sβ for any
β ∈ Bp in a similar way, as follows.

For β ∈ p let Gβ+ := {g ∈ G : limt→−∞ exp(tβ) g exp(−tβ) exists}. Then Gβ+ is parabolic with
Levi component the centralizer Gβ of β. Note that Gβ = Kβ exp pβ is compatible with the Cartan
decomposition of UC. Let Xβ denote the set of zeros of the vector field βX . This submanifold
is stable with respect to the action of Gβ and we have a shifted gradient map µ̂pβ : Xβ → pβ,
x �→ µpβ(x) − β, whose set of semistable points is Ŝ0 := {x ∈ Xβ : Gβ · x ∩ µ−1

pβ
(β) �= ∅}. Set

Sβ+ := {z ∈ X : limt→−∞ exp(tβ) · z ∈ Ŝ0}. Then Sβ+ is Gβ+-stable. We call Sβ := G · Sβ+ the
pre-stratum associated with β ∈ Bp.

Let G ×Gβ+
Sβ+ denote the quotient of G × Sβ+ with respect to the Gβ+-action which is given

by q · (g, s) = (gq−1, q · s) for g ∈ G, s ∈ Sβ+, q ∈ Gβ+ . In § 5 we obtain our main results concerning
pre-strata.

Slice Theorem. The pre-stratum Sβ associated with β is a locally closed submanifold of X and
the natural map

G ×Gβ+
Sβ+ → Sβ

induced by the G-action on X is a diffeomorphism.

The G-action on a pre-stratum has properties similar to those of G-actions on a set of semistable
points. The role of the zero fiber of the gradient map is taken over by the set Mp(K ·β) := µ−1

p (K ·β).
Our second result (Theorem 5.4 and the subsequent discussion) is the following.

Quotient Theorem. Let β ∈ Bp.

(i) The topological Hilbert quotients (see § 3) Sβ+//Gβ and Sβ//G exist and are isomorphic and
parameterize the closed orbits.

(ii) The inclusions Mpβ(β)∩Sβ+ ⊂ Sβ+ and Mp(K ·β)∩Sβ ⊂ Sβ induce isomorphisms (Mpβ(β)∩
Sβ+)/Kβ ∼= Sβ+//Gβ and (Mp(K · β) ∩ Sβ)/K ∼= Sβ//G.

(iii) The set of minima of ηp|Sβ coincides with Mp(K · β) ∩ Sβ.
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The content of these results can be summarized as in the following commutative diagram.

Mpβ (β) ∩ Sβ+

��

����������������

� � ��

��

� �

����������������
Mp(K · β) ∩ Sβ

��

�����������������

��

Sβ+
� � ��

��

Sβ

��

(Mpβ (β) ∩ Sβ+)/Kβ ∼

∼
�������������

�������������
∼

�������������

�������������
(Mp(K · β) ∩ Sβ)/K
∼

�������������

�������������

Sβ+//Gβ ∼ Sβ//G

We also show in § 5 that a pre-stratum Sβ only depends upon K · β.

Stratification Theorem (Theorem 5.5). Let β, β̃ ∈ Bp.
(i) If Sβ̃ ∩ Sβ �= ∅ and Sβ �= Sβ̃, then ‖β̃‖ > ‖β‖.
(ii) The following are equivalent:

(a) K · β = K · β̃;
(b) Sβ = Sβ̃;
(c) Sβ ∩ Sβ̃ �= ∅.

If µp : X → p is a proper map, then we show in § 7 that for β ∈ Bp, the Morse-theoretical stratum
S′

β coincides with the pre-stratum Sβ. Moreover, we prove the following.

Theorem (Theorem 7.3). If µp : X → p is proper, then X =
⋃

β Sβ where β runs through a
complete set of representatives of K-orbits in Bp.

In § 8 we obtain the following.

Theorem (Corollary 8.5). If X is compact, then there are only finitely many pre-strata.

If X = Z is compact and G = UC, then most of the above is proved in [Kir84a]. This holomorphic
and compact case has been studied quite intensively. For example, the strata Sβ are smooth analytic
subsets of Z which are open in their closure with respect to the analytic Zariski topology, there is
only one open pre-stratum Sβ0 (if X is connected) and its complement is a closed analytic subset
of X. Also, the open pre-stratum Sβ0 is connected and is minimal in the sense that β0 is a closest
point to zero in µp(X) ⊂ p. Many of these results about open pre-strata hold more generally for
meromorphic actions of complex reductive groups on compact Kähler manifolds (see [Fuj78, Som75]).

Important applications noted in [Kir84a] are the Morse equalities in equivariant cohomology in
the holomorphic compact case. Morse inequalities also hold in our setup for general real reductive
group actions on compact manifolds. We illustrate in § 9 with simple examples that equalities are
almost never valid for actions of real reductive groups.

The simplest interesting situation where our results apply and that is not covered by previously
known results is the real projective case. Here X ⊂ P(VR) where VR is a representation space of
an algebraic semisimple real group G and X is G-stable and closed. In this setup we may choose
Z = P(V ) where V = VR ⊗ C and P(V ) is given the Fubini–Study metric.

The special case X = P(VR) and G real semisimple is treated in [Mar01]. However, there is an
error in the proof of Marian’s Theorem 1: the assumption on the bottom of p. 783 of [Mar01] that
one may assume that k1 = k2 = e is incorrect.
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Still in the projective setup we have the following result of Schützdeller [Sch06] which is new even
in the case that G = UC and which generalizes results of Kostant [Kos73], Atiyah [Ati82], Guillemin
and Sternberg [GS82], Mumford (see the Appendix of [Nes84]), Kirwan [Kir84b] and O’Shea and
Sjamaar [OS00].

Let a+ be a positive Weyl chamber for the K-action on p. Let Y be a semi-algebraic closed
G-stable subset of P(V ) which is irreducible (in a suitable sense). Then µp(Y ) ∩ a+ is a convex
polytope.

The proof of this convexity result makes essential use of the stratification obtained here.
Another related interesting simple case is where X = Z is U -homogeneous and G is a real

form of UC. Our results applied to G and also to the complex reductive group KC imply Matsuki
duality [BL02, Mat82, MUV92] (see Corollary 6.14) and may be viewed as a generalization thereof.

Most of our results in the holomorphic non-compact case are new. In this setup G is a complex
reductive group and X is a Kähler manifold. The relevant maps are holomorphic and the quotients
discussed above are Kähler spaces. In particular, a pre-stratum Sβ is G-equivariantly and biholo-
morphically identified with a holomorphic G-bundle over the compact complex manifold G/Gβ+ .

Also, in the general real case, a pre-stratum Sβ fibers over the G-homogeneous compact manifold
G/Gβ+ which now is a K-homogeneous Riemannian manifold. The open pre-strata are of special
interest. In many situations, including the case where µp has closed image, there is a minimal pre-
stratum Sβ0 in the sense that β0 is a closest point to zero in µp(X). This pre-stratum is always open
and usually serves as a good substitute for the set of semistable points which quite often is empty.

In principle there could be many different minimal pre-strata and also other open pre-strata
which are not minimal in the above sense. We do not know any example of a connected manifold X
where this is indeed the case. Any such example would imply that µp(X)∩a+ is not a convex subset
of a+. In situations where the convexity result of Schützdeller applies, the minimal pre-stratum
is unique. The uniqueness of the minimal pre-stratum holds in complete generality if X = Z and
G = UC. In this case very general convexity theorems are available [HH96].

Another interesting extreme situation occurs when there is a maximal pre-stratum Sβ. By this
we mean that β ∈ µp(X) and ‖β‖ � ‖µp(z)‖ for all z ∈ X. In this case the function ηp is constant on
Sβ and we explain in § 6 that the general theory implies that Sβ = Mp(K ·β) = µ−1

p (K ·β) and that
Sβ+ = Mp(β) = µ−1

p (β). Every G-orbit in Sβ is a K-orbit and every Gβ-orbit in Sβ+ is a Kβ-orbit.
Moreover, Sβ+ = Mp(β) is a union of connected components of Xβ and the Slice Theorem gives a
K-equivariant diffeomorphism K ×Kβ Mp(β) ∼= Sβ. These considerations generalize an old theorem
of Wolf [Wol69] (see Corollary 6.16) which says that a real form G of a complex semisimple group
acting on a generalized flag manifold has a unique closed G-obit.

2. Compatible subgroups and gradient maps

Let U be a compact Lie group. Then U has a natural real linear algebraic group structure, and we
denote by UC the corresponding complex linear algebraic group [Che46]. The group UC is reductive
and is the universal complexification of U in the sense of [Hoc65]. On the Lie algebra level we
have the Cartan decomposition uC = u + iu with a corresponding Cartan involution θ : uC → uC,
ξ + iη �→ ξ − iη, ξ, η ∈ u. The real analytic map U × iu → UC, (u, ξ) �→ u exp ξ, is a diffeomorphism.
We refer to the decomposition UC = U exp(iu) ∼= U × iu as the Cartan decomposition of UC, and
we fix it for the remainder of this paper.

Let G be a real Lie subgroup of UC. We say that G is a compatible subgroup of UC if it is
compatible with the Cartan decomposition of UC, i.e. if

K × p → G, (k, β) �→ k exp β,
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is a diffeomorphism where K = G ∩ U and p = g ∩ iu. In particular, G is a closed subgroup of UC

if and only if K is compact.
Let Z be a smooth holomorphic UC-space, i.e. Z is a complex manifold with a holomorphic

action UC ×Z → Z. We assume that Z has a Kähler form ω which is U -invariant. We also assume
that we are given a U -equivariant moment mapping µ : Z → u∗. By definition we then have

dµξ = ıξZ
ω

where µξ is µ followed by evaluation at ξ ∈ u and ξZ is the vector field on Z with one parameter
group (t, z) �→ exp tξ · z.

Now let G be a compatible closed subgroup of UC. We have the subspace ip ⊂ u and a corre-
sponding mapping µip : Z → (ip)∗ where µip is just µ followed by restriction to ip. The map µip is
the correct analogue of µ when one is considering the action of G rather than the action of UC.
In order to simplify notation we replace consideration of µip by that of µp : Z → p where

µβ
p (z) := 〈µp(z), β〉 := µ−iβ

ip (z).

Here 〈·, ·〉 denotes a K-invariant inner product on p ⊂ iu. The map µp is called the G-gradient map
associated with µ since the equation dµξ = ıξZ

ω is equivalent to grad µβ
p = βZ for all β ∈ p. Here the

gradient is computed with respect to the Riemannian metric (·, ·) on Z given by (v,w) = ω(v, Jw )
for all z ∈ Z and v,w ∈ Tz(Z) where J denotes the complex structure on T (Z).

For the rest of this paper we fix a G-stable locally closed submanifold X of Z. Of course, a
special important case is where X = Z. From now on we also denote the restriction of µp to X by
µp. We have

grad µβ
p = βX

where grad is computed with respect to the induced Riemannian structure. Similarly, ⊥ denotes
perpendicularity relative to the induced Riemannian metric on X. We have the following two
elementary results (see [HS07a, Lemmas 5.1 and 5.4]).

Lemma 2.1. Let x ∈ X and β ∈ p. Then either βX(x) = 0 or the function t → µβ
p (exp tβ · x) is

strictly increasing.

For a subspace m of uC and x ∈ X let m · x denote the subspace {βX(x) : β ∈ m} of the tangent
space Tx(X).

Lemma 2.2. For all x ∈ X we have ker dµp(x) = (p · x)⊥.

We use ‖·‖ to denote the norm functions associated to 〈·, ·〉 and (·, ·). The critical points of the
norm square function ηp(x) := 1

2‖µp(x)‖2 will be of central importance in the rest of this paper.

Lemma 2.3. Let x ∈ X and β = µp(x). Then grad ηp(x) = βX(x).

Proof. This follows from dηp(x)(v) = 〈β, dµp(x)v〉 = dµβ
p (x)(v) = (v, βX (x)).

Corollary 2.4. Let x ∈ X and set β := µp(x). The following are equivalent:

(i) βX(x) = 0;

(ii) dµβ
p (x) = 0;

(iii) dηp(x) = 0.

Let x ∈ X and let β ∈ px := {β ∈ p : βX(x) = 0}. Differentiating the action of Gx on Tx(X)
gives rise to a linear action of gx on Tx(X). Since elements of iux act as selfadjoint operators on
Tx(Z) relative to the induced Riemannian structure, our element β acts on Tx(X) as a selfadjoint
operator dβX(x) and has real eigenvalues.
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Proposition 2.5. Let v ∈ Tx(X) be an eigenvector of β ∈ px with eigenvalue λ(β). Let γ(t) be a
smooth curve in X with γ(0) = x and d

dtγ(0) = v. Then:

(i) d2

dt2 (µβ
p ◦ γ)(0) = λ(β)‖v‖2;

(ii) If x is a critical point of ηp and β := µp(x), then

d2

dt2
(ηp ◦ γ)(0) = λ(β)‖v‖2 + ‖dµp(x)(v)‖2.

Proof. We have
d

dt
µβ
p (γ(t)) =

(
d

dt
γ(t), βX (γ(t))

)
γ(t)

where (·, ·)z denotes the inner product on Tz(X) at z ∈ X. There is a neighborhood U of x ∈ X and
a local diffeomorphism Ψ: U → Tx(X) where Ψ(x) = 0 and dΨ(x) = Id. Using the local coordinates
given by Ψ we have (·, ·)γ(t) = (·, ·)x + t(·, ·)t where (·, ·)t is a bilinear form on Tx(X) depending
smoothly on t. From βX(γ(t)) = t · dβX(x) · d

dtγ(0) + t2R0(t) = tλ(β)v + t2R0(t), where R0(t) is
smooth, we obtain

d

dt
(µβ
p ◦ γ)(t) =

(
d

dt
γ(t), βX (γ(t))

)
x

+ t

(
d

dt
γ(t), βX (γ(t))

)
t

=
(

d

dt
γ(t), tλ(β)v + t2R0(t)

)
x

+ t

(
d

dt
γ(t), tλ(β)v + t2R0(t)

)
t

=
(

d

dt
γ(t), tλ(β)v

)
x

+ t2R1(t).

This implies part (i).
If β is as in part (ii), then µp(γ(t)) = β + t · dµp(x) · v + t2R2(t). Hence,

d

dt
(ηp ◦ γ)(t) =

〈
dµp(γ(t))

d

dt
γ(t), µp(γ(t))

〉

=
d

dt
(µβ
p ◦ γ)(t) + t

〈
dµp(γ(t))

d

dt
γ(t), dµp(x) · v

〉
+ t2R3(t)

and part (ii) follows.

If m is a subspace of a Lie algebra l and β ∈ l, set mβ := {ξ ∈ m : [ξ, β] = 0}.

Lemma 2.6. Let β := µp(x) and assume that β ∈ px. Let ζ ∈ k. If ζX(x) is the sum of positive
eigenvectors of β, then ζ ∈ kβ .

Proof. Let γ(t) := exp tζ · x. Proposition 2.5 implies that 0 � d2

dt2
(µβ
p ◦ γ)(0). Since µp is

K-equivariant and the K-action on p is by linear isometries we have

d2

dt2
(µβ
p ◦ γ)(0) =

d2

dt2

∣∣∣∣
0

〈exp(tζ) · µp(x), β〉 = 〈[ζ, [ζ, β]], β〉 = −‖[ζ, β]‖2 � 0.

This shows that [ζ, β] = 0, i.e. ζ ∈ kβ .

3. The slice and quotient theorems

In this section we recall for the convenience of the reader some results from [HS07a, HS07b]. For
any Lie group G, a closed subgroup H and any set S with an H-action we denote by G ×H S the
G-bundle over G/H associated with the H-principal bundle G → G/H. This is the orbit space of
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the H-action on G×S given by h · (g, s) = (gh−1, h ·s) where g ∈ G, s ∈ S and h ∈ H. The H-orbit
of (g, s), considered as a point in G ×H S, is denoted by [g, s].

Let G = K exp p be a compatible closed subgroup of UC. For β ∈ p set Mp(β) := µ−1
p (β) ⊂ X

and set Mp := Mp(0). Let x ∈ Mp. Then Gx = Kx exp px (see [HS07a, Lemma 5.5]). Since the
Gx-representation on Tx(X) is completely reducible [HS07a, Corollary 14.9], there is a Gx-stable
decomposition Tx(X) = g · x ⊕ W . Now the slice theorem for Z (see [HS07a, Theorems 14.10 and
14.21]) pulls back to the following slice theorem for X.

Theorem 3.1 (Slice Theorem). Let x ∈ Mp. Then there exists a Gx-stable open neighborhood
S of 0 ∈ W , a G-stable open neighborhood Ω of x ∈ X and a G-equivariant diffeomorphism
Ψ: G ×Gx S → Ω where Ψ([e, 0]) = x.

Actually, we have a slice theorem at every x ∈ X. Set β := µp(x) and let Gβ = {g ∈ G :
Ad g · β = β} denote the centralizer of β. Then we have a slice for the action of Gβ, as follows.

The centralizer Gβ is a compatible subgroup of UC with Cartan decomposition Gβ = Kβ exp(pβ)
where Kβ = K∩Gβ and pβ = {ξ ∈ p : ad(ξ)β = 0}. The group Gβ is also compatible with the Cartan
decomposition of (UC)β = (Uβ)C and β is fixed by the action of Uβ on uβ. This implies that the
uβ-component of µ defines a Uβ-equivariant shifted gradient map µ̂uβ : Z → uβ, µ̂uβ(z) = µuβ(z)−β.
The associated Gβ-gradient map is given by µ̂pβ : X → pβ , µ̂pβ(z) = µpβ(z)−β. This shows that the

slice theorem applies to the action of Gβ at every point x ∈ (̂µpβ )−1(0) = Mpβ(β). In particular, if
G is commutative, then we have a slice theorem for G at every point of X.

For H a subgroup of G, M a subset of Z and Y an H-stable subset of Z, we define the saturation
SH(M)(Y ) to be {z ∈ Y : H · z ∩ M �= ∅}. Here H · z denotes the closure of H · z in Y . In general,
SH(M)(Y ) is a proper subset of SH(M)(Z)∩Y . However, in the case where Y is closed in Z these sets
agree. The set SG(Mp)(Y ) is called the set of semistable points of Y with respect to µp. In [HS07b]
it has been shown that SG(Mp(β))(Z) is open in Z for every β ∈ p. For a closed G-stable subset Y
of Z this implies that SG(Mp(β))(Y ) is open in Y . Inspecting the proof in [HS07b] one can more
generally show that SG(Mp(β))(X) is open in X for any locally closed G-stable submanifold X
of Z. Since we have fixed X, we usually write SG(Mp(β)) for SG(Mp(β))(X). The set of semistable
points plays a major role in [HS07a]. One reason for this is the quotient theorem which we now
formulate.

Let Y ⊂ Z be G-stable and let x, y ∈ Y . We define a relation ∼ on Y where x ∼ y if and only if
Y ∩ G · x ∩ G · y �= ∅. If this relation is in fact an equivalence relation we denote the corresponding
quotient by Y//G and call it the topological Hilbert quotient of Y by the action of G.

Theorem 3.2 (Quotient Theorem [HS07a]). Assume that X = SG(Mp). Then the topological
Hilbert quotient X//G exists and has the following properties.

(i) Every fiber of π contains a unique closed G-orbit. Any other orbit in the fiber has strictly
larger dimension.

(ii) The closure of every G-orbit in a fiber of π contains the closed G-orbit.

(iii) Every fiber of π intersects Mp in a unique K-orbit which lies in the unique closed G-orbit.

(iv) The inclusion Mp ↪→ X induces a homeomorphism Mp/K ∼= X//G.

As in the case of the slice theorem, we have local versions of the quotient theorem. For any β ∈ p

we have the open subset of semistable points SGβ(Mpβ (β)) in X, and we can apply the quotient
theorem for the action of Gβ.
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4. Fixed points and parabolic subgroups

Let β ∈ p. We have a vector field βG whose one-parameter subgroup is given by (t, y) �→ exp(tβ)y
exp(−tβ). Then

Gβ = {y ∈ G : βG(y) = 0} = {y ∈ G : exp(tβ)y exp(−tβ) = y for all t ∈ R}.
We have the parabolic subgroup

Gβ+ :=
{

y ∈ G : lim
t→−∞ exp(tβ)y exp(−tβ) exists

}
with unipotent radical

Rβ+ :=
{

y ∈ G : lim
t→−∞ exp(tβ)y exp(−tβ) = e|

}
.

Then Gβ+ is the semi-direct product of Gβ with Rβ+ and we have the projection πβ+ : Gβ+ → Gβ,
πβ+(y) := limt→−∞ exp(tβ)y exp(−tβ).

Lemma 4.1. For every β ∈ p we have G = KGβ+.

Proof. The adjoint orbit O of U through β ∈ iu ∼= u can be considered as a Kähler manifold endowed
with a holomorphic UC-action. In particular, G-acts on O. In [HS07b] it is shown that G ·β = K ·β.
Since G · β ∼= G/Gβ+ this proves the claim.

We introduce submanifolds of X analogous to Gβ and Gβ+ . For β ∈ p we have the corresponding
vector field βX on X whose one-parameter subgroup is given by (t, y) �→ exp(tβ) · y. We have the
set

Xβ := {y ∈ X : βX(y) = 0}
which is the set of fixed points {y ∈ X : exp tβ · y = y for all t ∈ R}. The set Xβ is Gβ-stable and
is a subset of the Gβ+-stable set

Xβ+ :=
{

y ∈ X : lim
t→−∞ exp tβ · y exists

}
.

The map pβ+ : Xβ+ → Xβ, pβ+(y) = limt→−∞ exp tβ · y is well defined, Gβ-equivariant, surjective
and its fibers are Rβ+-stable.

In the following we fix β ∈ p, ‖β‖ = 1 and discuss, in the spirit of this paper, the relevant
properties of the action of the group Γ := exp γ on X where γ := Rβ. Note that Γ is a closed
compatible subgroup of UC. As an abstract Lie group Γ is just the additive group R. The Γ-
gradient map on X is given by µγ(y) = µβ

γ (y)β and in the following is identified with µβ
γ : X → R.

The isotropy group Γx of Γ at every point x ∈ X is compatible with the Cartan decomposition of
UC. Since Γ ∼= R, we have that either Γx = {0} or Γx = Γ. The slice theorem applied at x ∈ X \Xβ

gives the existence of an open Γ-stable neighborhood Ω of x, a closed submanifold S of Ω with x ∈ S
such that the map Ψ: Γ × S → Ω, (g, s) �→ g · s is a diffeomorphism.

In the case that x ∈ Xβ , the slice theorem gives a linearization of the Γ-action near x, as follows.
The linearized vector field dβX(x) acts on Tx(X) as a selfadjoint operator, also denoted by β, and
W := Tx(X) is a direct sum of one-dimensional eigenspaces. We define W β+ := W β ⊕ W+ where
W+ is the sum of the eigenspaces of β with positive eigenvalues and W β is the zero eigenspace of β.
By the slice theorem there is an open Γ-stable neighborhood S of zero in Tx(X) and a Γ-equivariant
diffeomorphism Ψ which maps S onto an open neighborhood Ω of x in X. Since S is Γ-stable, it
contains (S ∩ W β) ⊕ W+. Now Ψ identifies S ∩ W β+ with Ω ∩ Xβ+ and S ∩ W β with Ω ∩ Xβ.
Moreover, (pβ+)−1Ψ(S ∩ W β) = Ψ((S ∩ W β) ⊕ W+) is closed in Ω.

Remark 4.2. The slice theorem applied to Γ at x ∈ Xβ shows that, for y near x, the limit exp tnβ ·y
exists for some sequence tn → −∞ if and only if limt→−∞ exp tβ · y = x.
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We summarize our discussion as follows.

Proposition 4.3. Let β ∈ p, Γ = exp Rβ and let Xβ+ be as above.

(i) The set Xβ is a closed submanifold of X.

(ii) The set Xβ+ is a locally closed Gβ+-stable submanifold of X.

(iii) The tangent space of Xβ+ at x ∈ Xβ is W β+.

(iv) The map pβ+ is a Gβ-equivariant strong deformation retraction.

(v) The map pβ+ is Gβ+-equivariant where the action of Gβ+ on Xβ is via the quotient mapping
to Gβ .

Remark 4.4. In addition to the properties in Proposition 4.3, we have that the map pβ+ is a smooth
locally trivial fibration which realizes Xβ as the topological Hilbert quotient of Xβ+ with respect
to the action of Γ. Each fiber F

β+
x := (pβ+)−1(x) of pβ+ is (Gβ)x-equivariantly diffeomorphic to a

(Gβ)x-representation W+(x) which, up to isomorphism, depends only on the connected component
of x in Xβ . Furthermore, the map Gβ×(Gβ)x F

β+
x → (pβ+)−1(Gβ ·x), [a, z] �→ a ·z is a Gβ-equivariant

diffeomorphism.

Remark 4.5. If G = KC for some compact subgroup K of U and if X is a complex submanifold of Z,
then the manifolds discussed in Proposition 4.3 are complex analytic and the maps are holomorphic.

Of particular interest are the connected components of Xβ on which µβ
p = 〈µp, β〉 is constant.

For any β ∈ p and r ∈ R let Xβ
r := {y ∈ Xβ : 〈µp(y), β〉 = r} and let X

β+
r := (pβ+)−1(Xβ

r ).

Proposition 4.6. Let β ∈ p.

(i) The function µβ
p : Xβ → R is locally constant. In particular, Xβ

r is open and closed in Xβ.

(ii) We have µβ
p (y) � r for y ∈ X

β+
r and equality holds if and only if y ∈ Xβ

r .

Proof. For v ∈ Ty(X) and y ∈ Xβ , dµβ
p (y)(v) = (βX (y), v) = 0. Hence, µβ

p is locally constant on
Xβ and we have part (i).

Let y ∈ X
β+
r . Then µβ

p (exp tβ · y) � limt→−∞ µβ
p (exp tβ · y) = r. Note that µβ(y) = r if and only

if exp tβ · y = y for all t ∈ R (Lemma 2.1), i.e. y ∈ Xβ. This establishes part (ii).

Remark 4.7. By replacing β with −β one obtains analogous results for

Xβ− :=
{
y ∈ X : lim

t→+∞ exp tβ · y exists
}

.

Let β ∈ p and let gβ = kβ + pβ denote the Cartan decomposition of the Lie algebra gβ of the
centralizer Gβ . For r ∈ R let Hr(β) := {ζ ∈ pβ : 〈β, ζ〉 = r}. In the following it is important to
note that Hr(β) is a hyperplane in pβ if and only if β �= 0. If β �= 0 we have the corresponding
half-spaces H+

r (β) := {ζ ∈ pβ : 〈β, ζ〉 � r} and H−
r (β) := {ζ ∈ pβ : 〈β, ζ〉 � r}. These sets are also

defined in the case where β = 0 but then they are either empty (r �= 0) or all of them coincide with
pβ (r = 0).
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Corollary 4.8. Let β ∈ p. Then:

(i) µpβ(Xβ+
r ) ⊂ H+

r (β);

(ii) µpβ(Xβ−
r ) ⊂ H−

r (β);

(iii) Xβ
r = X

β−
r ∩ X

β+
r = µ−1

pβ
(Hr(β)) ∩ X

β+
r .

Remark 4.9. For fixed r the manifold X
β+
r is defined only in terms of the group Γ := exp Rβ. This

means that X
β+
r remains unchanged for any compatible subgroup G of UC which contains Γ and

stabilizes X. Note that Xβ
r is Gβ-stable.

5. Critical points, slices and quotients

Let µpβ : X → pβ denote the gradient map associated with the moment map µuβ : Z → uβ (see § 3).
Recall that Mpβ(β) is the zero fiber of the shifted gradient map µ̂pβ = µpβ − β.

For β ∈ p we set Sβ+ := SGβ(Mpβ (β))(Xβ+

‖β‖2), i.e. Sβ+ is the set of Gβ-semistable points in X
β+

‖β‖2

with respect to the shifted gradient map µpβ − β. The set Sβ := G · Sβ+ is called the pre-stratum
associated with β.

Remark 5.1. The set Sβ+ is a locally closed submanifold of X since it is an open subset of Xβ+ .

Remark 5.2. As we already noted (see Remark 4.9), the set X
β+

‖β‖2 only depends on the group

Γ = exp(Rβ). However, in general, Sβ+ depends on Gβ.

Let Cp denote the set of critical points of ηp : X → R, ηp(x) = 1
2‖µp(x)‖2 and set Bp := µp(Cp).

Since ηp is K-invariant the sets Cp and Bp are K-stable.
We now formulate our main general results.

Theorem 5.3 (Slice Theorem for Pre-Strata). Let β ∈ Bp and let Sβ be the pre-stratum associated
with β.

(i) The pre-stratum Sβ is a locally closed submanifold of X and Sβ+ is a Gβ+-stable locally closed
submanifold of X.

(ii) The natural map G ×Gβ+
Sβ+ → Sβ is a diffeomorphism.

(iii) The natural map K ×Kβ
Sβ+ → Sβ is a diffeomorphism.

The following is an analogue of the quotient Theorem 3.2 for semistable points in the context of
pre-strata. Here Mp(K · β) := µ−1

p (K · β) plays the role of Mp in Theorem 3.2 and the case where
β = 0 is just Theorem 3.2.

Theorem 5.4 (Quotient Theorem for Pre-Strata). Let β ∈ Bp and let Sβ be the pre-stratum
associated with β. Then the topological Hilbert quotient Sβ//G exists. Let πSβ

: Sβ → Sβ//G denote
the quotient map.

(i) Every fiber of πSβ
contains a unique closed G-orbit. Any other orbit in the fiber has strictly

larger dimension.

(ii) The closure of every G-orbit in a πSβ
-fiber contains the closed G-orbit.

(iii) Every fiber of πSβ
intersects Mp(K ·β)∩Sβ in a unique K-orbit which lies in the unique closed

G-orbit.

(iv) The inclusion Mp(K · β)∩Sβ ↪→ Sβ induces a homeomorphism (Mp(K ·β)∩Sβ)/K ∼= Sβ//G.
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Note that we can apply Theorem 3.2 to the set of semistable points Sβ+ = SGβ(Mpβ (β))(Xβ+

‖β‖2).
In the following discussion it will turn out that the quotients Sβ+//Gβ and Sβ//G are isomorphic
(Proof of Theorem 5.4) and that Mpβ(β)∩Sβ+ ⊂ Mp(K ·β)∩Sβ (Lemma 5.6 and Proposition 5.8).
We may summarize all of this in the following commutative diagram.

Mpβ (β) ∩ Sβ+

��

����������������

� � ��

��

� �

����������������
Mp(K · β) ∩ Sβ

��

�����������������

��

Sβ+
� � ��

��

Sβ

��

(Mpβ (β) ∩ Sβ+)/Kβ ∼

∼
�������������

�������������
∼

�������������

�������������
(Mp(K · β) ∩ Sβ)/K
∼

�������������

�������������

Sβ+//Gβ ∼ Sβ//G

We also see that Mpβ(β)∩Sβ+ is the set of minima of ηp|Sβ+ (Lemma 5.12) and that Mp(K ·β)∩Sβ

is the set of minima of ηp|Sβ (Proposition 5.13).

Theorem 5.5 (Pre-Stratification Theorem). Let β, β̃ ∈ Bp.
(i) If Sβ̃ ∩ Sβ �= ∅ and K · β �= K · β̃, then ‖β̃‖ > ‖β‖.
(ii) The following are equivalent:

(a) K · β = K · β̃;
(b) Sβ = Sβ̃;
(c) Sβ ∩ Sβ̃ �= ∅.

Now we give additional information about the pre-strata which will lead to the proofs of the
theorems.

Lemma 5.6. For any β ∈ p we have:

(i) Mp(β) ∩ Xβ = Mp(β) ∩ Cp;
(ii) Mp(β) ∩ Xβ = Mpβ(β) ∩ Xβ ;

(iii) Mpβ (β) ∩ Xβ = Mpβ (β) ∩ X
β+

‖β‖2 .

Proof. The first part is a direct consequence of Lemma 2.3. Since µ is exp(iRβ)-equivariant, on
Xβ it takes values in (u∗)β and µp takes values in pβ. This implies part (ii). Part (iii) follows from
Corollary 4.8.

Remark 5.7. Lemma 5.6 implies that Sβ+ (equivalently Sβ) is nonempty if and only if β ∈ Bp. This
is the only reason why Theorems 5.3 and 5.4 are formulated for β ∈ Bp and not for β ∈ p.

As in § 4 we let pβ+ : Xβ+ → Xβ denote the Gβ-equivariant map pβ+(y) = limt→−∞ exp tβ · y.

Proposition 5.8. For every β ∈ Bp we have the following:

(i) Sβ+ = (pβ+)−1(SGβ (Mpβ (β))(Xβ));

(ii) Sβ+ is Gβ+-stable;

(iii) Mpβ (β) ∩ Sβ+ = Mpβ(β) ∩ Xβ ;

(iv) SGβ (Mpβ (β))(Xβ) is a Gβ-equivariant strong deformation retract of Sβ+ .
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Proof. Let y ∈ Xβ+ and set x = pβ+(y). Since pβ+ is Gβ-equivariant and fixes Xβ and since x

lies in Gβ · y, we have that ∅ �= Gβ · x ∩ Xβ ∩ Mpβ (β) if and only if ∅ �= Gβ · y ∩ Xβ ∩ Mpβ(β).
Hence, the equality in part (i) follows from Lemma 5.6. Invariance of Sβ+ with respect to the Gβ+-
action follows from parts (i) and (iii) follows from Lemma 5.6(iii). The deformation of Sβ+ onto
SGβ(Mpβ (β))(Xβ) is given by (t, y) �→ exp tβ · y.

Corollary 5.9. For all β ∈ Bp we have Sβ = K · Sβ+ .

Proof. This follows from G = KGβ+ (Lemma 4.1), the Gβ+-stability of Sβ+ and the definition
Sβ = G · Sβ+.

By Theorem 3.2 the topological Hilbert quotients SGβ(Mpβ (β))(Xβ)//Gβ and Sβ+//Gβ exist.
Proposition 5.8 implies that the inclusion SGβ (Mpβ(β))(Xβ) ↪→ Sβ+ induces an isomorphism of
these quotients. Note that for x, y ∈ Sβ+ we have Gβ · x ∩ Gβ · y ∩ Sβ+ �= ∅ if and only if Gβ+ · x ∩
Gβ+ · y ∩ Sβ+ �= ∅ by Proposition 4.3. Therefore, the quotient Sβ+//Gβ+ exists and is not only
isomorphic to but also equal to Sβ+//Gβ . We summarize this discussion in the following commutative
diagram.

SGβ (Mpβ(β))(Xβ)

��

� � �� Sβ+

id
S

β+ ��

��

Sβ+

��
SGβ(Mpβ (β))(Xβ)//Gβ ∼

Sβ+//Gβ Sβ+//Gβ+

Recall that by Theorem 3.2 each fiber of the quotient Sβ+ → Sβ+//Gβ contains a unique closed
Gβ-orbit which is the unique orbit of minimal dimension in that fiber. We now show the analogous
fact for the action of Gβ+ on Sβ+. We make use of the following remark.

Remark 5.10. Let H be a Lie group acting on a manifold Y . Then for all d ∈ N, {y ∈ Y | dim H · y
� d} is open.

Proposition 5.11. Let Gβ · x be the unique closed Gβ-orbit in a fiber F of the quotient Sβ+ →
Sβ+//Gβ . Then Gβ+ · x is the unique closed Gβ+-orbit in F and every other Gβ+-orbit in F has
strictly larger dimension.

Proof. Since pβ+(x) ∈ Gβ · x, we must have that x ∈ Xβ. To simplify notation let Q denote Gβ+ .
Let z ∈ F and set y := pβ+(z). Then y ∈ F ∩ Xβ.

Assume that Q · z �= Q · y. We show that dim Q · z > dim Q · y. Let qc
y be a subspace of q

complementary to qy. Since an exp(Rβ)-invariant neighborhood of y in Xβ+ can be identified with
an exp(Rβ)-invariant neighborhood of 0 in the tangent space Ty(Xβ+) (see § 4) and since qc

y ·y = q·y
is exp(Rβ)-stable, there is an exp(Rβ)-invariant locally closed submanifold Ny of Xβ+ with y ∈ Ny

and Ty(Xβ+) = qc
y · y⊕Ty(Ny). This implies that the map Φy : qc

y ×Ny → Xβ+ , (ξ, w) �→ exp(ξ) ·w,
is a local diffeomorphism near (0, y). Since Q · z intersects every open neighborhood of y and
since exp(qc

y) ⊂ Q, we may assume that there is a z′ ∈ Q · z such that z′ ∈ Ny and such that
dim qc

y · z′ = dim qc
y · y. Since Q · z �= Q · y, z′ �∈ Xβ and 0 �= βX(z′) ∈ Tz′(Ny) does not lie in qc

y · z′.
Thus, dim Q · z′ � dim qc

y + 1 > dim Q · y.

It now suffices to show that dim Q·y > dim Q·x if Q·y �= Q·x. We have that dim Gβ ·x < dim Gβ ·y.
Since pβ+(x) = x the Gβ-equivariance and Rβ+-invariance of pβ+ imply that dim Q ·x = dim Gβ ·x+
dim Rβ+ · x and similarly for y. Since we may assume that y is arbitrarily close to x, we have that
dim Rβ+ ·y � dim Rβ+·x. Thus, dim Q·y = dim Gβ ·y+dim Rβ+·y > dim Gβ ·x+dim Rβ+ ·x = dim Q·x.

We have shown that the orbit Q · x is of minimum dimension in F . It remains to show that it is
the unique closed orbit. Suppose that x′ ∈ Q · x where Q · x′ �= Q · x. Then dim Q · x � dim Q · x′.
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However, this contradicts the fact that dim Q ·x < dim Q ·x′. Hence, Q ·x is closed. By the definition
of topological Hilbert quotient there are no other closed orbits in the fiber F .

Lemma 5.12. Let β ∈ Bp and z ∈ Sβ+ . Then ηp(z) � 1
2‖β‖2 and equality holds if and only if

z ∈ Mp(β) ∩ Xβ .

Proof. We have ‖µp(z)‖ � ‖µpβ(z)‖ � ‖β‖ by Corollary 4.8. If equality holds then µpβ(z) = β and
z is a minimum of ηpβ |Gβz. Therefore, it is a critical point of ηpβ and we have z ∈ Mpβ(β) ∩Xβ =
Mp(β) ∩ Xβ by Corollary 2.4.

Proposition 5.13. Let β ∈ Bp and let Yβ be a G-stable closed subset of Sβ and Yβ its closure in X.
We have ηp|Yβ � 1

2‖β‖2 and the set of z ∈ Yβ where ηp(z) = 1
2‖β‖2 coincides with Mp(K · β) ∩ Yβ

and is non-empty if Yβ is non-empty.

Proof. We have Yβ = K · Y β+ where Y β+ := Yβ ∩ Sβ+ (Corollary 5.9). For z ∈ Yβ we have z = k · y
where k ∈ K and y ∈ Y β+ ⊂ Sβ+. Then ‖µp(z)‖ = ‖µp(y)‖ � ‖β‖. If we have equality then
µpβ(y) = β and y ∈ Xβ (Lemma 5.12). Now Y β+ is closed in Sβ+ . Therefore, y ∈ Mp(β)∩Y β+ and
z ∈ Mp(K · β) ∩ Yβ.

Finally, Mp(K · β) ∩ Yβ is non-empty since Gβ · y intersects Mpβ(β) ∩ Xβ for every y ∈ Y β+ ⊂
Sβ+.

Corollary 5.14. The closure of every G-orbit in Sβ intersects Mp(β) ∩ Xβ .

We now work towards the proof of the slice theorem for pre-strata.

Lemma 5.15. Let β ∈ Bp. The identity Sβ+ → Sβ+ induces a diffeomorphism φ : K ×Kβ
Sβ+ →

G ×Gβ+
Sβ+ .

Proof. Since G = KGβ+ , K∩Gβ+ = Kβ and g = k+gβ+ , φ is a one-to-one onto submersion between
manifolds of the same dimension, hence a diffeomorphism.

In the following we fix β ∈ Bp and define Ψ: G ×Gβ+
Sβ+ → Sβ by Ψ([g, s]) = g · s.

Lemma 5.16. The map Ψ is an immersion.

Proof. First we show that Ψ is an immersion at any x ∈ Mp(β) ∩ Sβ+. Since g = k + gβ+ and
gβ+ ·x ⊂ Tx(Sβ+) it is sufficient to show that ζ ∈ k and ζX(x) ∈ Tx(Sβ+) implies that ζ ∈ kβ ⊂ gβ+ .
This is a consequence of Lemma 2.6 since Tx(Sβ+) is the sum of the eigenspaces with non-negative
eigenvalues of the isotropy action of β on Tx(X). Since every Gβ-orbit in Sβ+ intersects every open
neighborhood of Mp(β) ∩ Sβ+ and Ψ is G-equivariant it follows that Ψ is an immersion.

Proposition 5.17. Let wn ∈ G ×Gβ+
Sβ+ be a sequence such that Ψ(wn) converges to x ∈

Mp(β) ∩ Xβ . Then the sequence wn has a convergent subsequence and every convergent subse-
quence converges to [e, x].

Proof. Let wn = [kn, sn] where kn ∈ K and sn ∈ Sβ+ (Lemma 5.15). We may assume that kn

converges to k ∈ K. This implies that limn→∞ Ψ(k−1
n [kn, sn]) = limn→∞ sn = k−1 ·x ∈ Sβ+ ⊂ X

β+

‖β‖2 .

From ‖µp(k−1 · x)‖ = ‖µp(x)‖ = ‖β‖ and k−1 · x ∈ Sβ+ we obtain that k−1x ∈ Mp(β) ∩ Xβ

(Lemma 5.12). Since also x ∈ Mp(β) ∩ Xβ we conclude that k ∈ Kβ and that limn→∞[kn, sn] =
[k, k−1 · x] = [e, x].

Corollary 5.18. The map Ψ is injective.
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Proof. We first show that for every x ∈ Mp(β)∩Xβ there exists an open neighborhood Ω of x ∈ X
such that Ψ|Ψ−1(Sβ ∩ Ω) is injective. If Ψ|Ψ−1(Sβ ∩ Ω) is not injective for Ω sufficiently small,
then there are vn, wn ∈ G ×Gβ+

Sβ+ such that vn �= wn, Ψ(vn) = Ψ(wn) and limn→∞ Ψ(vn) = x.
Since Ψ is an immersion (Lemma 5.16) its restriction to some open neighborhood W of [e, x] in
G×Gβ+

Sβ+ is injective. We may assume that limn→∞ vn = limn→∞ wn = [e, x] (Proposition 5.17).
This contradicts the injectivity of Ψ|W .

Since every G-orbit in Sβ intersects each neighborhood of a point of Mp(β)∩Xβ (Corollary 5.14)
and since Ψ is G-equivariant, every G-orbit in Sβ intersects an open subset Ω of X non-trivially
such that Ψ|Ψ−1(Sβ ∩ Ω) is injective. Hence, Ψ is injective.

Proof of Theorem 5.3 (Slice Theorem for Pre-Strata). We first show part (i). It follows from Propo-
sition 4.3 that Sβ+ is a locally closed submanifold of X. Let x ∈ Mp(β) ∩ Xβ and choose an open
neighborhood Wx of [e, x] ∈ G ×Gβ+

Sβ+ such that Ψ(W ) is a submanifold of X (Lemma 5.16).
Then there is an open neighborhood Ωx of x in X such that Ωx ∩ Sβ ⊂ Ψ(W ) since otherwise
we could use Proposition 5.17 to arrive at a contradiction. The open sets g · Ωx cover Sβ (Corol-
lary 5.14) and the open sets g · Wx cover G ×Gβ+

Sβ+ where g ∈ G, x ∈ Mp(β) ∩ Xβ . Since
g · Ωx ∩ Sβ ⊂ Ψ(g · Wx) = g · Ψ(Wx) we have (i).

Part (ii) follows from part (i), Lemma 5.16 and Corollary 5.18. Lemma 5.15 and part (ii) imply
part (iii).

Proof of Theorem 5.4 (Quotient Theorem for Pre-Strata). Recall that the topological Hilbert quo-
tients Sβ+//Gβ and Sβ+//Gβ+ exist and coincide. Theorem 5.3 (the slice theorem for pre-strata) im-
plies that Sβ//G exists and that the inclusion Sβ+ ⊂ Sβ induces an isomorphism Sβ+//Gβ+ ∼= Sβ//G.

By Proposition 5.11 every fiber of the quotient map πSβ+ : Sβ+ → Sβ+//Gβ+ contains a unique
closed Gβ+-orbit Gβ+ ·x and every other orbit in that fiber has strictly larger dimension. Assertion (i)
then follows from Theorem 5.3 (the slice theorem for pre-strata).

Assertion (ii) follows from the definition of the topological Hilbert quotient and assertion (i).
Let q ∈ Sβ//G and set Fq := (πSβ

)−1(q). Then Fq ∩Sβ+ is a fiber of πSβ+ and intersects Mpβ (β)
in a unique Kβ-orbit Kβ ·x where x ∈ Mpβ(β)∩Xβ and Gβ ·x is the unique closed orbit in Fq∩Sβ+.
Hence, G · x is the unique closed orbit in Fq and K · x is the intersection of Fq with Mp(K · β) and
we have assertion (iii).

Assertion (iv) follows from assertions (i) and (iii) and Theorem 3.2.

Proof of Theorem 5.5 (Pre-Stratification Theorem). Let y ∈ Sβ ∩ Sβ̃. Then G · y contains a point
x ∈ Mp(β̃) (Corollary 5.14 applied to β̃) and is contained in Sβ. This implies that ‖β̃‖ � ‖β‖ and
equality holds if and only if K · β̃ = K · β (Proposition 5.13). Hence, we must have ‖β̃‖ > ‖β‖,
proving part (i).

We now show part (ii). Assume that part (ii)(a) holds and choose k ∈ K such that β̃ = k ·β. Then
Sβ̃+ = k · Sβ+ implies that Sβ̃ = Sβ. Hence, part (ii)(a) implies part (ii)(b). Obviously part (ii)(b)
implies part (ii)(c). Assume that part (ii)(c) holds and let z ∈ Sβ ∩ Sβ̃. If part (ii)(a) fails, then
part (i) shows that ‖β̃‖ > ‖β‖ and that ‖β‖ > ‖β̃‖, a contradiction.

6. Consequences and special cases

In this section we point out special cases and several consequences of the results obtained in the
previous section.
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First note that for β = 0 the pre-stratum Sβ coincides with Sβ+ and is the set of semistable
points SG(Mp). Theorem 5.3 (the pre-strata slice theorem) is trivial in this case and Theorem 5.4
(the quotient theorem) is just Theorem 3.2. If G = Gβ , in particular if G is commutative, then
Sβ = Sβ+ coincides with the set of semistable points SG(Mp(β))(Xβ+

‖β‖2 ).

For Morse theoretical considerations the following should be noted.

Lemma 6.1. Let β ∈ Bp. Then Cp ∩ Sβ = Mp(K · β) ∩ Sβ.

Proof. We have Mp(K ·β)∩Sβ = K ·(Mp(β)∩Xβ) ⊂ Cp by Corollary 2.4. Conversely, if x ∈ Cp∩Sβ,
let β̃ := µp(x). Then x ∈ Mp(β̃) ∩ X β̃ ⊂ Sβ̃. Since x ∈ Sβ ∩ Sβ̃, we have K · β = K · β̃, and hence
x ∈ Mp(K · β).

Corollary 6.2. If X = SG(Mp), then x ∈ X is a critical point of ηp if and only if ηp(x) = 0, i.e.
the critical set of ηp coincides with Mp.

Fix β ∈ Bp. The first two theorems in § 5 contain precise information about the structure of the
G-action on Sβ and the quotient map πSβ

: Sβ → Sβ//G. We now wish to apply Theorem 5.3 (the pre-
strata slice theorem) for the action of Gβ on Sβ+. To simplify notation, let us assume that X = Sβ

and let Y denote Sβ+. We have an artificial Gβ+-action on Y β defined by (g, y) �→ g • y := πβ+(g) ·y,
y ∈ Y β, g ∈ Gβ+ . The mapping pβ+ : Y → Y β is equivariant with respect to the given action on
Y and the artificial action on Y β . Here we use the notation introduced in § 4. Note that the Gβ+-
isotropy group at y ∈ Y β is the semi-direct product Hy := (Gβ)y � Rβ+ . Applying Theorem 5.3
(the slice theorem) we obtain the following.

Proposition 6.3. Let x ∈ Mpβ(β)∩Xβ ⊂ Y β. Then there is a (Gβ)x-stable submanifold Y0 of Y β

containing x such that Gβ ·Y0 = Gβ+ • Y0 is open in Y β and such that the natural map Gβ+×Hx Y0 →
Gβ+ • Y0 is an isomorphism. Let Y1 := (pβ+)−1(Y0). Then Y1 is an Hx-stable submanifold of Y ,

Gβ+ ×Hx Y1 → Gβ+ · Y1

is an isomorphism and Gβ+ · Y1 is open in Y . Moreover, G · Y1 is open in X and

G ×Gβ+ (Gβ+ ×Hx Y1) → G · Y1

is a G-equivariant isomorphism.

Remark 6.4. The entire construction can be carried out in a manner that is compatible with the
various Hilbert quotients associated to the G-action on X. That is, we can arrange that Gβ · Y0 is
saturated with respect to the quotient map Y β → Y β//Gβ and that Gβ ·Y1 is saturated with respect
to Y → Y//Gβ , etc.

Remark 6.5. The fiber F of πGβ : Y → Y//Gβ through x ∈ Mpβ (β) ∩ Y is Gβ-isomorphic to
Gβ ×(Gβ)x Fx where Fx is a closed (Gβ)x-stable subset of the (Gβ)x-stable subspace W β+ (see § 4)
of Tx(X). In this identification every (Gβ)x-orbit in Fx contains 0 ∈ W β+ in its closure. Since F is
also a fiber of πGβ+ , the (Gβ)x-space Fx is equipped with a topological action of Hx = (Gβ)x �Rβ+.

Before we discuss open pre-strata for general X we need to compute the Hessian of ηp at critical
points.

Proposition 6.6. Let x ∈ Cp be a critical point of ηp : X → R and let Sβ be the associated
pre-stratum. Let Hx(ηp) denote the Hessian of ηp at x. Then:

(i) Hx(ηp) = 0 on Tx(K · x);
(ii) Hx(ηp) > 0 on pβ · x + rβ+ · x, where rβ+ is the Lie algebra of Rβ+;
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(iii) Hx(ηp) � 0 on Tx(Sβ) = g · x + Tx(Sβ+) = k · x + Tx(Sβ+);
(iv) Hx(ηp) < 0 on Tx(Sβ)⊥ = (g · x)⊥ ∩ Tx(Sβ+)⊥ = (k · x)⊥ ∩ Tx(Sβ+)⊥.

Proof. The K-invariance of ηp implies assertion (i). The other assertions follow from (g · x)⊥ ⊂
(p · x)⊥ = ker dµp(x), Proposition 2.5, Proposition 4.3(iii) and the fact that dβX(x) : TxX → TxX
has strictly positive eigenvalues on rβ+ · x.

Remark 6.7. We have a tangent space decomposition Tx(G · x) = Tx(K · x) ⊕ pβ · x ⊕ rβ+ · x. This
follows from the decompositions G = K · Gβ+, Gβ+ = Gβ · Rβ+, the identity K ∩ Gβ+ = Kβ and
the fact that Gβ acts on Xβ whereas Rβ+ acts on the fibers of pβ+ (see § 4). Thus, the behavior of
Hx(ηp) on Tx(G · x) is precisely described by Proposition 6.6(i) and (ii).

Corollary 6.8. If β ∈ Bp is such that ‖β‖2 is a minimum value of 2ηp, then the corresponding
pre-stratum Sβ is open in X and coincides with SG(Mp(β)).

Proof. Let x ∈ Cp such that µp(x) = β. By Proposition 6.6, Sβ is open in X. It contains Mpβ(β) ∩
Xβ = Mp(β)∩Xβ = Mp(β) since ‖β‖2 is a minimum. However, SG(Mp(β)) is the smallest G-stable
open set containing Mp(β), so that SG(Mp(β)) ⊂ Sβ. On the other hand,

Sβ = G · SGβ(Mpβ (β) ∩ Xβ)(Xβ+) ⊂ SG(Mp(β)).

The argument in the proof shows the following more general result.

Corollary 6.9. Let x be a local minimum of ηp. Then x ∈ Cp and the union of the connected
components of the corresponding stratum Sβ which intersect K · x non-trivially is an open subset
of X.

Corollary 6.10. Suppose that X = G · x where x ∈ Cp and β := µp(x). Then:

(i) Gβ+ · x = Sβ+;
(ii) SGβ (Mpβ(β))(Xβ) = Gβ · x;

(iii) Kβ · x = Mp(β);
(iv) Cp = K · x.

Proof. In the homogeneous case Theorem 5.3 (the slice theorem for pre-strata) gives us a G-
equivariant isomorphism G×Gβ+

Sβ+ → G ·x and therefore a G-equivariant map p : G ·x → G/Gβ+

with Gβ+ · x = p−1(Gβ+) = Sβ+. This shows part (i).
Let z = q · x ∈ Sβ+ where q ∈ Gβ+ . Then limt→−∞ exp(tβ) · q · x = h · x where h =

limt→−∞ exp(tβ)q exp(−tβ) ∈ Gβ . Hence, we have part (ii).
From part (ii) we obtain that Mpβ(β)∩Xβ = Kβ ·x. This implies part (iii). Now part (iii) gives

Mp(K · β) = K · x and part (iv) follows from Lemma 6.1.

Corollary 6.11. Let x ∈ Cp. Then x is a global minimum of ηp|G·x.

Corollary 6.12. If ηp|G · x has a local maximum at x, then G · x = K · x.

Proof. If x is a local maximum of ηp, then it is a critical point of ηp. However, every critical point
of ηp on G · x is a global minimum. This implies that the set of critical points, which is a K-orbit,
is open in G · x. Since K intersects every component of G, we have K · x = G · x.

Corollary 6.13. If a G-orbit G · x in X is compact, then G · x = K · x.

In Corollary 6.12 we have a special case of the existence of a maximal pre-stratum Sβ. By
this we mean that ‖β‖ � ‖µp(z)‖ holds for every z ∈ X. In this case ηp|Sβ is constant and µp
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maps Sβ equivariantly onto K · β. This implies that every G-orbit in Sβ is a K-orbit, hence closed.
More precisely, we have Sβ = Mp(K · β) ∩ Sβ and Sβ+ = Mpβ(β) ∩ Sβ+ = Mp(β) ∩ Xβ. Note
that this implies that Sβ+ coincides with a union of connected components of Xβ . Also since
Sβ

∼= K ×Kβ
(Mpβ(β) ∩ Xβ) we have that Sβ is compact if Xβ is compact or µp is a proper map.

As an application, we show how our results imply Matsuki duality.

Corollary 6.14. Assume that X = Z is U -homogeneous, i.e. a generalized flag manifold, and
assume that G is a real form of UC. Then each G-orbit and each KC-orbit intersect Cp in a unique
K-orbit (Matsuki duality). If x ∈ Cp, then K · x is the set of global minima of ηp on G · x and of ηk
on KC · x. Thus, G · x ∩ KC · x = K · x. Moreover, KC · x (respectively G · x) is open in X if and
only if G · x = K · x (respectively KC · x = K · x).

Proof. We have TxX = Tx(G · x) + Tx(KC · x). We may assume that the decomposition uC =
k⊕ ik⊕ ip⊕p is orthogonal with respect to a U -invariant inner product on uC. Then 1

2‖µ‖2 = ηk+ηp
where ηk := 1

2‖µk‖2. Since Z is U -homogeneous this function is constant and ηk is the negative of ηp
up to a constant. In particular, the set of critical points of ηk equals Cp. Using the behavior of the
Hessian of ηp (respectively ηk) described in Proposition 6.6, we get that each G-orbit (respectively
KC-orbit) is open in the G-pre-stratum (respectively KC-pre-stratum) in which it is contained.
Therefore, each G-orbit and each KC-orbit intersects Cp in a unique K-orbit. If x ∈ Cp, then K · x
is the set of global minima of ηp on G · x and of ηk on KC · x. Again, since 1

2‖µ‖2 is constant, we
have G · x∩KC · x = K · x. The last statement follows from the identities G · x∩KC ·x = K ·x and
TxX = Tx(G · x) + Tx(KC · x).

Remark 6.15. Matsuki duality does not depend on the choice of the moment map, as follows.
Assume that we are given another U -equivariant moment map µ̃ : Z → u∗. Let η̃p := 1

2‖µ̃p‖2 and
let C̃p denote the set of critical points of η̃p. If there is an x0 ∈ Cp where x0 /∈ C̃p, then, by Matsuki
duality, there is an x1 ∈ KC · x0 ∩ C̃p with x1 /∈ Cp and ηp(x0) > ηp(x1). Again, by Matsuki duality,
we obtain an x2 ∈ G · x1 ∩ Cp with x2 /∈ C̃p and ηp(x1) > ηp(x2). Inductively we obtain a sequence
xn in Cp with ηp(xn) > ηp(xn+1). However, Cp consists of finitely many K-orbits so K · xn0 = K · x0

for some n0 > 0, which contradicts the inequality ηp(x0) > ηp(xn0). Hence, C̃p = Cp.

We can also easily obtain an old result of Wolf [Wol69].

Corollary 6.16. Assume that X = Z is U -homogeneous and that G is a real form of UC. Then
there is exactly one closed G-orbit in X.

Proof. If G · x is a closed orbit in Z it equals K · x by Corollary 6.13. Then we may assume x ∈ Cp.
By Corollary 6.14 the dual orbit KC · x is open. Since KC is complex and acts holomorphically on
Z there is only one open orbit.

7. Proper moment maps

In this section we consider what happens when µp : X → p is a proper map. In this case ηp : X → R

is a proper non-negative function, i.e. an exhaustion of X. Note that properness of ηp implies that
X is a closed G-stable submanifold of Z.

Let (t, x) �→ ϕt(x) denote the local flow of the vector field grad ηp on X. Properness of µp implies
that ϕt exists for all negative t. By Lemma 2.3, the flow ϕt is along G-orbits. Note that ηp(ϕt(x))
is strictly increasing unless x is a critical point of ηp. For z ∈ X let L(z) denote the set of points
y ∈ X such that y = limk→∞ ϕtk(z) for some sequence tk which goes to −∞. Since we assume that
µp is proper we have the following.
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Lemma 7.1. Let z ∈ X. Then L(z) is non-empty and for every open neighborhood V of L(z) there
exists a t0 ∈ R such that ϕt(z) ∈ V for every t < t0.

Proof. Let IV := {t ∈ R : t � 0 and ϕt(z) ∈ X \ V }. Since V contains L(z) the properness of ηp
implies that IV is compact. For t0 := min{t ∈ IV } we have ϕt(z) ∈ V for all t < t0.

For β ∈ Bp let Cp(K · β) denote Cp ∩Mp(K · β) and set Cp(‖β‖) = Cp ∩ η−1
p (1

2‖β‖2). If we set
β := µp(x) for some x ∈ L(z), then x ∈ Cp(K · β) = Cp(K · β) ∩ Sβ ⊂ Mp(K · β) ∩ Sβ. It is a
consequence of Lemma 7.1 that L(z) is connected. Then ηp is constant on L(z) and we have

L(z) ⊂
⋃

‖β̃‖=‖β‖
Cp(K · β̃) = Cp(‖β‖).

We need the following technical result whose proof we give at the end of this section.

Proposition 7.2. Let z ∈ X and choose β ∈ Bp such that L(z) ∩ Cp(K · β) �= ∅. Then there is an
open neighborhood Ω of Cp(K · β) and a smooth function ρ : Ω → R such that:

(i) ρ � 0;

(ii) Ω ∩ Sβ = {z ∈ Ω : ρ(z) = 0};

(iii) dρ(grad(ηp))(z) � 0 for all z ∈ Ω.

The proposition has the following consequence for the flow ϕt.

Theorem 7.3 (Stratification Theorem). If µp : X → p is proper, then X =
⋃

β Sβ where β runs
through a complete set of representatives of K-orbits in Bp. The union is disjoint, each Sβ is a
locally closed submanifold of X and

Sβ ⊂ Sβ ∪ {Sγ : ‖γ‖ > ‖β‖}.
Proof. Let z ∈ X and β ∈ Bp such that L(z) ∩ Cp(K · β) �= ∅. Choose an open neighborhood Ω of
Cp(K · β) which has the properties given in Proposition 7.2.

Let Ω0 be an open neighborhood of Cp(K · β) which is relatively compact in Ω and let Q :=
Ω0 ∩ Cp(‖β‖). Since Cp(‖β‖) \ Q is compact and (Cp(‖β‖) \ Q) ∩ Sβ = ∅ there is an open relatively
compact neighborhood V ′ of Cp(‖β‖) \Q in X such that V ′ ∩ Sβ = ∅. Then the set V := V ′ ∪Ω0 is
an open neighborhood of L(z) ⊂ Cp(‖β‖). Let r := min{ρ(y) : y ∈ V ′ ∩ Ω0}. Since V ′ ∩ Sβ = ∅ we
have ρ(y) > 0 on the compact set V ′ ∩ Ω0 and therefore r > 0. The set Ω1 := {y ∈ Ω0 : ρ(y) < r}
is an open neighborhood of Cp(K · β) such that Ω1 ∩ V ⊂ Ω.

Since L(z) ∩ Cp(K · β) �= ∅ there exists a t0 with ϕt0(z) ∈ Ω1. By Lemma 7.1 we may assume
that ϕt(z) ∈ V for all t � t0. We claim that ϕt(z) ∈ Ω1 for all t � t0. It suffices to show that
IΩ1 := {t ∈ R : t � t0, ϕt(z) ∈ Ω1} is connected since it is not bounded from below. If this would
not be the case then we would find a connected component I1 = (a1, t1) = {t ∈ IΩ1 : a1 < t < t1} of
IΩ1 where a1 is possibly −∞ and t1 < t0. Then ϕt1(z) ∈ V ∩ (Ω1 \ Ω1), i.e. ρ(ϕt1(z)) = r, and
ρ(ϕt(z)) < r for all t ∈ I1. This contradicts a1 < t1 < t0, since t �→ ρ(ϕ−t(z)) is defined
and increasing for all t in a sufficiently small open interval which contains t1.

Now assume that z �∈ Sβ. Since ρ(ϕt(z)) > 0 for all t < t0 and t �→ ρ(ϕ−t(z)) is increasing there
is no x ∈ L(z)∩Cp(K ·β) ⊂ Sβ with ρ(x) = 0. This contradiction proves that z ∈ Sβ and shows that
X =

⋃
β Sβ. The union is disjoint and we also have Sβ ⊂ Sβ ∪ {Sγ : ‖γ‖ > ‖β‖} by Theorem 5.5

(the pre-stratification theorem).

In the proof we have seen that z ∈ Sβ if L(z) ∩ Cp(K · β) �= ∅. Since L(z) ⊂ Cp(‖β‖) we obtain
the following.
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Corollary 7.4. Let z ∈ Sβ. Then L(z) ⊂ Cp(K · β).

Remark 7.5. The map ϕ : (−∞, 0] × Sβ → Sβ, (t, x) �→ ϕt(x) extends to a continuous map
ϕ̄ : [−∞, 0]×Sβ → Sβ. Then ϕ̄ is a K-equivariant strong deformation retraction of Sβ onto Cp(K ·β)
which stabilizes closures of G-orbits. In particular, the set L(z) consists of one point. For the proof
one uses a result of Marle [Mar84] and Guillemin and Sternberg [GS84] which states that there
exist local coordinates at any z ∈ Z in which the moment map µ is real analytic. Applying this to
points x ∈ Cp(K · β) one obtains the existence of ϕ̄ as in [Nee85] (see [Sch89]) using an inequality
of �Lojasiewicz.

If µp is not assumed to be proper, one can prove that ϕ̄ realizes Mp as a strong deformation
retract of a neighborhood of Mp in S0 = SG(Mp). Here the same method applies since in [HS07b] it
is shown that there exist relatively compact neighborhoods of points in Mp which have the property
that they contain ϕt(z) for all t < t0 if they contain ϕt0(z).

We have the following characterization of Sβ.

Corollary 7.6. Let µp be proper and β ∈ Bp. Then

Sβ = {z ∈ X : β ∈ µp(G · z) and ‖β‖ � ‖µp(g · z)‖ for all g ∈ G}
=

{
z ∈ X : lim

t→−∞ϕt(z) ∈ Cp(K · β)
}

.

Remark 7.7. In general we have Sβ ⊂ {z ∈ X : β ∈ µp(G · z) and ‖β‖ � ‖µp(g · z)‖ for all g ∈ G}.

We now work towards a proof of Proposition 7.2.
As in § 2, if x is a zero of a vector field ζ on X, then dζ(x) denotes the corresponding endomor-

phism of Tx(X).

Lemma 7.8. For x ∈ Cp and β := µp(x) we have:

(i) d grad ηp(x) · v = (dβX(x)) · v + (dµp(x) · v)X(x) for all v ∈ Tx(X); and

(ii) the linear map L : Tx(X) → Tx(X), v �→ (dµp(x) · v)X(x) maps Tx(Sβ) into itself and is zero
on Tx(Sβ)⊥.

Proof. Let γ be a smooth curve through x ∈ Cp such that γ(0) = x and set

v :=
d

dt

∣∣∣∣
0

γ(t).

We have grad ηp(γ(t)) = µp(γ(t))X (γ(t)) = grad µ
µp(γ(t))
p (γ(t)) and µp(γ(t)) = µp(x)+ t ·dµp(x) ·v +

t2R(t) for a continuous map R(t). Since grad ηp(γ(t)) = grad µ
µp(x)
p (γ(t)) + t grad µ

dµp(x)·v
p (γ(t)) +

t2 grad µ
R(t)
p (γ(t)) we have d grad ηp(x) · v = dβX (x) · v + (dµp(x) · v)X(x) proving part (i). We also

have part (ii), since g · x ⊂ Tx(Sβ) and ker dµp(x) = (p · x)⊥.

Proof of Proposition 7.2. Let Ω0 be an open neighborhood of Sβ in X which is diffeomorphic to
the normal bundle T (Sβ)⊥|Sβ of Sβ in X such that Sβ corresponds to the zero section. Using
this identification we define ρ : Ω0 → R, ρ(v) = (v, v)π(v) where π : T (Sβ)⊥|Sβ → Sβ denotes the
canonical projection and (·, ·)π(v) denotes the inner product on Tπ(v)(X). Then we have ρ � 0 and
Ω0 ∩ Sβ = {y ∈ Ω0 : ρ(y) = 0}.

For x0 ∈ Cp(K ·β) there exists an open neighborhood U0 of x0 in Ω0 which can be identified with
Rn × Rm where x0 corresponds to 0, Sβ corresponds to Rn × {0} and the normal space Tx(Sβ)⊥

corresponds to {x} × Rm for x ∈ U0 ∩ Sβ. Furthermore, this identification can be chosen such that
ρ has the form ρ(v1, v2) = ‖v2‖2 on Rn × Rm.
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Expressing the content of Lemma 7.8 in these coordinates we obtain

grad ηp(v1, v2) = dβX (0)(v1, v2) + L(v1) + O(‖v1‖2 + ‖v2‖2)

where L is a linear mapping from Rn to Rn.
Since dβX(0) has only negative eigenvalues on Rm, the quadratic form v2 �→ (v2, dβX (0) · v2) is

strictly negative definite. Furthermore, dβX(0) preserves T0(Sβ) and T0(Sβ)⊥, so we have

dρ(grad ηp)(v1, v2) = (v2, dβX(0) · v2) + O(‖v1‖3 + ‖v2‖3).

Thus, after possibly shrinking U0 we can find a c < 0 such that dρ(grad ηp)(v1, v2) � c · ρ(v1, v2) for
(v1, v2) ∈ U0.

Since x0 ∈ Cp(K · β) was arbitrary we find a neighborhood Ω ⊂ Ω0 of Cp(K · β) in X such that
dρ(grad ηp)(z) � 0 if z ∈ Ω.

8. Compact manifolds

In this section we show that for a compact G-stable submanifold X of Z there are only finitely
many pre-strata. Let a be a maximal subalgebra of p and A = exp a the corresponding subgroup
of G. Note that A is compatible with the Cartan decomposition of UC. Since the corresponding A-
gradient map µa is locally constant on the smooth compact manifold XA we find that V := µa(XA)
consists of finitely many points.

In [HS07b] the following is established.

Lemma 8.1. For x ∈ X the image µa(A·x) is an open convex subset of the affine subspace µa(x)+a⊥x
of a where a⊥x := {β ∈ a; 〈α, β〉 = 0 for all α ∈ ax} denotes the orthogonal complement of ax in a.

Proposition 8.2. Let C ⊂ X be compact and A-invariant. If the image µa(C) is convex, then it is
the convex hull of a subset of V. In particular, it is a polytope.

Proof. Since µa(C) is compact and convex it is the convex hull of the set of its extreme points. Let
β be an extreme point and let x ∈ C with µa(x) = β. Since C contains A · x, Lemma 8.1 implies
that β lies in an open subset of β + a⊥x which is contained in µa(C). However, β is an extreme point
so a⊥x = {0}. Therefore, ax = a and consequently x ∈ XA.

Corollary 8.3. Let X be compact and x ∈ X. Then the image µa(A · x) is the convex hull of a
subset of V.

Corollary 8.4. Let X be compact and β ∈ Bp ∩ a. Then β is the closest point to zero in the
convex hull of finitely many elements of V. In particular, Bp ∩ a is a finite set and Bp consists of
finitely many K-orbits.

Proof. Let x ∈ Cp such that µp(x) = β. Note that x is also a critical point for ηa. Applying
Proposition 5.13 to the group A and Yβ := A · x, we obtain that ‖β‖ � ‖ζ‖ for all ζ ∈ µa(Yβ). Since
µa(Yβ) is the convex hull of images of A-fixed points, β is the closest point to the origin of a subset
of V.

Corollary 8.5. If X is compact, then there are only finitely many pre-strata.

In the case where X is compact we call a pre-stratum Sβ a stratum.

9. Morse inequalities

Let G be an arbitrary Lie group and Y a topological G-space. The G-equivariant cohomology
Hn

G(Y ) of Y is by definition the ordinary cohomology Hn(EG×GY ) where EG is the total space of
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a universal G-bundle p : EG → BG and EG×GY is the quotient of EG×Y by the diagonal action
of G.

We define the G-equivariant Poincaré series to be the power series PG
t (Y ) :=

∑∞
n=0 tn dim Hn

G(Y )
where cohomology is computed with respect to a field K which we omit in the notation. If G = {e}
is the trivial group, equivariant cohomology coincides with ordinary cohomology and we write Pt(Y )
for PG

t (Y ).
Now assume that X is an orientable connected compact G-invariant submanifold of Z and that

G is a closed connected compatible subgroup of UC. Consider the finite decomposition X =
⋃

β Sβ

(Theorem 7.3 and Corollary 8.4). If Sβ,m denotes the union of the connected components of Sβ

which have codimension m in X, then X =
⋃

β,m Sβ,m is again a decomposition of X with closures
of strata having the properties analogous to those in Theorem 7.3. In the following, cohomology is
computed with coefficients in Q if all of the strata Sβ are orientable submanifolds of X and with
coefficients in Z2 = Z/2 otherwise.

Standard considerations in equivariant topology show that we have the following.

Morse inequalities. There exists a series R(t) with non-negative integer coefficients such that∑
β,m

tmPK
t (Sβ,m) − PK

t (X) = (1 + t)R(t)

where β runs through a complete set of representatives of K-orbits in Bp.
Since K is a strong deformation retract of G and the strata are G-stable the Morse inequalities

are also valid if one replaces K-equivariant cohomology by G-equivariant cohomology.
The following result of [Kir84a] is useful for computing equivariant cohomology.

Result (Kirwan [Kir84a]). Let Z be compact and K compact and connected. Then PK
t (Z) =

Pt(Z) · Pt(BK) where BK is the base space of a universal K-bundle.

In [Kir84a] it is shown that in the case where X := Z is compact and G = KC is complex
reductive the Morse inequalities are equalities, i.e. R(t) = 0. Furthermore, the strata Sβ are complex
and therefore orientable in this case. In our general situation where G is not complex reductive,
there may exist non-orientable strata.

Example 9.1. Let X := Z := P2(C) be equipped with the standard action of SL3(C) and with
the moment map induced by the Fubini–Study metric. Then for G = SL3(R) there are two strata,
namely P2(R), which is not orientable, and its complement.

We end with an example which shows that, in our situation, the Morse inequalities are not
necessarily equalities, even in the case that X = Z.

Example 9.2. Let UC = SL2(C) act on X := Z := P1(C) by g · [z] := [gz]. Then the moment map
with respect to the Fubini–Study metric is given by

µξ([z]) =
〈ξ · z, z〉
i〈z, z〉 ,

where 〈·, ·〉 is the standard Hermitian product on C2. Let G = SL2(R). Then K = SO2(R) ∼= S1

and p is the set of real symmetric matrices of trace zero. One can show that P1(C) decomposes into
two orientable strata, namely SG(Mp) = G · [1, i] ∪ G · [1,−i] and S := G · [1, 0] = K · [1, 0] ∼= S1.

For S1, a universal bundle is given by p : S∞ → P∞(C) where S∞ := limn→∞ S2n+1, P∞(C) :=
limn→∞ Pn(C) and p is induced by the projections S2n+1 → S2n+1/S1 ∼= Pn(C) where S1 acts by
multiplication on S2n+1 ⊂ Cn+1.
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We have

PK
t (P1(C)) = Pt(P1(C)) · Pt(BK) = (1 + t2)

∑
n�0

t2n = 1 + 2
∑
n�1

t2n.

Since [1, i] (respectively [1,−i]) can be realized K-equivariantly as a strong deformation retract of
G · [1, i] (respectively G · [1,−i]), we have

PK
t (SG(Mp)) = PK

t (G · [1, i]) + PK
t (G · [1,−i]) = 2 · Pt(EK ×K [1, i])

= 2 · Pt(BK) = 2 ·
∑
n�0

t2n.

For the second stratum we get

PK
t (S) = Pt(EK) = 1.

Finally we obtain the Morse inequalities

t0 · PK
t (SG(Mip)) + t1 · PK

t (S) − PK
t (P1(C)) = 2

∑
n�0

t2n + t −
(

1 + 2
∑
n�1

t2n

)

= 1 + t.

Thus, R(t) = 1 �= 0.
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1989), 135–151.

Som75 A. J. Sommese, Extension theorems for reductive group actions on compact Kähler manifolds,
Math. Ann. 218 (1975), 107–116.

Wol69 J. A. Wolf, The action of a real semisimple group on a complex flag manifold. I. Orbit structure
and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.

Peter Heinzner heinzner@cplx.rub.de
Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum,
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