STRATIFIED BALANCED SEARCH TREES

J.

van Leeuwen and M.H. Overmars

RUU-CS-81~4
February 1981

4.O
wWO

dg‘f RA
e
‘sl

771 Vgt

Rijksuniversiteit Utrecht

Vakgroep informatica

Princetonplein 5
Postbus 80.002

3508 TA Utrecht
Telefoon 030—53 1454
The Netherlands

vakgroep inforeintica R.U, Utrecht

STRATIFIED BALANCED SEARCH TREES

J. van Leeuwen and M.H. Overmars

Technical Report RUU-CS-81-4

February 1981

Department of Computer Science
University of Utrecht
P.O. Box 80.002
3508 TA Utrecht, the Netherlands

S

S

STRATIFIED BALANCED SEARCH TREES*

Jan van Leeuwen and Mark H. Overmars**

Department of Computer Science, University of Utrecht

P.0O. Box 80.002, 3508 TA Utrecht, the Netherlands

Abstract. We develop a new perspective on trees, that enables us to
distinguish and analyse many different subclasses of known classes of
(height-)balanced search trees in a uniform manner. The approach shows
that a great many different local constraints, including an arbitrary
degree of density, can be enforced on everyday balanced search tree
models, without losing the O(log n) bound on the time for insertions,

deletions and finds. The theory extends known concepts from the study

of B-trees.

1. Introduction

Search trees (cf. Knuth [6]) are used to structure tabular information
for efficient retrieval. Assuming the degree of nodes is bounded, search
trees are normally called "balanced" if the maximum path-length from the
root to any leaf is less than c.log n, where n is the current number of
tabular items ("elements") and ¢ a constant depending on the type of search
tree only. Ever since AVL-trees were discovered in 1962 (Adel'son-Vel'skii
& Landis [1], cf. [6]), a fair number of different criteria of balance have
been proposed, that could be maintained in O(log n) steps when single
elements were inserted or deleted. Typically, balance is maintained by en-
forcing and maintaining a suitable condition on the height. or the weight of
the subtrees at each individual node or, when all search-paths are kept

equally long, by allowing a degree of freedom in the branching at every

*A preliminary version of this paper was presented at the meeting on "Ef-

fiziente Algorithmen und Datenstrukturen", Oberwolfach, Feb. 2-6, 1981.

**The work of this author is supported by the Netherlands Organization for

the Advancement of Pure Research (ZWO).

node. Among the many remarkable types of balanced search trees that have

been identified,

(1) AVL-trees
(ii) generalized AVL-trees
(iii) one-sided height-balanced trees
(iv) one-sided k-height balanced trees
(v) power trees
(vi) 2-3 trees
(vii) B-trees
(viii) symmetric binary B-trees
(ix) son-trees
(x) brother trees
(xi) 1-2 brother trees
(xii) right brother trees
(xiii) k-right brother trees
(xiv) 2-3 brother trees
(xv) height-balanced 2-3 trees
{(xvi) neighbour trees
(xvii) k-neighbour trees
(xviii) oBB-trees
(xix) BB[al-trees

the following are of interest to us:

Readers interested in a precise definition of these classes are referred
to the open literature or to e.g. Olivié [8]. No detailed knowledge of
any type of trees except (i), (vi) and (vii) (see Knuth [6]) is required
for an understanding of this paper.

The many known classes of balanced trees are often very different and
hard to relate to one another, yet their maintenance algorithms all seem
to rely on a very limited number of different techniques. One might hope,
then, that out of all these different experiments in balanced tree design
some sort of unifying theory could be distilled, to treat many classes in
an integral manner. In this paper we propose such a theory for discussing
and analysing many different subclasses (of further constrained trees) of
virtually all classes of balanced trees listed above in one single frame-
work.

An interesting attempt at providing a uniform theory for the implemen-—
tation and study of balanced trees was presented by Guibas & Sedgewick [5]
in their "dichromatic" framework. They consider binary trees in which every

node is allowed to carry one bit (its "coler", say, red or black) to store

balance information. They characterize a small number of local balancing
transformations and argue that various known classes of trees, including
AVL- and B-trees, and their maintenance algorithms can be embedded in the
dichromatic framework by enforcing conditions on the occurrences of red
and black nodes along the search paths. While the desired generality is
achieved, the embeddings are not very straightforward and do not preserve
the own identity that classes of balanced trees often have in an easily
recognizable form.

We shall develop a different perspective on balanced trees, by ab-
stracting a number of common features of "height-balanced" trees related
to the locality of the balancing criteria and enforcing it as conditions
that all trees must satisfy. Strictly speaking, the conditions enforce a
certain regularity, called stratification, that need not be present in
all trees of a given type but that identifies a subclass of that type.

We prove that all stratified trees (of a certain type X) are balanced and
can be maintained (as stratified trees of the same type X) by means of

cne master update algorithm in O(log n) steps whenever elements are inserted
or deleted.

Once the formalism is explained (sections 2 and 3), it will appear that
stratification basically extends the idea of B-trees to a higher conceptual
level. The approach will show that a great many different, local constraints
can be enforced on everyday balanced search tree models without losing the
O(log n) bound on the time for insertions, deletions and finds. An intriguing,
but direct consequence of our theory will be, for example, that for each
€ > 0 one can distinguish a subclass of AVL-trees in which the proportion
of not perfectly balanced nodes is less than &, while trees in this class
can nevertheless be maintained in O(log n) steps.

Most applications (section 5) concern the issue of density. For trees
density normally refers to the minimal number of elements that will be packed
in a tree of given height. The resultant idea of packing nodes to highest
degree was exercised in the class of "dense multiway trees' proposed by
Culik, Ottmann and Wood [4]. While succesful in updating these trees in
O(log n) steps under insertions, they report an intuition that routines
for deleting elements may need to be more complex if a sufficient degree
of density is to be maintained. The theory we present will show that virtually
every type of height-balanced trees can be constrained to an arbitrary
degree of density, while both insertions and deletions can still be processed

in O(log n) steps at a time.

2. Proper classes of trees and varieties.

While it is not strictly necessary for our theory, we shall adapt
the convention that data elements are stored only at the leaves of a search
tree. We shall not explicitly distinguish between search trees (with
stored data) and their underlying graphical structure, when we discuss
classes of search trees and their properties below. Let us assume that
some class X of (balanced) trees is given. It is not necessary that an
efficient updating algorithm is given with it, although we do assume that
X-trees are meant for use in a dynamic environment. For each k, let Xk
be the subclass of trees in X of height k. We shall allow that trees of
small height (for small sets) are a bit irregular, but we do want X to

behave well for larger size sets.

Definition. X is a-proper if and only if for each t = o there is a tree

in X with t leaves.

If X is a-proper, then each set of size 2 & can be accommodated by an
X-tree. Virtually all known classes of balanced trees are l-proper, hence
G-proper for any o = 1.

Disturbances of balance in a tree are normally resolved by suitably
restructuring subtrees of some bounded size along a search path. It implies
that there is some notion of a "good" subtree. Let Z be a set of trees of
the same height B. Let lZ and hz be the smallest and largest number of

leaves, respectively, that members of Z can have. Note that we do not

require that 2 < X

8"

Definition. Z is a B-variety if and only if the following conditions are
satisfied:
(1) all trees in Z have height 8,
ii < h_,
(1ii) 1 lZ < 7
(iii) for each t with lz £t < hZ there is a tree in Z with

exactly t leaves.

It should be clear that B-varieties are very easy to construct. For many
known classes of balanced trees X is XB a B-variety, for every B greater than
or equal to 1 or 2.

Given a B-variety Z and a O-proper class of trees X, we would like to

express that the trees of Z can figure as "good" subtrees in trees of

X.

Figure 1.
Notation. Let Tl' ey Tt be trees and let T be a tree with leaves
Xproweer X from left to right. By T[Tl’ e Tt] we shall denote the

tree obtained from T by grafting each Ti onto xi (1 £ 1 £ t). See figure

1. .

Definition. Z is a regular B-variety for X if and only if the following
conditions are satisfied:
(1) 2 is a B-variety,
(ii1) for each t 2 & and T € X with t leaves and all Tl' ey
T, € Z is T[Tl, ey Tt] € X.

If T € X then in (ii) T[Tl' e, Tt] will be in X

k+B°
Example. Let X be the class of AVL-trees (cf. [6]). X is a-proper for

every & =2 1. For each B 2 2 is XB a regular B-variety for X, considered as

a l-proper class.

Example. Let X be the class of trees with a root of degree d (d fixed) and
all other internal nodes of degree 2. Let Z be the set of binary trees

of height 2. X is d-proper and Z is a regular 2-variety for X.

For many classes of balanced trees X listed in Section ! (but ndét for

e.g. B-trees and BB[al-trees) is XB a regular B-variety of X for all R

larger than 1 or 2.

3. Stratification

Let X be an QG-proper class of trees. Assume there is a regular B-variety
Z for X. We will show how to obtain a subclass of very special trees in X,
1y-1
Z 1.} -1 and
hg-1ls{ 2
let v be the smallest integer such that for each t with & £ t £ K there is

essentially by "layering"” trees from Z. Let K = max{alz, I
a T € X of height £ y with exactly t leaves. (y exists.)

Definition. The class of Z-stratified trees (in X) is the smallest class
of trees satisfying the following properties:

(property I) each T € X of height < vy for which the number of
leaves t satisfies o < t < K is Z-stratified,

(property II) if T is Z-stratified and has t leaves and T., ..., T

1
€ Z, then T[Tl' ey Tt] is Z-stratified.

Notation. The class of Z-stratified trees (in X) will be denoted as

S(X, 2).

Lemma 3.1. S(X, 2z) c X.

By induction on the definition of Z-stratified trees. Note that each
Z-stratified tree has = & leaves. Applying property II to any tree in

X with 2 & leaves keeps the result in X, by the definition of Z. O
It should be clear that T € S(X, Z) if and only if T can be decomposed

into the following form:

a "top" of height < vy, with a number of leaves t
with & £ t £ K (as defined)

s layers, some s = 0 (3.2.)

-

with each of the component trees in the layers chosen from Z. Each layer

is obtained by yet another application of property II.

Lemma 3.3. S(X, 2) is a-proper.

Consider Z-stratified trees as they are decomposed into layers. We

shall prove the following claim by induction on s:

Claim: o < t < Kh; « there is a T € S(X, 2) with t leaves and < s
layers.
The « -part is obvious.

" The = -part is immediate for s = 0. Let the claim be true for s.
Consider any t with o < t < Kh;+1. Since all t with a £ t < Kh; are covered
by the induction hypothesis, we only need to consider t with Kh§+ 1 £t <
< Kh;+l. By induction we know that for each y with « € y < Kh; there is a

T € S(X, Z2) with y leaves and at most s layers. We shall argue that the
range left for t can be covered by adding one more layer to these trees.
Adding a layer to a tree with y leaves yields trees that can have any

number of leaves t with ylZ <t < yhz. In this way one can cover all inter-

vals [ylz, yhz] for t, for y ranging from & to Kh;. If (y+1)lZ < th + 1,
then the interval for y interlaces with the next one. Only when
lz-1
(y+1)1_ > yh_+ 1, i.e., when y < 2 , will there be a gap in between.
Z Z hy-17

We note that in this case
1y-1
hz-1gz

(y+l)lZ - 1< ([7

‘ -1+1) -1<K<Kh

and, hence, the t-values in the gap are contained already in the range

covered by the induction hypothesis. Observe next that the first interval

(with y) starts exactly at the beginning of the range for t or earlier,
as alz < Kh; + 1. (For s = 0 it follows by the choice of X, for s 2 1
by a growth argument.) The last interval (with y = Kh;) ends exactly at

+
Khs 1, the end of the range of t under consideration. It follows that

Zz
C . . s+1 s
the joint intervals cover all t with KhZ + 1 <t < KhZ and, hence, that
all t-values in this range can appear as the number of leaves of some

Z-stratified tree with at most s + 1 layers. O

We conclude that in order to represent sets of size 2 & we can replace
X by its subclass S(X, Z). It remains to be seen whether S(X, Z) exhibits

a comparable efficiency. We consider searches in Z-stratified trees.

Theorem 3.4. Any Z-stratified tree with n leaves has height O(log n).

Let T € S(X, Z) have n leaves and s layers. It follows that GIZ < n,
hence s £ (log n - log @)/log lZ. The height of T is bounded by vy + s.B,

thus by IBE———'lOg n + ¢ for some constant c¢. 0

g 1z

It follows that representing sets by trees in S(X, Z) is acceptable as
far as the resulting complexity of searches is concerned. We consider the
possibility of dynamically maintaining Z-stratified trees in the next section.
We note that no maintenance algorithm may actually be known for the class
X itself.

It is useful to observe at this stage that there is a resemblance between
Z-stratified trees and B-trees. Considering representation (3.2.), one
might "collapse" the distinguished subtrees of any T € S(X, Z) into single
nodes and obtain a multiway tree in which all internal nodes except possibly
the root have degree d with lZ <4 < hz. In B-trees (Bayer & McCreight [2],
also [6]) it is normally required that hz 2 le - 1, but we make no such
assumption here. The maintenance algorithms for Z-stratified trees as
presented in the next section combine and extendithe techniques used for
updating B- and B¥*-trees (cf. Knuth [6]), as was done to some extent also
in the study of "dense" multiway trees by Culik, Ottmann and Wood [4]. our
present theory may show that multiway trees are much more fundamental to
the study of arbitrary balanced trees than has been noted until now and
that ordinary B-trees are only the simplest instance of an entire family

of classes of trees, tuneable to performance.

4. Maintenance of stratified trees.

Let X be O-proper, Z a regular B-variety for X and S(X, Z) as defined
in the previous section. We shall assume that Z-stratified trees are
presented in storage in such a manner that a decomposition as in (3.2.) is
at hand. This causes no difficulty, because all building blocks (the top
and the subtrees from Z) are of bounded size and can be delineated by

suitable markings.

Theorem 4.1. Insertions in Z-stratified trees can be processed in O(log n)

steps.

Let T € S(X, Z) and suppose we must insert a new data-element D.

If T currently stores t £ K items, then we insert D "manually"” at
the proper place among the leaves and rebuild T as a Z-stratified tree
on t + 1 leaves. By lemma 3.3. this can be done and leads to a tree with
at most one layer. The amount of work required is O(K), hence 0O(1).

Let T currently have more than K items. Thus T will consist of a "top"
TO of the necessary specifications and s =2 1 layers below it. Search with
D down T to find where D must be inserted among the leaves. Let the blocks
passed by the search path be TO' Tl' ey Ts' where T1 to TS are trees
from z. If TS has t leaves and t < hZ, then it is sufficient to place D
in the right order among the leaves and to rebuild Ts as a Z-tree on t + 1
leaves. (This can always be done and keeps T stratified.) If t = hZ, then
we have to do more work and may be forced even to "split off" a new Z-tree

in the current layer which, consequently, must be inserted in TS And

-1°
this can propagate through several more layers upwards. Very generally, let
us consider the insertion of a "leaf" in Ti for'i > 1. Let Ti currently
have t leaves.

If t < hz, then we can rebuild Ti as a Z-tree on t + 1 leaves and are
done.

If t = hz, then we shall examine the "brothers" of Ti to see if we can
move elements over and make room for the element to be inserted. Note

(see figure 2) that Ti is a "leaf" of Ti— and that there are at least

1

———3 at least lZ leaves
e e Y
h

Z Figure 2.

lz - 1 neighboring leaves (Z-trees). If one of them still has room, i.e.,
less than hZ leaves itself, then we can shift elements over and redistribute

them over lZ subtrees such that with the new element included no subtree

needs to have more than hZ leaves. It requires the reconstruction of up
to lZ subtrees as Z-trees (and a revision of the search queries at their

nodes), but is still 0(1) steps of work.

10.

If all of these lZ = 1 neighboring brothers are full, i.e., have hZ
leaves, then consider the entire row of (lZ - 1)hZ + hZ + 1 elements we
must accomodate. Clearly lz subtrees are not sufficient, but lZ + 1 are,

because of the following inequality:

= - - - + =
(lZ + l)lZ lzhz lz(hZ lZ 1) < thZ 1< lzhZ + hz (lZ + l)hZ

It easily follows that the thZ + 1 elements (roots of subtrees) can be
put together in lZ + 1 Z-trees in this layer, one more Z-tree than we had.
Thus we succeed, provided we carry out an insertion in Ti—l'

So the procedure repeats, until it eventually gets to T1 (if it didn't

halt before that). For an insertion into T1 we can not follow the same

procedure, because To is not a Z-tree. (In particular, TO

lz - 1 brothers.) Consider TO and the entire first layer (see figure 3).

Let the first layer have a total of t leaves, hence t < Khz. Insert the

need not provide

Figure 3.

4—— total of t leaves

Y new insertion

new node at the proper place and rebuild the entire portion of the tree
as a Z-stratified tree on t + 1 elements. By lemma 3.3. one can do so,
with a resulting tree of at most 2 layers. The amount of work required is
O(Khz), thus O(l). Appending the lower layers (automatically as the sub-
trees of the t + 1 elements accomodated for) maintains the conditions of
a Z-stratified tree.

The total amount of work adds up to O(s), which is O(log n). ©

It is noted that the insertion in the top of the tree could have been
dealt with more easily, had we assumed that o = lZ' This not being the
case, a rather massive reconstruction is required to carry the proof through.

Theorem 4.2. Provided the total number of elements remains > ¢, deletions

in Z-stratified trees can be processed in O(log n) steps.

11.

Let T € S(X, Z) and suppose we must delete an element D.

If T currently has t £ K elements, then we just delete D "manually" and
rebuild T as a Z-stratified tree with t - 1 elements (provided t - 1 =).
This can be done and requires no more than O(K) steps of work.

Let T currently have more than K items. Thus T will consist of a top
TO and s 2 1 layers attached to it. Search with D down T to find where
it is located among the leaves. Let the blocks passed on the way down

be TO, Tl' cees TS, where T, to Ts are Z-trees. As for insertions, deletions

1

can propagate upwards. We shall consider the deletion of a leaf node from
Ti for 1 > 1, Assume that Ti currently has t leaves.

If t > lZ' then we can perform the deletion and rebuild Ti as a Z-tree
on t - 1 leaves. It requires O(1l) steps of work and we are done.

If t = lZ, then we shall examine the "brothers" of T, (as Z-trees)
to see if one of them has an element to spare, i.e., if one has > lZ elements.
Note that Ti has (at least) lz - 1 brothers (as in the proof of 4.1.) and

if one of them has > lz elements, then we can shift over and redistribute

elements so that after the desired deletion has been performed all of these

lZ subtrees still have 2 17 leaves each. It requires that up to lZ sub-

trees are reconstructed (as Z-trees), but this takes only O(1l) steps of
work.

If all of the lZ - 1 neighboring brothers are "minimally filled", i.e.,
have lz elements, then consider the entire row of (lZ - 1)1Z + lZ -1
elements that must be accomodated. Clearly they do not fit into lZ Z-trees

anymore, but they do in lZ - 1, as the following inequality lets us

conclude:
(1, - Y1, < 12 -1 < 12 + 1 _(h, -1) -h_ = (1, - 1)h
Z Z Z A 2 Z Z p Z Z
Construction of lZ - 1 Z-trees takes again O(1) steps of work, but note

that it gives us one component less than the number we had. Thus to
succeed, we must continue and carry out a deletion on Ti-l'
So the procedure repeats, until eventually it gets to T1 (if it didn't
finish before). If the first layer has a total of t leaves then do the
necessary deletion in Tl and, like we did in the proof of 4.1., rebuild TO
and the entire first layer as a Z-stratified tree on t - 1 leaves. (Note
that t 2 alz > &, which shows that the reconstruction can be carried out.)

The total amount of work is again O(s), which is O(log n). O

In the proofs of 4.1. and 4.2. the details of how to adapt the
assignment of search queries at the nodes have been omitted. The changes

are all local and left as an easy exercise to the reader.

12.

The maintenance routines for stratified trees prove the results we
were after, but are not necessarily practical. For specific classes S(X, Z)
one may wish to inspect fewer brothers of the components and use a simpler

procedure at the top of the tree.

5. Applications

We shall apply the idea of stratification to distinguish some remarkable

subclasses of common classes of balanced trees.

Terminology. A class of search trees is said to be log n-maintainable if
and only if there is some constant ¢ such that insertions, deletions and

finds can be performed within ¢ log n steps on any tree with n leaves in the

class (n large enough).

The results of Sections 3 and 4 can be summarized into the following

statement.

Theorem 5.1. Let X be d-proper and Z a regular B-variety for X. Then

S(X, Z) is an a-proper and log n-maintainable subclass of X.

It follows that in order to distinguish interesting subclasses of a given
class X (which need not be log n-maintainable itself), it suffices to

find suitable regular varieties for X.

AVL-trees

Let X be the class of AVL-trees. We know that X is l-proper, thus we

can take a« = 1. Observe that every X, (B = 2) is a B-variety. The following

B

observation is crucial:

Lemma 5.2. If Z is a B-variety of AVL-trees, then Z is a regular B-variety

for X.

We can immediately use the lemma to stratify with e.g. X to obtain the

2'
following class of trees. Let a node be at level j if and only if the

longest path from the node to a leaf has j edges.

Proposition 5.3. There exists a log n-maintainable class of AVL-trees
in which every odd-numbered level, except perhaps the root-level, consists

only of nodes that are in perfect balance.

Consider the distinct members of X2 (see figure 4). Clearly X2 is
a 2-variety and hence, by lemma 5.2., a regular 2-variety for the class
of AVL-trees (X). Take Z = X2 and consider S(X, Z). The odd-numbered

levels of Z-stratified trees, except perhaps those at the top, precisely

A’k A LX’ (+— denotes
\¥ d/) d/\k 0 odd-level nodes)

(a) (b) (c)

Figure 4.

contain the nodes of the middle level (pointed at by the < in figure 4)
of each component X2—tree. It is easily seen that they are in perfect
balance the way they occur in the trees. At the top, just note that

K = max {1.3, [%E% 3} - 1 = 5. Thus the top-portions of Z-stratified
trees must include the trees displayed in figure 5 (only non-isomorphic

copies are shown). All nodes, except the root in case (e), that will

o -~ -~
J/\x / — b e -« («— denotes
A/ é/\¥ é/ odd-level nodes)
: [X

(a) (b) (c) (d) (e)

Figure 5.

occur in odd-numbered levels, will be perfectly balanced. Thus S(X, Z)

is the class as desired. B

Theorem 5.4. For each &€ > 0, there is a log n-maintainable class of AVL-
trees in which the proportion of nodes that are not in perfect balance is

less than € (provided the number of leaves is sufficiently large).

13.

14.

Proof
Determine k such that ; 5 < £€. Consider the set Z consisting of
2% Kk
the perfectly balanced trees on 2°° - 1 and 2 leaves, respectively, as

displayed in figure 6. While Z consists of only 2 trees, it is a wvalid

perfect binary

/ | Al

e
-

Figure 6.

k-variety, hence a regular k-variety for the class of AVL-trees. Consider
trees in S(X, 2Z). If its number of leaves 1s large enough, then the top

of a Z-stratified tree is small compared to the size of the layers. In
each component of a layer at most one (the node pointed at by < in figure

6) of at least 2k - 2 internal nodes can be out of balance. Thus the

proportion of nodes that are not in perfect balance is < 2£ > < &, provided

the trees are large enough. Thus S(X, Z) is a class as desired. O

In the past there has been some attention for one-sided AVL-trees
({71, (9], [10]), i.e., AVL-trees in which the balance factors are only
0 or 1 (but never - 1). It should be clear that proposition 5.2. gces
through for one-sided AVL-trees, once we eliminate trees of type (a) in
figure 4 from the variety and force all trees in the top to be of an exact
type as displayed in figure 5. Even theorem 5.4. goes through, because the
simple variety used in the proof actually consists of one-sided AVL-trees
Note that the maintenance algorithms for the classes referred to in pro-
position 5.3. and theorem 5.4. are in no way related to the "known"

maintenance algorithms for AVL-trees in general.

The k-variety used in the proof of theorem 5.4. (cf. figure 6) or the
obvious variant with higher degree nodes, is a regular variety for almost
any class of balanced trees. Thus, stratification by means of such a

variety will show that, theoretically, almost every type of balanced trees

15.

can be "packed" or "almost perfectly balanced", without losing the log n-

maintainability of the class. With theorem S5.1. there should be no magic

to density results. Clearly, the maintenance algorithms for the classes of

dense trees construed may be worse on the average than for the unconstrained
class, but this is the price to pay for density. Precise trade-offs may

be an interesting subject for further study.

Symmetric binary B-trees (SBB-trees) were introduced by Bayer [2]
to obtain a suitable "binarization" of arbitrary B-trees. Olivié [8]

noted a nice relationship between SBB-trees and a special class of 1-2

trees.

Definition. A 1-2 tree T is called a standard son tree if and only if
the following conditions are satisfied for T (in addition to being a
1-2 tree):

(1) the depth of T is even,

(ii) the even levels of T contain no unary nodes.

It follows in particular that in standard son trees no unary node can

have a unary son. Olivié [8] proved:

Theorem 5.5. There is a natural, one-to-one correspondence between

SBB-trees and standard son trees.

Considering standard son trees more precisely, let X be the class of
1-2 trees and Z be the 2-variety of standard son trees of depth 2 (see

figure 7). It is easily seen that Z is a regular 2-variety for X, with

VANV

(a) (b) (c) (d)

Figure 7.

[
Il
[N]
=2
It

4, o =1 and X = 1,

16.

Theorem 5.6. With X and 2 as defined, S(X, 2) is precisely the class of

standard son trees.

From 5.1. one can immediately derive that the standard son trees are
a log n-maintainable class. (The resulting algorithm proves to be very
similar to Olivié's [8].) In fact, the result indicates very clearly

that standard son trees, hence SBB-trees, are 2-4 trees in disguise.

B-trees were originally introduces by Bayer and McCreight [3], but
later extended in.several ways (see e.g. Knuth [6], sect 6.2.4.).
Essentially, a B-tree of order m is a tree which satisfies the following

properties:

(i) all leaves have equal depth,
(ii) the root has a degree d, satisfying 2 £ 4 < 2[—] -1,

2
(iii) all remaining nodes have a degree d satisfying [—- <d < m.

(We ignore the details of how "keys" are stored. Note that property (ii)
gives a slightly sharper bound on the degree of the root than is usually
stated.) The following result shows that stratified trees and B-trees

are intimately related. Let X be the class of B-trees of order m, Z the

l-variety of trees with a root of degree d with %- £d <m, Z is a reqgular

l-variety for X and one easily verifies the following result:

Theorem 5.7. With X and Z as defined, S(X, 2Z) is precisely the class of

B-trees ¢f order m.

From 5.1. the log n-maintainability of the class of B-trees is confirmed.
Interpreting nodes as tracks on a disk and m as the maximum number of
records that fit on one track, B-trees are of use for practical file design
in which nodes (tracks) are always filled to at least half the maximum
capacity, with the possible exception of the root. Knuth [6] (p. 478)

describes a variant type of B-trees, called B*-trees, in which all internal
m—-1
3

B¥-trees guarantee a 67% minimum space utilization on every track (except

nodes except the root have a degree d satisfying £ d £ m. Thus,

for the root). Let X be the class of B*-trees of order m §nd Z the 1-
2m—1|
< 4
3
regular l-variety for X and one easily verifies that & = 2 and that K (the

variety of trees with a root of degree d satisfying [< m., Z is a

degree bound at the root) must equal the following value:

17.

{2m—1] -
K = max {2[2?;1], m j}2m—11 .[2?;1]} -1
3
]

2m-1

+
2|25 -
(Compare [6], p. 478)

Theorem 5.8. With X and Z as defined, S(X, Z) is precisely the class of

B*¥~trees of order m.

To obtain a statement about the maximum space utilization attainable
in theory by B-trees, it is useful to distinguish the following class

of trees:

Definition. Given 1, m with 1 < 1 < m, a B-tree of order (1, m) is any

tree which satisfies the following properties:

(i) all leaves have equal depth,

(ii) the root has a degree d satisfying 2 < d < max {21,[§5%11} -1,

(iii) all other nodes have a degree d satisfying 1 £ d € m.

The factual theory of B-trees culminates in the following theorem.

Theorem 5.9. The class of B-trees of order (1, m) is 2-proper and log n-

maintainable, for every 1 < 1 < m.

Let X be the class of B-trees of order (1, m) and Z the l-variety of
trees having a root of degree d with 1 £ d £ m. Z is a regular l-variety
for X and it is easily seen that S(X, Z) is precisely the class X itself.

The theorem immediately follows from theorem 5.1. O

By choosing 1 close to m, a log n-maintainable class of B-trees is obtained

with a space utilization of nearly 100%. One might even take 1 =m - 1,

2
although this would force the root node to have a degree up tom =~ 3m + 1

and gives abominable constants in the 0(log n) time bounds for the insertion

and deletion routines.

Dense multiway trees.

The preceding analysis has shown that, theoretically, B-trees can be

18.

made arbitrarily dense. One can go even further and stratify B-trees them-

selves.

Definition. An internal node of a B-tree is called saturated if it has

a maximum degree.

It will be an easy exercise for the reader to apply theorem 5.1. and

prove the following, typical result (compare theorem 5.3.):

Theorem 5.10. There exists a log n-maintainable class of B-trees of
order (1, m) of which all even-numbered levels, except for a few near

the top, contain only saturated nodes, for every 1 < 1 < m.

One can continue along this line and prove, very similar to theorem 5.4.,

that for every €¢ > 0 and 1 < 1 < m there is a log n—-maintainable class

of B-trees of order (1, m) in which the proportion of unsaturated nodes

in less than ¢, provided the number of leaves is large enough. It is
hard to conceive of more densely packed trees!

-Culik, Ottmann and Wood [4] pursued a different approach to obtain dense
trees. Considering multiway trees with node degrees from 1 up to m permitted,

they introduced the following concept:

Definition. A multiway tree T is called r-dense (for some r with 1 £ r <

£m = 1) if and only if the following conditions are satisfied:

(1) all leaves have the same depth,
(ii) the root of T has a degree d satisfying 2 £ d € m,
(1iii) each unsaturated node different from the root either has
only saturated brother and at least one such brother or has

at least r saturated brothers.

Culik et.al. [4] proved that insertions in 1-dense multiway trees (r = 1)
can be processed in O(log n) steps. The general case (r = 1) and the problem
of handling deletions also, were left unsolved. While we have no answer to
these problems to offer here, it turns out to be fairly easy to find log n-

maintainable subclasses of the classes of r-dense multiway trees for any

r =z 1.

Theorem 5.11. For every r with 1 <r <m - 1, there exists a log n-main-

tainable class of r-dense multiway trees.

19.

Let X be the class of r-dense multiway trees. It can be shown that
X is 2-proper. Let Z be the 2-variety of trees which have a root of degree
m and at least r of the (internal) nodes at depth 1 saturated as well.

Z is a regular 2-variety of X. Hence S(X, Z) is a class of trees as desired.

It should be clear that r-dense trees, even (m - 1)-dense trees, can
be stratified further to obtain log n-maintainable subclasses of any
arbitrary degree of packing. The results so obtained answer various

questions from Culik et.al. [4] affirmatively about the existence of

log n-maintainable classes of dense trees.

6. References.
(For references to the extensive literature on balanced trees see

e.g. [8].)

[1] Adel'son - Vel'skii, G.M. and E.M. Landis, An information
organisation algorithm, Doklady Akad. Nauk SSSR 146 (1962)
263-266, transl. Soviet:-Math. Dokl. 3 (1962) 1259-1262.

(2] Bayer, R., Symmetric binary B-trees: data structure and maintenance

algorithms, Acta Informatica 1 (1972) 290-306.

[3] Bayer, R. and E.M. McCreight, Organisation and maintenance of

large ordered indexes, Acta Informatica 1 (1972) 173-189.

[4] Culik II, K., Th. Ottmann and D. Wood, Dense multiway trees,
Bericht 77, Inst. f. Angew. Informatik u. form. Beschrei-

bungsverfahren, Universitdt Karlsruhe, Karlsruhe, 1978.

5] Guibas, L.J. and R. Sedgewick, A dichromatic framework for
balanced trees, Proc. 19th Annual IEEE Symp. on Foundations

of Computer Science, Ann. Arbor, Oct. 16-18 (1978), pp. 8-21.

6] Knuth, D.E., The art of computer programming, vol. 3: sorting
and searching, Addison-Wesley Publ. Comp., Reading, Mass,

1973.

[7] Kosaraju, S.R., Insertion and deletion in one-sided height-balanced

trees, C. ACM 21 (1978) 226-227.

8] Olivié, H., A study of balanced binary trees and balanced one-two
trees, Ph.D. Thesis, Dept. of Mathematics, University of

Antwerp (UIA), Antwerp, 1980.

20.

[9] Ottmann, Th. and D. Wood, Deletion in one-sided height-balanced
search trees, Int. J. Comput. Math. 6 (1978) 265-271.
[10] Zweben, S.H. and M.A. McDonald, An optimal method for deletion

in one-sided height-balanced trees, C. ACM 21 (1978)
441-444.

