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ABSTRACT

Uniformly stratified flows approaching long and dynamically tall ridges develop two distinct flow compo-

nents over disparate time scales. The fluid upstream and below a ‘‘blocking level’’ is stagnant in the limit of an

infinite ridge and flows around the sides when the ridge extent is finite. The streamwise half-width of the

obstacle at the blocking level arises as a natural inner length scale for the flow, while the excursion time over

this half-width is an associated short time scale for the streamwise flow evolution. Over a longer time scale,

low-level horizontal flow splitting leads to the establishment of an upstream layerwise potential flow beneath

the blocking level. We demonstrate through numerical experiments that for sufficiently long ridges, crest

control and streamwise asymmetry are seen on both the short and long time scales. On the short time scale,

upstream blocking is established quickly and the flow is well described as a purely infinite-ridge

overflow. Over the long time scale associated with flow splitting, low-level flow escapes around the

sides, but the overflow continues to be hydraulically controlled and streamwise asymmetric in the

neighborhood of the crest. We quantify this late-time overflow by estimating its volumetric transport

and then briefly demonstrate how this approach can be extended to predict the overflow across

nonuniform ridge shapes.

1. Introduction and background

The study of stratified flow past topography is of prac-

tical interest in atmospheric science and oceanography.

Applications include parameterizing surface drag and

turbulence in the lee of ridges, forecasting orographic

precipitation, and predicting the occurrence of down-

slope windstorm events. For a recent review of atmo-

spheric applications, see Chow et al. (2012). While flow

over dynamically short obstacles is fairly well described

in terms of linear theory (e.g., Queney 1948; Smith 1980;

Durran 1990), flow over dynamically tall obstacles is

fundamentally nonlinear in character. Here dynamically

tall implies a mountain height larger than the intrinsic

height scale obtained from the upstream flow speed and

stratification.

Further, when the cross-stream length of the ridge is

large compared to its along-stream width, flows ‘‘over’’

the crest and ‘‘around’’ the sides develop over dispa-

rate time scales. Here, we consider long and dynami-

cally tall mountain ridges and quantify the evolution

of the overflow as the low-level fluid upstream splits and

flows laterally around the sides of the obstacle.

Energetics arguments (Sheppard 1956) show that,

for a sufficiently slow flow or strong stratification, much

of the air upstream and below the ridge crest remains

blocked. Upstream blocking has been observed both in

2D laboratory towing experiments (Baines 1977; Baines

and Hoinka 1985) as well as in atmospheric flow over

mountains, for example, in flow over the Alps by Armi

and Mayr (2007). The dynamical aspects of these flows

are reviewed by Jackson et al. (2013).

When the flow is strictly two-dimensional, blocking is

accompanied by the formation of an overlying flowing

layer that plunges down the obstacle as a nonlinear, hy-

draulically controlled downslope flow. Continuity and

mass conservation require that the flow within this layer

makes up for the volume transport deficit caused by up-

stream flow stagnation. Winters and Armi (2014) show

using nonlinear stratified hydraulic theory that, for an

infinite obstacle with upstream blocking, the steady-state

optimally controlled flow has an upstream velocity profile

that is parabolic in shape and this flowing layer thins and

accelerates as it plunges down the lee slope. A schematic

of this flow is shown in Fig. 1.

One might ask whether hydraulic dynamics persist

when the cross-stream ridge length is finite but large. In

this case, the upstream fluid that is blocked when theCorresponding author: Arjun Jagannathan, agjagann@ucsd.edu
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ridge is infinite has energetically free horizontal path-

ways to pass around the obstacle. The validity of a two-

dimensional treatment of flow past finite obstacles was

first raised by Brighton (1978) in the context of labo-

ratory towing experiments. To illustrate the underlying

dynamics, we perform numerical experiments in which

a uniform upstream flow with speed V‘ and stability N

approaches a mountain ridge of height hm. We focus on

dynamically tall and long ridges, characterized by low

topographic Froude number, Fr5V‘/Nhm � 1 and large

cross-stream to along-stream aspect ratio, b5sx/sy � 1;

bmay also be regarded as a scaled ridge length. Figure 2

shows a schematic of the flow configuration.

Fundamental inner flow scales emerge naturally from

this configuration. Energetics considerations (e.g., Sheppard

1956) suggest that the upstream flow remains blocked

below a depth d’V‘/N from the crest. We refer to d as

the blocking scale. When Fr � 1, d � hm constitutes

an inner vertical length scale for the overflow. The flow

below the blocking level z5 hm 2 d is either blocked or

splits around the obstacle laterally, suggesting a second

inner length scale syd 5O (Frsy), the half-width of the

FIG. 1. Schematic of low Fr controlled asymmetric overflow over an infinite ridge. The far-

upstream flow configuration is characterized by a linear density profile and uniform flow speed.

The fluid upstream and below a depth d from the crest is blocked. Also y52yb is the

streamwise coordinate of the blocking location, y5 yb is the symmetric downstream location,

and Q denotes the volume transport within the parabolic overflow, which matches the far-

upstream transport as shown. The thickness H of the overflow is coupled to its transport Q as

Q5NH2/p (Winters and Armi 2014). Additionally, on either side of the crest, the vertical

plunge h (y) of the top of the overflow is uniquely mapped to h(y)2h(2yb), the height of the

topography relative to the blocking point (see also section 3 and appendix A). The streamwise

computational boundaries are y52Ly/2 and y5Ly/2. At the upstream boundary a radiation

condition is prescribed (see section 2b), which allows upstream-propagating waves to escape

the domain without reflection.

FIG. 2. Flow schematic for low Fr flow past a long but finite ridge of height hm, along-stream

half-width sy, and cross-stream half-length sx with b5sx/sy � 1 that falls steeply to ground

level at the lateral ends within a length scale sx*� sx. The far-upstream flow speed and stratifi-

cation are uniform and equalV‘ andN, respectively, with Fr5V‘/Nhm � 1. Figure is not to scale.
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obstacle at the blocking level. The fluid above the block-

ing level has sufficient kinetic energy to flow over the

ridge. Thus bd 5sx/syd is an effective scaled ridge length

for the flow component that crests the obstacle. The

excursion time,

t
d
5

s
y
d

V
‘

, (1)

then follows as a natural inner time scale. Note that the

inner time scale can also be rewritten as td 5O (Frsy/V‘)5

O (sy/Nhm). This suggests another interpretation of td
as the time taken by columnar internal wave modes (cf.

Baines 1987) of vertical scale hm and speed O (Nhm/p)

to propagate an upstream distance sy. These columnar

modes promote flow blocking below z5 hm 2 d and an

accelerated overflow across the crest.

Beneath the blocking level, the upstream flow even-

tually evolves to a layerwise horizontal potential flow

(e.g., Drazin 1961). Thus the half-lengthsx of the ridge is

the appropriate outer length scale. Assuming that flow

splitting is also accomplished by columnar internal wave

modes of vertical scale hm that communicate the finite

extent of the ridge to a distance of about sx upstream,

t
b
5

s
x

Nh
m
/p

(2)

is an outer time scale for the low-level splitting flow. A

summary of these key dimensional scales and nondimen-

sional parameters is provided in Table 1.

A factor that influences the fate of plunging down-

slope flows is the presence or absence of a dense, cold

pool downstream of the crest. In low Fr flow past finite

ridges, the low-level dense fluid in the lee is retained and

recirculates slowly. This manifests as a pair of vertically

oriented lee vortices that have been observed in numer-

ical simulations (e.g., Smolarkiewicz and Rotunno 1989)

and laboratory experiments (Hunt and Snyder 1980). As

we will see, the retention of a cold pool inhibits plunging

in the lee.

Drazin (1961) developed asymptotic solutions for flows

with Fr � 1 in which, to leading order in small Fr, the

steady state is a layerwise potential flow at all depths

below the blocking level. However, this steady asymp-

totic solution does not give insight into the mechanisms

or time scales involved in its establishment, nor does it

contain a vortical wake structure. Epifanio and Durran

(2001) considered long ridges with b up to 12 focusing

their attention on the unblocked flow regime, Fr$ 1 for

which bd 5b. Flows with Fr, 1 over obstacles with

O (1) horizontal aspect ratios have been studied by a

number of authors (e.g., Smolarkiewicz andRotunno 1989;

Hunt and Snyder 1980; Hanazaki 1988). In this regime,

splitting flows are established quickly; consequently 2D

solutions are not very useful in characterizing them. Pre-

vious investigations of low Fr flow past elongated ridges

have been confined to moderate values of b# 5 (Bauer

et al. 2000; Ólafsson and Bougeault 1996). The linear

regime diagram of Smith (1989) provides some guidance

as to the Fr and b ranges over which one might expect

‘‘wave breaking’’ and ‘‘flow splitting’’ but as pointed out

by Smith (1989) and others (Bauer et al. 2000; Ólafsson

and Bougeault 1996) there are uncertainties associated

with the regime boundaries for low Fr and large b.

To investigate the extent to which flow features char-

acteristic of the infinite-ridge solution such as crest con-

trol and streamwise asymmetry are seen in low Fr flows

past long but finite ridges, we performed a suite of nu-

merical experiments. We first consider a Fr 5 0.16 flow

over an infinite ridge and demonstrate that, by prescrib-

ing a uniform outflow with a radiation condition up-

stream, the flow rapidly evolves toward the optimally

controlled downslope flow of Winters and Armi (2014).

We then consider the same flow over a finite ridge with

steep ends for which b5 30. We show that the stream-

wise flow near the ridge center is well described as an

infinite-ridge overflow for a finite time after which it

starts to diverge owing to splitting effects. We quantify

TABLE 1. Summary of important dimensional inner and outer

variables and dimensionless flow parameters.

Term Description Units

Dimensional outer parameters

V‘ Basic flow speed m s21

N Background stratification s21

hm Ridge height m

sy Streamwise ridge half-width m

T5sy/V‘ Outer excursion time scale s

sx Cross-stream ridge half-length m

sx* Length of lateral end/connecting

sections

m

tb 5sx/(Nhm/p) Outer flow-splitting time scale s

Dimensional inner parameters based on the blocking scale

d’V‘/N Blocking scale m

hm 2 d Blocking level m

syd Streamwise ridge half-width at

blocking level

m

td 5syd/V‘ Inner excursion time scale s

Dimensionless outer quantities

Fr5V‘/Nhm � 1 Topographic Froude number —

b5sx/sy Scaled ridge length —

t0 5 t/T Scaled outer excursion time —

t0b 5 t/tb Scaled outer splitting time —

Dimensionless inner quantities

Frd 5V‘/Nd’ 1 Overflow Froude number —

bd 5sx/syd Scaled dynamic ridge length for the

overflow

—

t0d 5 t/td Scaled inner time —
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the evolution by measuring the volume transport in the

overflow as a function of time. Over longer O (tb) time

scales, we show that, by reformulating the overflow trans-

port to account for lateral flow splitting, the late-time flow

over the ridge can still be described by stratified hydraulic

theory. Finally, considering an example of a ridge with

an abrupt change in height, we demonstrate how these

general principles can be extended to predict the over-

flow across nonuniform ridges.

2. Modeling approach

We consider three-dimensional, nonrotating, incom-

pressible flow, with free-slip boundary conditions on the

ridge surface. The numerical experiments are performed

using the spectral large-eddy solver described inWinters

and de la Fuente (2012), with the bottom topography

incorporated as a smooth immersed boundary. The goal

is to capture the essentially inviscid dynamics at the large

scales of the flow. To this end, we employ a sixth-order

hyperdiffusion operator to explicitly diffuse only the

motions near the smallest grid scale. At rest, the fluid is

in hydrostatic balance everywhere, with

›p
0
(z)

›z
52r

0
(z)g , (3)

where p0(z) is the static pressure, r0(z) is the initial

density profile, and g is the acceleration due to gravity.

The fluid is stably stratified with uniform buoyancy

frequencyN and a density difference Dr across the total

fluid depth. Perturbing about this rest state, for the flow

in the domain of interest, the nonlinear equations of

motion in the Boussinesq limit are

›u

›t
1u � =u1 g

r0

r
0

k̂52
1

r
0

=p0
1 n*D u , (4a)

›r

›t
1 u � =r5 k*D r , (4b)

= � u5 0: (4c)

Here, u is the three-dimensional velocity vector

and k̂ is the unit vector in the z direction; r0 is a con-

stant reference density; r0 and p0 are the perturbation

density and pressure, respectively; and r is the total

density:

r5 r0 1 r
0
(z) . (5)

The topography slopes gently in the streamwise di-

rection with hm/sy 5 1/6, rendering the upstream pres-

sure approximately hydrostatic. Note however that we

do not invoke the hydrostatic approximation and are

thus able to capture O (1) aspect-ratio shear-induced

overturning motions downstream.

In (4b) D is a sixth-order hyperdiffusion operator,

D [

�

›6

›x6
1

›6

›y6
1

›6

›z6

�

, (6)

and n* and k* are hyperviscosity and hyperdiffusivity,

respectively, which are chosen such that gridscale

motions decay to exp (21) their value within a dissi-

pation time scale Tdiss 5 5Dt, where Dt is the model

time step.

a. Experimental setup

In all our experiments, the vertical height Lz of the

domain is taken to be 6 times the maximum obstacle

height. The flow is rapidly accelerated from rest, with

the inflow conditions being ramped up to their desired

values over 10Dt.

1) INFINITE-RIDGE EXPERIMENT

We consider a flow with topographic Froude number

Fr5 0.16 incident on an infinite Gaussian ridge (b5‘)

centered at y5 0,

h5 h
m
exp

 

2
y2

s2
y

!

. (7)

Given Fr, the half-width at blocking depth, syd is found

by substituting h5 hm 2 d’ hm 2V‘/N5 hm(12Fr) in

the LHS of (7), giving for Fr 5 0.16,

s
y
d

’s
y
/2:5: (8)

We set sy 5 6hm and the domain width Ly 5 16:7sy,

with grid spacing Dy5 0:038syd and Dz5 0:1d. With re-

spect to the inner time scale td, we declare that the flow

has reached quasi-steady state when its bulk properties,

namely overflow transport, thickness, and peak speed at

the blocking location deviate by less than 1% over 5td.

The flow reached quasi-steady state by t5 31:3td, and

the run was terminated at t5 47:6td.

2) FINITE-RIDGE EXPERIMENT

For the finite-ridge configuration (see Fig. 2), Fr is

again set to 0.16 and the ridge height is specified as

h5

�

h
1
1 0:5Dh

�

11 tanh
(s

x
2 jxj)

s
x
*

��

exp

 

2
y2

s2
y

!

,

(9)

where h1 5 0, Dh5hm, and b5sx/sy 5 30. The ends are

steep, with sx*5sx/120. We exploit the symmetry of
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the flow configuration to compute the flow on the half

domain x$ 0 only, with x5 0 treated as a symmetry

boundary. To capture lateral flow splitting, we perform

the experiment in a large horizontal domain with inflow

and outflow channel lengths set to values slightly bigger

than 2sx and the lateral half-length, Lx/2 set to 4:7sx.

The boundary condition at the lateral boundary x5 4:7sx

is approximated as no normal flow, and u5 0 along with

zero normal gradients on streamwise velocity, pressure,

and density.

The grid resolution is Dy5 0:125syd, Dx5 0:018sx,

andDz5 0:1d and the runwas terminated at t5 48:9td. A

summary of the computational details for each experi-

ment is given in Table 2.

b. Near-boundary forcing

Asponge layer of thicknessLz/3 is imposed at the upper

boundary through a Rayleigh damping term that absorbs

upward radiating waves. Inflow and outflow boundary

conditions are implemented as sponging terms that relax

to the specified target values over O (102 100)Dy. The

outflow boundary condition is uniform withdrawal at

speed V‘.

Low Fr flows over topography excite columnar internal

waves that propagate upstream and alter the oncoming

flow. So specifying a uniform inflow condition at the

upstream boundary will cause wave reflections that

may contaminate the solution in the domain interior,

particularly if the inflow channel is not very long. For

this reason we apply a radiation condition upstream that

maintains the depth integrated transport while allowing

the vertical profile of the inflow to evolve in time as

upstream propagating waves escape the domain. This is

implemented through an iterative scheme that measures

the upstream influence at an intermediate location

between the ridge center y5 0 and inflow boundary

y52Ly/2. This information is then utilized in a dynam-

ically evolving boundary condition that is imposed via

relaxation,

yi11
2Ly/2

(x, z)5ayi
2Ly/2

(x, z)1 (12a)yiy*(x, z), (10)

and similarly for u and r. Here, i is the time step, y* is

the intermediate position (2Ly/2, y*, 0) where the

flow is measured, and a is a weighting parameter.

In the finite-ridge case, flow-splitting effects extend a

distance of O (sx) upstream from the obstacle; accord-

ingly y* is conservatively placed further upstream of

the crest at x522:5sx(75sy). For low Fr flow over an

infinite ridge, upstream influence carried by columnar

modes propagates arbitrarily far upstream without any

change in amplitude (e.g., Pierrehumbert and Wyman

1985). The measurement location in this case is kept

a distance of about 10sy upstream of the crest. In

general, the measurement location must be placed ap-

propriately far from the topography to ensure that

spurious information from nonpropagating, hori-

zontally decaying wave modes is not relayed to the

upstream boundary.

The physical basis for the iterative boundary scheme

is that, in these subcritical flows, the energy of the up-

stream propagating signals is primarily contained in co-

lumnar internal wave modes (cf. Baines 1987) excited

at the crest, having vertical scale hm and group velocity

O (Nhm/p). The parameter a is therefore chosen as fol-

lows. We determine the number of time steps n* it takes

TABLE 2. Numerical implementation details for each of the flow experiments.

Infinite ridge (b5‘) Finite ridge (b5 30) Two-level ridge

Ridge configuration

sy 6hm 6hm 6(h1 1Dh)

sx — 30sy 30sy

sx* — 0:25sy 0:25sy

Computational domain

Ly 16:7sy 140sy 140sy

Lx/2 — 4:7sx 4:7sx

Lz 6hm 6hm 6(h1 1Dh)

Grid configuration

Dy 0:038syd 0:125syd 0:23syd

Dx — 0:018sx 0:009sx

Dz 0:1d 0:1d 0:2d

Inflow/outflow sponge-layer thickness 52Dy 135Dy 74Dy

Upper-sponge-layer thickness 0:3Lz 0:3Lz 0:3Lz

Time step

Dt 1:63 1024td 8:93 1024td 1:13 1023td
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for a columnar mode with group velocity 4Nhm/p wave

to travel from y5 y* to the upstream boundary.We then

specify that, with respect to any reference time step i,

the imposed boundary value yi1n*
2Ly/2

(x, z) at step i1n*

derive 90% of its information from the measured profile

at the previous steps. That is, we set

12an*
5 0:9: (11)

By design, this scheme converges to a steady, streamwise-

uniform inflow profile that is dynamically consistent

with the upstream influence of the topographically ex-

cited columnar modes. We found this scheme to be ro-

bust for different choices of a. For example, changing

the RHS of (11) from 0.9 to 0.8 produced a negligible

change in the bulk properties of the flow. The advantage

of this scheme is that it allows for a much shorter inflow

channel than would be possible with a more traditional

approach of imposing a uniform inflow along with a

wave-damping layer to absorb upstream disturbances.

We have performed a test run for the infinite-ridge case

using a uniform inflow, a very long inflow channel and

wave damping near the boundary and verified that the

results in the vicinity of the ridge match the ones obtained

using the iterative scheme.

3. A brief overview of the Winters and Armi

(2014) analysis

Winters and Armi (2014) developed semianalytical

solutions for hydraulically controlled flow over an in-

finite ridge. The solution begins by considering a uni-

form stratification N and jetlike upstream flow profiles

of specified thickness H overlying a stagnant blocked

layer, as shown in Fig. 1. Note that this approach is

different from the hydraulic treatment of Smith (1985)

in that it includes the effect of upstream blocking.

Asymmetry is triggered by imposing a streamline bi-

furcation upstream at the top of the jetlike flow. The

downslope flow below the lower branch of the bifur-

cating streamline is then calculated through integrals

of Bernoulli’s equation. For a chosen upstream wind

profile, the bottommost streamline, which represents the

terrain surface, is thus determined by the dynamics rather

than being imposed a priori.

Among different jetlike upstream flow configurations

considered, it was found that a parabolically sheared

velocity profile with a velocity maximum (3/2)NH/p

and associated volume transport NH2/p was optimal

in the sense that it maximized the blocking scale d while

minimizing the kinetic energy of the flow.

Note that, although the overflow thicknessH is assumed

a priori in constructing the optimal solution, H and the

transport Q of the overflow are in fact coupled through

the control relationship,

Q5NH2/p . (12)

As we will see below, predictingH from (12) requires an

estimation of the overflow transportQ.Winters andArmi

(2014) also found that the blocking scale is dynamically

related to the overflow thickness as d5H/8.

An important property of the solution is that, on ei-

ther side of the crest, it generates a unique one-to-one

mapping between the height by which the bifurcating

streamline has dropped and the terrain height relative

to the blocking level. It is thus a valid solution for ar-

bitrary terrain shapes (appendix A). As in all hydraulic

models, the solution of Bernoulli’s equation relies on

the hydrostatic approximation and thus the precise shape

of the bifurcating streamline is unimportant as long as its

slope is small. Upstream of the blocking location, the

terrain shape is arbitrary and is not part of the solution.

Finally, internal hydraulic jumps are not included in

this model and so the bifurcating streamline is perpet-

ually plunging over an apparently ‘‘bottomless’’ terrain.

However for real ridges, the downslope flowmust return

to a subcritical state at some location downstream of

the crest. The Winters and Armi (2014) solutions are

formally valid until this location.

4. Diagnostics of the overflow

Volume transport conservation (see also Fig. 1) re-

quires that, at the blocking location, the transport within

the overflow between z5 hm 2 d and z5 hm 2 d1H

match the far-upstream transport below the bifurcating

streamline. That is,

NH2/p5V
‘
(h

m
2 d1H) . (13)

Substituting d5H/8 in (13) yields a quadratic forH, with

coefficients given in terms of the outer dimensional pa-

rameters hm, N, and V‘,

NH2/p5V
‘
(h

m
1 7H/8) . (14)

Note that H obtained by solving the quadratic equa-

tion, (14), is the analytical prediction of the overflow

thickness in the infinite-ridge limit. When the ridge is

finite, the fluid below z5 hm 2 d can escape around the

sides and the overflow transport and thickness shrink

accordingly. To quantitatively compare this overflow

with the infinite-ridge prediction, we define the volume

transport per unit length in a layer of height H starting

at the blocking level z5hm 2 d and measured at the

upstream blocking location y52yb (indicated in Fig. 1),
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Q0(x, t)5

ðhm2d1H

hm2d

y(x,2y
b
, z, t) dz. (15)

For an infinite ridge, the overflow transport is inde-

pendent of x andQ0(x, t) reduces toQ0(t). In this case we

expect upstream blocking to cause an early surge in the

overflow transport, with Q0(t) quickly approaching Q.

For a long but finite ridge, we anticipate that Q0(x, t)

will approachQ at early times before it starts decreasing

as transport is lost to the low-level lateral splitting flow.

As a quantitative measure of asymmetry, we compare

the maximum speed at the downstream location y5 yb
(indicated in Fig. 1) to the reference speed V‘. An ad-

ditional measure of asymmetry is the plunging depth

pd(x, t), defined as the depth from the ridge crest to

which the streamline originating at the upstreamblocking

level z5hm 2 d, plunges down the lee slope before it

separates.

5. Results

We will evaluate the temporal evolution of the diag-

nostics developed in section 4. For a long ridge (b � 1),

the inner excursion time scale td is much shorter than the

outer flow-splitting time scale tb. Accordingly, we define a

scaled inner time

t0d 5 t/t
d

(16)

to quantify the near-crest evolution of the overflow and a

scaled outer splitting time

t0b 5 t/t
b

(17)

to quantify the development of the low-level horizontal

splitting flow.

Upstream blocking, streamwise across-crest asymme-

try, overturned isopycnals, and downslope flow accel-

eration will be visible in planar vertical sections. We will

also show images of horizontal sections, which will re-

veal the establishment of low-level flow splitting.

a. Infinite ridge (b 5 ‘)

We first present results for flow over an infinite ridge

with bd 5b5‘ and Fr5 0:16. The blocking scale for

this flow is d’V‘/N5 0:16hm. Thus most of the air

upstream and below the ridge crest is blocked.

Figures 3a and 3b show that with respect to the inner

time scale, the upstream flow rapidly evolves to that

predicted by 2D theory. By t0d 5 2, the velocity profile

at the blocking location already begins to approach the

analytically predicted parabolic profile of Winters and

Armi (2014). By t0d 5 11:7, the overflow has evolved

further toward a parabolic shape and both its peak speed

and volume transport are within 10% of the analytically

predicted values. Later, at t0d 5 31:1, the peak speed

matches the prediction exactly. We remark that the

dynamical prediction for the blocking scale d obtained

from solving for H in (12) yielded a value that is about

25% smaller than the initial scaling estimate V‘/N.

The time history of ymax(yb)/V‘ is also shown in Fig. 3b

(in red) along with the Winters and Armi (2014) pre-

diction. These infinite ridge solutions are highly asym-

metric as indicated by sustained downslope flow speeds

of about 5V‘ with gusts approaching 6 V‘. These gusts

are quasi periodic with a period of about td, which for

this specific ridge configuration and Fr is roughly two

FIG. 3. (a) Vertical profiles of the streamwise velocity at the

blocking point y’2yb at t0d 5 2.0, 11.7, and 31.1 along with the

analytical prediction of Winters and Armi (2014) (gray line) for

Fr 5 0.16 flow over an infinite ridge. The region marked H is the

Winters and Armi (2014) prediction of the overflow thickness.

(b) Upstream volume transport Q0(t0d) (black) in the controlled

overflowing layer normalized by the theoretical value Q and nor-

malized maximum streamwise velocity, ymax(yb, z, t
0
d)/V‘ (red) at

the downstream location yb, vs dimensionless time t0d. Dots mark

the times at which velocity profiles are shown in (a) and dashed

lines are the analytical predictions ofWinters andArmi (2014). The

location of yb relative to the ridge crest is indicated in Fig. 1.
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buoyancy periods. They are reminiscent of the quasi-

periodic gusts observed in the Bora by Belu�sić et al.

(2004) and arise due to Kelvin–Helmholtz (K-H) insta-

bility, caused by increasing shear downstream at the

top of the overflowing layer (Peltier and Scinocca 1990;

Jagannathan et al. 2017).

Figures 4a–c show the flow evolution as it approaches

a quasi-steady state. Blocking is already visible by t0d ’ 2

and the upstream extent of the blocked flow increases

with time. By t0d 5 11:7, upstream influence in the form of

long internal gravity waves has permanently modified

the incoming flow, shaping the flow above the blocking

level into a parabolic jet. Overturning isopycnals are

seen above the crest and further downstream, a plunging

downslope flow develops. Both the maximum downslope

flow speed and its penetration depth increase with time.

The instantaneous snapshot in Fig. 4b reveals turbulent

overturns, both aloft and due to K-H instability at the top

of the unstable overflowing layer (Peltier and Scinocca

1990; Jagannathan et al. 2017). The numerical model,

which removes gridscale variability via the hyperdiffusion

operator D does not completely resolve the details of

the turbulent mixing due to these processes. Neverthe-

less, as shown in Fig. 4c, a statistical time average of

the quasi-steady flow reveals the essential downstream

flow features, which are an accelerating downslope

flow and a nearly stagnant, nearly homogeneous iso-

lating layer that separates the downslope flow from

the flow aloft. Comparison with Fig. 4b shows that the

statistical averaging has no discernible effect on the

stable upstream flow.

In their theory, Winters and Armi (2014) do not pre-

scribe a structure for the flow above the overflowing

layer, which they assume to be dynamically uncoupled

with a mean speed V‘. We note that the computed solu-

tions in Fig. 4 as well as the vertical profiles of y(2yb, z, td)

in Fig. 3a show weak spatial oscillations about this mean

which merge smoothly with the jetlike overflow. We have

checked that the quantitative features of the controlled

overflowing layer as well as the characteristic wavelength

(’2pV‘/N) of the oscillations aloft are insensitive to the

height of the model domain and the thickness of the

sponge layer (appendix B).

FIG. 4a. Time evolution of the flow field for Fr5 0.16 flow over

an infinite ridge. Each panel shows (top) isopycnal lines and con-

tours and (bottom) streamwise velocity contours. Also shown in

the bottom panel are the position of the blocking location, ridge

center, and downstream locations at which we will later (in Fig. 5)

display the vertical profiles of the streamwise velocity. Flow is from

left to right at t0d 5 2:0.

FIG. 4b. As in (a), but at t0d 5 11:7.
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Across-crest asymmetry sets in early (Fig. 4a) and

the stratification becomes increasingly asymmetric across

the crest as the flow evolves. By t0d 5 11:7 (Fig. 4b), the

dense air downstream and below the blocking level

z5 (hm 2 d) has been almost completely swept away

and is replaced by lighter air that has overflowed the

crest. This asymmetry in the density field is a conse-

quence of upstream flow blocking and is directly re-

lated to the establishment of hydraulic control at the

crest. The supercritical flow downstream manifests as

an intensifying downslope windstorm.

Depth profiles of the streamwise velocity at and down-

stream of the crest elucidate the characteristics of the

downslope flow. These are displayed at an early and late

inner time in Fig. 5. The maximum speed ymax(y) in-

creases downstream and with time at each location as the

flow evolves toward a quasi-steady state. At later times,

for example, t0d ’ 31:9, the overflow thins and accelerates

downstream of the crest. It also progressively plunges

deeper in the lee. For example, ymax(2yb)’ 6:3V‘ and

the vertical location of the maximum is at z’ 0:6hm

which is a depth of about 2.5d below crest level. This

shows that the flow is highly asymmetric across the crest.

The evolution of the plunging depth pd(t
0
d) of the

lowest streamline cresting the obstacle is traced in Fig. 6.

The plunging depth reaches sustained values of about

3d by t0d ’ 4 and subsequently fluctuates between 2.5d

and 3.9d. The fluctuations are associated with the in-

ternal hydraulic jump downstream of the separation

location.

In summary, low Fr flow over infinite ridges is highly

asymmetric across the crest, with respect to both

streamwise velocity and stratification. It is charac-

terized by upstream flow blocking and the develop-

ment of a thinning accelerating downslope flow that

plunges down the lee slope to a significant fraction

of the ridge height. Within the overflowing layer, the

properties of the quasi-steady flow are well described

by the stratified hydraulic theory of Winters and

Armi (2014).

FIG. 5. Vertical profiles of streamwise velocity y(y, z, t0d) at various

positions downstream of the upstream blocking location 2yb for

the infinite-ridge overflow at Fr 5 0.16. The positions of the

downstream locations relative to the ridge center are indicated in

the bottom panel of Fig. 4a.

FIG. 4c. As in (a), but averaged over 31:1# t0d # 47:2.

FIG. 6. Plunging depth pd(t
0
d) of the lowest streamline that crests

the obstacle for Fr 5 0.16 flow over an infinite ridge.
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b. Finite ridge (b 5 30)

We now consider a flow with identical forcing and

Froude number incident on a long, but finite ridge with

b5 30. The finite extent allows for both flow over and

around the ridge and we proceed to quantify how the

flow characteristics differ from the infinite ridge case

for which a purely 2D controlled overflow develops.

The shape of the ridge is described by (9) with h1 5 0,

Dh5hm, and sx*5sy/4. (see also Fig. 2). We examine

the evolution of the overflow in the center plane and at a

plane closer to the lateral ends (shown in Fig. 2).

The upstreamflow,which crests the obstacle, originates

at or above the blocking level hm 2 d. Hence the appro-

priate streamwise length scale for flow over the crest

is syd, the ridge half-width at blocking level. The scaled

dynamic ridge length for the overflow bd 5sx/syd ’ 75,

which is larger than the geometric-scaled length b5 30

for flow around the sides.

Further, while the topographic Froude number Fr 5

0.16, the appropriate Froude number for the overflow is

Frd 5V‘/Nd’ 1. Our case is dynamically distinct from

Fr’ 1 flows for whichbd 5b and Frd 5Fr (e.g., Epifanio

and Durran 2001).

Figure 7 traces the evolution of the streamwise ve-

locity at the upstream blocking location, y(2yb, z, t
0
d) in

the symmetric center plane x5 0. At early times (e.g.,

t0d 5 2), the flow profile is nearly identical to that in the

infinite-ridge case (Fig. 3a). By t0d 5 11:7, the profile is

similar in structure to the infinite-ridge overflow, but

with a lower peak speed. Much later (e.g., t0d 5 48:9),

the overflow is considerably thinner and slower than that

in the infinite-ridge case. This is because much of the

transport associated with the early-time overflow is lost

to the low-level horizontal splitting flow. We will show

that by a simple reduction of the upstream volume trans-

port in (13), the long-time flow over the ridge can be

qualitatively and quantitatively described as an asym-

metric crest-controlled overflow.

Figures 8 and 9 show the evolution of the flow field at

and away from the ridge center plane, respectively. The

stratification and streamwise velocity exhibit asymmetry

across the crest in the form of an intensifying downslope

flow. Isopycnals overturn above the crest and the flow

accelerates as it plunges down the lee slope. At early

(t0d 5 2) and intermediate (t0d 5 11:7) times the flow field

in the center plane is strongly reminiscent of the infinite-

ridge solution.

At later times, for example, t0d 5 48:9 (t0b 5 1:3), the fluid

in the lee beneath the blocking level is nearly motionless,

both at and away from the center plane (Figs. 8c and 9c).

Downslope plunging is strongly inhibited and the strat-

ification below the overflow is nearly symmetric across

FIG. 7. Vertical profiles of the streamwise velocity y(z, t0d) in the

center plane, x5 0, at the blocking point, y52yb, for Fr5 0.16 flow

over a finite ridge with b5 30. The correspondingWinters andArmi

(2014) prediction for the infinite-ridge case at the same Fr is also

shown (gray), with H being the predicted overflow thickness.

FIG. 8a. Time evolution of the flow field at the symmetric center

plane, x5 0, for Fr5 0.16 flow over a finite ridge with b5 30. Each

panel shows (top) isopycnal lines and contours and (bottom)

streamwise velocity contours. Flow is from left to right at t0d 5 2:0.
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the crest. The initial dense ‘‘cold pool’’ in the lee is re-

tained on the long flow-splitting time scale. This contrasts

strikingly with the infinite-ridge solution (Fig. 4) where

the density field becomes highly asymmetric across the

crest as the downslope flow evolves. Above the blocking

level, the flow is streamwise asymmetric, both at and

away from the center plane. This is a clear signature of

hydraulic control at the crest. Recall, in addition, that

the overflow Froude number Frd ’ 1.

The evolution of horizontal streamlines at z5 0:1hm

(i.e., well below the blocking level) is depicted in

Figs. 10a–c. At early outer times (e.g., t0b 5 0:05), the

low-level flow is blocked immediately upstream of the

ridge. Subsequently, the upstream flow splits laterally

around the sides, with speeds of about 2V‘ at the ob-

stacle ends and approaching 3 V‘ farther downstream.

In the lee, a vortex pair develops and the vortex centers

move downstreamwith time, forming a slowly recirculating

flow within the cold pool.

At low levels upstream, the late-time horizontal split-

ting flow is a layerwise potential flow, as proposed by

Drazin (1961). For example, at z5 0:1hm, where the

ridge half-width is 1.5sy, Fig. 11 shows that y(x) at

y521:5sy is well approximated by the expression

y(x, y521:5s
y
)5V

‘

�

A1B
s2
x

x2

�

, jxj$s
x
. (18)

This is simply the scaling law for potential flow

around convex, symmetric 2D obstacles. The con-

stant A is unity for an infinite domain but is slightly

larger here due to the presence of sidewalls, and B

is a factor that depends on the details of the obstacle

shape. For this case, the best fit was obtained with

A 5 1.1 and B 5 1.

As a consequence of low-level flow splitting, the

transport in the overflow is less than the infinite-ridge

prediction. In Fig. 12, we track the upstream transport,

Q0(x5 0, t0d) in a layer of thicknessH above the blocking

level hm 2 d and compare peak flow speeds at yb with

those for the 2D infinite-ridge case. The value of Q0

deviates from the infinite-ridge curve at t0d ’ 1 by which

time it is 85% of Q. From around t0d 5 5, Q0 starts de-

creasing steadily as more and more transport is lost to

the low-level splitting flow. Significantly, at t0d 5 12, Q0

and ymax(yb) are close to 75% and 80% of the predicted

FIG. 8b. As in (a), but at t0d 5 11:7.

FIG. 8c. As in (a), but at t0d 5 48:9. The predicted late-time

overflow thickness Hf and blocking scale df are predicted from

(22) and (23), respectively.
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infinite-ridge values. Therefore for 0, t0d #O (10), the

flow in the center plane is well described as a controlled

infinite-ridge overflow.

One distinctive feature of low Fr flows in a purely 2D

setting is gustiness of the downslope flow, associated

with loss of stability downstream (Jagannathan et al.

2017). This manifests itself as high-frequency oscilla-

tions in the measured peak downstream speed ymax(yb)

(Fig. 3b). By contrast, such gustiness is absent in the

finite-ridge case. Thus the combination of diminished

downslope plunging (Fig. 8) and loss of overflow trans-

port weakens the downstream shear, thereby stabilizing

the flow.

At t0b 5 1:3 (t0d 5 48:9), the flow over the crest is still

asymmetric both at and away from the center plane

(Figs. 8c and 9c). By this time, the low-level flow up-

stream of the ridge has almost entirely split horizontally

around the sides of the obstacle (Fig. 10c). Thus at each

cross-stream section along the ridge, a portion V‘(hm 2 d)

of the upstream transport which was absorbed into

the overflow at early times is lost to the lateral splitting

flow. This motivates the reformulation of the late-time

overflow (Fig. 7) with a reduced transport. From its ob-

served across-crest asymmetry, we infer hydraulic control

at the crest. Assuming a modified and as yet unknown

thicknessHf for this overflow, for optimal control (Winters

and Armi 2014), it must be parabolic in shape, with av-

erage speed NHf /p and transport

Q
Hf

5NH2
f /p . (19)

This yields a new blocking scale, df 5Hf /8. Below

z5 hm 2 df , the upstream flow is predominantly around

the ridge. Recall that the length of the end sections

sx*� sx. Therefore from (18), on either side of the center

plane, the excess transport per unit length of the ob-

stacle that escapes around the sides can be written as

Q*’
1

s
x

ð

‘

sx

BV
‘

s2
x

x2
(h

m
2 d

f
) dx5V

‘
(h

m
2 d

f
) , (20)

for the best-fit value B 5 1. This is exactly the amount

of transport that is blocked ahead of the ridge at early

times. For bd � 1, this allows us to estimate the trans-

port lost along each streamwise plane in the ridge in-

terior as V‘(hm 2 df ). Therefore the late-time transport

for the overflow in the ridge interior is simply V‘Hf .

FIG. 9a. As in Fig. 8a, but at the cross-stream location, x5 0:93sx.

FIG. 9b. As in Fig. 8b, but at the cross-stream location, x 5 0.93sx.
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The volume conservation equation, (13), then re-

duces to

NH2
f /p5V

‘
H

f
, (21)

giving

H
f
5pV

‘
/N (22)

and

d
f
5H

f
/85

pV
‘

8N
, (23)

which is more than 2.5 times smaller than the scal-

ing estimate V‘/N, suggesting that the blocking lo-

cation moves closer to the crest. These predictions

for the quantities Hf and df match the observed late-

time overflow reasonably well, as indicated in Fig. 8c.

We denote the new upstream blocking location as

y52ybf .

When Fr is small as is the case here, most of the up-

stream fluid below crest level eventually splits around

the ridge. This occurs on the slow time scale tb (Fig. 10).

Thus, Hf is considerably smaller than H, which in turn

FIG. 9c. As in Fig. 8c, but at the cross-stream location, x 5 0.93sx.

FIG. 10. Time evolution of streamlines in the horizontal plane at

z5 0:1hm, that is, just above the ground level, for the finite ridge

with b5 30 at Fr 5 0.16 for (a) t0b 5 0:05, (b) t0b 5 0:31, and

(c) t0b 5 1:3. Thick red lines indicate fast positive flow, and dark

blue lines indicate reversed flow.
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implies that the late-time overflow has a reduced peak

speed and correspondingly reduced kinetic energy

relative to that at early times. The predicted velocity

profile at the new upstream blocking location y52ybf
is shown in Fig. 13 along with the computed profile in

the center plane x5 0 at t0d 5 48:9 (t0b 5 1:3). The agree-

ment in the peak speed is within 10% of the newly

predicted value. Figure 14 shows the evolution of the

transport

Q0
Hf
(t0d)5

ðhm2df1Hf

hm2df

y(2y
b
, z, t0d) dz, (24)

in a layer of thickness Hf above the blocking level

hm 2 df on the center plane, along with the maximum

downslope flow speed ymax(yb). At later times Q0
Hf

is

within 20% of QHf
while ymax(yb) is within 8% of the

Winters and Armi (2014) prediction forHf . Thus even

at later times, the stratified hydraulic framework de-

scribes the properties of the overflow well. We note that

the integral in (24) slightly overestimates Q0
Hf
. This is

because in the computed solution (Fig. 13), the over-

flow merges smoothly with the flow aloft whereas in

the theory, there is a discontinuity between these flow

components (shown in gray). The essential features

of the late-time overflow along the center plane are

labeled in Fig. 8c.

Vertical downstream profiles of the streamwise veloc-

ity (Fig. 15) offer another view of the evolving down-

stream flow in the center plane x5 0 and at x5 0:93sx.

The flow characteristics are remarkably similar both at

and away from the center plane. While the early-time

downslope flow closely resembles that observed in the

infinite-ridge case (Fig. 5), at later times, the overflow

is qualitatively similar, but has reduced transport and

kinetic energy. Peak downstream speeds are lower and

the locations of the maxima have moved upward to near

the crest level z5 hm.

The combination of a slower overflow and the re-

tention of a cold pool downstream lead to diminished

plunging in the lee at t0b 5O (1) (or equivalently, late

inner times t0d � 1). This is seen in Fig. 16, which shows

the time history of the plunging depth, pd(x, t
0
d) in each

plane, alongside pd(t
0
d) for the infinite-ridge case. With

respect to the inner time scale, the plunging depth

overshoots quickly, for example, reaching 2.2d in the

center plane at t0d ’ 2. However, on the slower splitting

FIG. 11. Streamwise velocity y(x)/V‘ at t0b 5 1:3 at the vertical

level z5 0:1hm and along y521:5sy, the half-width of the ridge at

z5 0:1hm (indicated as a dashed line in Fig. 10c). Shown in gray is

the fit y/V‘ 5A1Bs2
x/x

2, with A 5 1.1 and B 5 1.

FIG. 12. Upstream volume transport Q0(x5 0, t0d) (black) of the

overflow in the center plane of the finite ridge, normalized by the

infinite-ridge prediction Q; and normalized maximum streamwise

velocity ymax(x5 0, yb, z, t
0
d)/V‘ (red) at the downstream location

yb. Dots mark the times t0d 5 2.0, 11.7, and 48.9 for which vertical

velocity profiles are shown in Fig. 7.

FIG. 13. Vertical profile of the late-time streamwise velocity in

the center plane, x5 0, of the finite ridge at the blocking point,

y52ybf , along with the predicted profile based on Hf .
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time scale tb, as the kinetic energy of the overflow de-

creases (Fig. 15), pd correspondingly levels off to values

smaller than d, both at and away from the center plane.

We now summarize the results of this section as fol-

lows: For 0, t0d ,O (1), the development of the flow near

the ridge center mimics the 2D infinite-ridge overflow,

both qualitatively and in terms of the quantitative mea-

sures of asymmetry ymax(yb) and pd. At intermediate

times O (1), t0d ,O (10), the qualitative features of the

infinite-ridge solution persist both at and away from the

ridge center plane, but the quantitative measures begin

to deviate from the infinite-ridge values. In the center

plane, Q0 and ymax(yb) are still 75% of the infinite-ridge

values for t0d as high as 12. On the longer flow-splitting

time scale, the energetically weaker overflow is unable to

penetrate the cold pool downstream, leading to sub-

stantially reduced plunging depths. Nevertheless, across-

crest asymmetry and downslope flow acceleration persist

above the blocking level. The late-time flow is well de-

scribed as an asymmetric crest-controlled overflow lying

above a horizontal splitting flow whose upstream prop-

erties follow from potential flow theory.

6. Discussion

a. Applicability of the stratified hydraulic framework

Asymmetry and hydraulic control form the dynamical

basis of the infinite-ridge theory of Winters and Armi

(2014). In particular, it is a hydrostatic approach that is

valid up to arbitrary stretching in the horizontal di-

rection and is applicable for any terrain shape provided

the ratio hm/sy is small, as is the case here. A practical

question is, How useful is this hydraulic framework in

understanding low Fr flows over long but finite ridges?

In this setting, flow over the crest establishes itself on a

fast, inner time scale td while flow around the sides de-

velops over a relatively longer time scale tb.

When the ridge is infinite (b5‘), an asymmetric crest-

controlled flow state is attained quickly, by t0d 5O (1)

(Fig. 3). For a long but finite ridge (b � 1), the splitting

time scale tb � td and so the development of flow over

and around the ridge occur on disparate time scales. As a

result, until intermediate times O (1), t0d ,O (10), the

flow away from the edges is well approximated as a purely

2D infinite-ridge overflow (Figs. 7 and 12).

By the time ½t0b 5O (1)� horizontal splitting effects

become significant, the overflow in the ridge interior is

already asymmetric and has a parabolic velocity profile

upstream of the crest. While its peak speed and thick-

ness begin to decrease with the onset of flow splitting,

across-crest asymmetry persists. On the slow splitting time

scale tb � td, the overflow retains the essential dynamical

features of the infinite-ridge overflow. This flow continues

to be optimally controlled and the hydraulic view of the

FIG. 14. Upstream volume transport Q0
Hf
(t0d) in a layer of thick-

ness Hf above the blocking level at the center plane of the finite

ridge, normalized by the analytical prediction QHf
(black) and

normalized maximum streamwise velocity, ymax(yb, z, t
0
d)/V‘ at the

downstream location yb (red).

FIG. 15. Vertical profiles of y(x, y, z, t0d) at various positions

downstream of the upstream blocking location 2yb for the finite

ridge at two different vertical planes: (a) center plane, x5 0, and

(b) away from the center plane, x5 0:93sx. The cross-stream and

streamwise positions of themeasurement locations are indicated in

Figs. 2 and 4a, respectively.
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problem remains valid in the neighborhood of the crest.

Our findings therefore demonstrate that across-crest

asymmetry and hydraulic control, once established,

persist even after the low-level flow has split around the

sides of the ridge.

The isolating layers in Figs. 4 and 8 form as a result

of mixing due to isopycnal overturning aloft, and in

the infinite-ridge case, also partly from repeatedKelvin–

Helmholtz overturns at the top of the unstable downslope

flow (Jagannathan et al. 2017). However, the hydraulic

theory ofWinters and Armi (2014) does not provide any

insight about the formation of this homogenized isolating

layer. Hydraulics also does not explicitly rely on internal

mountain wave scales. Rather, the vertical scales of im-

portance, hm and d, appear only indirectly through the

transport equations [e.g., (13)]. While limiting in some

ways, the power of this approach is that it fully accounts

for nonlinearity, which is not possible in a wave treat-

ment. Further, it produces quantitative predictions for

the thickness and peak speed of the overflow, which can

be checked against the numerical solutions.

In our experiments, the far-upstream flow speed V‘

and stratification N are constant; that is, these are like

impulsively started laboratory towing experiments. This

allows for a ready estimate of the modified late-time

transport V‘Hf within the overflow of thickness Hf .

However in a geophysical context, these quantities are

not usually known a priori and the exact, time-varying

upstream flow conditions must be determined using at-

mospheric soundings. As a more realistic example, one

might consider flows with a spinup time Tsp � td. The

Froude number Fr and the inner length scales d and

syd 5O (Frsy) will then be slowly evolving functions of

time. However note that the inner time scale td built from

the instantaneous values of V‘ and syd will remain

constant over the spinup period as it is O (sy/Nhm) and

thus independent of V‘ provided Fr � 1. This suggests

that when Tsp � td, the streamwise flow at any time

t,Tsp will be hydraulically controlled at the instanta-

neous Fr, which implies an overflowing layer of slowly

expanding thickness and increasing peak speed. Thus

while the quantitative details will differ, the essential

dynamical character of the flow in the neighborhood of

the crest will not change even when the background flow

is slowly evolving.

A natural question then, is whether realistic low Fr

flows across mountain ridges are characterized by the

optimally controlled, parabolically sheared flow profiles

predicted by Winters and Armi (2014) and seen in ide-

alized towing experiments. Indeed, such flow features

were noted by Armi and Mayr (2007) in their study of

continuously stratified flow over the Alps. For example,

the sounding at Sterzing (Fig. 16 of Armi and Mayr

2007), taken well after the establishment of deep foehn

conditions, reveals a parabolic velocity profile with peak

speed of 20ms21 and thickness of about 3800m. From

the same figure, the blocking depth is seen to be about

500m and themean stratificationN’ 1022 s21. Based on

the infinite-ridge theory of Winters and Armi (2014),

the prediction for the upstream overflow is H5

8d’ 4000m and ymax 5 (3/2)NH/p’ 19m s21, which

agree well with the observed values.

The stratified hydraulic theory of Winters and Armi

(2014), assuming optimal hydraulic control and across-

crest asymmetry, predicts that the overflow at the block-

ing location is parabolic in shape. It further relates the

thickness of the overflow to the blocking scale, H5 8d

and predicts its peak speed ymax 5 (3/2)NH/p and trans-

port Q5NH2/p. In simple towing experiments, H is

obtained by estimating the overflow transport and

equating it to the optimal value NH2/p. This is trivial

for an infinite ridge (see Fig. 1). For long but finite

ridges, a straightforward kinematic adjustment to the

overflow transport after accounting for flow split-

ting, yields quantitative predictions for H and ymax.

We will show in section 6c that by a similar, but al-

gebraically more involved kinematic accounting for

the overflow transport, the flow characteristics can be

accurately predicted for low Fr flows across composite

ridge configurations.

b. Downstream conditions and the cold pool

A significant point of difference between the finite

and infinite-ridge flow solutions is that, in the latter, the

flow plunges much deeper into the lee before rebound-

ing back to subcriticality via an internal hydraulic jump

(Fig. 4c). Consequently the downslope flow is able to

FIG. 16. Plunging depth pd(x, t
0
d) of the lowest streamline that

crests the obstacle for the overflow across a finite ridge with b5 30

at Fr 5 0.16. Also shown is pd(t
0
d) for the corresponding infinite-

ridge case.
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accelerate to peak speeds that are more than 5 times the

far-upstream flow speed (Fig. 5).

Comparing the isopycnals in Figs. 4 and 8, it is clear

that the reason for this difference is the retention, in the

case of the finite ridge, of the dense cold pool down-

stream. This acts as a strong stratification barrier to

the plunging overflow, limiting both its speed and pen-

etration depth. By contrast, in the infinite-ridge case, the

dense stratified fluid in the lee is swept away after a finite

time, and replaced by lighter fluid that overflows the

crest. Consequently, the descent of the downslope flow

is unimpeded, and it is able to plunge deep in the lee.

This phenomenon is qualitatively similar to the ob-

servations of Mayr and Armi (2010) of a foehn event in

Owens valley located east of the Sierra Nevada. There

they found that diurnal heating, which has the effect

of raising the potential temperature of the valley at-

mosphere, leads to progressively deeper descent of the

flow over the course of the day.

In our experiments, the properties of the cold pool are

set by the prescribed downstream condition of uniform

flow and stratification, and include low-level lee vortices

(Fig. 10). While Drazin’s (1961) solution fails to predict

these lee vortices, Fig. 11 shows that his prediction of

layerwise potential flow is nonetheless valid upstream.

As in the studies of Smolarkiewicz and Rotunno (1989),

Schar and Durran (1997), and Ólafsson and Bougeault

(1996), the present simulations were also carried out

by imposing free-slip boundary conditions. This sug-

gests that vertical vorticity is produced by a purely in-

viscid baroclinicmechanism (Smolarkiewicz andRotunno

1989) at early times. The lee vortices intensify at later

times perhaps because of potential vorticity anoma-

lies that develop due to internal dissipation caused by

upstream stagnation and flow splitting (Schar andDurran

1997). The role of upstream blocking and flow splitting

on orographic wake formation is further discussed by

Epifanio and Rotunno (2005). In realistic atmospheric

flows, the lee conditions may be affected by other factors

such as surface heating or cooling and the presence or

absence of secondary topographical features down-

stream (e.g., Winters 2016).

c. The effect of an abrupt change in ridge elevation

We now seek to test the applicability of the stratified

hydraulic approach in describing the overflow across

a composite two-level ridge configuration shown in

Fig. 17. This is an infinite ridge with a taller central

section for which b5 30 and relative height difference,

Dh/h1 5 1. Mathematically, the ridge surface is given by

(9), where sx* is now the length of the narrow sloping

section connecting the two ridge levels and is set to

sx/120 � sx. The center of the taller section is treated

as a symmetry boundary and the numerical model con-

figuration and boundary conditions are identical to those

in the finite-ridge experiment; Fr5V‘/Nh1 is set to 0.16,

which implies Fr 5 0.08 for flow approaching the taller

section. The details of the numerical experiment are

given in Table 2.

1) FAR AWAY FROM THE TALLER SECTION

The flow well away from the taller section is un-

affected by its presence and must hence be identical

to that in the infinite-ridge case of section 5a. The fluid

beneath the blocking level cannot escape laterally and

the low-level transport V‘(h1 2 d) augments the over-

flow transport to match that of a parabolic, optimally

controlled flow, as shown in the schematic Fig. 1.

2) ADJACENT TO THE TALLER SECTION

At cross-stream distances comparable to sx from the

edge of the taller section, the overflow across the shorter

section is additionally augmented by the splitting flow

around the taller central section. Based on potential flow

scaling, (18), for flow around the finite ridge, we hy-

pothesize that, at a vertical level h1 , z*, h1 1Dh2 d,

where the ridge half-width is sy
z*

this splitting flow

scales with cross-stream distance as

y x, y52s
y
z*
, z*

� 	

’V
‘

�

A1B
s2
x

x2

�

, jxj.s
x
. (25)

The experimental domain is the same as in the finite-

ridge case of section 5b; therefore A 5 1.1 remains

FIG. 17. (a) Front view and (b) side view of an infinite two-level

ridge with half-width sy, a finite tall central section of height h1 1Dh,

and half-lengthsx with b5sx/sy � 1, straddled on either side by a

shorter section of height h1 and infinite length. This reduces to the

single-level ridge in Fig. 2 when h1 5 0 and Dh5hm. Figure is not

to scale.
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unchanged. However, due to the composite shape of

the ridge, we anticipate that the shape factor B will,

in general, be different from unity. The splitting flow

speed and correspondingly, the overflow transport, de-

cay with increasing cross-stream distance from the edge

of the taller section. Assuming optimal crest control and

an upstream overflow thickness H(x). h1, the volume

conservation equation, (13), for the infinite ridge is

modified to

NH2(x)/p5V
‘
(h

1
2 d)1V

‘

�

A1B
s2
x

x2

�

(Dh2 d)

1V
‘
(H1 d2Dh) , (26)

with d5H(x)/8. The transport in the overflow is thus

enhanced due to flow splitting. Note that as x/‘ and

correspondingly,A5 1, (26) reduces to (13) for the infinite-

ridge case. We found that, for the case Dh/h1 5 1 consid-

ered here, the value B 5 1.7 for the shape coefficient

produces the most accurate predictions, capturing both

the quantitative properties of the overflow and its cross-

stream decay away from the taller section.

Figure 18a shows a late-time vertical profile of the

upstream streamwise velocity at the cross-stream loca-

tion x5 1:4sx (indicated in Fig. 17a). The gray curve is

the naive infinite-ridge prediction based on (13), ignor-

ing ridge geometry and lateral flow splitting, while the

red curve is the corrected prediction obtained after

modifying the transport calculation according to (26).

While the naive prediction underestimates the peak

speed and thickness of the overflow by close to 30%,

these quantities are predicted almost exactly when flow

splitting is accounted for correctly.

3) OVER THE TALLER SECTION

Since the length of the connecting section is much

shorter than the ridge length (sx*� sx), we can, as in

section 5a, estimate the excess transport per unit length

which is eventually absorbed into the splitting flow. This

precisely equals the transport that is lost ahead of the

taller section at late times. From (25), on either side of

the center plane, this is given by

Q*’
1

s
x

ð

‘

sx

BV
‘

s2
x

x2
(Dh2 d) dx5BV

‘
(Dh2 d) . (27)

At early times, the blocked transport ahead of the taller

section is V‘(h1 1Dh2 d). Therefore, at later times, the

portion of the blocked transport that is accounted

for in the overflow aloft is given by V‘(h1 1Dh2 d)2

BV‘(Dh2 d)5 V‘[h1 1Dh(12B)1 d(B2 1)].

Assuming that this late-time overflow is optimally

controlled with upstream thickness H, the volume con-

servation equation for flow over the taller central por-

tion of the ridge is therefore

NH2/p5V
‘
H1V

‘
[h

1
1Dh(12B)1 d(B2 1)] ,

(28)

with d5H/8 as before. Note that in the limit Dh/ 0,

there is no splitting flow; the shape factor B 5 0 and

we recover the transport equation, (13), for the infinite

ridge.

In solving (28), we again use B5 1.7, the shape factor

that produced the best fit for the overflow across the

shorter section. Figure 18b shows that, consistent with

the Winters and Armi (2014) prediction, the computed

FIG. 18. Computed and predicted vertical profiles of the streamwise velocity at the blocking location, y52yb, of

the two-level ridge at (a) the cross-stream location, x5 1:4sx (indicated in Fig. 17), and (b) the center plane, x5 0,

of the taller section. Shown are the naive predictions (gray), obtained by ignoring flow splitting and solving (13) for

an infinite ridge, and the modified predictions (red), obtained by solving (26) and (28), which correctly account for

flow splitting.
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upstream overflow in the center plane, x5 0, of the taller

section has a parabolic profile starting at its blocking

level. But whereas the naive prediction substantially

overestimates its peak speed and thickness, the modi-

fied prediction that accounts for transport lost to the

enhanced splitting flow agrees well with the computed

flow profile.

4) THE TRANSITION REGION sx , x# 1:1sx

Across the lower portion of the ridge (Fig. 18a),

the bottom of the overflow is located at an elevation

z’ h1 2 d while over the taller section jxj,sx it is at

z’ h1 1Dh2 d (Fig. 18b). The flow near the abrupt

change in ridge height must therefore bridge these two

distinct overflows. The upstream velocity profile at the

cross-stream location, x5 1:1sx, is shown in Fig. 19a.

The overflow exhibits two velocity peaks but these are

only slightly separated and (26) predicts the bulk

properties of the overflow well. Moving closer to the

taller section, x5 1:03sx, Fig. 19b shows that although

the total thickness of the overflow is predicted rea-

sonably, its vertical structure is that of two jets with

distinct peaks. Thus near the abrupt change in ridge

elevation, the overflow is a composite of the short- and

tall-section overflows. As a result, even after a kine-

matic adjustment to the overflow transport, the near-

crest profile cannot be described in terms of a single

parabolic overflow as in the infinite-ridge theory of

Winters and Armi (2014).

In summary, this two-level ridge example demonstrates

that, in the flow regime where upstream influence and

blocking are important, the steady overflow upstream of

a dynamically tall, long ridge can be obtainedby assuming

optimal hydraulic control at the crest and coupling it to

appropriate kinematic equations for the overflow trans-

port. The details of the ridge geometry matter only to the

extent that they modify the transport calculations. While

the plunging depth of the overflow and its eventual

separation in the lee are influenced by downstream

conditions, a layerwise solution of Bernoulli’s equa-

tion, as in Winters and Armi (2014) furnishes a com-

plete description of the asymmetric overflow in the

neighborhood of the crest.

7. Limitations and extensions

a. Coriolis effects

As shown in the simulations, the hydraulic flow com-

ponent develops on the short time scale td while the low-

level splitting dynamics is established over a longer time

scale tb � td. Thus rotational effects play no role pro-

vided that tb � O (1/f ), where f is the Coriolis frequency.

In many midlatitude atmospheric flows characterized by

low Fr and large b, for example, with N5 1022 s21 and

V‘ 5 10m s21 andmountain dimensions hm5 4km, sy5

20km, and sx 5 200km (yielding Fr5 0.25 and b5 10),

the corresponding td can be shown to be well under an

hour while tb is about a quarter of an inertial period. Thus

both the crest-controlled overflow and lateral split-

ting flow are established before Coriolis effects become

significant.

The layerwise upstream potential flow solution has

also been realized in laboratory towing experiments

(e.g., Brighton 1978; Hunt and Snyder 1980). Yet there

are other geophysical situations where the flow-splitting

time scalemay be comparable to or larger than an inertial

period.When the evolution of the low-level splitting flow

is constrained by rotation, its horizontal scale is no longer

set by the mountain half-length sx. Rather, as hypoth-

esized by Pierrehumbert and Wyman (1985) and con-

firmed byWells et al. (2005), geostrophic imbalance leads

FIG. 19. As in Fig. 18, but at cross-stream locations y14y1* nearer to the taller section: (a) x5 1:1sx (indicated in

Fig. 17a) and (b) x5 1:03sx.
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to the development of a mountain-parallel barrier jet

trapped within a deformation radius Nhm/f of the moun-

tain. This disrupts the symmetry of the upstream

splitting flow as well as the lee vortices, as can also be

seen in the simulations of Wells et al. (2005). More-

over, Ólafsson and Bougeault (1997) note that rota-

tional asymmetry can affect the overall mountain drag

relative to nonrotating flows. Nevertheless, while the

direct applicability of our framework to rotationally

constrained atmospheric flows may be limited, our re-

sults show that hydraulically controlled overflows are

established over relatively short time scales and that the

splitting effect for finite ridges manifests itself as a re-

duction in the transport of the overflowing layer.

b. Simple turbulence model

The focus of this study is on the dynamics of upstream

blocking, hydraulic crest control, and low-level flow

splitting. These processes are laminar and therefore

insensitive to the presence or absence of any turbulence

closure model. Downstream of the crest, the supercrit-

ical flow is unstable to overturning shear instabilities.

We resolve the formation of these instabilities but model

the subsequent turbulence using a simple closure scheme

that removes gridscale variability. The geometrical details

of the overturns and the isolating layer possibly depend on

the choice of turbulent parameterization. Nevertheless

the good quantitative agreement with the predictions of

stratified hydraulic theory shows that, regardless of the

turbulence model, it is a robust dynamical framework

for analyzing and interpreting the flow solutions. Winters

(2016) employed a closure scheme similar to the one used

here in a higher-resolution LES treatment of these pro-

cesses in topographically controlled flows over an infinite

ridge. A comparable treatment for the finite-ridge case in

which a hydraulically controlled overflow occurs in con-

junction with lateral flow splitting is beyond our current

computing capability.

c. The nature of the flow aloft

In both the infinite and finite-ridge cases, we noted

that the flow above the controlled overflowing layer is

characterized by spatial oscillations with vertical wave-

length approximately 2pV‘/N (appendix B). While the

hydraulic theory of Winters and Armi (2014) assumes

that the controlled overflowing layer is decoupled from

the overlying flow, it does not say anything about the

possibility of wave excitation aloft as a response to the

plunging overflow. Therefore the present analysis does

not yield any insight about the amplitude of this wave-

like flow nor its dynamical connection to the controlled

overflow beneath.

One interpretation of the layered structure aloft (e.g.,

Fig. 4c) is as follows. The flow in the layer immediately

above the controlled overflow responds to the ‘‘virtual

topography’’ formed by the plunging overflow and is

also asymmetric across the crest. The layers further aloft

respond in a similar fashion. A similar response to vir-

tual topography was noted by Armi and Mayr (2015) in

their observations in the Sierras of hydraulically con-

trolled flows with a descending temperature inversion at

the top of the overflowing layer.

FIG. 20. Schematic depicting the essential features of low Froude number over and around a long mountain ridge

of height hm. The flow has two distinct components. Above the blocking level is an overflow that is asymmetric and

hydraulically controlled at the crest. Below the blocking scale d from the crest is a layerwise horizontal splitting flow

that is potential-like upstream. The downstream penetration of the overflow is dependent on lee conditions and in

our simple towing experiments, is limited due to the retention of a dense cold pool.
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d. Extensions to other small Fr and large b flows

In the infinite-ridge case, lowering Fr further while

keeping hm fixed shrinks the blocking scale d and hence,

also syd and td. This leads to quicker establishment of

hydraulic control with a correspondingly thinner over-

flow. Increasing Fr has the exact opposite effect.

For a finite ridge, the (Fr, b)-regime diagram (e.g.,

Smith 1989; Lin 2007) indicates that the flow behavior at

low Fr and large b is uncertain. That is, the precise pa-

rameter space over which both flow splitting and ‘‘wave

breaking’’ occur is unknown. The present study suggests

another interpretation of this regime diagram. For a fi-

nite ridge, changing Fr and b essentially has the effect

of making td and tb more or less disparate relative to

one another. We have seen that blocking and hydraulic

control are established on the short time scale td. As-

suming that wave breaking triggers a transition to the

controlled state (e.g., Baines 1998), we may conjec-

ture that flow splitting and lee vortices are accom-

panied by a crest-controlled overflow when tb is about

an order of magnitude larger than td. When these two

time scales become comparable, the overflow will be

subcritical and the flow then falls in the flow-splitting-

only regime.

8. Concluding remarks

Across-crest asymmetry and hydraulic control are

persistent features of low Fr flows past long ridges. On

a short time scale, upstream blocking imparts a funda-

mentally nonlinear and asymmetric character to the flow

over the crest. This asymmetry persists even on the

longer time scale over which the low-level splitting

flow is established. The flow is therefore composed of two

distinct dynamical components as depicted in Fig. 20. The

assumption of optimal crest control along with the rec-

ognition that the upstream splitting flow is potential-like

further allows for an accurate reformulation of the near-

crest overflow.
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FIG. A1. Schematic illustrating how blocked controlled flows over an arbitrary topography are mapped to the

Winters and Armi (2014) solution. (a) Low Fr flow of specified upstream velocity V‘ and uniform stratification N

incident on an arbitrary topography h(y) produces a hydraulically controlled overflowwith a bifurcating streamline

h(y) of unknown slope as indicated. The blocking location is at y52yb and the upstream overflow depth H is

determined by solving the transport equation [e.g., (13)]. The resulting streamwise velocity profiles at arbitrary

downstream locations y5 y1 and y2 are also shown. (b) Schematic of the Winters and Armi (2014) solution. The

upstream overflow thickness H found in (a) is now specified and a bifurcating streamline of constant slope is

imposed. Downstream of the blocking location y52yb*, layerwise integration of Bernoulli’s equation yields the

flow solution within the controlled layer and also produces a corresponding terrain shape h*(y) with a single peak.

On either side of the crest, the height by which the streamline has dropped h*(y) and the height of the terrain

surface relative to the blocking point (blue dot) is a unique one-to-onemap.Thus, the solution obtained at any location, for

example, y5 y1*, can be mapped to that at y5 y1 in (a), that is, y14y1* provided h(y1)2h(2yb)5h*(2yb*)2 h*(y1*).
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anonymous referee motivated the addition of section 3

and appendix A.

APPENDIX A

Mapping the Winters and Armi (2014) Solution to

Arbitrary Terrain Shapes

In the numerical flow solutions we present, the spec-

ified pieces of information are the topography h(y)

and upstream flow conditions V‘ and N. From these,

we estimate the overflow transport Q and set up a

quadratic equation for the upstream overflow thick-

nessH as in (13). After determiningH, it is specified as

an input to the Winters and Armi (2014) model along

with N and some small, constant slope for the bifurcat-

ing streamline. The model then produces flow solutions

downstream of the blocking point, including an implied

terrain shape h*(y) with peak height hm* . On either side

of the crest, the solution additionally generates a

unique one-to-one map between the drop of the bi-

furcating streamline h*(y) and the height of any point

along the terrain surface relative to the blocking level

h*(y)2 (hm* 2H/8). This is depicted schematically in

Fig. A1. The flow solutions at arbitrary downstream

locations, for example, y5 y1 and y2 along the given

topography h(y) in Fig. A1a, can be mapped to y5 y1*

and y2*, respectively, along the implied terrain shape

produced by theWinters andArmi (2014) model, shown

in Fig. A1b. Thus the analytical flow solutions of Winters

and Armi (2014) are valid for any arbitrary hydrostatic

topography.

APPENDIX B

Sensitivity of the Flow Structure Aloft to Domain

Height and Sponge-Layer Thickness1

The question of whether the wavelike flow above the

controlled overflow is caused by wave trapping as a

result of imperfect radiation at the upper boundary and

its possible effects on the overflow were investigated

further. If the upper boundary in effect behaves as a

rigid lid, then only certain quantized modes can exist

and the quantization will dependent on the height of

the domain.

To test whether the quantitative properties of the

controlled overflowing layer and the oscillatory flow

aloft (e.g., in Fig. 3a) depend sensitively on the choice

of the domain height and sponge-layer thickness, we

repeated the Fr 5 0.16 infinite-ridge simulation for

three different configurations of domain and sponge-

layer depths. The sponge layer is designed to absorb

the most energetic upward-propagating waves of ver-

tical scale about hm. In the original case, the vertical

height of the domain Lz 5 6hm and the sponge layer

has a thickness 1.8hm. In the other two cases, we set

Lz 5 12hm and 18hm, with much deeper damping layers,

of thickness 4.5hm and 6.7hm, respectively. The vertical

profile of the streamwise velocity at the blocking point

(Fig. B1) shows that the quantitative properties of the

FIG. B1. Vertical profiles of the streamwise velocity at the blocking point y’2yb along with the analytical prediction of Winters and

Armi (2014) (gray) for Fr5 0.16 flow over an infinite ridge with domain height and Rayleigh damping layer thickness respectively set to

(a) 6hm and 1.8hm, (b) 12hm and 4.5hm, and (c) 18hm and 6.7hm.

1Motivated by Dr. Richard Rotunno’s insightful comment on

an early version of the manuscript.
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controlled overflow are unchanged and the oscillatory

flow structure aloft also persists in all cases. Further,

Fig. B1 shows that the vertical wavelength of this

wavelike flow is independent of domain height and is

around l’ 2pV‘/N in all cases.
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