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A vertically moving boundary in a stratified fluid can create and maintain a horizontal

density gradient, or vertical layering of density, through the mechanism of viscous

entrainment. Experiments to study the evolution and stability of axisymmetric flows

with vertically layered density are performed by towing a narrow fibre upwards

through a stably stratified viscous fluid. The fibre forms a closed loop and thus its

effective length is infinite. A layer of denser fluid is entrained and its thickness is

measured by implementing tracking analysis of dyed fluid images. Thickness values

of up to 70 times that of the fibre are routinely obtained. A lubrication model is

developed for both a two-dimensional geometry and the axisymmetric geometry of

the experiment, and shown to be in excellent agreement with dynamic experimental

measurements once subtleties of the optical tracking are addressed. Linear stability

analysis is performed on a family of exact shear solutions, using both asymptotic and

numerical methods in both two dimensions and the axisymmetric geometry of the

experiment. It is found analytically that the stability properties of the flow depend

strongly on the size of the layer of heavy fluid surrounding the moving boundary,

and that the flow is neutrally stable to perturbations in the large-wavelength limit. At

the first correction of this limit, a critical layer size is identified that separates stable

from unstable flow configurations. Surprisingly, in all of the experiments the size of

the entrained layer exceeds the threshold for instability, yet no unstable behaviour

is observed. This is a reflection of the small amplification rate of the instability,

which leads to growth times much longer than the duration of the experiment. This

observation illustrates that for finite times the hydrodynamic stability of a flow does

not necessarily correspond to whether or not that flow can be realised from an initial-

value problem. Similar instabilities that are neutral to leading order with respect to

long waves can arise under the different physical mechanism of viscous stratification,

† Email address for correspondence: moore@cims.nyu.edu

mailto:moore@cims.nyu.edu


2 R. Camassa, R. M. McLaughlin, M. N. J. Moore and K. Yu

as studied by Yih (J. Fluid Mech., vol. 27, 1967, pp. 337–352), and we draw a
comparison to that scenario.

Key words: lubrication theory, parametric instability, stratified flows

1. Introduction

The vertical motion of matter (either solid or fluid) through a stratified fluid
environment can lead to a rich variety of behaviour owing to the complexity of
the interaction between the matter and fluid. Some examples that illustrate the
importance of this problem include the discovery of underwater trapped oil plumes
from the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the
accumulation of sinking marine snow at density discontinuities in the ocean (see
MacIntyre, Alldredge & Gottschalk 1995). There have recently been a number
of controlled laboratory experiments and numerical simulations investigating certain
features of vertical motion through miscibly stratified fluids, including cases in which
the background stratification is gradual (see Torres et al. 2000; Blanchette, Peacock &
Cousin 2008; Yick et al. 2009), and cases in which the background stratification is
sharp (see Srdic-Mitrovic, Mohamed & Fernando 1999; Abaid et al. 2004; Camassa
et al. 2009, 2010). These are in contrast to studies of motion through immiscible
stratified fluids in which surface tension plays a dominant role (see for example Manga
& Stone 1995). The main motivation for the present study comes from the setting
of a sharp background stratification in which a miscible interface separates two fluids
of differing densities. A body moving vertically through the interface will deform it,
giving rise to a strong baroclinic torque and complex nonlinear dynamics. To give an
example of such complex interactions, Abaid et al. (2004) discovered a levitation
phenomenon in which a sphere settling through a sharp pycnocline is observed
to reverse its downward motion and rise on a short time scale before ultimately
descending again.

A common feature seen in all scenarios of vertical motion through stratification is
the existence of a boundary layer of fluid that is transported by the body through
the mechanisms of fluid drift (normal forces) as well as viscous entrainment (shear
forces), and carried into a region of differing density after which buoyancy effects
become strong. Figure 1 shows an experimental image from Abaid et al. (2004) in
which the entrained layer is visibly pronounced. Strong density gradients, both vertical
and horizontal, are created with associated normal and shear forces on the body that
differ substantially from the forces exerted when there is no stratification present,
and are responsible for the observed phenomenological differences. As an example
of this, Srdic-Mitrovic et al. (1999) found a drag enhancement of up to an order of
magnitude for a particle settling through a thick pycnocline at a moderate Reynolds
number, and they appealed to the buoyancy of the drifted region of fluid to partially
account for this observed enhanced drag. As another example, Camassa et al. (2008)
applied new theoretical findings related to fluid drift in order to compute the buoyancy
contained within the drifted region of a sphere penetrating a sharp pycnocline. They
established a coarse criterion for the levitation phenomenon seen in Abaid et al. (2004)
that shows reasonable agreement with the experimentally determined criterion. As yet
another example, Camassa et al. (2009) found prolonged residence times for particles
settling through a sharp density interface at low Reynolds number, and Camassa
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FIGURE 1. A 4 mm diameter sphere with density 1.0401 g cc−1 falling through a sharp
stratification with top density 0.9982 g cc−1 and bottom density 1.0386 g cc−1. Based on the
sphere velocity in the top layer of 7.6 cm s−1 and the sphere diameter, the Reynolds number
is roughly 300. Upon penetrating into the bottom layer, the sphere drags a visible shell of top
fluid. Image from Parker et al. (2006).

et al. (2010) constructed a first-principles theoretical model that accurately predicts
these experimental observations. In the theoretical model the complex interaction
between the body and the stratified fluid is captured by representing the solution
as a perturbation of Stokes flow, with the perturbation component subject to an
external forcing that depends on the deformation of the miscible interface. This model
rigorously incorporates the combined effects of fluid transported through drift and
viscous entrainment, although the distinction between the two influences is not made
transparent.

It is valuable to separate these two mechanisms of fluid transport, and in the
present study we isolate the mechanism of viscous entrainment by creating a flow
configuration in which the density gradient is nearly horizontal and therefore isopycnal
lines are nearly vertical. We will refer to this configuration as vertical layering of
density, and we mainly concern ourselves in this study with such flow patterns that
can be created experimentally. We point out that the question of the stability of this
configuration arises naturally since the stratification is not oriented as to be restoring,
as in Kelvin–Helmholtz instability for example, nor is it oriented as to be destabilising,
as in Rayleigh–Taylor instability. We therefore focus attention on characterising the
stability properties of this flow configuration in the present study.

In a closely related study to ours, Blanchette et al. (2008) experimentally
investigated the steady-state flow patterns created by a flat sidewall moving vertically
through a linear stratification. They compared the stability properties of this flow
to those predicted by linear stability analysis performed numerically by a Galerkin
method. The present study differs in a few major ways. First, in Blanchette et al.

(2008) the background stratification is linear which creates gradual horizontal density
gradients, whereas our primary interest is the effects of sharp density gradients. In
our experiments, the diffusivity of the salt used to create the density difference has
been determined to be negligible on the time scale of the experiments, which allows
the persistence of these sharp density gradients, and further the vertical orientation
of the flow does not act to enhance the diffusivity in the horizontal direction. Thus,
sharply stratified flows can be created and maintained for long periods of time in
our experiment. Additionally, in Blanchette et al. (2008) the steady-state flows exhibit
density gradients with both a horizontal and a vertical component which is a result of
the background linear stratification, whereas in the present study the density gradient is
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FIGURE 2. A fibre of radius a∗ = 0.019 cm is towed upwards at 1.7 cm s−1 through
stratified corn-syrup solution with viscosity 30 P, top density 1.38 g cc−1, and bottom density
1.41 g cc−1. A layer of the dyed bottom fluid is entrained by the flow and forms a vertical
column. Time lapse is 20 s, Re = 0.7, and κ = 49.

completely horizontal throughout a substantial region of the experimental tank. Finally,
the experiments here are performed in an axisymmetric geometry as opposed to the
flat geometry of Blanchette et al. (2008).

Also related to the present study are natural and industrial process in which non-
vertical density gradients are developed and maintained for some time. There are a
number of such processes that have been considered theoretically (see Thorpe, Hutt &
Soulsby 1969; Turner 1985; Huppert et al. 1986; Scott, Stevenson & Whitehead 1986;
Helfrich & Whitehead 1990), though often in conjunction with other physical effects.
The findings in the present study, in which the effect of the vertical density layering is
isolated, may lend insight to the processes involved in these more complex settings.

2. Outline of the paper

We have designed a careful laboratory experiment that creates a vertically layered
flow and this is described in detail in § 3. In the experiment a long narrow fibre of
radius a∗ is towed vertically through an initially stable density step stratification with
speed V (typically on the order of 1 cm s−1), and forms a sharp density transition
between the entrained, heavy fluid of density ρ0 +1ρ and the ambient fluid of density
ρ0. Both fluids have nearly the same dynamic viscosity µ and we will take the radial
dimension of the fluid domain as the characteristic length scale L (since a downward
return flow does exist in the experiment that gives a characteristic velocity gradient
on the order of V/L). After a sufficient duration (typically less than two minutes), the
density layering is oriented nearly vertically and the flow is nearly parallel throughout
a large region of the tank as can be seen in figure 2, which shows a sequence of
experimental images in which the bottom fluid is dyed.

The radius of the entrained column h∗ has been routinely observed to be nearly
two orders of magnitude greater than the radius of the fibre a∗, and the determination
of h∗ as a function of the experimental parameters is one goal of this study. The
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steady columnar size is the result of the competition between the effect of viscous
entrainment, which tends to increase layer thickness, and gravity which tends to drain
the heavier fluid. It will be found that the non-dimensional entrained column radius
h = h∗/L depends primarily on the non-dimensional ratio of gravitational forces to
viscous forces

κ = g1ρL2

µV
, (2.1)

where g is the gravitational constant. Throughout the parametric regimes of our study,
where the flows have been laminar and the fibre very thin compared to the tank’s
radial dimension, we have detected little to no dependence of the entrained layer size
on either the Reynolds number, Re = ρ0LV/µ, or the non-dimensional fibre radius,
a = a∗/L. This observation will be shown to be in agreement with a theoretical model
which predicts the layer size to be independent of the Reynolds number and only
weakly (logarithmically) dependent on the fibre radius for a ≪ 1.

The theoretical model relies on the tools of lubrication theory and is presented in
§ 4. Section 5 shows the comparison of the theoretical model to the experimental
measurements and demonstrates excellent agreement once issues with the optical
tracking are addressed. The experimental observations and the theoretical model both
confirm that the flow tends to a state in which the column diameter of entrained
fluid is steady, the density is layered nearly vertically, and the flow is nearly parallel
throughout a large region. It is then possible to ask whether or not these steady
flow configurations are stable, and we remark that an initial motivating factor in
designing the experiment to create such a configuration was to characterise its stability
properties.

The stability analysis of the vertically layered shear flow configuration is
investigated in § 6 using both asymptotic methods and numerical methods, and it
is found that the flow can be unstable to long waves depending on the size of
the entrained layer of heavy fluid. A critical layer size is found, below which the
flow configuration is stable and above which the flow configuration is unstable, and
precise bifurcation diagrams are presented to illustrate this finding. Remarkably, these
bifurcation properties are independent of the Reynolds number of the flow, and the
Reynolds number only affects the magnitude of damping or amplification rates, similar
to a result found by Yih (1967) for a viscosity-stratified flow. In the experiment, it
is observed that the size of the entrained layer surpasses the stability threshold yet
the instabilities are not manifested over the time scale of the experiment, illustrating
that it is possible for an unstable flow configuration to be reached and maintained
experimentally.

3. Experiment

3.1. Experimental design

The narrow fibre used in the experiment is mono-filament fishing line, with a
measured radius of a∗ = 0.019 ± 0.0006 cm or 0.029 ± 0.0006 cm, and the fibre is
towed by a stepper motor (the SureStep 23055) located atop the experimental tank.
Upon exiting the main chamber, the fibre is redirected downwards into an auxiliary
chamber and then back into the main chamber, forming a closed loop with itself. The
fibre is redirected by low-friction pulleys located both inside and outside the tank,
and the pulleys located inside the tank are isolated from the observation section of
the tank so that the rotational motion of the pulleys does not alter the flow. In later
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FIGURE 3. Experimental design: (a) schematic; (b) illustration of flow.

experiments, a cylindrical insert was placed inside the observation section of the tank
to satisfy axisymmetric boundary conditions for the fluid domain. See figure 3(a) for
a three-dimensional schematic of the experimental tank illustrating these key design
features.

As the bottom fluid is entrained and carried to the top of the tank, it accumulates
near the free surface and eventually descends downwards back into the observational
window, thus disrupting the shear flow. This effect places a limitation on the allowable
duration of the experiment. Various methods were attempted in order to combat this
effect, for instance funnelling the entrained bottom fluid elsewhere in the tank and
suctioning out the entrained bottom fluid with a pump as it reaches the free surface;
however these methods never demonstrated complete success. Thus, the theoretical
lubrication model presented in § 4 will apply to the experiment on an intermediate
time scale that is long enough for the vertical layering to develop, but not so long that
the descending plume influences the flow.

3.2. Experimental procedure and discussion of uncertainties

As preparation for the experiment, two batches of aqueous corn-syrup solutions were
mixed individually. Salt was added to the bottom fluid in order to raise its density
and then additional water was also added until its viscosity matched that of the top
fluid to within 10 %. The two fluids were miscible and the diffusivity of salt in the
solution has been measured by Moore (2010) to be roughly 1.3 × 10−5 cm2 s−1. The
duration of the experiment was always less than 20 minutes, and more often roughly
5 minutes, over which time salt diffuses to a length scale of roughly 0.06 cm. The
most relevant hydrodynamic length scales are the size of the entrained layer h∗ and the
radial dimension of the tank L, since a velocity gradient of order V/h∗ exists in the
boundary layer flow and a gradient of order V/L exists in the outer return flow. It will
be shown in § 4 that the flow depends weakly on the fibre radius a∗ and thus we do
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not consider it to be an important length scale. In the experiments h∗ was typically an
order of magnitude larger than the diffusive length estimate of 0.06 cm and therefore
we assume that the effects of salt diffusivity are negligible in the experiments. We note
however that for a few of the experiments the layer size and the diffusive length scale
are not as well separated, and in these experiments salt diffusion may play a role. The
size of the initial sharp density transition was not measured directly, but from optical
observation it appears much less than one centimetre and more likely on the order of a
few millimetres.

The densities of both batches were measured with the Anton Paar DMA4500,
accurate to 5 × 10−5 g cc−1, and the viscosities were measured with the Anton Paar
AMVn, with quoted accuracy of 0.5 %. Temperatures were monitored with a handheld
digital RTD thermometer having an accuracy of 0.1 ◦C or a mercury thermometer
with a reading precision of 0.02 ◦C. We however estimate that 0.5 ◦C is reasonable
temperature uncertainty for the experiment, due to observed temperature discrepancies
between the top and bottom batches at the time of pouring (typically about 0.2 ◦C)
and a mis-calibration of the RTD thermometers during a portion of the experiments
(an error of about 1.6 ◦C which was later corrected for). In the experiments, the
viscosity was varied within the range 1.5–30 P, and the density difference was varied
within the range 1.5–30 × 10−3 g cc−1. The sources of experimental error lead to an
uncertainty in the value of the non-dimensional parameter κ (defined in (2.1)) of
up to 20 % in the case in which the density difference was the smallest and hence
the relative uncertainty the largest; however more typically the uncertainty in κ was
roughly 10 % or less.

In initial experiments the square walls of the tank provided the exterior boundary,
and for these experiments we take L as the radius of the circle inscribed by the square
walls to get L = 9.21 cm. In an improvement of the experimental design, a cylindrical
insert was placed inside the square tank in order to satisfy axisymmetric boundary
conditions necessary for theoretical modelling, and here L = 7.25 cm. Images of the
experiment were taken with a 12.1 megapixel Nikon D3 digital SLR camera at the rate
of one frame per second. In the images, a physical length scale was determined by
a ruler which was mounted on the outside of the experimental tank and a correction
factor, arising from magnification in the corn-syrup solution, was subsequently applied
to this length scale. After assessing spatial distortions in the images we estimate an
uncertainty of ±2.5 % for length measurements.

3.3. Collapse of experimental data

The experimental images are analysed with the software DataTank (manufactured by
Visual Data Tools, Inc.) for the purpose of measuring the size of the entrained layer as
it grows in time. In the analysis program, the RGB-images are projected onto a grey-
scale to maximise the contrast between the dyed entrained layer and the ambient fluid.
Next, edge detection techniques are applied to the images at a fixed height in order
to determine the thickness of the entrained layer. Figure 4 shows the measurements
of h at the final time of the experiment plotted against the parameter κ defined by
(2.1) and demonstrates the collapse of the data with respect to κ . The experimental
measurements are evidently independent of the Reynolds number since experiments
with different Reynolds numbers but similar κ values show similar measurements of h

– see appendix A for the Reynolds numbers of the experiments. To give one example
of the independence of the Reynolds number, for the cluster of five data points in the
range of κ = 55.1–60.0, the lowest Reynolds number is 0.377 (open circle) and the
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FIGURE 4. Experimental measurements of h (non-dimensional) measured 35 cm above the
initial interface, plotted against the non-dimensional parameter κ defined by (2.1). Data are
from experiments performed on 1/8/09 (open circle), 6/8/09 (open triangle), 13/8/09 (open
diamond), 21/8/09 (open box), 27/8/09 (filled circle), 1/10/09 (filled triangle), 8/10/09 (filled
diamond), 15/10/09 (filled box).

highest Reynolds number is 7.32 (open box), indicating that a factor of nearly 20 in
the Reynolds number shows little to no measurable change in h.

4. Lubrication model

Motivated by experimental observations of the evolving interface, we have
developed a theoretical model to describe the time evolution of the system from
an initial-value problem with a stable step stratification. The model relies on the
lubrication approximation of slow variation in the vertical direction, and the result
will be a theoretical prediction for the relationship between κ and h. Central to the
lubrication model will be the assumption that the vertical flux across an imaginary,
horizontal plane vanishes. This assumption does not hold exactly in the experiment
due to a small transient motion of the free surface, as well as a small amount
of corn syrup attached to the fibre and subsequently removed completely from the
experimental fluid domain. However, it does hold to a close approximation which
will be confirmed by the close agreement observed between the experiment and the
lubrication theory.

We will first consider the simpler two-dimensional problem in which a flat wall
is towed vertically through a stable step stratification. Guided by the steps used in
the two-dimensional problem, we will carry through the analysis for the axisymmetric
geometry of the experiment. In order to illustrate the importance of the stratification,
we will determine the evolution of a material surface under the simplified conditions
of a fibre towed vertically through an unstratified fluid, and show that this model is
asymptotic to the stratified case for short times, but departs for longer times.

4.1. Two-dimensional lubrication theory

4.1.1. Problem set-up
Consider a two-dimensional fluid domain with spatial coordinates x = (x, z) and

velocity components u = (u,w), that is unbounded in the vertical direction and
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bounded in the horizontal direction by two flat walls located at x = 0 and x = L. The
fluid domain is composed of two miscible fluids initially at rest and stably stratified,
with the top fluid having density ρ0 and the bottom fluid having density ρ0 +1ρ, and
both fluids having viscosity µ. The wall located at x = 0 is impulsively started at t = 0
and towed vertically at a uniform rate V , creating motion of the miscible interface
between the two fluids.

We non-dimensionalise the problem using L, V , ρ0, and µ, and we do not change
notation. When there is potential for ambiguity we will use the convention that
dimensional variables are denoted by a star. As the governing equations, we take
the non-dimensional Boussinesq approximation equations given by

Re (∂tu + u∂xu + w∂zu)= −∂xp + ∂xxu + ∂zzu, (4.1)

Re (∂tw + u∂xw + w∂zw)= −∂zp + ∂xxw + ∂zzw − Re

Fr2
ρ, (4.2)

∂xu + ∂zw = 0, (4.3)

∂tρ + u∂xρ + w∂zρ = 0, (4.4)

with the boundary conditions being no slip on both walls. The Reynolds number is
given by Re = ρ0LV/µ and the Froude number is Fr = V/

√
gL. Note that from the

definition of κ in (2.1), we have

κ ≡ g1ρL2

µV
= Re

Fr2

1ρ

ρ0

. (4.5)

As a physical constraint on the system, we insist that the vertical flux across any
horizontal line vanishes:

∫ 1

0

w dx = 0. (4.6)

Also note that we have neglected the diffusion of density in (4.4), as discussed in
§ 3.2.

Assume that the miscible interface is given by x = h(z, t), and that h(z, t) is slowly
varying in z. Then to leading order, the flow is parallel with velocity w0(x; h) that
satisfies

w′′
0(x; h)= κ H(h(z, t)− x)+ β. (4.7)

Here H(x) is the Heaviside step function and β is the constant (unknown a priori)
vertical pressure gradient. The solution can be represented as

w0(x; h(z, t))= κ wpw(x; h)+ A1(h)(x − 1)+ A2(h)x(x − 1). (4.8)

Here A1(h) and A2(h) are constants with parametric dependence on h, and the
unknown β has been absorbed into A2(h). The piecewise function wpw(x; h) is given by

wpw(x; h)=
{

1

2
(x − h)2 if 0 6 x 6 h,

0 if h< x 6 1.
(4.9)

A1(h) is determined by enforcing the boundary condition w(0) = 1, and A2(h) is
determined by enforcing the condition of vanishing flux (4.6), giving

A1(h)= −1 + 1

2
κh2, (4.10)

A2(h)= 3 − 3

2
κh2 + κh3. (4.11)
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To leading order in the lubrication approximation, let J(h) be the vertical flux within
the entrained layer

J(h)≡
∫ h

0

w0(s; h) ds. (4.12)

Then the continuity equation for h(z, t) is

∂th + dJ

dh
∂zh = 0. (4.13)

This partial differential equation requires an initial condition and so in subsequent
discussion we assume that the initial condition is given by h(z, 0) = f (z) for some
function satisfying the lubrication assumption that df /dz is small.

4.1.2. Characteristics
The main result of this section will be that the long-time behaviour of h(z, t)

is determined by the root structure of dJ/dh, and that h(z, t) → κ−1/2 as t → ∞.
Computing dJ/dh directly from its definition (4.12) gives

dJ

dh
= 1 − 4h + 3h2 − κh2(1 − 4h + 5h2 − 2h3). (4.14)

With dJ/dh made explicit, the method of characteristics can by applied to the
hyperbolic partial differential equation (4.13). Along characteristic curves, allow
z = z(t) with z(0) = z0 and dz/dt = dJ/dh. Then h(t) = h(z(t), t) is constant along
characteristic curves, and the differential equation for z(t) may be solved in closed
form, yielding the characteristic map

z(t)= z0 + t(1 − 4h0 + 3h2
0 − κh2

0(1 − 4h0 + 5h2
0 − 2h3

0)), (4.15)

where h0 ≡ f (z0).
In order to obtain an explicit solution to (4.13), the characteristic map would need

to be inverted explicitly, which would prove intractable even for very simple initial
conditions due to the fact that h0 enters (4.15) as a quintic polynomial. However, the
long-time behaviour of the system may be determined by simply evaluating the root
structure of dJ/dh. Let h∞ be defined as the long-time layer size, h∞ ≡ limt→∞ h(z, t),
if it exists. For suitable initial conditions, it can be expected that h(z, t) will tend
to a root of dJ/dh in long time since the characteristics travel with speed zero at
such a root – see figure 5. It is noted that such a flow configuration maximises the
upward flux of entrained fluid for a given towing speed since dJ/dh = 0, and so this
configuration is related to the maximal flux principle considered by Joseph, Nguyen &
Beavers (1984).

A root of (4.14) must satisfy

κh2(1 − 4h + 5h2 − 2h3)= 1 − 4h + 3h2. (4.16)

Motivated by the parameters used in the (axisymmetric) experiment, allow κ to
become asymptotically large, while by definition h must always lie within the interval
(0, 1). By dominant balances, either h2 or 1 − 4h + 5h2 − 2h3 must be asymptotically
small and of the order 1/κ . Therefore, to leading order in large κ , the roots of dJ/dh

are given by κ−1/2, 1/2, and 1 (h = 1 is always a root independent of κ and
corresponds to a homogeneous fluid). We mainly focus attention on the root κ−1/2

since this corresponds to the value of h∞ that is accessible by the initial-value problem



Stratified flows with vertical layering of density 11

h

h(z, t)

y

x

dJ dh

V

FIGURE 5. Illustration of h∞ given by a root of the characteristic speed dJ/dh. Solid curve is
the initial condition and dotted curves show h(z, t) at later times. The direction of gravity is in
the negative z-direction, or towards the left of the page.

in which the fluid is initially at rest and stably stratified. Returning to dimensional
variables, the corresponding prediction for h∗

∞ is

h∗
∞ =

√

µV

g1ρ
as κ → ∞. (4.17)

The analysis presented here bears some similarity to the seminal work of Landau
& Levich (1942), who used lubrication theory to determine the thickness of a coating
layer that is dragged upwards by a flat plate. The main distinction is that the theory of
Landau & Levich is static and it incorporates surface tension between the coating layer
and ambient fluid, whereas the analysis here is dynamic with no surface tension.

4.1.3. Similarity solution
It is possible to obtain a similarity solution to (4.13) under the conditions that κ is

asymptotically large and h = O(κ−1/2). Inserting the leading-order term of (4.14) gives
the simplified partial differential equation

∂th + (1 − κh2)∂zh = 0 for z 6 t, (4.18)

with the boundary condition h(t, t) = 0. In the Galilean reference frame translating

with the towed wall, i.e. h̃(z − t, t)= h(z, t), this equation becomes

∂th̃ − κ h̃2∂zh̃ = 0 for z 6 0. (4.19)

This is the same equation as derived by Huppert (1982) for the gravity current
observed when a viscous fluid is released on a sloping surface. Generally, we can

seek a similarity solution to (4.19) of the form h̃(z, t) = tαF(tγ z) = tαF(ξ) where
ξ = tγ z. Substitution into (4.19), gives the similarity condition that 2α + γ = −1, and
yields the ordinary differential equation

αF(ξ)− ((1 + 2α)ξ + κF (ξ)2)F′(ξ)= 0 for ξ 6 0, (4.20)

with initial condition F(0) = 0. We note that F(ξ) = √−ξ/κ solves (4.20) for any
choice of α, and in this sense it is a universal similarity solution (it can also be
obtained from a simple scaling argument). This solution is equivalent to the solution
found by Huppert (1982), who imposed the additional condition that the volume of
the gravity current is conserved. However, in the present scenario enforcing such a
condition on the entrained fluid volume becomes problematic since there is effectively
an infinite reservoir of bottom fluid from which the fibre draws fluid and the upward
flux of fluid from this reservoir is unknown a priori.
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The universal solution F(ξ)= √−ξ/κ gives

h(z, t)=
√

t − z

κt
for z 6 t. (4.21)

Taking the limit as t → ∞ of (4.21) for a fixed value of z gives the same limiting
value of h∞ =

√
1/κ as was found from the characteristics method, and provides

further confirmation of this result.
To solve (4.20) more generally we can apply the Hodograph method (see Courant

& Friedrichs 1977). For convenience, let x = ξ and y = F(ξ). Assuming that y(x) is
invertible allows the inversion of (4.20), giving

dx

dy
− 1 + 2α

α

x

y
− κ

α
y = 0 for y > 0, x 6 0, (4.22)

with the initial condition x(0)= 0. The general solution is given by

x(y)= −κy2
(

1 + Cy1/α
)

for y > 0, (4.23)

for some constant C. Notice that as long as 2 + 1/α > 0, this satisfies the initial
condition without determining C, and thus there are multiple solutions to this initial-
value problem, which is due to the regular singular point of (4.22) at y = 0. Note that
for any value of α, setting C = 0 in (4.23) gives the universal solution. For non-zero C

we are interested in determining the long-time behaviour of h(z, t) for a fixed z-value,
h(z, t) = tαF(t−1−2α(z − t))→ tαF(−t−2α) as t → ∞. In the case α < 0 the argument
of F tends to negative infinity and in the case α > 0 the argument tends to zero. If
α < 0 then (4.23) is asymptotic to −κy2 as y → ∞, and if α > 0 it is asymptotic to
−κy2 as y → 0. This gives upon inversion that F(ξ) is asymptotic to the universal
solution as ξ → −∞ if α < 0 and as ξ → 0− if α > 0, which in either case gives
the same long-time behaviour of h∞ =

√
1/κ . For the case α = 0, direct inspection of

(4.20) reveals that the universal solution is the only non-trivial solution (F(ξ) equal
to any constant is a trivial solution), and so for any α all possible solutions of (4.20)
give the same long-time behaviour. To give one non-trivial case in which (4.23) can

be inverted explicitly, take α = −1, which gives F(ξ) =
√

C2/4 − ξ/κ − C/2, and

therefore h(z, t) = t−1(
√

C2/4 − t(z − t)/κ − C/2). For this case direct evaluation of
the limit gives h∞ = 1/

√
κ as expected.

4.2. Lubrication theory in axisymmetric geometry

Now we consider the axisymmetric geometry of the experiment from § 3, in which
a fibre of radius a∗ replaces the flat wall from the two-dimensional problem. Here,
the axisymmetric coordinates are the radial coordinate r and the vertical coordinate
z, with corresponding velocity components ur and w respectively. The variables are
non-dimensionalised as before, and a = a∗/L is the non-dimensional fibre radius. The
non-dimensional axisymmetric Boussinesq approximation equations are given by

Re (∂tur + ur∂rur + w∂zur)= −∂rp + 1

r
∂r (r∂rur)+ ∂zzur − 1

r2
ur, (4.24)

Re (∂tw + ur∂rw + w∂zw)= −∂zp + 1

r
∂r (r∂rw)+ ∂zzw − Re

Fr2
ρ, (4.25)

1

r
∂r (rur)+ ∂zw = 0, (4.26)

∂tρ + ur∂rρ + w∂zρ = 0. (4.27)
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The boundary conditions are no slip on both the fibre and the exterior bounding
cylinder. As in the two-dimensional problem, we impose the physical constraint of
vanishing vertical flux

∫ 1

a

w(r) r dr = 0. (4.28)

Following the steps taken in the two-dimensional problem, we let the miscible
interface be given by r = h(z, t). We assume that h(z, t) is slowly varying in the
vertical direction, so that to leading order, the flow is parallel with velocity profile
w0(r; h(z, t)) given by

w0(r; a, h)= κwpw(r; a, h)+ A1(a, h) log r + A2(a, h)(r2 − 1). (4.29)

Here, A1(a, h) and A2(a, h) are constants, and wpw(r; h) is the piecewise function

wpw(r; a, h)= 1

4







r2 − h2 − h2 log
r2

h2
if a 6 r 6 h,

0 if h< r < 1.
(4.30)

We define the following parameters for convenience:

η2(a, h)= h2

(

log
h2

a2
− 1

)

+ a2, (4.31)

σ(a)= 1 + log a − 2a2 + a4(1 − log a). (4.32)

Enforcing the boundary condition w(a) = 1 and the vanishing flux condition (4.28),
gives the coefficients A1(a, h) and A2(a, h) in terms of these parameters:

σA1 = 1 − κ

4
η2 − 2a2 + κ

4
(h2 − a2)

2

+ a2

(

a2 − κ

4
h2

(

h2 − a2 − a2 log
h2

a2

))

, (4.33)

σA2 = −1 + κ

4
η2 + a2 − 2a2 log a − κ

4

(

a2η2 − (h2 − a2)
2

log a
)

. (4.34)

The details of the axisymmetric lubrication theory are given in appendix B, along
with the exact expression for the speed of characteristics. The laboratory experiments
are conducted in the parameter regime in which κ is typically large and the ordering
a ≪ h ≪ 1 holds. With this asymptotic scaling the leading-order expression for the
speed of characteristics is given by

1

π

dJ

d(h2)
∼ 1 + log h

1 + log a

(

1 − κ

2
η2

)

for κ ≫ 1, a ≪ h ≪ 1. (4.35)

As in two dimensions, for suitable initial conditions h∞ is given by a root of (4.35),
implying that as t → ∞, κη2 → 2. The dimensional quantity h∗

∞ satisfies to leading
order

g1ρ h∗
∞

2

µV

(

log
h∗

∞
a∗ − 1

2

)

∼ 1 for κ ≫ 1, a∗ ≪ h∗ ≪ L. (4.36)

4.3. Unstratified advection

In order to assess the importance of the density stratification, we calculate the steady
shear velocity profile in the case that the fluid is not stratified, by simply setting
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κ = 0 in equation (4.8) for the two-dimensional geometry and equation (4.29) for the
axisymmetric geometry. For this unstratified case, the evolution of a material surface
under a lubrication partial differential equation reduces to advection by the velocity
profile, since the velocity profile is independent of h. In the unstratified case, the
prediction for h∞ is simply given by the (smallest) root of the velocity profile, which
is h∞ = 1/3 in two dimensions and h∞ ≈ 0.451 for small a in the axisymmetric case.
Furthermore, for the case in which the moving boundary is started impulsively in a
homogeneous fluid, the effects of transient terms in the time-dependent velocity profile
were assessed by Moore (2010) and found to be negligible for the Reynolds numbers
used in the experiments (somewhat surprisingly since these Reynolds numbers are
order one).

4.4. Enhanced drag

The drag force on the vertically moving boundary can easily be computed from
the shear solutions (4.8) and (4.29) (two dimensions and axisymmetric geometry
respectively). In the two-dimensional geometry, the non-dimensional shear stress on
the moving wall is given by

w′
0(0)= −4 − κh (1 − h)2, (4.37)

which can be compared to the homogeneous case by setting κ = 0. Using the
lubrication limit of h∞ = κ−1/2, gives a drag enhancement over the homogeneous
case that scales as

√
κ/4 to leading order in large κ .

In the axisymmetric geometry and within the asymptotic regime of the experiments,
the non-dimensional frictional drag per unit length is approximately

2πa w′
0(a)∼ 2π

1 + log a

(

1 − κh2

4
(2 log h + 1)

)

for κ ≫ 1, a ≪ h ≪ 1. (4.38)

As long as h< e−1/2, then the term arising from the stratification (i.e. non-zero κ) is of
the same sign as the first term, and thus acts to enhance the total drag.

5. Comparison of measurements and theory

5.1. Image analysis

The experimental image analysis procedure described in § 3.3 initially proved
insufficient to demonstrate agreement between the theoretical predictions and the
experiment, and it was determined that this was caused by two main factors: the
termination of the experiment at a finite time, and an optical issue in which the entire
extent of the layer was not recognised by the edge detection routine. Each factor was
shown to be the dominant source of error within a particular range of parameters,
and only once both were addressed was agreement between the theory and experiment
observed.

Figure 6 illustrates the optical issue in which the entire layer width was not detected
by the initial edge detection procedure, which we term the inner layer measurement.
Notice that in figure 6(a), the vertical band of yellow towards the outer edge of the
layer does not appear to be detected. This inner-layer measurement procedure detected
edges by locating the extrema in the first derivative of the grey-scale intensity along a
horizontal line. We found that a more accurate measurement of the layer’s entire width
could be made by locating the extrema in the second derivative, termed the outer-layer
measurement, and the accuracy of this procedure as compared to the inner-layer
measurements can be seen in figure 6. Further, we believe that the difference between
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FIGURE 6. Illustration of edge detection. (a) Zoom of an experimental image with false
colour scale and two measurements of the layer diameter both taken at a height of 34 cm.
The inner-layer measurement is the top one with the outer-layer measurement below it.
(b) Grey-scale G(x), and the first two derivatives (c and d), along with the position of the
inner edges (solid vertical lines) and outer edges (dashed vertical lines).

the inner and outer edge measurements gives an estimate for the length scale of the
density transition. If the grey-scale profile, G(x), were truly discontinuous across the
miscible interface, then the plot of G(x) in figure 6(b) would be a semicircle. However,
the diffusion process tends to smooth the semicircle and the inflection points of the
G(x) and G′(x) tend to separate as seen in figure 6(b,c). For the experiment shown
in figure 6, the experimental duration and the measured value of diffusivity combine
to give a diffusive length scale estimate of 0.06 cm, and this agrees well with the
estimate of 0.07 cm obtained from the difference between the inner and outer edges.

In order to capture a more detailed picture of the dynamic behaviour of the miscible
interface, we developed a routine that detects and digitally reconstructs its shape at
each time. The routine relies upon the edge detection methods and a typical interface
reconstruction is shown in figure 7 for both the inner edge and the outer edge
detection method. With the interface reconstruction, it becomes possible to measure
the characteristic speeds for comparison with the lubrication model. The characteristic
speed for a fixed h-value, say h1, can be measured by finding the location, z(t) at
which the reconstructed curve h(z(t), t) takes the value h1, and then the corresponding
characteristic speed is simply given by dz/dt. This procedure can then be repeated for
a range of h-values to render a plot of the characteristic speed as shown in figure 8.
Also shown in the figure is the theoretical characteristic speed with κ varied by ±20%
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FIGURE 8. (a) Measurement of z∗(t) for 11 different fixed values of h∗ (thick grey curves)
and a linear fit of each measurement set (dashed lines). (b) Characteristic speed measurements
for varying h∗ using the inner edges (triangles) and the outer edges (circles). Also plotted
is the theoretical characteristic speed with the measured κ (solid black curve) and κ ± 20 %
(dotted curves). Measurements from 3/12/09, run 1.

from the measured value in order to illustrate the sensitivity to uncertainty in κ . Notice
that it appears possible to fit the outer edge measurements with a theoretical curve
that takes κ-values somewhere in this uncertainty range. On the other hand, it appears
that no such theoretical curve could be made to fit the inner measurements, as there
is a relative tilt between the two. This observation further illustrates that the outer
measurement is closer to the true layer size and shows the importance of the image
analysis improvements.

5.2. Comparison

The layer measurements can be extrapolated to long time by fitting h(z0, t) at fixed
height z0, with a function of the form hE

∞ + h1t−1, where hE
∞ is the extrapolated

measurement of the long-time layer size. This functional form follows from the
assumption that h(z0, t) is analytic in t near infinity, as is predicted in the two-
dimensional case by the similarity solution (4.21).

Figure 9(a) shows experimental measurements using four different methods: the
inner or outer edge detection method evaluated at the final time of the experiment or
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FIGURE 9. (a) Experimental measurements of h (non-dimensional) from inner edges, final
time (diamonds); outer edges, final time (squares); inner edges, extrapolated (triangles); and
outer edges, extrapolated (circles). a∗ = 0.019 cm (or a = 0.0026) for the filled points and
a∗ = 0.029 cm (or a = 0.004) for the unfilled points. Also shown is the theoretical prediction
for h∞ with a = 0.004 (solid curve) and a = 0.0026 cm (dashed curve). (b) h measurements
using outer edges, extrapolated with estimated error bars – see text for error bar explanation.

extrapolated to infinite time. The fibre radius is either a∗ = 0.029 or a∗ = 0.019 (as

distinguished in the figure caption) giving the non-dimensional values of a = 0.0026

and a = 0.0040 respectively. Notice that despite this difference of roughly 50 % in the

fibre radius, both the experimental measurements and the theoretical curves show a

small change, indicating weak dependence on the fibre radius.

As seen in figure 9(a), the measurements in best agreement with the theoretical

predictions are the outer edge detection measurements extrapolated to infinite time.

Furthermore, both of these image analysis improvements – outer layer measurement

and infinite time extrapolation – appear necessary in order to see the agreement, as the

infinite time extrapolation is more significant for lower κ values and the outer edge

measurement is more significant for larger κ values. Only the outer edge extrapolated

data are shown in figure 9(b), with error bars added. The vertical error bars show the

spread in the h measurements as obtained from five different fixed heights, and the

horizontal error bars show the appropriate κ error estimates as discussed in § 3.2. As

seen in this figure, all of the experimental measurements agree with the theoretical

predictions within the allowed error tolerance, with the possible exception of the

lowest κ-value. Furthermore, all measurements of hE
∞ lie well below the prediction

for unstratified fluid of h∞ ≈ 0.451, indicating that incorporation of stratification is

necessary.

As an even more compelling experimental verification of the lubrication theory, it

is possible to superimpose the solution to the lubrication partial differential equation

(B 2) obtained via the method of characteristics upon the experimental images. The

initial condition can be obtained from the digitally reconstructed interface at a suitable

time for which the lubrication approximation is satisfied. Figure 10 shows an overlay

with the experimental images in which the lubrication solution is initialised 30 s after

the towing is begun (corresponding to the first frame in the figure). The subsequent
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2 cm

FIGURE 10. Time sequence of experimental images with overlay of the lubrication solution
(solid curves), as well as a material surface advected by the unstratified fluid velocity profile
(faint dashed curves). Images are compressed vertically by 30 % to exaggerate features.
Re = 2.4 and κ = 10.2. From experiment on 3/12/09, run 1. The time increment is 20 s,
beginning 30 s after the towing is initialised.

evolution of the interface shows excellent agreement with the theoretical lubrication
solution.

Also shown is the advection of a material surface from the unstratified velocity
profile described in § 4.3, and this solution is observed to depart from the
experimentally observed interface. The departure is in accordance with intuition
since in the experiment the heavier, entrained fluid has a tendency to drain and
the resulting layer is smaller than it would be with no stratification. This advection
of a material surface with no stratification provides an asymptotic approximation to
the evolution of the interface in the experiment for short times (see Moore 2010), and
this is demonstrated in figure 11. The unstratified solution does show relatively good
agreement with the observed interface for very short times and begins to depart rather
quickly as the draining tendency of the heavier, entrained fluid becomes important.

6. Stability analysis

The experiments illustrate the successful creation of a steady-state flow in which
the density layering is entirely vertical throughout a large region, and this steady state
is further confirmed by the lubrication theory. A motivating factor in creating this
novel flow configuration was to investigate its stability properties and in this section
we summarize the linear stability analysis of the two-parameter family of exact shear
solutions that form the basis of the lubrication model – (4.8) in two dimensions and
(4.29) in the axisymmetric geometry. In both cases, a fourth-order ordinary differential
equation with an unknown eigenvalue c governs the stability properties of the shear
solutions. It is noted that if diffusivity of density is retained, as in Blanchette et al.

(2008), then the resulting stability operator becomes sixth order, and additionally the
shear solutions (4.8) and (4.29) are not steady-state solutions.

A long-wave regular perturbation expansion is used to solve for the eigenvalue
branch with the largest imaginary component, corresponding to the least stable (or
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1 cm

FIGURE 11. Time sequence of experimental images with overlay of a material surface
advected by the unstratified fluid velocity profile (faint dashed curves). Re = 2.4 and κ = 10.2.
From experiment on 3/12/09, run 1. Time values are 2, 4, 6, and 8 s after the towing is
initialised.

most unstable) mode. In both the two-dimensional case and the axisymmetric case,
the leading-order propagation speed of disturbances from stability analysis matches
exactly the speed of characteristics found from lubrication theory. This is due to the
direct correspondence between the lubrication assumption of slow vertical variation
and the long-wave limit taken in the stability analysis, and it provides confirmation
of both the lubrication analysis and the stability analysis since the calculations are
largely independent of one another. The leading-order term of the eigenvalue yields
only a real component, corresponding to the propagation of disturbances with neither
damping nor amplification, and therefore stability characteristics are determined at the
first correction in the long-wave expansion.

At the first correction, the families of shear solutions (4.8) and (4.29) both exhibit a
bifurcation in the (κ, h)-plane. For a fixed κ , the solutions are stable for small values
of h and become unstable as h increases beyond a critical scale. Furthermore, this
critical scale for instability is smaller than the time-limiting value of the entrained
layer size h∞ from lubrication theory, so that unstable flow configurations are
attainable from the initial-value problem. Remarkably, the bifurcation behaviour is
found to be independent of the Reynolds number as the Reynolds number enters the
eigenvalue expression only as a multiplicative factor and influences the magnitude,
but not the sign, of its imaginary component. This is similar to the result found
by Yih (1967) for a viscosity-stratified flow. We comment that the low-Reynolds-
number instabilities predicted here and those predicted by Yih (1967) are in contrast
to the usual shear instabilities occurring at higher Reynolds numbers (on the order
of thousands). There is the strong possibility that at higher Reynolds numbers the
modes predicted here in conjunction with the shear flow instabilities will lead to more
complicated phenomena, and further study is merited in this regime.

We have developed a shooting method to determine the spectrum of the stability
operator numerically, and details are given by Moore (2010). The shooting method
shows excellent agreement with the asymptotic results in the long-wavelength limit
and provides spectral information outside this limit. The shooting method also
confirms the role of the Reynolds number as only a multiplicative factor in the
imaginary component of the eigenvalue, even up to a Reynolds number of 10 and
a wavenumber of 10 – well outside the validity of the asymptotic results (see
appendix D).
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Motivated by the small diffusive layer surrounding the entrained fluid layer in the
experiment, we have found a class of two-dimensional shear solutions with a smoothed
density profile, and the numerical shooting method allows us to analyse the stability
of these flows. For this family of solutions, we impose a diffusive layer of length
scale λ≪ h, over which the density transitions smoothly between the values ρ0 and
ρ0 +1ρ (see online supplementary material for details, available at journals.cambridge.
org/flm). We find that for an unstable two-fluid flow configuration, the introduction of
the smooth density transition can slow the amplification rate of disturbances although
the flow can remain unstable (see appendix D). Additionally, due to the intimate
connection between the lubrication theory and the propagational speeds predicted by
stability theory (i.e. the real part of c), this analysis can be used to predict how
the density transition region influences the evolution of the flow configuration. We
note that for our experiments this correction is unnecessary since we have obtained
excellent agreement with theory. However, in principle the analysis could be applied to
flows in which diffusion plays a larger role.

6.1. Two-dimensional stability analysis

Let a background density, stream-function, and vertical velocity be given by ρB(x),
ψB(x), and wB(x) respectively, where initially we leave the density profile arbitrary.
The stream-function is related to the velocity components by w = ∂ψ/∂x and
u = −∂ψ/∂z. For a shear flow with an arbitrary density profile, (4.2) gives the
following relation:

Re

Fr2
ρ ′

B(x)= w′′′
B (x). (6.1)

We analyse the Boussinesq approximation equations for infinitesimal perturbations
around a background state,

ψ(x)= ψB(x)+ εψ̂(x)eik(z−ct), (6.2)

ρ(x)= ρB(x)+ ερ̂(x)eik(z−ct), (6.3)

where k and c are the wavenumber and complex velocity of the perturbation,
and ε ≪ 1 is the magnitude of the initial perturbation. After linearising around a
background solution and using the relationship (6.1), we obtain an ordinary differential
equation for the perturbation stream-function with undetermined eigenvalue c (the hat
notation has been dropped),

(D2 − k2)
2
ψ − i k Re((wB − c)(D2 − k2)ψ − w′′

Bψ)− D

(

w′′′
B

wB − c
ψ

)

= 0. (6.4)

Here D and prime both denote differentiation with respect to x (D is used to simplify
differential operators that may be factored), and homogeneous boundary conditions are
imposed on ψ(x) and ψ ′(x) at x = 0 and x = 1.

For a system of two miscible fluids differing in density, the background density
profile is a step-function and the stability operator (6.4) simplifies to

(D2 − k2)
2
ψ − i k Re((wB − c)(D2 − k2)ψ − w′′

Bψ)+ κ ψ(h)

wh − c
δ′(x − h)= 0. (6.5)

Here δ(x) is the Dirac delta function and wh ≡ wB(h). This is an extension of the
classic Orr–Somerfeld equation, with the additional δ′(x − h) term arising from the
vertical density layering. Since this additional term is non-zero only at x = h, we may

journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
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divide the interval 0 < x < 1 into two subintervals 0 < x < h and h < x < 1, in which
ψL(x) and ψR(x) must respectively satisfy the Orr–Somerfeld equation with matching
conditions imposed at x = h. The matching conditions are continuity of ψL,R, and its
first and third derivatives across x = h, and a jump condition on the second derivative
imposed by the δ′(x − h) term,

ψ ′′
R(h)− ψ ′′

L (h)= − κψ(h)
wh − c

. (6.6)

Here ψ(h) is unambiguous since ψL and ψR must match at x = h.
Alternatively, the stability operator (6.5) can be derived directly from the two-fluid

system in which we treat two homogeneous fluids with appropriate conditions at the
interface positioned at x = χ(z, t). This derivation of the stability operator involving
a perturbed fluid–fluid interface is perhaps a more classic derivation and yields the
motion of the perturbed interface as related to that of the perturbed stream-function by

χ(z, t)= h − ε
ψ(h)

wh − c
eik(z−ct). (6.7)

We note that the use of the equivalent operator (6.5) which employs distributions as
variable coefficients, appears to allow more efficient calculations in many cases.

Since the terms kRe and k2 enter (6.5) analytically, it is natural to seek a joint power
expansion in these terms. Let

ψ(x)= ψ0(x)+ kReψ1(x)+ k2ψ2(x)+ O(k2Re2, k3Re, k4), (6.8)

c = c0 + kRe c1 + k2c2 + O(k2Re2, k3Re, k4). (6.9)

Imaginary coefficients enter (6.5) in combination with kRe and so information on the
imaginary component of c, and thus stability information, will be obtained at order
kRe, corresponding to a long-wave limit. Notice that the expansions (6.8) and (6.9) are
valid for any fixed Reynolds number so long as k is small enough that kRe ≪ 1, and
so some stability information is obtained from these expansions at any fixed Reynolds
number. Also note that modes corresponding to the classic Orr–Somerfeld equation,
with c = O (k Re)−1 to leading order, are also present and exhibit large damping
proportional to (k Re)−1 as k Re → 0 as in the homogeneous problem – see Drazin
& Reid (1981), pp. 158–164. Since the behaviour of these modes is identical to the
modes present in the homogeneous Orr–Somerfeld equation, they will not be discussed
any further.

The leading-order and first correction terms of the long-wave limit have been
calculated by Moore (2010) and the salient features of the calculation are as follows:
ψ0(x) is represented by a linear combination of basis solutions that are chosen to
simplify the boundary conditions as much as possible, and the eigenvalue condition
for c0 reduces to a four-dimensional square matrix determinant vanishing. The Leibniz
formula is used to express this determinant in terms of sub-matrix determinants, and
the eigenvalue condition further reduces to a two-dimensional matrix determinant
vanishing. This allows c0 to be determined in closed form. At the next order,
ψ1(x) and c1 must satisfy an inhomogeneous eigenvalue problem with inhomogeneity
depending on ψ0(x) and c0. The same basis functions are used to represent the
homogeneous part of ψ1(x), which simplifies what would be a four-dimensional
singular linear algebra problem to a two-dimensional singular linear algebra problem.
The eigenvalue c1 is determined by the Fredholm alternative. The expressions for c0
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FIGURE 12. Two-dimensional bifurcation diagram. (a) Zero-curves of c0 (dashed line) from
(6.10) and c1 (solid line) from (6.11), with shading indicating regions of stability. (b) A
blow-up for small h along with the neutral stability curve found by the shooting method
(boxes), with Re = 1 and k = 0.01.

and c1 are

c0 = (1 − κh2)(1 − 4h)+ h2(3 − 5κh2)+ 2κh5, (6.10)

c1 = − i

840
(1 − h)3 κh3

{

20 − 38κh2 + h(−153 + 222κh2)

+ h2(339 − 476κh2)+ h3(−198 + 438κh2)− 146κh6
}

. (6.11)

Both of these expressions are exact, and they have been ordered to respect the
asymptotic regime of κ ≫ 1 and h = O(κ−1/2).

Figure 12 shows the zero-curves of c0 and since the formula (6.10) is simply linear
in κ , its zero-curve can be expressed in closed form by κ as a function of h, there
being no numerical errors associated with a root find. The expression for c0 matches
the formula for the characteristic speeds (4.14) exactly as anticipated, and so the
lower zero-curve shown in figure 12 can also be interpreted as h∞ as a function of
κ . Notice that for larger κ values there exists another branch of the c0 zero-curve
corresponding to larger h values. This upper branch will not be realised from the
initial-value problem considered here since disturbances (or characteristics) will no
longer propagate once h has reached the lower branch. Also note that the zero-curves
of c0 are independent of the Reynolds number.

The expression for c1 is imaginary and thus indicates stability or instability
depending on its sign. Figure 12 shows the zero-curves of c1, corresponding to curves
of long-wave neutral stability, with regions of stability indicated by shading. Since
the stability transition occurs for long waves, the zero-curve of formula (6.11) gives
the exact neutral stability curve with no approximation made. The neutral stability
curve is independent of the Reynolds number, as the Reynolds number only affects the
magnitude of damping or amplification.

6.2. Axisymmetric stability analysis

We now discuss the stability analysis for the axisymmetric geometry of the experiment,
in which a fibre of non-dimensional radius a is towed upwards through a stable
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stratification and in long time creates a steady shear flow. The axisymmetric stability
analysis follows the two-dimensional stability analysis closely, with an axisymmetric
stream-function ψ(r, z, t) related to the velocity components by w = r−1dψ/dr and
ur = −r−1dψ/dz. In the two-fluid case, in which the background density profile is a
step-function and the background shear velocity profile is given by (4.29), the stability
problem reduces to

(L − k2)
2
ψ − i k Re((wB − c)(L − k2)ψ − (L wB)ψ)+ κψ(h)

h(wh − c)
rδ′(r − h)= 0,

(6.12)

with homogeneous boundary conditions imposed on ψ(r) and ψ ′(r) at r = a and r = 1.
Here the operator L is given by

L f (r)≡ r

(

f ′(r)

r

)′

= f ′′(r)− 1

r
f ′(r). (6.13)

As in the two-dimensional case we perform the asymptotic expansion in small
parameters k Re and k2, and we are primarily interested in the long-wave asymptotic
regime. Closed-form expressions for c0 and c1 are given in appendix C, along with
more workable asymptotic expressions in the limit κ ≫ 1 and a ≪ h ≪ 1.

As in two dimensions, c1 is imaginary and so its sign provides information
about the stability or instability of the flow. Figure 13 shows the neutral stability
curves corresponding to the exact expression for c1 given by (C 3), the leading-order
expression in the asymptotic limit κ ≫ 1 and a ≪ h ≪ 1 given by (C 4), and the first
correction in this asymptotic limit given by (C 5). The bottom neutral stability curves
corresponding to the exact formula and the first correction are indistinguishable (with a
relative difference of roughly 0.2 %), while the leading-order curve shows a substantial
error. For the top neutral stability curves, both asymptotic expressions are in error
since h ≪ 1 does not hold. All of these curves are independent of the Reynolds
number, and as in two dimensions the Reynolds number affects only the magnitude of
damping or amplification.

6.3. Stability results: shooting method and asymptotic formulae

A numerical shooting method was developed by Moore (2010) to solve the eigenvalue
problem for the two-fluid system in the two-dimensional and axisymmetric geometry
– (6.5) and (6.12) respectively – as well as to solve the more general eigenvalue
problem (6.4) for the case of a density profile with a small transition region (details
are given in the online supplementary material). In this section we present the results
of the numerical shooting method and show comparisons to our asymptotic formulas
in the axisymmetric case. The results for the two-dimensional case are shown in
appendix D. It is also shown in appendix D that the magnitude of the imaginary
part of the eigenvalue, ci, is essentially independent of Re well outside the long-wave
low-Re limit, even up to Re< 10 and k < 10.

For the axisymmetric stability problem, figure 14(a) shows a comparison of ci as
computed by the shooting method and computed by the exact long-wave asymptotic
formula (C 3) for h = 0.5 h∞, 0.75 h∞ and h∞, in the axisymmetric geometry. Recall
that h∞ is the long-time layer size as determined by lubrication theory. Figure 14(b)
shows a blow-up of ci for small k values demonstrating excellent agreement with
the exact asymptotic formula (C 3). The plot shows stability for h = 0.5 h∞ and
instability for h = 0.75h∞ and h = h∞. For this plot κ = 25 and a = 0.004 which
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FIGURE 13. Axisymmetric bifurcation diagram with a = 0.004. (a) Long-wave neutral
stability curve using the exact expression for c1 (C 3) (solid curve), and the asymptotic
expressions (C 4) (dashed curve) and (C 5) (dotted curve). Shading indicates regions of
stability. (b) A blow-up for small h along with the neutral stability curve from the shooting
method (boxes), with Re = 1 and k = 0.01.
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FIGURE 14. Axisymmetric stability analysis. (a) ci from the numerical shooting method
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formula (C 3) (solid lines). (b) Zoom for small k values shown with formula (C 4) (dashed
lines), formula (C 5) (dotted lines), and formula (C 3) (solid lines).

gives h∞ ≈ 1.1745. These parameters were chosen because they are typical of the
parameters used in the experiments.

6.4. Stability of flows in the experiment

We now analyse the stability of the flows that are created in the experiment based
upon our measurements of the entrained layer size combined with the stability
analysis. In figure 15, we plot the outer edge measurements of h at the final time
of the experiment, along with the bifurcation curves and the curves of h∞. In all
experiments the size of the layer crossed the stability threshold, creating an unstable
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flow configuration by the final time of the experiment. However, in all cases the
magnitude of the instability was too small to be manifested on the time scale of the
experiment, and thus no unstable behaviour was observed in the experiments.

Appendix A provides an assessment of the magnitude of amplification rates possible
in each experiment. For each experiment we calculate ci with the asymptotic layer
size h∞ using the numerical shooting method. We then determine the value of k

for which the growth rate of disturbances, k ci, is maximised, and these values are
shown in tables 2 and 3 in appendix A. Maximal amplification rates are typically
on the order of 10−4 s−1, with the highest rate being 3.23 × 10−3 s−1. The durations
of the experiments are also shown in the tables and they are typically on the order
of 200 s, indicating that the experimental durations were not sufficient to observe
the instabilities, in agreement with our observations. We remark that preliminary
observations of experiments performed at much higher Reynolds numbers showed
more complicated behaviour that may be evidence of the predicted instabilities, but
may also be effects of the experimental conditions, and further investigation is required
in this parameter regime.

It is possible to compute the time scale required for the density transition to become
comparable to the size of the entrained layer h∗, to determine the time scale for which
diffusion is no longer negligible. In the experiments h∗ was on the order of 1 cm and
the diffusivity was measured to be 1.3 × 10−5 cm2 s−1 giving a time scale on the order
of 105 s. This diffusive time scale is an order of magnitude longer than the typical
time scale of the predicted instability, indicating that the assumption of zero diffusivity
made in the stability analysis still has reasonable validity up to the time scale of the
predicted instability for most (but not all) of our experiments. Nonetheless, the small
density transition region does have some influence over the stability properties of the
flow as is shown by our stability analysis of the flows containing a small density
transition region, and in all cases that we studied this transition region tends to reduce
the instability growth rate.

7. Comparison to flow with viscous stratification

The low-Reynolds-number instabilities predicted here belong to a category termed
‘hidden-neutral modes’ (Yih 1967), since they reside in the neighbourhood of a
neutral mode that vanishes for a homogeneous fluid and is only brought out by the
stratification. See the online supplementary material for a comparison to the relevant
literature (including Benjamin 1957; Kao 1965a,b; Sangster 1964; Yih 1963, 1967).
The instabilities here share many features with the modes found by Yih (1967) under
the different physical setting of viscous stratification: both are low-Reynolds-number
instabilities that are neutral to leading order for long waves and exhibit slow growth
rates; in both cases the bifurcation behaviour is Reynolds-number independent; and in
both cases the Reynolds number enters as a multiplicative factor in the growth rate.
Motivated by these similarities, we have extended our lubrication and stability analysis
to this viscous stratification setting, and in this section we briefly summarize the
results. We ask, for the viscosity-stratified problem, which flows are attainable from
an analogous initial-value problem? Most importantly, are the attainable flows stable or
unstable, and is it possible to cross a stability transition as the flow evolves in time?

Let a layer of fluid of viscosity µ1 and depth d1 lie above a layer of fluid
of viscosity µ2 and depth d2, both fluids having the same density. Let the two-
dimensional fluid domain be bounded above and below by two flat walls and allow the
top wall to be towed at velocity V . Following Yih, we non-dimensionalise the problem
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FIGURE 15. Experimental measurements of h (non-dimensional) from the outer edges at
the final time of the experiment. a∗ = 0.019 cm (or a = 0.0026) for the filled points and
a∗ = 0.029 cm (or a = 0.004) for the unfilled points. Also shown is the theoretical prediction
for h∞ with a = 0.004 (top solid curve) and a = 0.0026 (top dashed curve), as well as the
neutral stability curve for a = 0.004 (bottom solid curve) and a = 0.0026 (bottom dashed
curve) with shading to indicate stability. Error bars are as in figure 9.

by the depth of the top fluid d1, and the velocity of the towed wall V . Let m = µ2/µ1

be the ratio of the viscosities and let n = d2/d1 be the ratio of depths. Let (x, z) be the
non-dimensional horizontal and vertical coordinates respectively with corresponding
non-dimensional velocity components (u,w), and let the interface between the two
fluids be positioned at z = 0. To draw the analogy to the vertically layered flows
studied here, we enforce the vanishing flux condition which takes the form

F ≡
∫ 1

−n

u(z) dz = 0. (7.1)

This vanishing flux condition would hold in the physically relevant scenario of a
two-dimensional channel that has a finite extent much larger than its depth, so that
a recirculating flow develops with vertical velocity confined mainly to the ends of
the channel. We remark that this no-flux condition was not considered by Yih, who
specifically looked at the examples of a moving wall dragging fluid with no pressure
gradient, or a pressure-gradient-driven flow with fixed walls.

Performing the same lubrication analysis as presented in § 4 results in a hyperbolic
partial differential equation whose characteristic speeds agree identically with Yih’s
formula (34) for the long-wave leading-order term of the eigenvalue. This agreement
has been verified directly. We use Yih (1967)’s formula for the first correction to the
eigenvalue in order to determine stability properties. The first correction is given by
c1 = k Re J, where J is given by Yih’s formula (42). For convenience in comparing to
the results of the vertically layered flow, we let h denote the depth of the top fluid
non-dimensionalised by the total depth of the channel, so that n = 1/h − 1.

Figure 16 is a bifurcation diagram for the viscosity-stratified problem of Yih,
showing large regions of both stability and instability. We note that this diagram is
in accordance with the principle that a flow configuration tends to be stable if the less
viscous fluid is in the position of highest shear, and unstable if the more viscous fluid
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FIGURE 16. Yih (1967)’s problem with viscous stratification. Axes are the viscosity ratio m
and the non-dimensional layer thickness h. The zero-curve of the characteristic speed, or c0, is
shown as the dashed curve and the neutral stability curves are shown as the solid curves with
regions of stability indicated by shading.

is in the position of highest shear, although this principle does not always strictly hold
(see Joseph, Renardy & Renardy 1984). The zero-curve of the characteristic speed is
also plotted in figure 16 and this determines the value h∞, to which h tends from
the initial-value problem. For m < 1 the flow is unstable for small h-values, and the
critical h-value for stability transition occurs beyond the curve of h∞, indicating that
this critical value is not attainable from the initial-value problem. For m > 1 the flow
is stable for small h-values, and once again the critical value of h lies beyond the
curve of h∞. In either case it is impossible to observe a stability transition from the
initial value problem, which is in contrast to the vertically layered flows featured in
the present study.

8. Discussion

We have analysed the creation of vertically layered flows experimentally and
theoretically, and have shown how the thickness of the entrained layer depends
primarily on the non-dimensional ratio of gravitational forces to viscous forces,
denoted here by κ . Once subtleties in the experimental image analysis are addressed,
comparison of the measurements to the dynamic lubrication model shows remarkable
agreement. In addition to this lubrication model, we have previously explored the
possibility of determining the relationship between h and κ through a free-space model
in which the fluid domain is unbounded outside (or in two dimensions, to the right
of) the towed boundary (see Moore 2010). In this free-space model, we enforce
the condition that the pressure is in hydrostatic balance far away from the towed
boundary, as opposed to the condition of vanishing flux given by (4.6) and (4.28).
From this hydrostatic condition, one easily obtains a relationship between h and κ that
is necessary for a steady velocity profile to exist. However, this relationship does not
agree with the lubrication model in the limit of increasing domain size, and yields

a prediction for h that is larger than the lubrication prediction by a factor of
√

2 in
two dimensions and a comparable factor in the axisymmetric geometry. Further, this
semi-infinite prediction was conclusively disproved by the experimental measurements
of h, as it gave predictions that were significantly too large. The disagreement between
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the semi-infinite model and the lubrication model can be interpreted as failure of
two limits to commute, and this failure can be further attributed to the loss of the
vanishing flux condition in the semi-infinite model, which must always hold even if
the back-flow is spread over an increasingly large area as the domain size increases.

We have analysed the class of vertically layered shear flows obtainable in the
experiment for stability properties, and we have demonstrated a transition from
stability to instability as the size of the entrained layer is increased, although we have
not observed the predicted instabilities experimentally due to their small growth rates.
We have demonstrated that unstable flow configurations can be created and maintained
for long periods of time (although obviously not for infinite time), thus illustrating
that stability properties are not always the most important factors in determining
the configuration that a flow will take. In the flows analysed here, we have found
propagation rates to be much more important than amplification or damping rates in
the determination of the observed quasi-steady flow configuration.

The stability analysis presented here demonstrates that instability may arise from
the mechanism of vertical density layering. In a related work, Lister (1987) studies
the two-dimensional problem of a line plume descending through an ambient fluid
with different viscosity and density, and he discovers a variety of varicose and
meandering instabilities. Lister states that the complexity of the analysis makes it
difficult to identify the causes of instability; however he goes on to speculate that
the fundamental causes of instability are likely to be the viscosity contrast and the
change in the velocity profile across the interface. We have shown here that it is
possible to create instability in a flow with two fluids having matched viscosities
and different densities. This finding demonstrates that vertical density layering alone
is sufficient to create instability, albeit in a problem in which fluid flow is created
by a moving boundary as opposed to by the weight of the line plume as in Lister
(1987). The long-wave instabilities found by Lister have stronger magnitudes than
the modes found here, as they scale as negative fractional powers of k. A possible
interpretation of this difference in scaling might be that viscosity contrast is a more
effective destabilising mechanism than vertical layering of density. However, we point
out that the viscosity-stratified problem of Yih is a more faithful comparison to the
flows investigated here, since the background flow is created by the same mechanism
in both cases. The instabilities found here have the same linear scaling in k as the
ones from this viscosity-stratified problem. Therefore, the difference in the long-wave
instability magnitudes between the present study and that of Lister (1987) may be due
primarily to the differences in the background flows and not the differences between
viscosity-contrast and vertical density layering.
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Appendix A. Measurement of experimental parameters

The tables in this Appendix show the physical parameters as measured in the
experiments organized by the date (British convention). Table 1 shows the parameters
that are fixed on a given date: the radius of the fibre a∗, the length scale of the tank
L, the equilibrium temperature T , the dynamic viscosity µ, and the density difference
1ρ. The equilibrium temperature is found by averaging the temperature measurements
of the top batch and the bottom batch. The ‡ indicates temperature measurements
which were made with the RTD thermometer when it was out of calibration, and these
temperatures are corrected by the value 1.6 ◦C found upon calibration. The viscosity
measurements are found by the falling-sphere viscometer readings taken at 20 ◦C and
25 ◦C, and then interpolated to the equilibrium temperature. The † indicates viscosity
measurements not made with the falling-sphere viscometer, but instead with the Zahn
cups and with a flat 17.5 % correction applied. The date 8/10/09 is marked with a
§ because on this date the height of the free surface was varied in order to assess its
effect on the measurements. We concluded that changing the height of the free surface
did not significantly alter measurements.

Tables 2 and 3 show the towing speed of the fibre V , and the non-dimensional
parameters κ and Re, for each individual run for the dates 1/8/09–27/8/09 (table 2)
and 1/10/09–3/12/09 (table 3). Also shown is the maximal amplification rate of
disturbances (kci)

∗
max as computed by the numerical shooting method using the

measured parameters for each run and the infinite-time entrained layer size h∞. For
this calculation we compute ci (non-dimensional) in the range of 0 6 k 6 10 (non-
dimensional) and find the maximal value of kci over this range. This value is then
converted into a quantity with dimensions 1/s via (kci)

∗ = (kci)V/L. Additionally the
dimensional wavenumber k∗

max corresponding to maximal growth is shown. The value
(kci)

∗
max should be interpreted as an upper bound on the amplification rate for the

following reasons:

Date a∗ (cm) L (cm) T (◦C) µ (P) 1ρ (10−3 g cc−1)

1/8/09 0.019 9.21 23.5 23.2† 10.2
6/8/09 0.019 9.21 23.2 12.0† 9.6
13/8/09 0.019 9.21 23.3 13.1† 6.6
21/8/09 0.019 9.21 24.8 6.81 8.6
27/8/09 0.019 9.21 22.6 14.0 3.5
1/10/09 0.019 7.25 22.5‡ 12.5 10.0
8/10/09§ 0.019 7.25 21.9‡ 13.3 5.8
15/10/09 0.019 7.25 21.8‡ 13.1 5.2
19/11/09 0.029 7.25 22.1‡ 14.6 3.4
3/12/09 0.029 7.25 21.8‡ 5.52 1.5

TABLE 1. Measured physical parameters. The footnote symbols are explained in the text.

journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
journals.cambridge.org/flm
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Date/Run V (cm s−1) κ Re (kci)
∗
max (10−4 s−1) k∗

max (cm−1)

1/8/09
Run 1 0.345 111 0.188 0.111 0.456
Run 2 0.691 55.2 0.377 0.418 0.413
Run 3 1.38 27.6 0.755 1.40 0.369
Run 4 2.76 13.8 1.51 4.37 0.347

6/8/09
Run 1 0.348 191 0.363 0.252 0.565
Run 2 0.692 96.1 0.721 0.892 0.456
Run 3 1.38 48.1 1.44 3.09 0.413
Run 4 2.77 24.0 2.87 10.2 0.369

13/8/09
Run 1 0.345 121 0.330 0.212 0.499
Run 2 0.695 60.0 0.665 0.757 0.413

21/8/09
Run 1 0.346 440 0.915 0.723 0.869
Run 2 0.691 220 1.83 2.58 0.608
Run 3 1.38 110 3.66 9.22 0.499
Run 4 2.76 55.1 7.32 32.3 0.413

27/8/09
Run 1 0.345 74.6 0.378 0.223 0.434
Run 2 0.691 37.2 0.756 0.760 0.391
Run 3 1.39 18.6 1.52 2.49 0.347
Run 4 2.77 9.31 3.03 7.27 0.326

TABLE 2. Experimental data for individual runs: 1/8/09–27/8/09.

(a) h∞ is only obtained after infinite time and smaller h-values tend to be less
unstable;

(b) a small transition region is likely to be present in the experiment and can render
the system less unstable.

In addition, table 3 shows the time duration of each experiment τ before the bottom
fluid that aggregates at the free surface descended into the observation window to an
extent that the analysis routine could not be applied. For the date 1/10/09, Run 3 and
Run 6 are shown with the symbol ♭ to indicate that problems that occurred during
these runs caused the data set to be unusable by the analysis routine, while the more
robust but less powerful rudimentary routine was still applied to these runs.

Appendix B. Axisymmetric lubrication theory

In this appendix, we summarize the lubrication theory in the axisymmetric geometry
of the experiment. Define J(h) as the vertical flux, to leading order in the lubrication
approximation, within the entrained layer,

J(h)≡ 2π

∫ h

a

w0(r; h) r dr. (B 1)

Balancing the momentum flux within a control volume gives the continuity equation

∂th + 1

π

dJ

d(h2)
∂zh = 0. (B 2)
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Date/Run V (cm s−1) κ Re τ (s) (kci)
∗
max (10−4 s−1) k∗

max (cm−1)

1/10/09
Run 1 0.347 119 0.274 569 0.242 0.635
Run 2 0.697 59.1 0.550 319 0.866 0.552
Run 3♭ 1.39 29.7 1.095 - 2.83 0.497
Run 4 2.76 14.9 2.18 126 8.79 0.441
Run 5 1.38 29.8 1.09 192 See Run 3 See Run 3
Run 6♭ 0.697 59.0 0.550 - See Run 2 See Run 2

8/10/09§

Run 1 0.690 32.5 0.511 209 0.682 0.497
Run 2 1.38 16.2 1.02 139 2.15 0.441
Run 3 0.692 32.5 0.512 289 See Run 1 See Run 1
Run 4 1.38 16.2 1.02 150 See Run 2 See Run 2
Run 5 0.697 32.2 0.515 316 See Run 1 See Run 1
Run 6 1.39 16.2 1.03 231 See Run 2 See Run 2

15/10/09
Run 1 2.77 7.43 2.08 158 5.74 0.414

19/11/09
Run 1 0.693 17.4 0.467 410 0.551 0.441
Run 2 2.77 4.35 1.87 208 3.68 0.386
Run 3 10.4 1.16 7.00 61 8.51 0.331

3/12/09
Run 1 1.39 10.2 2.43 251 4.46 0.414
Run 2 2.77 5.13 4.85 171 11.1 0.386

TABLE 3. Experimental data for individual runs: 1/10/09–3/12/09.

Since w0(r; h(z, t)) is defined as the sum of three components in (4.29), define the flux
J(h) as the sum of three components,

J(h)= κJpw(h)+ A1(h)J1(h)+ A2(h)J2(h). (B 3)

The components are given by

Jpw(h)= 2π

∫ h

a

wpw(r; h) r dr = π
8

(

h4 − a4 − 2a2h2 log
h2

a2

)

, (B 4)

J1(h)= 2π

∫ h

a

log r r dr = π
2
(a2 − h2 + h2 log h2 − a2 log a2), (B 5)

J2(h)= 2π

∫ h

a

(r2 − 1) r dr = −π
2
(2(h2 − a2)− (h4 − a4)). (B 6)

Computing the derivative with respect to (h2) gives

σ

π

dJ

d(h2)
=

(

1 − κ

2
η2

)

(1 + log h)

−
(

h2 + a2 + a2 log
h2

a2

)

+ κ

2

(

−h4 + a4 + (3h4 + a4) log
h

a

)

+ h2a2(1 − 2 log a)+ a4 log h
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+ κ

2
h2a2

(

h2 − a2
)

+ κ

2
h2(h4 + a4) log a

+ κ

2
h2a2

(

−3h2 + a2 + a2 log
h2

a2

)

log h. (B 7)

The quantity (dJ/d(h2))/π gives the speed of characteristics for the partial differential
equation (B 2) and applying the method of characteristics gives the characteristic map

z(t)= z0 + 1

π

dJ

d(h2)
t. (B 8)

In order to compare the solution of (B 2) to the experimental measurements, it is
not necessary to find a closed-form solution, but rather it is possible to utilise the
characteristics mapping (B 8) to advance a plot of h(z) forward in time.

Appendix C. Formulae from axisymmetric stability analysis

The exact expression for c0 is

σ c0 =
(

1 − κ

2
η2

)

(1 + log h)

−
(

h2 + a2 + a2 log
h2

a2

)

+ κ

2

(

−h4 + a4 + (3h4 + a4) log
h

a

)

+ h2a2(1 − 2 log a)+ a4 log h

+ κ

2
h2a2

(

h2 − a2
)

+ κ

2
h2(h4 + a4) log a

+ κ

2
h2a2

(

−3h2 + a2 + a2 log
h2

a2

)

log h. (C 1)

This expression has been ordered to respect the asymptotic scaling of κ ≫ 1 and
a ≪ h ≪ 1. Note that η2 and σ are defined in terms of a and h by (4.31) and (4.32)
respectively. To leading order in the asymptotic limit of κ ≫ 1 and a ≪ h ≪ 1, the
expression for c0 simplifies to

c0 ∼ 1 + log h

1 + log a

(

1 − κ

2
η2

)

for κ ≫ 1, a ≪ h ≪ 1. (C 2)

The exact expression for c1 can be represented as

σ 3c1 = iκ

2304
π1(a

2, h2, log a, log h)+ iκ2

3072
π2(a

2, h2, log a, log h). (C 3)

Here π1 and π2 are each polynomials of the four variables a2, h2, log a and log h. The
lists of coefficients of these polynomials are given in Moore (2010), and the lengths of
the lists are 768 and 1280 respectively. In order to obtain a more workable expression,
we approximate (C 3) in the asymptotic regime under which most of the experiments
are conducted: κ ≫ 1 and a ≪ h ≪ 1 (allowing the log a and log h to remain order
one). Retaining only the leading-order terms in this asymptotic regime has been found
to be inadequate for practical use. However, retaining the first correction terms gives
an expression that has been found to be nearly indistinguishable from the exact
formula in the range of parameters spanned by the experiments with an error on the
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FIGURE 17. Two dimensional stability. (a) ci from the numerical shooting method (boxes)
for h = 0.5 h∞ and h∞ with κ = 100 and Re = 1, shown with formula (6.11) (solid lines). (b)
Zoom for small k-values.

order of 0.2 %. The leading-order expression for c1 is

σ 3c1 ∼ − i

6144
log

h2

a2
κη2

(

92 − 31κη2 + 32 log h
(

1 − κ

2
η2

))

,

leading order for κ ≫ 1, a ≪ h ≪ 1. (C 4)

The expression with the first correction terms retained is

σ 3c1 ∼ − i

6144
log

h2

a2
κη2

(

92 − 31κη2 + 32 log h
(

1 − κ

2
η2

))

+ i

2304
κh4

{

−438 − 247 log h + 768log2h − 144log3h

− 2 log a
(

367 + 575 log h − 396log2h + 72log3h
)

+ 2log2a
(

−67 − 288 log h + 72log2h
)}

+ i

3072
κ2h6

{

−36 + 538 log h + 484log2h − 864log3h

+ log a
(

−401 + 448 log h + 2172log2h − 672log3h
)

+ 2log2a
(

−257 − 504 log h + 576log2h
)

− 40log3a (1 + 12 log h)
}

first correction for κ ≫ 1, a ≪ h ≪ 1. (C 5)

Appendix D. Stability results in two dimensions

Here, we present results of the stability analysis in the two-dimensional geometry,
using both the asymptotic formulae and the numerical shooting method. We also
analyse the flows with a density transition region (the exact flow profiles are given in
the online supplementary material).

Figure 17(a) shows a comparison of ci as computed by the shooting method and
computed by the long-wave asymptotic formula (6.11) for h = h∞ and h = 0.5 h∞
in the two-dimensional geometry. Figure 17(b) shows a zoom of the imaginary
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h = h∞.

component for small k-values demonstrating nearly exact agreement between the two
near k = 0. The plot shows stability for h = 0.5 h∞ and instability for h = h∞. For this
plot κ = 100 which gives h∞ ≈ 0.0986.

Figure 18 illustrates the dependence of ci on the variables k, h, and Re. Panel(a)
shows ci(k) with κ = 100 and Re = 1 for four different h-values showing the transition
from stability to instability as h is increased. Panel(b) shows this same plot overlaid
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with a plot of 0.1 ci(k) with Re = 10 and the two plots are very similar for all h-values.

This illustrates the important point that the Reynolds number enters the imaginary

component of the eigenvalue primarily as a multiplicative factor and does not alter the

character of the functional dependence of ci upon k, even for Reynolds numbers of

up to 10 and wavenumbers of up to 10. The plot of 10 ci(k) with Re = 0.1 cannot

be discerned from the plot of ci(k) with Re = 1 and therefore it is not shown, but

this illustrates the role of the Reynolds number as a multiplicative factor even more

dramatically for lower Reynolds numbers.

Figure 19 shows eigenvalue plots for the shear solutions in which there is a

density transition region, and it illustrates the dependence of the stability properties

on the length scale λ of this transition region. As λ increases, corresponding to

a more blurred density transition, both the real and imaginary parts of c decrease

monotonically for all cases tested here. Therefore an unstable flow configuration

becomes less unstable (slower amplification of disturbances) as the density profile

is smoothed. We have no asymptotic results for the smoothed flows and therefore rely

entirely on the shooting method for these results.
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