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Abstract

Precision is a key component of spatial data quality and in this era of globally distributed
spatial data it is essential to be able to integrate multiple distributed data sets with
heterogeneous levels of precision. Imprecision arises through limitations on semantic and
geometric resolution of data representations. Generalization, and in particular model-
oriented generalization, is an important process in this context, because it enables
translation between different levels of precision. This paper provides a formal approach
to multi-resolution in spatial data handling. It begins by motivating the work and
pointing to some of the background research, and then introduces the basic concepts
underlying the approach, focusing on the new concept of a stratified map space. The
approach is quite general, and to show its application, the paper uses it to provide a
formal foundation for generalization and vague regions.
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1. Introduction

With the distributed mode of spatial data handling increasingly becoming the norm, there is a
pressing need for a well-founded model of spatial multi-datasets that tackles the issue of
heterogeneity amongst component databases. Heterogeneity has several dimensions, and in the
context of spatial data these include semantic and geometric differences, as well as heterogeneity
of metadata and data quality. A major impediment to achieving data integration is semantic and
geometric heterogeneity among the various data sources, both in terms of the data themselves
and the precision to which they are represented. This paper proposes a general model that helps
to provide a formal basis for processing and reasoning with spatial datasets that are
heterogeneous with regard to semantic and geometric precision. The model will be applied
particularly to the case of model-oriented generalization, as this is a well-researched subset of the
more general area of multi-precision representation, which transforms representations from
higher to lower precisions. However, the model is actually quite general, and resolutions of
component spatial datasets need not be placed in a strict linear ordering of increasing
imprecision. When the word ‘generalization’ is used in this paper it usually refers to model-
oriented generalization, in the sense of Miiller et al. (1995). We should also emphasize that at
this stage of the research there is no attempt to formalise the intricate and detailed processes of
cartographic generalization. However, the framework presented here is capable of extension to
handle more sophisticated generalization practice.

Resolution or granularity is concerned with the level of discernibility between elements of a
phenomenon that is being represented by the dataset. Higher resolutions and finer granularities
allow more detail to be observed in the components of the phenomenon, and multi-resolution



implies a collection of such levels of details. The issue of multi-resolution spatial datasets has
been taken up by several authors. Puppo and Dettori (1995) provide a formal model of some of
the topological and metric aspects of multi-resolution using abstract cell complexes and
homotopy theory - both topics within algebraic topology. Parts of this work can be seen as
extending formal models of single spatial datasets (for example, Egenhofer ef al. 1989, Pigot
1992, Worboys 1992) to the case of multiple spatial datasets. Rigaux and Scholl (1995) discuss
the impact of scale and resolution on spatial data modelling and querying. They develop a theory
with spatial and semantic components and apply the ideas to a partial implementation in the
object-oriented DBMS O,.

The major application of the model presented in this paper is developed in the context of
generalization, which allows movement from higher to lower resolution representations.
Cartographic generalization has been the subject of a great deal of research by the cartographic
and GIS communities, particularly on the geometric aspects of the generalization process (see for
example Buttenfield and McMaster 1991, Miiller et al. 1995). Dettori and Puppo (1996) state
that geospatial data generalization can be ‘considered a non-algorithmic task since it involves
both exact rules and as yet unquantified considerations’, which the authors later relate to the
move from metric to symbolic information at smaller scales. Even though it is the case that an
all-embracing automatic approach has not yet been found, there is a large literature on
computational aspects of components of the generalization process. The geometric
transformations that an entity may undergo as part of cartographic generalization have been
categorized by Puppo and Dettori (1995).

To give examples of the kinds of approaches to parts of the generalization process that are
amenable to computation, Delaunay triangulations and the dual construct, Voronoi diagrams
have been successfully applied to the detection and resolution of graphical conflicts arising from
visually appropriate representations of spatial object at smaller scales (Ware and Jones 1996).
These triangulations and their duals have been used for more knowledge-oriented tasks
associated with generalization, such as the recognition of clusters of buildings (Regnauld 1996).
Other examples of automated generalization processes are given in (Robinson and Lee, 1994).

This paper is concerned with both semantic and geometric aspects of spatial imprecision.
Semantic heterogeneity occurs where there is lack of uniformity in the ‘meaning, interpretation
or intended use’ of the data in the collection of datasets (Sheth and Larsen, 1990) and occurs
particularly when the datasets are in distinct databases. The motivation for the paper is to provide
a generic, well-founded theory of generalization and multi-resolution, in which topics such as the
correctness of generalization processes and integration of semantically and geometrically
heterogeneous geospatial datasets can be formally studied. A general formal model of multi-
resolution spatial data will aid in placing these disparate processes within a unified framework.
The framework presented in this paper has the characteristics listed below, and it is the ability to
be able to cater for all these aspects which is the unique contribution of this work.

e It covers uniformly both the semantic and geometric components of spatial data.

e |tis formal, thus providing a firm foundation for multi-resolution data modelling, including
general criteria for assessing correctness of generalization algorithms without prescribing the
precise nature of the algorithms.

e Inincludes a treatment of vagueness and imprecision, which are important aspects of spatial
data quality.



2. Overview of the framework

2.1 Extent and granularity

This section begins by introducing two constructs that are fundamental to the framework
subsequently developed. Assume we are given a spatial dataset providing information about
some geospatial phenomenon and structured according to a prescribed representation. This
representation will possess both extent and granularity.

The extent of a representation is the totality of the elements that make up the representation. For
example, in the case of the semantic component, its extent would include the collection of
taxonomic constructs in the model, maybe expressed as a collection of object types. The

semantic extent provides the ‘vocabulary’ in which the domain being modelled may be

expressed. For the spatial component, the spatial extent will be the total area spanned by the
representation, maybe a country, road network or the domain of a remotely sensed image. The
spatial extent specifies the global spatial ‘world’ (usually a region) that is represented. Aspects of
the phenomenon outside the boundaries of that world will not be visible.

The granularity of a representation specifies the levels of detail with respect to which the data
are registered. For the semantic component, the level of detail may be expressed as the fineness
of the object classes available in the object inheritance hierarchy. In a spatial context, the level of
detail might be the resolution or granularity of the spatial framework, below which spatial
elements become indistinguishable, one from another.

In summary, the extent of a representation is the range of visibility of objects in the dataset,
while the granularity is the level of detail within the extent. Limitations in the extent and
granularity of a representation lead to incompleteness and imprecision respectively in
computations made with respect to the representation.

2.2 Maps, granularities and stratified map spaces

This section outlines the main features of the framework, which is built using five principal
concepts map, map space, granularity lattice, stratified map space, and sheaf of stratified map
spaces.

Map

We use the term ‘map’ to denote an arbitrary finite collection of data. The general framework
makes no assumptions about the nature of maps, but a useful example to bear in mind is a set of
objects having both semantic and geometric attributes. The term is chosen so that a conventional
paper map is one example, but we are thinking of the data conveyed by the paper map, rather
than any specific visual realization of it.

Map space

A map space is a set of all possible maps described using some fixed representation vocabulary.
In database terms, a map corresponds to a database state i.e. a particular collection of data held at
a particular time, whereas a map space corresponds to the set of all possible databases states that
are instances of some fixed schema. Map spaces are partially ordered by precision. So if m; and
m; are maps in the same map space, we may have m; < m,, which means that m;, is a less vague,
or more precise, version of the map m,.



Granularity lattice

In a map space, the maps can vary in how vague they are, but there is a fixed maximum level of
detail which they can contain. The idea of a granularity lattice is that of a set of levels of detail.
We take g; < g, to mean that the granularity level g; is less coarse (or provides for more detail)

than the granularity g,.

Stratified map space

The notion of a stratified map space lies at the heart of our approach to multi-resolution data
handling, and allows translation between maps representing the same extent at different levels of
detail. A stratified map space (see figure 1) consists of a granularity lattice, G, and for each
granularity g € G, a map space Maps(g). There are two special transfer functions, namely Gen
that transfers by some coarsening process a map from a lower to a higher level of imprecision,
and Lift that transfers a map from a higher to a lower level of imprecision. Lift may be thought
of as an enlargement operation that adds no new level of detail. In formal terms, whenever

g1 < g;in G, there are functions

Gen[g;, g:] : Maps(g;) > Maps(g)

Lift[g;, g] : Maps(g,) - Maps(g))
between the map spaces Maps(g;) and Maps(g;).

Map space for g’

generalize
\ Map space for g

transfer

Most general
(coarsest) level
of detail

Granularity
lattice

Least general
(finest) level
of detail

Figure 1: A stratified map space

Criteria for the correctness of generalization algorithms arise from the interaction between lifting
and generalization, and development of constraints on Gen and Lift help us to specify particular
aspects of generalization. It seems reasonable to require that for all m € Maps(g;), we have

m < Lift(Gen(m)), where we have omitted the parameters g;, and g, of Lift and Gen to aid
readability. Also important is that for all m € Maps(g,), we have m < Gen(Lift(m)).



A particular model of generalization might impose additional constraints, such as making
generalization functorial. Certainly, we would expect Gen[g;, g;] to be the identity on Maps(g;),
and we might also feel that the composition equation

Gen[g;, g;] = Gen[g,, g;]Gen[g;, g]

should hold, as it might be reasonable to assume that if we generalized a map from granularity g;
to g, , and then performed another generalization from g; to g;, then this is the same as
generalizing directly from g; to g;. However, we might weaken this to

For all m € Maps(g;), Gen[g,, g;](m) < Gen[g,, g;](Gen[g;, g:](m)),

which allows information loss under repeated generalization.

Sheaf of stratified map spaces

In a stratified map space we have variation of data quality (vagueness) and variation of level of
detail (granularity), but the extent is fixed. For instance, we might have in a stratified map space
a framework which allows us to deal with maps of a particular country showing both road and
rail networks. We can talk about maps at different scales (geometric granularity), and levels of
semantic detail (whether only main roads or all roads are displayed for example). However a
single stratified map space cannot deal with maps which cover only a region within the country
(limitation of geometric extent) or which show railways only and ignore roads altogether
(limitation of semantic extent).

Stratified map
space for E

Stratified map
space for F

Space of
extents

Figure 2: A sheaf of stratified map spaces

The collection of extents can be thought of as the open sets of a topological space, which we call
the extent space. A sheaf over this extent space assigns to each extent, £, a stratified map space
Y(E) and whenever we have a sub-extent /' C E, there is a restriction function p : Z(E) —> X(F)
(see figure 2). To fill in the details of this construction we would need to define p to be a
morphism of stratified map spaces, that is a morphism of the granularity lattices with a family of



functions between the map spaces which all interact in an appropriate manner with lifting,
generalization and the vagueness ordering.

The sheaf construction is very helpful in formalizing map spaces, as combining (glueing
together) consistent map spaces with overlapping extents into a seamless whole is handled quite
naturally in the sheaf environment. This allows the framework to model integration of
heterogeneous data sets.

3. Case Study of Vague Regions and Generalization

The aim of this section is to present a specific model which is an instance of the general
framework outlined in the previous section. Although the model is relatively simple it
demonstrates the way in which the framework is sufficiently rich to deal with several issues and
the relationships between them. The model deals with maps combining both spatial and semantic
information. This information exists at various levels of detail, and definitions are given of
functions which translate between the various levels. We reemphasize that we do not intend a
formalization of the complex processes of cartographic generalization, but a framework in which
reasoning can begin to take place about spaces of generalized maps and their resulting
imprecisions.

We now outline the main features of the model before going into the technical details. The
granularity lattice is the product of two lattices, one handling spatial granularity, and one
handling taxonomic granularity. Thus each level of granularity is a pair {c,t) where G is a spatial,
and 1 a taxonomic level of detail. Associated to each such pair there are partially ordered sets
VRegions(c) and Classes(t) These are respectively sets of vague regions and of taxonomic
classifications which are available as semantic attributes of objects at the stated granularity.

The stratified map space has a set of maps Maps(c,t) for each granularity. The elements of
Maps{c,t). are structures consisting of a set of object ids, say X, and two functions

loc : X — VRegions(c) and class : X — Classes(t). The functions assign to each object its
location and its taxonomic class, or semantic attribute. An example of a map is illustrated in
figure 3

TAXONOMY

SET OF
OBJECT IDS

~-.p natural
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REGIONAL EXTENT

Figure 3: An example of a map



3.1 The Structure of Regions

Vague Regions

We assume a set, R, the elements of which are basic regions in some sense. These basic regions
might be cells in some subdivision of physical space, or possibly pixels. By taking unions of
elements of R we can generate other regions, the set of all such regions is denoted R.

A partition of R gives rise to a function 6: R — A4, where 4 is the set of equivalence classes of the
partition. The set of all partitions of R is partially ordered by putting 6, <o, where 6;: R — 4,
whenever there is a function @: A; — 4, such that 6, = ¢ 6. If 6| < G, this means that o, is less
general, i.e. more detailed than o,.

Each partition of R is a level of granularity with respect to which we can define vague regions
over R. We can define a vague region over R, with respect to a partition 6: R » A tobe a
function v: A — {in, maybe, out}. Such a function gives rise to a pair of subsets of R. The set of
basic regions definitely included in the vague region is lower(v) = {r € R|v o r =in }. The set
of basic regions possibly included in the vague region is upper(v) = {r € R|v o r #out }. Each
vague region, v, can be thought of as standing for any region r € R such that r lies between the
union of all elements of Jower(v) and the union of all elements of upper(v). Further details of this
type of vague region, which are closely related to the theory of rough sets, can be found in
Worboys (1997).

The set of all vague regions of R with respect to 6: R — 4 will be denoted by VRegions(c). This
set is partially ordered by setting v; < v, if for all a € 4, v;a <v,a where in < maybe > out, and in
and out are incomparable. The ordering on VRegions(c) models relative precision between
vague regions. Knowing that v; < v, tells us that the set of crisp regions which v; might denote is
a subset of the set of crisp regions which v, might denote.

Generalizing and Lifting Vague Regions

If 6, < 0, we define the region generalization function RegGen[c,0,] by:
RegGen[c,,0;] : VRegions(c;) > VRegions(c,)
RegGen[G,,6,] v a = max vo'a

where max denotes the maximum with respect to the ordering of {in, maybe, out} defined above.
It is easy to see that VRegions(c,) — VRegions(c;) so we have an inclusion function
RegLift[c;, 5,]: VRegions(c,) — VRegions(c;). It can be shown that for any region

v € VRegions(o), the region RegGen|[c,,0,]v is the best possible representation of v at the o,
level of detail.

3.2 The Structure of Taxonomies

Vague Classifications

We assume a semantic hierarchy is a tree, T (see figure 3 for an example with feature as the
root). A level of granularity for T'is a cut in the tree in the sense of Rigaux and Scholl (1995). A
cut, T, is a subtree of 7 having the same root and such that for every node, n of 1, either t
includes all the immediate descendants of # or none of them. Each element of a cut 1 is a vague
semantic attribute, the least detailed ones being those furthest up the tree i.e. nearest the root.



The set of all classifications with respect to a cut t is denoted Classes(t). In this basic model, t
and Classes(t) are equal as sets, but it is useful to keep the conceptual distinction between a level
of detail and the vocabulary available at this level of detail.

Generalizing and Lifting Classifications

If t; and 1, are cuts, and 71 < 7, there is a taxonomic generalization function
ClassGen : Classes(t;) > Classes(t,).

This function takes & € Classes(t;) to the least element of Classes(t,) which is greater than or
equal to k. The fact that we are dealing with trees here means that such a least element will exist.
There is also an inclusion function ClassLift : Classes(t,) — Classes(t;).

3.3 The Stratified Map Space

The granularity lattice consists of pairs of the form (o, t) where G is a spatial level of detail, and
T is a taxonomic one. The order on these granularities is defined in terms of the orderings on the
spatial and the taxonomic parts defined above. Thus (G, 1) < (0,, T») if and only if 6; < 5, and
T < 1.

Associated with a level of detail (o, t), we have the set of maps Maps{c, t). An element of
Maps{o, 1) is a set, X, equipped with two functions: /oc : X — VRegions(c), and

class : X — Classes(t). The maps are partially ordered in the following way. Suppose that m and
m’are maps in Maps(o, 1) with m consisting of functions loc : X — VRegions(c), and

class : X — Classes(t), and m’consisting of functions /oc’: X’ — VRegions(c), and

class’: X’ — Classes(t). Then m <m’if X= X"and there are functions

¢ : VRegions(c) —> VRegions s(c), and y : Classes(t) — Classes(t) such that loc = ¢ loc’, and
class = yclass’, and for every » € VRegions(c), » <¢r and for every ¢ € Classes(t), ¢ < wc.

Suppose now that we have granularities g; = (o3, 11) and g, = (o, T,) where g; < g, We need to
define the generalization function Gen[g;, g;] : Maps(g;) — Maps(g>), and the lifting function
Lift[g;, g-] : Maps(g,) - Maps(g;). The generalization function assigns to the map

(locy : X —> VRegions(o), class, : X — VRegions(t,)), the map (RegGen[c,, c,] loc,,
ClassGen[t,, T,] class;),. The lifting function is constructed in a similar way; it assigns to a map
(locy : X — VRegions(o,), class, : X — VRegions(t,)), the map (RegLift[c,, 65] loc,,
ClassLift[t,, 1,] class,).

3.4 Variation over Extents

Next we need to consider the extents. It is reasonable to assume that set R of all crisp regions is a
complete Heyting algebra. The precise details of this structure are not important here, but further
details of the relevance of Heyting algebras to spatial information theory and be found in Stell
and Worboys (1997). The most important aspect is that we have a notion of one region being a
sub-region of another. Associated to each crisp region r € R, we have the granularity lattice
RegGran(r), the elements of which are partitions of the set of basic regions in r. When r; C r»,
so ry is a sub-region of r,, any partition of r, can be restricted to a partition of r;. This gives rise
to a restriction function RegRest[r;,r;] : RegGran(r,) — RegGran(r;). Similarly any map with
a granularity in RegGran(r;) can be restricted to a map with the restricted granularity. The idea
here is simply that of forgetting about all objects whose location has no intersection with the
region r.



For taxonomic extents, it is sufficient for the purposes of this case study to consider the set of
upper sets of the tree 7. There are arguments for allowing more general subtrees of 7, which
might not have the same root as 7. These can be dealt with in our framework, but a detailed
treatment of this case introduces algebraic complications which there is not space to discuss here.
A treatment of semantic structures more general than trees, and of generalization with respect to
them can be found in Worboys (1998).The set of all upper sets of any poset, and in particular of
any tree, is well known to be the set of open sets for a topology on the poset. Thus the set of
upper sets of 7 forms a complete Heyting algebra where the ordering is opposite to that of subset
inclusion. Thus, u; < u, means that u; D u,. When u; < u, any cut in the tree u, is already a cut in
the tree ;. This gives a restriction function ClassRest[u, 1] : Cuts(u,) —> Cuts(uy).
Analogously to the spatial case, maps over u, can be restricted to maps over u, by forgetting
about objects whose semantic attributes are not included in u;.

Combining both the spatial and semantic aspects we obtain a set EXT the elements of which are
pairs consisting of a spatial extent and a semantic extent.

Conclusions

This paper has developed a formal approach to imprecision and vagueness associated with multi-
resolution spatial datasets. The partially ordered granularity lattice induces a stratification of the
space of maps. Varying the extents on which the stratified maps are based leads to a structure
with sheaf-like characteristics. The sheaf structure seems to the authors to have considerable
possibilities for use in the field of geographic data handling and spatial reasoning. For example,
spatio-temporal information systems have extents in both spatial and temporal dimensions. It is
possible that sheaves will provided a purely algebraic approach to such systems, which have up
to now been mainly formalized using logic (e.g. modal and temporal logics), and this is work that
the authors are currently undertaking.
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