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ABSTRACT
Fair queuing is a well-studied problem in modern computer
networks. However, there remains a gap between schedul-
ing algorithms that have provably good performance, and
those that are feasible and practical to implement in high-
speed routers. In this paper, we propose a novel packet
scheduler called Stratified Round Robin, which has low com-
plexity, and is amenable to a simple hardware implemen-
tation. Stratified Robin Robin exhibits good fairness and
delay properties that are demonstrated through both ana-
lytical results and simulations. In particular, it provides a
single packet delay bound that is independent of the number
of flows. This property is unique to Stratified Round Robin
among all other schedulers of comparable complexity.

Categories and Subject Descriptors
C.2.6 [Computer Communication Networks]: Inter-
networking—Routers; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Non-numerical Algorithms and
Problems—Sequencing and scheduling

General Terms
Algorithms, Performance

Keywords
output scheduling, quality of service, fair queuing

1. INTRODUCTION
There are an increasing number of interactive Internet-

based applications, such as video and audio conferencing,
that make quality-of-service (QoS) demands on the network.
These applications generally transmit flows of related pack-
ets between two end-points, and require that these flows
meet certain QoS requirements, in terms of throughput and
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end-to-end delay. How to satisfy the QoS requirements of
competing flows, given a packet-switched network with de-
centralized control distributed over all the routers, is a long-
standing problem that has been the subject of considerable
research [3] [7] [8] [9] [11] [14] [15] [16] [32] [34] in the net-
working community.
An important component of the many QoS architectures

proposed is the packet scheduling algorithm used by routers
in the network. The packet scheduler determines the order
in which packets of various independent flows are forwarded
on a shared output link. One of the simplest algorithms
is First Come First Served (FCFS), in which the order of
arrival of packets also determines the order in which they
are forwarded over the output link. While almost trivial to
implement, FCFS clearly cannot enforce QoS guarantees, as
it allows rogue flows to capture an arbitrary fraction of the
output bandwidth. In general, a packet scheduler should
have the following properties.

Fairness The packet scheduler must provide some mea-
sure of isolation between multiple flows competing for the
same shared output link. In particular, each flow should
get its fair share of the available bandwidth, and this share
should not be affected by the presence and (mis)behavior of
other flows. For example, this share may be a pre-allocated
amount of bandwidth, that should be available to the flow,
regardless of other flow activity.

Bounded delay Interactive applications such as video and
audio conferencing require the total delay experienced by a
packet in the network to be bounded on an end-to-end ba-
sis. The packet scheduler decides the order in which packets
are sent on the output link, and therefore determines the
queuing delay experienced by a packet at each intermediate
router in the network.

Low complexity With line rates increasing to 40 Gbps,
it is critical that all packet processing tasks performed by
routers, including output scheduling, be able to operate in
nanosecond time frames. The time complexity of choosing
the next packet to schedule should be small, and in particu-
lar, it is desirable that this complexity be a small constant,
independent of the number of flows N . Equally importantly,
the scheduling algorithm should be amenable to an efficient
hardware implementation on a router line card.
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Designing a packet scheduler with all of these constraints
has proved to be a difficult problem. In the long evolu-
tion of packet scheduling algorithms, one can identify two
basic approaches in design. Timestamp-based (also called
deadline-based) algorithms [2] [10] [28] [33] have provably
good delay and fairness properties [12] [13] [18] [26] [27], but
generally need to sort packet deadlines, and therefore suf-
fer from complexity logarithmic in the number of flows N .
This sorting bottleneck makes practical implementations of
these algorithms problematic, and necessitates the design of
simpler schemes. Round-robin-based algorithms [24] [23] [6]
have O(1) complexity, and while they support fair alloca-
tion of bandwidth, they fail to provide good delay bounds.
Thus, while fair queuing is a well-studied problem in modern
computer networks, there remains a significant gap between
schedulers that have provably good performance, and those
that are feasible to implement in high-speed routers.
It is to be emphasized here that reduction in complexity is

of paramount importance. If a separate queue is maintained
for each flow, the number of queues required is potentially
in the millions. Flow aggregation, in the form of Stochas-
tic Fair Queuing [20], can be employed to reduce the num-
ber of queues by hashing multiple flows to a single queue.
However, in order to limit the effect of a single rogue flow
on other flows, the number of queues required is still large.
The same is true of many implementations of Differentiated
Services [3]. Thus, due to the large number of queues, even
logarithmic complexity can be a significant barrier to imple-
mentation.
This paper proposes a novel packet scheduling algorithm

called Stratified Round Robin. Stratified Round Robin has
a complexity of O(1) in most practical scenarios, and is
amenable to an extremely simple hardware implementation.
Nevertheless, it has good fairness and delay properties that
we demonstrate through both analysis and simulation. In
particular, Stratified Round Robin provides a single packet
delay bound that is independent of the number of flows.
Our contributions are two-fold: (1) we present a practically
realizable scheduler that provides a good approximation of
Weighted Fair Queuing, and (2) we show that this sched-
uler, despite its low complexity, exhibits unique asymptotic
performance in the form of a constant single packet delay
bound.

2. PREVIOUS WORK
There is a significant amount of prior work in finding

scheduling disciplines that provide delay and fairness guar-
antees. Generalized Processor Sharing [21] (also called Fluid
Fair Queuing) is considered the ideal scheduling discipline
that achieves perfect fairness and isolation among compet-
ing flows. However, the fluid model assumed by GPS is not
amenable to a practical implementation, as network com-
munication takes place in the form of packets that must
be transmitted atomically. Nevertheless, in terms of fair-
ness and delay guarantees, GPS acts as a benchmark for
other scheduling disciplines. Practical scheduling disciplines
can be broadly classified as either timestamp schedulers or
round-robin schedulers.

2.1 Timestamp schedulers
Timestamp schedulers [2] [11] [10] [17] [33] try to emulate

the operation of GPS by computing a timestamp for each
packet. Packets are then transmitted in increasing order of

their timestamps. For example, the well-known Weighted
Fair Queuing [10] algorithm uses this method by computing
the timestamp of a packet as the time it would finish being
serviced under a reference GPS server. WFQ exhibits some
short-term unfairness which is addressed by the Worst-case
Weighted Fair Queuing [2] algorithm. While WFQ sched-
ules the packet with the least timestamp among all pack-
ets, WF2Q only considers those packets that have started
receiving service under the reference GPS server. As a re-
sult, WF2Q achieves ”worst-case fairness”, a notion defined
in [2]. Although both WFQ and WF2Q have good delay
bounds and fairness properties, the need to maintain a ref-
erence GPS server results in high complexity. Specifically,
both algorithms have a time complexity of O(N), where N
is the number of competing flows. It has subsequently been
shown how to modify WF2Q so that it has a time complexity
of O(logN) [1].
Self-Clocked Fair Queuing [17] and Virtual Clock [33] are

timestamp schedulers that use computationally more effi-
cient schemes to compute timestamps without maintaining
a reference GPS server. As a result, timestamps can be com-
puted quickly. However, it is still required to sort packets
in ascending order of their timestamps. Consequently, they
still have a time complexity of O(logN) per packet.
In general, although timestamp schedulers have good de-

lay properties, they suffer from a sorting bottleneck that
results in a time complexity of O(logN) per packet. The
Leap Forward Virtual Clock [28] algorithm attempts to ad-
dress this problem by coarsening the way in which times-
tamps are computed in Virtual Clock. This results in a
reduced time complexity of O(log logN) per packet. This is
an interesting result in terms of showing that rough sorting
is almost as good as exact sorting. However, the implemen-
tation requires a complicated data structure such as a Van
Emde Boas tree that typically would have higher constants,
and is not suited to a hardware implementation. Thus, the
high computational costs associated with timestamp sched-
ulers prevent them from being used in practice.
Recent lower bounds [31] suggest that the O(logN) sort-

ing overhead is fundamental to achieving good delay bounds.
In particular, any scheduler that has a complexity of below
O(logN) must incur a GPS-relative delay proportional to
N , the number of flows.

2.2 Round-robin schedulers
Round-robin schedulers [24] [6] [19] are the other broad

class of work-conserving schedulers. These schedulers typi-
cally assign time slots to flows in some sort of round-robin
fashion. By eliminating the sorting bottleneck associated
with timestamp schedulers, they achieve an O(1) time packet
processing complexity. As a result, they tend to have poor
delay bounds and output burstiness.
Deficit Round Robin (DRR) [24] is a well-known example

of a round-robin scheme. DRR assigns a quantum size to
each flow that is proportional to the weight of the flow. Each
flow has a deficit counter that measures the current unused
portion of the allocated bandwidth. Packets of backlogged
flows are transmitted in rounds, and in each round, each
backlogged flow can transmit up to an amount of data equal
to the sum of its quantum and deficit counter. The unused
portion of this amount is carried over to the next round as
the value of the deficit counter. Once a flow is serviced, irre-
spective of its weight, it must wait for N−1 other flows to be
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serviced until it is serviced again. Also, during each round,
a flow transmits its entire quantum at once. As a result,
DRR has poor delay and burstiness properties. However,
due to its extreme simplicity, DRR (or some variant) is the
scheduling discipline typically implemented in high speed
routers such as the Cisco GSR [30].
Summarizing, timestamp schedulers have good fairness

and delay properties but high complexity, while round-robin
schedulers are simple to implement but have poor delay
bounds and show output burstiness. More recently proposed
schemes [6] [19] [5] have attempted to achieve the best of
both worlds by combining the fairness and delay properties
of timestamp schedulers with the low complexity of round-
robin schedulers. This is typically done by evolving a round-
robin scheme like DRR and incorporating some elements of
a timestamp scheduler. The Stratified Round Robin sched-
uler proposed in this paper follows this approach.
The Smoothed Round Robin [6] discipline addresses the

output burstiness problem of DRR. This is done by spread-
ing the quantum allocated to a flow over an entire round us-
ing a Weight Spread Sequence. Although SRR also results
in better delay bounds than DRR, the worst case delay ex-
perienced by a packet is still proportional to N , the number
of flows.
Aliquem [19] is an evolution of DRR that permits scaling

down the quantum assigned to a flow in each round. How-
ever, since the quantum may be less than the maximum
packet size, a flow may not be able to transmit any data in
each round. Therefore a mechanism is required to keep track
of the round in which a flow has accumulated enough credit
to transmit a packet. Their mechanism, called Active List
Management, can be implemented using a priority encoder,
similar to Stratified Round Robin. The scaling down of the
quanta results in better delay and burstiness properties.
Bin Sort Fair Queuing [5] uses an approximate bin sorting

mechanism to schedule packets. Each packet is assigned a
deadline similar to a timestamp scheduler. Packets with
close deadlines are assigned to the same bin. Within a bin,
there is no sorting of packets based on deadlines. Therefore,
packets are transmitted in approximately the same order as
their deadlines.
Although both Aliquem and BSFQ significantly improve

the delay bounds of DRR, it appears that the worst case
delay of even a single packet is still proportional to N , the
number of flows. The Stratified Round Robin scheduler pro-
posed in this paper improves upon this by reducing the worst
case delay of a single packet to a small constant.

3. STRATIFIED ROUND ROBIN
This section describes the main contribution of this paper,

which is a new scheduling algorithm called Stratified Round
Robin.

3.1 Model
There are N backlogged flows f1, f2, . . . , fN that share

an output link of bandwidth R. Flow fi has a reserved
bandwidth of ri with admission control ensuring that

i=NX
i=1

ri ≤ R (1)

In addition, it is assumed that for every flow fi, ri < R.
Otherwise scheduling is trivial as there is only one flow which
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Figure 1: There are five flows f1, . . . , f5 sharing an
output link of bandwidth R = 16. Flow f1 has a re-
served bandwidth r1 = 8 and therefore has a weight
w1 =

1
2
, which means that half the total output band-

width is reserved for f1. Weights for the other flows
are computed similarly.

is allocated the entire output bandwidth. The weight wi of
flow fi is defined as its reserved bandwidth normalized with
respect to the total bandwidth of the output link, i.e.,

wi =
ri

R
(2)

In other words, the weight wi of a flow represents the
fraction of the output bandwidth that is reserved for flow
fi. Therefore

i=NX
i=1

wi ≤ 1

Figure 1 shows an output link being shared by multiple
flows and how the weight of each flow is computed. Band-
width is allocated to flows in proportion to their weights.
If all N flows are backlogged, i.e., have packets queued for
transmission, the average bandwidth allocated to fi should
be

wiPj=N
j=1 wj

R ≥ ri

Therefore the bandwidth allocated to a backlogged flow fi

is always at least its reserved bandwidth ri. Equality occurs
when

Pi=N
i=1 wi = 1, i.e., the output bandwidth is completely

allocated among the N flows.
In a fashion similar to round-robin schedulers, Stratified

Round Robin assigns slots to flows. When a flow is assigned
a slot, it is allowed to send a certain number of its queued
packets over the output link. The main scheduling deci-
sion is to decide which of the N flows is assigned the next
slot. However, in order to avoid the poor delay properties
of round-robin schemes, while simultaneously retaining their
low complexity, Stratified Round Robin must do something
beyond simply allocating slots in circular fashion. The key
idea, which enables getting the best of both worlds, is to
aggregate flows into flow classes.
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3.2 Flow stratification
Flows are “stratified” into flow classes based on their

weights. More formally, for k ≥ 1, flow class Fk is defined
as

Fk =

�
fi :

1

2k
≤ wi <

1

2k−1

�
(3)

Flow class Fk groups together all flows whose weights are
approximately 2−k. Figure 1 shows an example of how flows
are aggregated into flow classes based on their weights 1.
Flow f1 has a weight of w1 =

1
2
and belongs to class F1.

Flows f2 and f3 have weights of w2 =
1
8
and w3 =

3
16
re-

spectively and belong to flow class F3. Finally, flows f4 and
f5 have weights w4 =

1
16
and w5 =

1
16
respectively and be-

long to flow class F4. Notice that, by definition, the weights
of any two flows fi and fj belonging to the same class Fk

are within a multiplicative factor of 2 of each other. For
each k, let Nk denote the cardinality of Fk. For simplic-
ity, it is assumed that all flows belonging to a flow class are
backlogged. When a flow fi is not backlogged, it is removed
from the corresponding flow class Fk, and when it becomes
backlogged again, it is added to Fk.
In theory, bandwidth is infinitely divisible, and a flow

could reserve an arbitrarily small fraction of the output
bandwidth. In practice, bandwidth would be allocated at
a certain granularity. Let r denote the smallest unit of
bandwidth that can be allocated to a flow. If a flow has
a reserved bandwidth of r, then it belongs to flow class Fn

where 1
2n ≤ r < 1

2n−1 . The number of flow classes required

to be maintained is therefore n = �log2 R
r
�.

Given the stratification of flows into flow classes, Strati-
fied Round Robin may be thought of as a two-step scheduler.
The first step (inter-class scheduling) chooses one class from
n flow classes to schedule next. The stratification of flows
into classes makes this step easier because rather than con-
sidering a potentially large number N of flows, it needs to
consider only a relatively small number n of classes. The
second step (intra-class scheduling) chooses one flow among
all flows belonging to a particular flow class to schedule
next. This step is easier because all flows belonging to the
same class have approximately equal weights. While the
first step uses a deadline mechanism similar to many times-
tamp schedulers, the second step is essentially a round-robin
scheme. Therefore, Stratified Round Robin may also be con-
sidered a hybrid between the two types of packet schedulers.

3.3 Inter-class scheduling
In order to explain the inter-class scheduling algorithm, it

is necessary to clarify two concepts: clock time and schedul-
ing interval. For the purpose of scheduling, time is mea-
sured in slots, which are numbered with non-negative inte-
gers starting with 0. The clock time, denoted by tC , refers
to the current slot. Each slot is assigned to at most one flow,
during which the flow is serviced and packets belonging to
that flow are sent on the output link. At the end of the slot,
the clock time is advanced. There may be slots that are
not assigned to any flow. Note that slots and clock time are
merely accounting mechanisms that help the scheduler in

1Similar ideas of using exponential grouping have been de-
veloped by others, including [22] [25] in the context of
scheduling in ATM networks, and [4] in the context of pro-
cessor scheduling. However, the underlying scheduling algo-
rithms are different from Stratified Round Robin.

1 20 3 4 5 6 7 8 9 10 11 12 14 16

Real Time

time slots

f1

f2

f4

f5

f3

Figure 2: An example of how Stratified Round
Robin allocates slots to flows. Flow weights are as
in Figure 1. Scheduling intervals of all classes are
aligned in this example.

deciding which flow to service next. Real time elapses only
when packets belonging to a flow are sent on the output link.
Scheduling intervals are fixed length and contiguous in-

tervals of slots that are associated with each flow class. For
each class Fk, the length of a scheduling interval is always
2k slots. If a scheduling interval for Fk starts at slot t, the
next scheduling interval for Fk starts at slot t + 2

k, and so
on. The motivation for defining scheduling intervals in this
manner is as follows. Every flow fi ∈ Fk has a weight of
approximately 2−k. Therefore, if slots represent fixed-size
units of bandwidth allocation, fi is entitled to exactly one
slot every 2k slots. In fact, Stratified Round Robin does
exactly this by trying to assign every flow fi ∈ Fk one slot
in each scheduling interval of Fk.
A flow class Fk is called active if it contains at least one

backlogged flow, i.e., Nk > 0. Let A denote the set of active
flow classes. A backlogged flow fi ∈ Fk is called pending if
fi has not been assigned a slot in Fk’s current scheduling
interval. Intuitively, a pending flow is one that has not re-
cently received its fair share of bandwidth. A flow class is
called pending if it contains at least one pending flow. Let
P denote the set of pending flow classes.
As mentioned before, the basic strategy is to assign every

flow fi ∈ Fk exactly one slot in each scheduling interval of
Fk. The end of the current scheduling interval of a flow class
is therefore a deadline for all backlogged flows belonging to
that flow class to be assigned a slot. Like a deadline-based
scheme, the inter-class scheduler selects the flow class Fk

with the earliest deadline. The intra-class scheduler then
assigns a flow fi ∈ Fk the current slot. Note that while
choosing a flow class, only those that are pending are con-
sidered for assigning slots. A flow class Fk ceases to be
pending when all flows belonging to Fk have been assigned
a slot in its current scheduling interval. When the last pend-
ing flow fi ∈ Fk is assigned a slot, Fk is no longer pending.
In this case, Fk remains like that until the start of its next
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scheduling interval, when all flows belonging to Fk become
pending again.
After servicing a flow in the current time slot, the clock

time tC must be advanced. If there are any pending flow
classes, tC is incremented by 1. Otherwise, tC is advanced
to the earliest time when some flow class becomes pending
again 2. In either case, the set of pending flow classes P must
be updated to include all flow classes that become pending
at the new clock time tC .
Figure 2 illustrates an example of Stratified Round Robin

assigning slots to flows in the example of Figure 1. Notice
that each flow receives slots in proportion to its approximate
weight as given by the flow class it belongs to. For example,
flow f1 receives 8 slots out of 16 because it belongs to class
F1. Flows f2 and f3 each receive 2 slots out of 16 because
they belong to the same class F3 even though their actual
weights are different. Also note that slots 13 and 15 are
not shown because no packets are sent in these slots and
therefore no real time elapses. After slots 12 and 14, no
flows classes are pending and therefore the clock advances
to the next slot when a flow class becomes pending.

3.4 Intra-class scheduling
Within a flow class, flows are scheduled in round-robin

fashion. Every time a flow fi is assigned a slot, it is given
a credit ci, which determines how many bytes the flow is
allowed to send in that slot. Round-robin schedulers like
DRR give each flow a fixed-size credit of LM bits where LM

is the maximum packet size. This ensures that at least one
packet will be sent every time a flow is assigned a slot. A
deficit counter is used to carry over unused credit to the
next slot in the event the flow is backlogged but unable to
send a packet due to insufficient credit. This mechanism is
necessary to prevent unfair allocation of bandwidth caused
by different packet sizes used by different flows. Therefore
the number of bytes transmitted by flow fi in one slot is at
most ci + di.
Stratified Round Robin operates in a similar manner, but

with an important difference. Every time flow fi ∈ Fk is as-
signed a slot, rather than being given a fixed-size credit, it
is given a credit that is proportional to its weight wi. Recall
that two flows fi and fj may belong to the same class Fk

even though wi may be up to twice as large as wj . How-
ever both fi and fj are assigned exactly one slot in every
scheduling interval of Fk. To ensure that the service received
by these flows are proportional to their respective weights,
the credit given to them every time they are assigned a slot
must also be made proportional to their weights 3. There-
fore, a flow fi ∈ Fk is assigned a weight-proportional credit
of

ci = 2
kwiLM (4)

Since

1

2k
≤ wi <

1

2k−1

the scaling factor of 2kLM ensures that for all flows fi where

2This is similar to LFVC [28] except that the clock accounts
for time in the form of slots.
3This is similar to using a weighted version of DRR [24]
within each class except that weight-proportional credits
must be normalized so that they are approximately equal
(within a multiplicative factor of 2) across classes.

1 ≤ i ≤ N ,

LM ≤ ci < 2LM (5)

This is significant for the following two reasons. Firstly,
since the credit given is greater than the maximum packet
size, at least one packet is guaranteed to be sent every time
a flow is assigned a slot. Secondly, it ensures that credits
are approximately equal (within a multiplicative factor of
2) across flow classes. Slots are assigned to a flow fi ∈ Fk

in proportional to its approximate weight 2−k. Therefore,
the credit given to a flow every time it is assigned a slot
must be approximately equal to ensure weight-proportional
allocation of bandwidth. This variable credit allocation is
illustrated in Figure 2 where even though flows f2 and f3 are
each given 1 slot every 8 slots, f3 is given a proportionally
larger credit (1.5 times) in each slot.

SCHEDULE
Choose Fk ∈ P s.t. Fk has the earliest deadline
Choose any pending flow fi ∈ Fk

di = di + ci where ci = 2
kwiLM

while true do
if fi has a packet pkt backlogged then

if size(pkt) ≤ di then
dequeue(pkt)
send(pkt)
di = di - size(pkt)

end
else

if Fk is not pending then P = P − {Fk}
break

end
end
else

if Fk is not pending then P = P − {Fk}
DEACTIVATE fi

break
end

end
if P 	= φ then tC = tC + 1
else

while A = φ do
Idle when there are no backlogged flows

end
tC = min {t > tC : ∃k s.t. Fk is pending at t}

end
P = P ∪ {Fk ∈ A : Fk becomes pending at tC}

ACTIVATE fi

Fk = Fk ∪ {fi} where 1
2k ≤ wi <

1
2k−1

if Fk /∈ A then
A = A ∪ {Fk}

end

DEACTIVATE fi

Fk = Fk − {fi} where 1
2k ≤ wi <

1
2k−1

if Nk = 0 then
A = A− {Fk}

end
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To summarize, Stratified Round Robin operates as a two-
step scheduler. The first step uses the flow class mechanism
to assign slots to each flow fi in proportion to its approxi-
mate weight as defined by the flow class Fk to which it be-
longs. The second step uses the weight-proportional credit
mechanism to ensure that each flow fi receives service in
proportion to its actual weight wi. The advantage of this
approach is that it considerably simplifies the scheduling
decision to be made. A WFQ-type scheduler must choose
among a large number N of flows to service next, whereas
Stratified Round Robin must choose among a small number
n of flow classes to service next. For all practical values of
n, Stratified Round Robin can be implemented in a few bit
operations, as described in Section 4.
The remaining operations that must be implemented are

activating and deactivating a flow. A flow fi is activated
when it becomes backlogged due to the arrival of a new
packet. Flow fi is added to the appropriate class Fk and
if necessary, Fk is added to the set of active flow classes A.
Note that when fi becomes backlogged, it is not pending
until the start of Fk’s next scheduling interval. A flow fi is
deactivated when it is no longer backlogged as a result of all
its queued packets being sent over the output link. Flow fi

is removed from the appropriate class Fk and if necessary,
Fk is removed from the set of active flow classes A. Pseudo-
code for scheduler operations is provided above.

4. IMPLEMENTATION
This section describes how the Stratified Round Robin

scheduler can be implemented in O(1) complexity with mod-
est hardware support.
To realize Stratified Round Robin, both the inter-class

and intra-class scheduling operations must be implemented.
Scheduling within a flow class is essentially round-robin and
therefore almost trivial. For each flow class Fk, it is neces-
sary to maintain a list of all flows belonging to Fk. Since
the number of flow classes n is small, this does not signif-
icantly add to the complexity of maintaining a single list
of flows that an O(1) scheme like DRR would have to do.
Scheduling among flow classes is more involved and must be
implemented efficiently.
Inter-class scheduling in Stratified Round Robin is deadline-

based, and therefore could suffer from the same sorting bot-
tleneck faced by schedulers such as WFQ. The critical dif-
ference is that while WFQ-type schedulers much choose the
earliest deadline among N flows, Stratified Round Robin
must choose the earliest deadline among only n flow classes.
The number n of flow classes is given by log2

R
r
, where R

is the bandwidth of the output link, and r is the minimum
unit of bandwidth allocation. For practical values of R and
r, the number n is a small number. For example, for an
OC-768 link, R = 40 Gbps. Even if r = 1bps, i.e., flows are
allocated bandwidth in units of 1 bps, the number of flow
classes n is at most 36. It is entirely feasible to implement in
hardware a priority queue of 36 elements that runs in O(1)
complexity 4.

4The notion of asymptotic complexity arises when r → 0. In
this case, the complexity of implementing Stratified Round
Robin is the complexity of doing priority queue operations
over n elements, i.e., O(log n) = O(log log R

r
). With align-

ment of scheduling intervals, it further reduces to priority

Priority Encoder

1 0 1 0 0 1 0 0

serviced flow

pending flow

X

F6 F5 F4F8 F7 F3 F2 F1

p8 p7 p6 p5 p4 p3 p2 p1

Figure 3: A priority encoder is used to select the
lowest-numbered pending flow class. Within the
class, a pending flow is scheduled, as indicated by
the cross.

While using a priority queue for small values of n is feasi-
ble, it is possible to exploit a degree of freedom that reduces
the complexity of implementation even further. Recall that,
for each flow class Fk, a scheduling interval is a contiguous
interval of 2k. Scheduling intervals for each class are aligned,
i.e., scheduling intervals for Fk always start at clock times
corresponding to multiples of 2k. For example, the first
scheduling interval for Fk is the range of slots 0 . . . 2

k − 1,
the second scheduling interval for Fk is the range of slots
2k . . . 2 ∗ 2k − 1, and so on. Note that this is not essential
for implementing Stratified Robin. For example, one could
imagine a new scheduling interval for Fk starting at time t
when it firsts becomes active, with the next interval starting
at t + 2k, and so on. In this case, scheduling intervals for
different flow classes would cross each other, and a prior-
ity queue would be required to keep track of deadlines. It
turns out that aligning these intervals with each other ad-
mits a much simpler implementation by dispensing with the
priority queue.
Aligning the scheduling intervals for flow class Fk along

multiples of 2k has the following advantage. The start (end)
of a scheduling interval for Fk is also the start (end) of a
scheduling interval for every flow class Fk′ where k′ < k.
For example, the start of a scheduling interval for F4 must
also be the start of a scheduling interval for each of F1, F2

queue operations over the set {1, 2, . . . , n}, which can be
done in O(log log n) using a finite universe priority queue.
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Figure 4: A simple hardware implementation of Stratified Round Robin.

and F3. This property is what leads to a simple and efficient
hardware implementation.
Bitmaps a = an . . . a2a1 and p = pn . . . p2p1 are used to

maintain active and pending sets. Bit ak is 1 if class Fk is
active, and 0 otherwise. Similarly, bit pk is 1 if class Fk is
pending, and 0 otherwise. Since the number of flow classes
n is small, these bitmaps are quite compact, and for rea-
sonable word sizes W , can be maintained in a single word
of memory each. The SCHEDULE operation can then be
implemented as follows.

Choosing a flow class The inter-class scheduler chooses
the pending flow class with the earliest deadline, where the
deadline for a class is the start of its next scheduling inter-
val. The alignment property guarantees that a deadline for
class Fk is also a deadline for all classes Fk′ where k′ < k.
Therefore, the flow class that is selected is simply the lowest-
numbered class that is pending. This class can be identified
by locating the rightmost bit pk of pn . . . p2p1 that is set to
1. For small values of n, this can be done in O(1) by a stan-
dard piece of combinational logic called a priority encoder.
Figure 3 shows an example of a priority encoder being used
to choose the flow class to schedule next. Note that F3 is
chosen and not F1 because F1 is not pending.

Advancing the clock If none of the classes are pending,
the clock time tC must be advanced to the earliest time at
which some class becomes pending. The alignment property
guarantees that the start of a scheduling interval for class
Fk is also the start of a scheduling interval for all classes Fk′
where k′ < k. Therefore, the earliest time at which some
class becomes pending is the start of the next scheduling in-
terval of the lowest-numbered class that is active. This class
can be identified by locating the rightmost bit ak that is set
to 1, again using a priority encoder. The new clock time

is the smallest multiple of 2k greater than the current clock
time tC , which can be computed by adding 2

k to tC and then
setting k least significant bits to 0, as illustrated in Figure 4.

Updating the pending set If k is the largest number such
that 2k divides the new clock time tC , the alignment prop-
erty guarantees that all active flow classes Fk′ where k′ < k
become pending at tC . To identify k, it is sufficient to find
the least significant bit of tC that is set to 1, again using a
priority encoder. The k least significant bits pk . . . p1 of p
are set to 1 using an appropriate mask. Finally, since only
active classes are considered, it is necessary to perform an
AND operation with a = an . . . a2a1, as is illustrated in Fig-
ure 4.

The ACTIVATE and DEACTIVATE operations involve
nothing more than setting a bit in a bitmap. To conclude,
the small number of flow classes in practice allows Strati-
fied Round Robin to be implemented efficiently at low cost.
Aligning scheduling intervals along multiples of 2k further
reduces this complexity, resulting in an implementation that
requires just a few bit operations more than a O(1) round-
robin scheme like DRR. With commercial implementations
of DRR in existence, there is good reason to believe that
Stratified Round Robin can be implemented in practice as
well.

5. ANALYTICAL RESULTS
This section analyzes the properties of Stratified Round

Robin. In particular we are interested in the fairness and
delay properties of Stratified Round Robin. The analysis
in this section assumes that scheduling intervals are aligned
with each other as explained. While this is not critical, it
does simplify the analysis to a large extent.
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Lemma 1. For k ≥ 1,

j=kX
j=1

Nj 2
k−j ≤ 2k (6)

where Nj is the cardinality of Fj .

Proof. See appendix ✷

The following theorem is critical to the correct operation
of Stratified Round Robin.

Theorem 1 (Correctness). Let f ∈ Fk be a back-
logged flow. Stratified Round Robin assigns f exactly one
slot in every scheduling interval of class Fk.

Proof. (by induction on k) For k = 1, Lemma 1 implies
N1 ≤ 2. If N1 = 0, there is nothing to prove. Consider
any scheduling interval of F1, which is of length 2. At the
beginning of the interval, all backlogged flows f ∈ F1 are
pending. Since F1 is the lowest pending class, all pending
flows f ∈ F1 are assigned a slot first. Since there are at most
two such flows, each backlogged flow f ∈ F1 is guaranteed
to be assigned a slot. After being assigned a slot, a flow is
no longer pending and is not assigned another slot until F1’s
next scheduling interval.
Assume the inductive hypothesis holds for k − 1(k > 1).

We prove that every backlogged flow f ∈ Fk is assigned one
slot in every scheduling interval of Fk. If Nk = 0, there is
nothing to prove. Consider any scheduling interval of Fk,
which is of length 2k. Due to the alignment of scheduling
intervals, for every j(1 ≤ j < k), this scheduling interval
coincides with 2k−j scheduling intervals of Fj . By the in-
ductive hypothesis, each backlogged flow f ∈ Fj is assigned
exactly 2k−j slots during this interval. There are at most
Nj such flows. The number of unassigned slots remaining is

2k −
j=k−1X

j=1

Nj2
k−j ≥ Nk

by Lemma 1. Every backlogged flow f ∈ Fk is pending until
it is assigned a slot during these 2k slots. Stratified Round
Robin assigns a slot to a flow belonging to the lowest pend-
ing flow class. Therefore, no flow belonging to a flow class
Fj where j > k is assigned a slot until every pending flow
f ∈ Fk is assigned a slot first. Since there are at most Nk

flows in Fk and there are at least Nk slots available, every
backlogged flow in Fk is guaranteed to be assigned a slot.
After being assigned one slot, a flow is no longer pending
and is not assigned another slot until the next scheduling
interval of Fk. Hence proved. ✷

It is clear that Stratified Round Robin idles only when
there is no packet to send, i.e., it is work conserving. The
following sections analyze the fairness and delay properties
of Stratified Round Robin.

5.1 Golestani fairness
The fairness measure of Golestani [17] essentially requires

that the difference between the normalized service received
by any two backlogged flows fi and fj , over any time period
(t1, t2), be bounded by a small constant. This section an-
alyzes Stratified Round Robin with respect to the fairness
measure of Golestani.

Before considering Golestani fairness, the following lemma
is required. Lemma 2 shows that Stratified Round Robin
assigns a flow fi ∈ Fk slots in proportion to its approximate
weight 2−k. Specifically, it shows that in any x contiguous
slots, the number of slots assigned to fi deviates from its
”expected” value of 2−kx by at most 2.

Lemma 2. Let fi ∈ Fk be a backlogged flow. The number
of slots xi assigned to fi in any time period (t1, t2) is given
by

2−kx− 2 < xi < 2−kx+ 2

where x is the number of contiguous slots that completely
contain (t1, t2).

Proof. See appendix ✷

Corollary 1 uses Lemma 2 to bound the amount of service
that a flow fi can receive in some time period.

Corollary 1. Let fi ∈ Fk be a backlogged flow. The
amount of service Si(t1, t2) received by fi in any time period
(t1, t2) is given by

xwiLM − 5LM < Si(t1, t2) < xwiLM + 5LM

where x is the number of contiguous slot that completely con-
tain (t1, t2).

Proof. See appendix. ✷

Finally, Theorem 2 gives a bound for Stratified Round
Robin with respect to the fairness measure of Golestani.

Theorem 2 (Golestani fairness). In any time period
(t1, t2) during which flows fi and fj are backlogged,

����Si(t1, t2)

ri
− Sj(t1, t2)

rj

���� ≤ 5LM (
1

ri
+
1

rj
)

Proof. Applying Corollary 1 to fi,

xwiLM − 5LM < Si(t1, t2) < xwiLM + 5LM

Dividing by ri,

xwiLM

ri
− 5LM

ri
<

Si(t1, t2)

ri
<

xwiLM

ri
+
5LM

ri

Since wi
ri
= 1

R
,

xLM

R
− 5LM

ri
<

Si(t1, t2)

ri
<

xLM

R
+
5LM

ri
(7)

Similarly, for fj ,

xLM

R
− 5LM

rj
<

Sj(t1, t2)

rj
<

xLM

R
+
5LM

rj
(8)

Taking the difference of equations 7 and 8 yields����Si(t1, t2)

ri
− Sj(t1, t2)

rj

���� ≤ 5LM (
1

ri
+
1

rj
)

✷
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5.2 Bennet-Zhang fairness
The fairness measure of Bennet-Zhang (also called worst-

case fairness) is a more refined notion of fairness. Rather
than comparing the relative amounts of service received by
two flows fi and fj , it compares the service received by a
single flow fi to the service it would receive in the ideal
case, i.e., when fi has exclusive access to an output link of
bandwidth ri

5.
Suppose a packet belonging to flow fi arrives, creating

a total backlog of qi in fi’s queue. The fairness measure
of Bennet-Zhang requires a bound on the maximum time
δi that elapses before the packet is transmitted, thereby
”draining” the backlog of qi. In particular, it is desired to
bound how much δi is in excess of

qi
ri
, which is the amount

of time it would take to clear a backlog of qi with an output
link of bandwidth ri. Theorem 3 gives a bound for δi.

Theorem 3 (Bennet-Zhang fairness).

δi <
qi

ri
+
5LM

ri
+ 5(N − 1)LM

R
(9)

Proof. Let t1 be the time a packet belonging to flow fi

arrives, creating a total backlog of qi at t1. Let t2 be the
time the backlog of qi is drained. By Theorem 2, the amount
of service received by a flow fj(j 	= i) during (t1, t2) is

Sj(t1, t2) < rj
qi

ri
+ rj

5LM

ri
+ 5LM

Since real time elapses only when a flow is serviced, the
elapsed time is simply the total service received by all flows
divided by the bandwidth of the output link R. Therefore,

δi =
qi

R
+
1

R

X
j �=i

Sj(t1, t2)

<
qi

R
+

qi

ri

X
j �=i

rj

R
+
5LM

ri

X
j �=i

rj

R
+
5LM

R

X
j �=i

1

<
qi

ri

j=NX
j=1

rj

R
+
5LM

ri

j=NX
j=1

rj

R
+ 5(N − 1)LM

R

≤ qi

ri
+
5LM

ri
+ 5(N − 1)LM

R

since
Pj=N

j=1 rj ≤ R. ✷

Stratified Round Robin provides a delay bound that is
proportional to the number of flowsN . This is not surprising
as recent lower bounds [31] suggest that a GPS-relative delay
proportional to N is impossible to avoid without incurring
at least O(logN) complexity. The following section shows
that in the special case of a single packet, Stratified Round
Robin achieves a strictly rate-proportional delay bound.

5.3 Single packet delay bound
This section analyzes the single packet delay bound for

Stratified Round Robin, i.e., the maximum time that elapses
between the time it reaches the head of its queue, and the
time it is completely transmitted over the output link. This
is similar to the fairness measure of Bennet-Zhang, except

5This case is identical to the Generalized Processor Sharing
model.

that it deals with a backlog of a single packet. A bound is
derived by considering the maximum number of slots that
can go by before a flow is assigned a slot, and the maximum
real time that elapses in any slot.

Lemma 3. Let τ be the maximum real time that elapses
in any one slot. Then

τ <
3LM

R
(10)

Proof. See appendix. ✷

Theorem 4 (Single packet delay). For every flow
fi, let ∆i be the maximum delay experienced by a packet
at the head of fi’s queue. Then

∆i <
12LM

ri
(11)

Proof. Suppose fi ∈ Fk. A packet reaches the head of
fi’s queue if either fi was not backlogged, or the preceding
packet was transmitted when fi was serviced in the current
slot. In either case, this packet is guaranteed to be trans-
mitted in the next slot assigned to fi. By Theorem 1, fi is
assigned a slot in every scheduling interval of Fk. Therefore
the maximum number of slots that can go by before fi is
assigned a slot again is twice the length of Fk’s scheduling
interval or 2k+1 slots. By Lemma 3, the maximum amount
of real time that elapses in any slot is 3LM

R
. Therefore

∆i ≤ 2k+1τ

<
4R

ri

3LM

R

=
12LM

ri

✷

Theorem 4 gives a strictly rate-proportional upper bound
for ∆i that is independent of the number of flows N . This
means that Stratified Round Robin provides a guarantee
that a flow fi is served within a small constant amount of
time that depends only on its reserved bandwidth and is
independent of the number of flows N . To our knowledge,
this is the first scheme of this complexity that has this prop-
erty 6 . Schedulers of comparable complexity such as DRR
and SRR can delay even a single packet by an amount that
is proportional to N . An O(logN) scheduler like WF2Q

[2] has an optimal Bennet-Zhang bound of LM
ri
. Stratified

Round Robin has a bound that is within a multiplicative
factor of this for the single packet case.
Theorem 4 implies that Stratified Round Robin has good

asymptotic properties, but at the expense of large constant
factors (5 for fairness and 12 for delay). It is likely that a
tighter analysis could reduce these constants (this is the sub-
ject of current work). However, while the large constants are

6An interesting application of this is in the area of
proportional-share processor scheduling [4] [29], where pro-
cessor time must be allocated among N competing pro-
cesses. Stratified Round Robin not only allocates processor
time to each process in proportion to its share, but also pro-
vides a bounded response time for each process. A process is
guaranteed to be scheduled within a small constant amount
of time, independent of the other processes in the system.
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Figure 5: Simulation setup.

not ideal for providing hard QoS guarantees, they are likely
to be the key reason for achieving the low complexity of
Stratified Round Robin. This tradeoff is important because
there are lower bounds on the asymptotic performance of
low complexity schedulers [31]. For example, in the case of
Stratified Round Robin, the Bennet-Zhang fairness measure
is still proportional to N in the general case of a backlog of
packets. A challenge that remains is to design low complex-
ity schedulers that achieve optimal asymptotic properties
subject to these lower bounds, while simultaneously having
small constants that are important for providing strong QoS
guarantees.

6. SIMULATION RESULTS
We simulated the operation of Stratified Round Robin

using the ns− 2 network simulator. The simulation setup is
shown in Figure 5. There are 7 CBR flows from n0 to n4 with
reserved rates ranging from 10 Kbps to 70 Kbps increasing
in steps of 10 Kbps. In addition, to congest the intermediate
links in the network, there are three rogue CBR flows each
between n0 and n4, s1 and r2, and s2 and r3. Each of these
flows transmits at 100 Kbps each. For the purposes of the
simulation, we measure the average and worst-case delays
of a single control flow between n0 and n4, whose reserved
rate is varied from 5 Kbps to 100 Kbps in steps of 5 Kbps.
All delays are measured end-to-end.
Stratified Round Robin is compared against two other

well-known schedulers: Deficit Round Robin and Weighted
Fair Queuing. DRR is chosen because it is a round-robin
scheduler with comparable implementation complexity as
Stratified Round Robin. WFQ is chosen because it is an ex-
ample of a time-stamp scheduler with provably good delay
properties. Essentially, the purpose of the simulation is to
demonstrate that Stratified Round Robin makes it possible
to get WFQ-like delay properties with DRR-like implemen-
tation complexity.
Figure 6 shows the average and worst-case delay prop-

erties of the three schedulers respectively, as a function of
reserved bandwidth. As expected, both average and worst-
case delays of DRR are relatively insensitive to the reserved
bandwidth of the flow. This is because once a flow is ser-
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Delay properties of scheduler

Figure 6: Average and worst-case delays of DRR,
WFQ and Stratified Round Robin.

viced, under DRR, it must wait until all other flows are
serviced before it is serviced again. In the case of WFQ, the
delays are inversely proportional to the reserved rate of the
flow, i.e., the higher the reserved rate, the lower the average
and worst-case delays. This is the case with Stratified Round
Robin as well. It can be seen from Figure 6 that both aver-
age and worst-case delays of Stratified Round Robin closely
mirror that of WFQ. This is despite the fact that the im-
plementation complexity of Stratified Round Robin is only
slightly more than that of DRR, as shown in Section 4.

7. CONCLUSIONS
In this paper, we proposed a new fair queuing scheme

called Stratified Round Robin. The key idea is to group
flows of roughly similar bandwidth requirements into a sin-
gle flow class. Within a flow class, a weighted round robin
scheme with deficit is employed. Since all flows within the
class have approximately the same weight, unfairness can
be bounded. The flow classes are defined by partitioning
the total bandwidth into exponentially increasing intervals.
This permits deadline-based scheduling to be efficiently im-
plemented over flow classes, as the number of flow classes
grows only logarithmically, and for practical scenarios, is a
small constant.
We describe a simple hardware implementation of Strat-

ified Round Robin that can be realized with nothing more
sophisticated than a priority encoder. We emphasize ease
of implementation as one of the key merits of our scheme.
Stratified Round Robin requires only a few bit operations
more than a simple scheme like DRR, but provides much
stronger fairness and delay guarantees.
Finally, we show that Stratified Round Robin has good

fairness and delay properties. Although its worst-case fair-
ness is proportional to N , for the special case of a single
packet, Stratified Round Robin achieves a delay bound that
is strictly rate-proportional and independent of the number
of flows. This property appears to be unique to Stratified
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Round Robin among all schedulers of comparable complex-
ity. Through simulations, we demonstrate that it has good
average-case behavior as well, and provides an accurate ap-
proximation of Weighted Fair Queuing.
To conclude, Stratified Round Robin is a low complexity

scheduler with bandwidth fairness and certain delay bounds.
In addition, it admits a simple and efficient hardware imple-
mentation. Consequently, we believe that Stratified Round
Robin is a good candidate for practical deployment in high-
speed routers.
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APPENDIX
Lemma 1. For k ≥ 1,

Pj=k
j=1 Nj 2

k−j ≤ 2k where Nj is
the cardinality of Fj .

Proof. For k ≥ 1,

j=kX
j=1

Nj2
k−j = 2k(

j=kX
j=1

Nj

2j
)

≤ 2k(

j=kX
j=1

(
X

fi∈Fj

ri

R
) )

≤ 2k
i=NX
i=1

ri

R

=
2k

R

i=NX
i=1

ri

≤ 2k

R
R

= 2k

Hence proved. ✷

Lemma 2. Let fi ∈ Fk be a backlogged flow. The number
of slots xi assigned to fi in any time period (t1, t2) is given
by

2−kx− 2 < xi < 2−kx+ 2

where x is the minimum number of contiguous slots that
completely contain (t1, t2).

Proof. If fi is allocated exactly xi slots, then xi − 2 is
a strict lower bound for the number of scheduling intervals
of Fk contained in the x slots. Therefore x > (xi − 2)2k,
which implies xi < 2−kx + 2. Similarly, xi + 2 is a strict
upper bound for the number of scheduling intervals of Fk

contained in the x slots. Therefore x < (xi + 2)2
k, which

implies xi > 2−kx− 2. ✷

Corollary 1. Let fi ∈ Fk be a backlogged flow. The
amount of service Si(t1, t2) received by fi in any time period
(t1, t2) is given by

xwiLM − 5LM < Si(t1, t2) < xwiLM + 5LM

where x is the minimum number of contiguous slots that
completely contain (t1, t2).

Proof. Flow fi is given a credit of ci for each of the
xi slots assigned to it during the time period (t1, t2). It
can carry over a deficit of at most LM to the next slot.

Therefore,

Si(t1, t2) ≥ xici − LM

> (2−kx− 2)ci − LM

= 2−kxci − 2ci − LM

> 2−kx 2kwiLM − 4LM − LM

= xwiLM − 5LM

Similarly, fi can carry over a deficit of at most LM from the
preceding slot. Therefore

Si(t1, t2) ≤ xici + LM

< (2−kx+ 2)ci + LM

= 2−kxci + 2ci + LM

< 2−kx 2kwiLM + 4LM + LM

= xwiLM + 5LM

✷

The reader may be concerned that while computing the
bounds in Lemma 2 and Corollary 1, a slightly larger period
of x slots is considered instead of the actual period (t1, t2).
It is easy to verify that both the upper and lower bounds
hold for the actual period as well.

Lemma 3. Let τ be the maximum real time that elapses
in any slot. Then

τ <
3LM

R

Proof. If a slot is not assigned to any flow, no packets
are sent on the output link and so no real time elapses. If
a slot is assigned to flow fi ∈ Fk, the amount of service re-
ceived by fi in the slot is at most ci+di, where ci = 2

kwiLM

is the amount of credit given to fi in each slot, and di is the
amount of deficit carried over by fi from its previous slot.
Since ci < 2LM and di < LM , the amount of service received
by fi is at most 3LM . Since fi is given the full bandwidth R
of the output link during this slot, the amount of real time
that elapses is bounded by 3LM

R
. ✷

250


