
Eurographics Symposium on Rendering 2011
Ravi Ramamoorthi and Erik Reinhard
(Guest Editors)

Volume 30 (2011), Number 4

Stratified Sampling for Stochastic Transparency

Samuli Laine Tero Karras

NVIDIA Research

Previous work [ESSL10] Our method

Figure 1: Left of each pair: simple case with white primitives on top of black background, rendered using 16 samples per pixel.

Top part is a quad with α ramp from 0 to 1, middle part is a quad with constant α = 0.61, and bottom part is drawn as 5

quads with α = 0.75. Right of each pair: cloth model with multiple transparent layers rendered using 64 samples per pixel.

The original stochastic transparency algorithm has non-ideal spatial stratification (clumpy noise), problems at primitive edges,

and its stratification properties degrade when there are overlapping layers. Our method dithers the noise properly, has no edge

artifacts, and maintains better stratification for multiple layers.

Abstract

The traditional method of rendering semi-transparent surfaces using alpha blending requires sorting the sur-

faces in depth order. There are several techniques for order-independent transparency, but most require either

unbounded storage or can be fragile due to forced compaction of information during rendering. Stochastic trans-

parency works in a fixed amount of storage and produces results with the correct expected value. However, care-

lessly chosen sampling strategies easily result in high variance of the final pixel colors, showing as noise in the

image. In this paper, we describe a series of improvements to stochastic transparency that enable stratified sam-

pling in both spatial and alpha domains. As a result, the amount of noise in the image is significantly reduced,

while the result remains unbiased.

1. Introduction

Rendering semi-transparent surfaces is a persistent problem
in real-time graphics. Traditional alpha blending requires
that the surfaces are sorted in depth order, which is not al-
ways easy to achieve. Current GPUs can produce primitives
procedurally using tessellation and geometry shaders, and
there may be too much geometry to be sorted in e.g. hair
and fur. Furthermore, when the depth ranges of primitives
overlap, it often becomes impossible to sort them without
conflicts—the primitives do not even need to intersect for

this to happen. Because of these issues, there is still a need
for methods that can render transparent surfaces without or-
dering constraints.

A-buffer [Car84], widely used in offline rendering, cap-
tures all surfaces rendered into a pixel, allowing the trans-
parency to be resolved later when the rendering is complete.
A GPU implementation was recently described by Yang
et al. [YHGT10]. The main problems with A-buffer are its
unbounded memory usage and the need to sort fragments in
pixel in depth order before resolve. Another approach is to

c⃝ 2011 The Author(s)

Computer Graphics Forum c⃝ 2011 The Eurographics Association and Blackwell Publish-

ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,

UK and 350 Main Street, Malden, MA 02148, USA.



Laine and Karras / Stratified Sampling for Stochastic Transparency

store a given maximum number of surfaces per pixel, which
requires heuristically combining surfaces in overflow situa-
tions. Salvi et al. [SML11] present a recent GPU technique,
but the idea has been explored and implemented in hardware
already in the 90s (see e.g. [JC99] for references).

Unfortunately, incrementally combining surfaces can
cause a snowball effect where slight changes in input may
produce radically different outcomes, raising concerns of
temporal coherence. Also, situation where a new surface ap-
pears between already combined surfaces cannot be handled
correctly.

Stochastic transparency [ESSL10] operates in a fixed
amount of storage and produces a result with the correct ex-
pected value. The downside of unbiasedness is that there is
variance in the results, showing as noise in the rendered im-
age. The amount of variance generally depends strongly on
the sampling strategy used. Especially stratifying the sam-
ples in appropriate domains can bound the amount of sam-
pling error in simple situations, and yield overall better sam-
pling in complex situations.

The original stochastic transparency algorithm stratifies
samples only locally within fragments, which has several
weaknesses. In this paper, we describe a series of techniques
for obtaining properly stratified sampling in both spatial and
alpha domains, which reduces the amount of noise in the re-
sulting image considerably. We restrict our scope to the basic
single-pass method with no separate alpha gathering or post-
processing. Multi-pass techniques described in [ESSL10]
could be used to further improve image quality.

1.1. Basics of stochastic transparency

Let us consider the very basics of stochastic transparency.
The naive algorithm is to perform the following computation
for every covered sample.

1. Perform depth test, discard if failed.
2. Randomly choose an opacity reference value x ∈ [0,1].
3. If α > x, write sample to frame buffer and depth buffer.

This simple method yields the correct expected value for a
pixel, but the result is extremely noisy. Already the original
paper on stochastic transparency [ESSL10] abandons this
approach in favor of local stratification of samples. If a frag-
ment covers S samples and has opacity of α, the number of
samples that are to be written is calculated as R = ⌊αS+ξ⌋,
where ξ is a random number between 0 and 1. Then, R sam-
ples are chosen randomly among the covered samples. This
greatly reduces the amount of noise, but as Figure 1 illus-
trates, the lack of spatial stratification makes the remaining
noise somewhat clumpy. Also, because stratification is only
achieved within each fragment, primitive edges have higher
amount of noise than their interiors.

Our approach is based on the naive method outlined
above, but we carefully assign each sample of the pixel an

opacity reference value that is used in place of randomly
chosen x. In contrast to the stratification of Enderton et al.,
we do not first decide how many samples we want to cover,
but instead generate the opacity reference values so that the
desired stratification is obtained. As shown in Figure 1, our
method produces significantly less noise while remaining
unbiased.

It is easy to see that we cannot statically assign opacity
reference values to the samples. Consider e.g. two overlap-
ping surfaces with the same opacity drawn on top of each
other. With static assignment, both will be written into the
exact same samples, and only the closer one will be visi-
ble, which is incorrect. This is what the hardware-supported
alpha-to-coverage multisampling does today, preventing its
use for stochastic transparency. On the other hand, if the sur-
face is drawn in several parts into the same pixel, i.e., there
is an edge inside the pixel, we want the assignment to re-
main consistent. This ensures stratification across the entire
surface in the pixel instead of only within each individual
fragment. Without consistent assignment, the interior edges
of surfaces can become visible, as with the previous method.

Therefore, for a single surface the assignment has to re-
main static, whereas for different surfaces it has to be uncor-
related with previously drawn surfaces. This requires detect-
ing when a new surface is started, which allows us to reas-
sign the opacity reference values. In Section 2 we present a
heuristic method for automatically detecting this situation.

There are several requirements for the opacity reference
values. First, they need to be stratified within the pixel, and
secondly, between nearby pixels. The latter ensures high-
quality dithering instead of random noise. Thirdly, to sup-
port multiple surfaces, it must be possible to produce uncor-
related opacity reference value sequences without sacrificing
the first two properties. In Section 3 we describe a suitable
random number sequence that is also easy to generate.

Finally, even if each single surface is well stratified and
separate surfaces are uncorrelated, there are no guarantees
about the stratification of samples that are affected by mul-
tiple surfaces. We address this problem by sorting the ex-
isting samples, effectively grouping previously encountered
surfaces together, which ensures that each surface that was
previously drawn into the pixel obtains a stratified set of
samples when a surface is drawn on top of them. This is
described in Section 4.

2. Tracking of surfaces

In order to detect a new surface, we maintain a bitmask with
one bit per sample within each pixel. Initially the mask is
empty. In addition, we maintain a surface ID per pixel, start-
ing at zero.

When a primitive is drawn into the pixel, we check if any
of the samples it covers are set in the bitmask. If not, we

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



Laine and Karras / Stratified Sampling for Stochastic Transparency

(a) (b) (c) (d) (e) (f) (g)

Figure 2: An example of tracking of surface changes. (a) Bitmask is initially empty. (b) First triangle arrives, no conflicts with

the bitmask. (c) Bits corresponding to coverage are set. (d) Second triangle of the same surface arrives, no conflicts with the

bitmask. (e) Bits corresponding to coverage are set. (f) Third triangle conflicts with the bitmask and therefore requires opacity

reference value sequence that is uncorrelated with the previous surface. (g) Surface ID is increased and bitmask is initialized

to samples covered by the triangle.

conclude that the primitive does not overlap with the current
surface. We keep the same surface ID, and set the bits corre-
sponding to the covered samples, effectively augmenting the
current surface. Note that we examine all covered samples
that survive the depth test. In particular, the analysis is per-
formed before performing the opacity test that can cull some
of those samples.

If one or more bits corresponding to the covered samples
are already set, we infer that the primitive overlaps with the
current surface, and therefore needs an uncorrelated set of
opacity reference values. In this case we start a new surface,
increment the surface ID, and initialize the bitmask accord-
ing to the coverage of the primitive being drawn. The pro-
cess is illustrated in Figure 2. It should be noted that perfect
tracking of surfaces is not required—it is enough to guaran-
tee that the same samples are not processed twice using the
same surface ID, which the heuristic achieves.

However, the heuristic may fail to keep the same surface
ID in certain cases. When a new surface is started and later
a previous surface is resumed, it is obviously not possible
to return to the sequence used in the previous surface. An-
other imperfection occurs when a previous surface covers
only part of the pixel and a new surface is drawn using many
primitives so that at first the primitives do not overlap the
previous surface but later do. In this case, the change of sur-
face is not detected until reaching the overlapping primitives
of the new surface, yielding two uncorrelated stratification
sequences for it.

We have not observed any visible problems caused by
these failure modes, but it is certainly possible to construct
test cases that intentionally mislead the heuristic.

3. Generation of opacity reference values

To be able to generate opacity reference values on the fly in-
stead of storing them into memory, we need a function that
maps an integer (constructed from sample index, pixel in-
dex, and surface ID) into a floating-point number (opacity

reference value). Furthermore, a continuous span of indices
in this sequence must produce a well-stratified sequence of
opacity reference values, but disjoint spans should be mutu-
ally uncorrelated.

Let us begin by considering the standard base-2 radical in-
verse, obtained by reversing the bits of the index and placing
a binary point in front:

Index Binary Reversed Decimal

0 00000000 .00000000 0.000
1 00000001 .10000000 0.500
2 00000010 .01000000 0.250
3 00000011 .11000000 0.750
4 00000100 .00100000 0.125
5 00000101 .10100000 0.625
6 00000110 .01100000 0.375
7 00000111 .11100000 0.875

This sequence is extremely easy to generate and it fulfills
the requirement that a continuous span of indices produces
a well-stratified sequence. However, it has the problem that
disjoint spans can be correlated. For example, spans 0. . .3
and 4. . .7 produce the exact same sequence of output values,
shifted by 0.125.

If this correlation is not removed, the rendering results are
biased when multiple surfaces are rendered into the same
pixel. This is because each sample has almost constant opac-
ity reference value regardless of surface ID. To remove the
correlation, we perform a scrambling operation to the re-
versed bit sequence. Conceptually, for each bit in the re-
versed bit sequence, we want to take the bits below it, feed
them into a hash function that returns 0 or 1, and XOR this
with the bit we are examining. This produces the same re-
sult as performing an Owen scramble (see [KK02] for a de-
scription) to the original sequence, and therefore retains the
stratification properties we are interested in.

Figure 3a illustrates this concept for a single bit. It does
not matter whether the operations are performed in paral-
lel or sequentially, as the potential flips of less significant

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



Laine and Karras / Stratified Sampling for Stochastic Transparency

1 0 1 0 1 0 0 0

hash

1 0 1 0 1 0 0 0

& with const
parity

(a) Our method (b) Sobol sequence

Figure 3: To produce a bit sequence where disjoint spans are

uncorrelated, we scramble each bit of the sequence based on

some hash of bits below it (⊕ denotes a XOR operation).

The insets at bottom show the results when 8 white surfaces

with α = 0.1 are drawn on top of black background, using

8 samples per pixel. (a) We employ a generic hash function

to provide randomness to the sequence. (b) Sobol sequence

is equivalent to using a particularly simple hash function

consisting of an AND operation with a bit-specific constant

followed by parity count. When multiple surfaces are drawn,

significant correlations remain.

bits can be thought of being incorporated in the hash func-
tion that is in any case random. Contrasting our method
with Sobol sequence (see [BF88] for a practical algorithm),
we introduce more randomness into the sequence at the ex-
pense of potentially worsening its discrepancy characteris-
tics. However, it is essential to remove any unwanted cor-
relation among adjacent pixels and surfaces, or distracting
artifacts may appear as shown in Figure 3b.

Below is an example of a scrambled sequence:

Index Reversed Scrambled Decimal

0 00000000 11000000 0.750
1 10000000 01000000 0.250
2 01000000 00000000 0.000
3 11000000 10000000 0.500
4 00100000 01100000 0.375
5 10100000 11100000 0.875
6 01100000 00100000 0.125
7 11100000 10100000 0.625

We can see that for every aligned sequence of length 2, the
highest bit of the scrambled index has both values of 0 and
1, and therefore the values for such spans are well stratified
(difference is always 0.5). Similarly, for aligned sequences
of length 4 the two highest bits get all possible combinations
of 00, 01, 10, and 11. In fact, every aligned, continuous se-
quence with power-of-two length is perfectly stratified as in
the previously considered radical inverse sequence. In con-
trast to that, disjoint spans are not correlated anymore, and
therefore we can easily obtain uncorrelated but internally
stratified subsequences by jumping into a different place in
the sequence.

function CalcAlphaRef(sampleId, pixelId, surfaceId)
1: x← sampleId+pixelId ⋅ samplesPerPixel

2: x← reverseBits(x)+ surfaceId

3: x← x⊕ (x ⋅0x6C50B47Cu)
4: x← x⊕ (x ⋅0xB82F1E52u)
5: x← x⊕ (x ⋅0xC7AFE638u)
6: x← x⊕ (x ⋅0x8D22F6E6u)
7: return x scaled to range [0,1]

Figure 4: Pseudocode of the opacity reference value calcu-

lation algorithm based on multiply-XOR hash. Variable x is

a 32-bit unsigned integer.

3.1. Construction in practice

Evaluating a hash function per bit can be too expensive
for a practical solution. Fortunately, computing hashes and
XORing the bits can be approximated cheaply by multipli-
cations and word-long XOR operations. Multiplying the in-
dex by an even random number produces a bit string where
each input bit may affect all of the bits above it. XORing
that with the index itself flips each bit based on a hash-like
function of the bits below it. Using multiplication as the hash
function leaves a lot of structure in the results, and therefore
one such operation is not enough to provide enough scram-
bling. Based on our tests, doing four rounds with different
constants are sufficient to remove any detectable structure.

Figure 4 gives the pseudocode of the opacity reference
value calculation using multiplication-based hashing. The
multiplication constants are the ones used in generating the
images in this paper, but they carry no particular significance
beyond that. To obtain perfect stratification among the sam-
ples in a pixel, the sample index is placed into the lowest
bits of the index, and for spatial stratification (dithering), the
pixel index is placed right above it. The pixel index has to
be determined so that nearby pixels have nearby indices. Z
curve (Morton curve) is not adequate, because it gives every
2×2, 4×4, etc. pixel block exactly the same structure, caus-
ing, e.g., pixels with even y coordinate to have a different
expected value than pixels with odd y coordinate. Hilbert
curve produces much better results that have no apparent
structures, and we have used it when generating the images
in this paper. The surface index is placed in the lowest bits
of the reversed bit sequence, i.e., the highest bits of the in-
dex. This ensures that whenever there is a change of surface,
we jump to a completely new part of the sequence and ob-
tain values that are uncorrelated with previously generated
values.

4. Improving stratification of overlapping surfaces

We are now able to ensure that the samples drawn by individ-
ual surfaces are not mutually correlated, providing correct
expected value. However, only the nearest surface is guaran-
teed to end up covering the desired stratified number of sam-

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



Laine and Karras / Stratified Sampling for Stochastic Transparency

Near-to-far; basic algorithm

(a) + =

Near: 50% red Far: 50% green Noisy result

Near-to-far; early depth test + compact

(b) + =

Near: 50% red Far: 50% green Correct result

Far-to-near; early depth test + compact

(c) + =

Far: 50% green Near: 50% red Noisy result

Far-to-near; early depth test + compact + sort

(d) + =

Far: 50% green Near: 50% red Correct result

Figure 5: Ensuring correct stratification with multiple sur-

faces. (a) With no correlation between surfaces, the result is

correct on average, but there are no guarantees that any but

the nearest surface covers exactly the right number of sam-

ples. (b) Considering only the samples that pass the depth

test solves the near-to-far case. (c) When rendering far-to-

near, compaction does not help as all samples of the red sur-

face pass the depth test, and the number of green samples

it covers is again random. (d) Sorting the samples accord-

ing to depth of previously drawn surfaces groups them into

continuous spans, restoring the stratification.

ples. To be precise, given N samples per pixel, the nearest
surface will cover either ⌊αN⌋ or ⌈αN⌉ samples with cor-
rect probabilities, but there are no similar bounds for sur-
faces behind it. As an example, consider a situation where
a surface is drawn with α = 0.5 and N = 16. Due to strati-
fication of opacity reference values this will cover exactly 8
samples in every pixel. Now, if another such surface is drawn
behind the first one, it will cover 4 samples on the average
after depth test. However, it can cover any number between
0 and 8 samples, depending on the opacity reference values,

and therefore it will be noisy. Similarly, if the second sur-
face is drawn in front of the first one, it can occlude between
0 and 8 samples of the first surface, again causing noise on
the far surface. In both cases the correct result is to have the
far surface cover exactly 4 samples in the end, but so far
we are unable to make this happen. Figure 5a illustrates the
front-to-back case.

The first step to remedy this situation is to apply per-
sample depth test before any other computation, and assign
sample IDs continuously to the surviving samples. This is
illustrated in Figure 5b. By not considering samples that
would be occluded by existing surfaces in the pixel, we
obtain correct stratification among the covered, unoccluded
fragments.

However, when surfaces are drawn in the opposite order,
the early depth test does not help, as illustrated in Figure 5c.
In order to improve the result in this particular case, we must
make the later drawn, occluding surface cover exactly half
of each previously drawn surface. We accomplish this by
sorting the samples before assigning them indices. We first
look at the previous depth values stored in the depth buffer
at each of the covered samples. We then sort the samples
in increasing order based on these depths. This groups the
surfaces in the pixel together and ensures that each previ-
ously drawn surface gets a continuous span of indices from
the opacity reference value sequence, ensuring good stratifi-
cation, as illustrated in Figure 5d. There is no need to detect
individual surfaces in any way, and it is in fact desirable to be
able to stratify groups of surfaces (e.g. distant foliage) as a
whole. Therefore, sorting the samples is preferable to trying
to group the samples into discrete surfaces.

One more detail needs to be taken into account when ap-
plying the early depth test. If we always start the number-
ing of samples that pass the depth test from zero, we cannot
any more guarantee stratification within the same surface if
it is drawn in multiple fragments. This again leads to edge
artifacts. In order to fix this, we need to know how many
samples we have already drawn from the current surface and
continue the numbering of samples from there. Fortunately,
this information is easily obtained by counting the number
of bits set in the current surface coverage bitmask used for
detecting surface changes. In case of starting a new surface
after a conflict, we start the counting from zero.

Figure 6 illustrates the effect of sorting when drawing a
cloth model that has multiple transparent layers and trian-
gles ordered randomly. In Figure 6a we can see regions of
high and low amount of noise. In places where the near sur-
face is drawn first, the compaction of samples is enough to
guarantee that the far surface gets the correct number of sam-
ples, and hence low amount of noise. However, when the far
surface is drawn first, there is no guarantee of it having the
correct number of samples after the near surface is drawn
over it. These regions exhibit high amount of noise. In Fig-

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



Laine and Karras / Stratified Sampling for Stochastic Transparency

(a) (b)

Figure 6: Effect of sample sorting. (a) Without sorting, the

result is more noisy in places where the surfaces are drawn

in far-to-near order. (b) With sort the level of noise is the

same everywhere.

procedure DrawFragment(pixel p, samples S)
1: for each sample s ∈ S do

2: if s.z > p.depth[s.sampleId] then remove s from S

3: end for

4: if for any s ∈ S bit p.covered[s.sampleId] is set then

5: p.surfaceId← p.surfaceId+1
6: clear p.covered

7: end if

8: n← number of set bits in p.covered

9: sort S in order of increasing p.depth[s.sampleId]
10: for each sample s ∈ S do

11: ref ← CalcAlphaRef(n, p.pixelId, p.surfaceId)
12: if s.opacity > ref then

13: p.depth[s.sampleId]← s.z

14: p.color[s.sampleId]← s.color

15: end if

16: n← n+1
17: end for

18: for each s ∈ S do set p.covered[s.sampleId]

Figure 7: Pseudocode of the final stratified stochastic trans-

parency algorithm. See text for walkthrough.

ure 6b, we see that when the samples are sorted, all parts of
the image have the same low amount of noise.

Figure 7 gives pseudocode for the final stratified stochas-
tic transparency algorithm. Set S contains the samples of the
fragment being drawn. Lines 1–3 perform depth test and
lines 4–7 and 18 track the current surface. Lines 8–11 and
16 ensure correct ordering of opacity reference values, and
lines 12–15 perform the opacity test and conditional write. It
should be particularly noted that on line 9 the samples of the
fragment are sorted according to previously drawn depths at
the covered sample positions, not the depths of the samples
in the fragment being drawn.

spp MOTOR CLOTH

our comp. ratio our comp. ratio

4 29.5 36.3 0.81 17.0 19.3 0.88
8 17.9 25.3 0.71 9.7 12.3 0.79

16 10.3 17.2 0.60 5.6 8.4 0.67
32 6.3 12.1 0.52 3.3 5.8 0.57
64 4.0 8.7 0.46 2.0 4.1 0.49

Table 1: RMSE in 8-bit color units. As the number of sam-

ples per pixel grows, our RMSE improves faster than with

the comparison method, indicating better stratification. At

64 samples per pixel, our method about halves the magni-

tude of noise compared to the previous method.

5. Results and Discussion

Our algorithm is primarily targeted at hardware implemen-
tation, and it is most probably not feasible to implement
it in shaders like the original stochastic transparency algo-
rithm [ESSL10]. Therefore, we shall not provide execution
time statistics but focus only on image quality. We compare
our method against the basic method of Enderton et al., as-
suming that they do depth tests before determining the num-
ber of samples that a fragment covers—the original paper
leaves room for interpretation, so we chose the alternative
that favors the comparison method.

Figure 9 shows the results using our method and the basic
method of Enderton et al. in case of a multi-layered, com-
plex model. The model has constant α = 0.3, and all surfaces
are rendered using diffuse shading. The effectiveness of our
method can be seen in both image quality and the RMSE
values computed against a reference image rendered using
thousands of samples per pixel. Figure 10 shows a similar
improvement for a colorful cloth model with α = 0.4. Ta-
ble 1 summarizes the RMSE results. We can see that our
RMSE falls faster when the number of samples is increased,
indicating better stratification. Judging from the images and
the RMSE results, our method with 16 samples per pixel is
quite close to the comparison method with 64 samples per
pixel, allowing significant memory, computation and band-
width savings.

When a large number of layers are rendered on top of each
other, our stratification attempts are mostly in vain as can be
expected. Figure 8 shows a case where dozens of transparent
layers are rendered on top of each other, as is often done for
particle effects. In these kind of situations algorithms that
merge layers adaptively (e.g., [SML11]) can perform much
better unless temporal coherence becomes an issue.

Considering GPU implementation, the execution of our
algorithm would be best suited in ROP (raster operation)
stage that follows shading and traditionally performs blend-
ing. It should be noted that the for loops in the pseudocode
(Figure 7) can be trivially parallelized, because the samples
are independent.

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



Laine and Karras / Stratified Sampling for Stochastic Transparency

Our method Comp. method Depth complexity

RMSE = 5.5 RMSE = 5.7 White = 200

Figure 8: With an extreme number of layers, our method

loses most of its effectiveness but never performs worse than

the comparison method. This cloud of smoke consists of tex-

tured billboards with α = 0.05 and is rendered with 16 sam-

ples per pixel.

6. Future work

Combining the multi-pass methods of Enderton et al.
[ESSL10] with our stratification algorithm should improve
the results as in the original paper. Quantifying the improve-
ment remains an interesting task. As an alternative to gather-
ing alpha values in a separate pass, it may be possible to filter
out the remaining noise using some kind of post-process al-
gorithm in the spirit of Shirley et al. [SAC∗11]. Examining
whether this approach is as well suited for transparency as
for other stochastic effects and how exactly the filter widths
should be decided provide further avenues for future work.

References

[BF88] BRATLEY P., FOX B.: Algorithm 659. Implementing
Sobol’s quasirandom sequence generator. ACM Transactions on

Mathematical Software 14, 1 (1988), 88–100. 4

[Car84] CARPENTER L.: The A-buffer, an antialiased hidden sur-
face method. SIGGRAPH Comput. Graph. 18 (1984), 103–108.
1

[ESSL10] ENDERTON E., SINTORN E., SHIRLEY P., LUEBKE

D.: Stochastic transparency. In Proceedings of the ACM Sym-

posium on Interactive 3D Graphics and Games (2010), pp. 157–
164. 1, 2, 6, 7

[JC99] JOUPPI N. P., CHANG C.-F.: Z3: An economical hard-
ware technique for high-quality antialiasing and transparency. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-

shop on Graphics hardware (1999), pp. 85–93. 2

[KK02] KOLLIG T., KELLER A.: Efficient multidimensional
sampling. Computer Graphics Forum 21, 3 (2002), 557–564.
3

[SAC∗11] SHIRLEY P., AILA T., COHEN J., ENDERTON E.,
LAINE S., LUEBKE D., MCGUIRE M.: A local image recon-
struction algorithm for stochastic rendering. In Proceedings of

the ACM Symposium on Interactive 3D Graphics and Games

(2011), pp. 9–13. 7

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adaptive
order independent transparency: A fast and practical approach to
rendering transparent geometry. Game Developers Conference,
March 2011. 2, 6

[YHGT10] YANG J., HENSLEY J., GRÜN H., THIBIEROZ N.:

Real-time concurrent linked list construction on the GPU. Com-

puter Graphics Forum 29, 4 (2010), 1297–1304. 1

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.



Laine and Karras / Stratified Sampling for Stochastic Transparency

4 samples / pixel 16 samples / pixel 64 samples / pixel

O
ur

m
et

ho
d

RMSE = 29.5 RMSE = 10.3 RMSE = 4.0

C
om

pa
ri

so
n

m
et

ho
d

RMSE = 36.3 RMSE = 17.2 RMSE = 8.7

Figure 9: A complex motor model rendered using white untextured surfaces, diffuse shading, and α = 0.3. The RMSE values

are in 8-bit RGB units, i.e., RMSE of 1 would indicate that the magnitude of noise is 1/256 of the full brightness range.

4 samples / pixel 16 samples / pixel 64 samples / pixel

Our method Comp. method Our method Comp. method Our method Comp. method
RMSE = 17.0 RMSE = 19.3 RMSE = 5.6 RMSE = 8.4 RMSE = 2.0 RMSE = 4.1

Figure 10: A textured cloth model rendered using diffuse shading and α = 0.4.

c⃝ 2011 The Author(s)
c⃝ 2011 The Eurographics Association and Blackwell Publishing Ltd.


