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First-line treatment with cisplatin and etoposide has been 

standard of care for metastasized small cell (SCLC) and non-small 

cell lung cancer (NSCLC) for many years. This paradigm changed 

with the introduction of second-generation chemotherapeutic 

agents such as paclitaxel, docetaxel, and gemcitabine. Platinum-

combinations with these drugs were shown to be superior to cispl-

atin and etoposide in NSCLC patients and defined new standards 

[1–4]. Newer chemotherapeutic agents, such as pemetrexed and 

antiangiogenic drugs, have moderately increased efficacy and toler-

ability of conventional treatment predominantly in adenocarci-

noma [5–9]. However, response rates and overall survival have 

only marginally improved with non-stratified treatment approaches. 

With a range of 1 year, median overall survival remains almost un-

changed and it becomes evident that the limits of conventional sys-

temic approaches have been reached.

Since the discovery of oncogenic EGFR mutations in a distinct 

subgroup of NSCLC patients and the first evidence of the high effi-

cacy of EGFR inhibition in these, a big step forward has been made 

for an increasing number of genetically defined NSCLC sub-entities. 

More and more molecularly stratified treatment strategies were suc-

cessfully tested and implemented into clinical routine in the recent 

years [10–18]. Broad comprehensive analyses of patients’ character-

istics and genetic tumor profiles were undertaken by several groups 

in order to better understand the natural history of lung cancer and 

the characteristics of the different genetic subgroups [19–21]. Large 

molecular screening and treatment networks have been established 

in different countries to implement comprehensive genetic testing 

and stratified treatment into clinical routine. Through these efforts 

the number of patients receiving stratified treatment increased 

steadily to about 20% of all lung cancer patients nowadays. How-

ever, for the majority of patients no promising targeted treatment 

approaches could be established so far, including tumors with com-

plex genetic profiles like aberrations in tumor suppressor genes or 

G-proteins, which are mostly found in tobacco-triggered disease 

[22]. For these patients, immune checkpoint inhibitors are now a 

new and promising option. This review will focus on stratified thera-

pies directed against transforming genetic aberrations. 
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Summary

Even though great efforts have been made to improve 

chemotherapy-based treatment approaches for lung 

cancer, the prognosis of patients with advanced and me-

tastasized disease remains particularly poor. In recent 

years, a growing number of genetic aberrations driving 

lung cancer have been identified. Targeted inhibition of 

some of these aberrations, most prominently mutated 

EGFR and ALK, by tyrosine kinase inhibitors has dramat-

ically increased efficacy and tolerability of systemic lung 

cancer treatment in subsets of patients. However, the 

duration of response is limited due to the acquisition of 

molecular mechanisms of resistance to targeted treat-

ment. Modern next-generation inhibitors aim to break 

resistance. A deep understanding of the mechanisms of 

treatment failure is imperative to the development of 

new approaches. In this review, we focus on the current 

status of stratified therapy in lung cancer and highlight 

new, potentially promising treatment approaches.

© 2016 S. Karger GmbH, Freiburg

Principles of Stratified Medicine

While for decades lung cancer subtype classification and thera-

peutic strategies were restricted to histology and morphology only, 

the disease now has turned out to be highly heterogeneous on the 

genomic level. This development does not only help us to under-

stand the clinical heterogeneity of lung cancer, but also enables us 

to achieve therapeutic breakthrough advances by developing bio-

logical-rational treatment approaches based on a precise under-

standing of the molecular mechanisms underlying malignant 

transformation and its inhibition. 
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Stratified treatment follows a recurrent principle, which should 

not be confounded with targeted treatment in unselected patients, 

e.g. antiangiogenic treatment. The difference lies in the identifica-

tion of molecular targets triggering oncogenic growth (depend-

ency) and thus predicting efficacy through specific inhibition 

(vulnerability). 

Resistance and New Generation TKIs

Like other malignancies, lung cancer is characterized by a high 

genomic instability and increased mutation rate [23]. The constant 

acquisition of genetic aberrations and treatment pressure by tar-

geted antineoplastic drugs result in the selection of desensitized 

tumor cells following Darwinian rules [24]. Following stratified ty-

rosine kinase inhibitor (TKI) treatment, resistance is often medi-

ated through secondary mutations in the target gene preventing 

the enzymatic inhibition [25]. Substitution of the ‘gatekeeper’ thre-

onine for example is a recurrent pattern in different cancer entities 

after treatment with targeted drugs [25]. 

Next-generation TKIs are designed to overcome resistance me-

diated by secondary mutations and have shown to be highly suc-

cessful in NSCLC [25–28].

Owed to intra-tumor heterogeneity, resistance may alternatively 

be mediated by aberrations independent of the target gene or by 

more than one mechanism simultaneously [29, 30]. This complexity 

represents a growing challenge and combination therapies are tested 

to overcome resistance through multiple factors [29, 31, 32]. The 

heterogeneous nature of resistance makes tissue analysis by thor-

ough genetic profiling indispensable to treatment decision-making.

EGFR

Mutations in EGFR have been the first targetable aberrations to 

be identified in lung cancer [33, 34]. Activating EGFR mutations 

are detected in approximately 10 % of Caucasian NSCLC patients 

and the most common aberrations include the substitution L858R 

in exon 21 and a variety of small deletions in exon 19 [19–21, 33, 

34]. With the majority of EGFR-mutant NSCLC patients being 

non-smokers and female, this subgroup is characterized by dis-

tinct clinico-pathological features [19–21, 35]. Superiority in 

terms of response rates and progression-free survival (PFS) of the 

first-generation TKIs gefitinib and erlotinib in first-line compared 

to chemotherapy was proven in several trials [10–13, 15, 36]. 

However, due to cross-over of chemotherapy patients to TKI ther-

apy after progression, overall survival (OS) was not significantly 

improved with either gefitinib or erlotinib. In a cohort analysis of 

the LUX-Lung 3 and 6 trials, the second-generation inhibitor 

afatinib was shown to prolong OS in EGFR del19-positive NSCLC 

patients [37]. Although an OS benefit could not be demonstrated 

in randomized trials, there is no doubt that treatment with any 

EGFR TKI significantly prolongs OS in EGFR-mutated patients 

compared to chemotherapy. In a retrospective analysis of the Ger-

man Network Genomic Medicine, the median OS with chemo-

therapy treatment was significantly longer with EGFR TKI treat-

ment as compared to chemotherapy (31.5 vs. 9.6 months, HR 

0.169) [21]. A comparable OS benefit was shown in analyses by 

the US Lung Cancer Mutational Consortium and the French Co-

operative Thoracic Intergroup [19, 20]. 

Even though big advances were made with the clinical use of 

EGFR TKIs, median PFS does not exceed 12–14 months and treat-

ment inevitably fails due to the acquisition of molecular resistance. 

In approximately 60 % of cases a secondary mutation of the ‘gate-

keeper’ threonine in exon 20 of EGFR, EGFR T790M, is responsible 

for the desensitization to EGFR TKIs [25, 38, 39]. Modern third-

generation TKIs are able to overcome resistance in patients with 

EGFR T790M-positive NSCLC [27, 28]. Osimertinib, so far the 

only drug approved in this setting by the Federal Drug and Food 

Administration (FDA) and the European Medicines Agency 

(EMA), showed a response rate (RR) of 61 % and a PFS of 9.6 

months in a phase I trial [40]. Other third-generation EGFR TKIs 

such as EGF816 and olmutinib (BI 1482694/HM61713) are in clin-

ical development and show similar results regarding efficacy and 

safety [41–43]. 

Resistance to EGFR TKI may not be restricted to the acquisi-

tion of a single mechanism. Co-occurrance of EGFR T790M and 

other mechanisms such as amplification of MET and HER2 or  

the activation of the MEK/ERK pathway were found in subsets  

of patients [29–32, 44]. Single agent treatment with third-genera-

tion EGFR TKIs seems to be insufficient in this setting [29, 30, 32, 

44, 45]. Trials combining TKIs that target EGFR as well as MET 

or MEK are currently enrolling patients (NCT02143466; 

NCT02335944).

Several mechanisms of acquired resistance to third-generation 

TKIs were recently identified, including the same EGFR-independ-

ent mechanisms that mediate resistance to first- or second-genera-

tion EGFR TKIs [29, 44]. The substitution mutation EGFR C797S 

inhibits third-generation EGFR TKIs to bind to the protein and 

block the enzymatic activity, thus mediating resistance to the treat-

ment [46, 47]. Currently, no drug is in clinical testing to break this 

mechanism of acquired resistance. 

Whether third-generation EGFR-TKIs will be used in first-line, 

is a topic of ongoing discussion. Preliminary results of osimertinib 

in first-line treatment, showing a PFS of about 20 months are 

promising [48]. 

ALK

Rearrangements of the ALK gene predominantly affect never-

smokers of younger age and are found in approximately 5% of 

NSCLC patients [19–21, 49–51]. Upon the results of superiority in 

efficacy (RR, 74% vs. 45% and PFS, 10.9 vs. 7.0 months; HR, 0.45) 

and safety of first-line crizotinib compared to platinum-based 

chemotherapy, the drug recently received approval by the EMA 

and the FDA for expanded use in ALK-positive patients [16, 52]. 

Acquisition of secondary mutations in ALK is a common mech-

anism of resistance to crizotinib [26, 53, 54]. However, resistance 

factors independent of ALK have been described [53]. The devel-

opment and approval of next-generation ALK inhibitors, that 

break resistance to crizotinib, has been remarkably fast. With re-
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sponse rates around 50% the second-generation TKIs ceritinib and 

alectinib, have shown high efficacy in the setting of crizotinib re-

sistance [17, 18, 55]. 

Up to 30% of patients with ALK-rearranged NSCLC have brain 

metastases at baseline and a large part of patients treated with cri-

zotinib will experience isolated progression of central nervous sys-

tem (CNS) metastases [56–58]. Intracranial RR of crizotinib in pa-

tients with untreated CNS metastases is 18% and thus much lower 

than the extracranial RR [57]. A possible explanation for the recur-

rent CNS failure of crizotinib may lie in the low blood-brain-bar-

rier penetration of the drug [56, 57]. Second-generation ALK in-

hibitors exhibit a higher CNS penetration and subgroup analyses of 

study data suggest a higher activity in brain metastases than crizo-

tinib [58, 59]. Still, the question will need further clinical investiga-

tion and low patient numbers as well as heterogeneous patient se-

lection make comparison between the different trials difficult. 

At this time, 2 potential treatment alternatives remain in pa-

tients with isolated CNS progression – treatment beyond progres-

sion with crizotinib and local treatment of CNS metastases or 

switch to a CNS penetrable ALK TKI [55]. Recently, the next-gen-

eration ALK inhibitors lorlatinib and brigatinib have been brought 

into clinical evaluation (NCT01970865; NCT01449461; 

NCT02737501). First results of lorlatinib showed RR of 42 % in pa-

tients who exhibit progression on 2 or more ALK TKIs. In patients 

who have received treatment with 1 TKI, lorlatinib and brigatinib 

show similar RR around 60% [58, 60]. 

ROS1

Like aberrations in EGFR and ALK oncogenic rearrangements 

of ROS1 predominantly affect young never-smokers and are associ-

ated with a favorable prognosis. Prevalence is low, ranging between 

1 and 2% of the overall NSCLC population [45, 49, 61, 62]. The 

ALK/ROS1/MET inhibitor crizotinib is the first drug to show effi-

cacy in this patient subgroup. The phase I trial by Shaw and col-

leagues found a RR of 72% with a median PFS of 19.2 months and 

retrospective analyses showed similar efficacy [63]. Further pro-

spective trials, including an international European trial (EU-

CROSS; NCT02183870), are testing crizotinib in this patient sub-

group and are likely to confirm this data. Recently, the EMA and 

the FDA granted conditional approval for crizotinib treatment in 

ROS1 rearranged NSCLC, setting a new standard of care for these 

patients.

Following the same biological rules, targeted therapy in ROS1-

positive patients results in the acquisition of resistance [64–68]. 

Unlike EGFR and ALK TKI resistance, resistance to crizotinib in 

ROS1-positive patients is not well understood. Only a few second-

ary mutations in ROS1 have been described so far and ROS1-inde-

pendent mechanisms of resistance may be an important factor [69, 

70]. The multi-target inhibitor cabozantinib showed efficacy in 

pre-clinical models and single patient cases with acquired resist-

ance to crizotinib and the resistance mutations G2032R, D2033N 

and L2026M [65, 67, 68]. More selective drugs such as the next-

generation ALK/ROS1 TKI lorlatinib are in clinical investigation 

and showed promising efficacy in this setting [71].

MET

The oncogenic potential of the receptor tyrosine kinase (RTK) 

MET may be triggered by different mechanisms of activation in 

multiple tumor entities [72–75]. In NSCLC, activation of MET was 

reported by overexpression in 22–25%, by high-level amplification 

in 3% and most recently by exon 14 skipping mutations in approxi-

mately 3% of patients [73, 76, 77]. Amplification of MET is associ-

ated with worse survival after resection and in patients with ad-

vanced cancer stage [73, 78]. 

Various MET inhibitors or monoclonal antibodies have been in 

clinical development for many years now and most have failed to 

prove convincing efficacy. The most prominent example is the 

MET antibody onartuzumab [79]. Based on the promising phase 

II results of onartuzumab in combination with erlotinib in pa-

tients with high MET expression, a phase III trial was launched to 

test this combination in this patient subgroup. The trial was 

stopped for futility, and a debate emerged on the possible reasons, 

focusing on the misleading phase II results and the insufficient 

molecular selection of patients due to unsuccessful definition of 

biomarkers. 

Modern, more potent MET inhibitors such as crizotinib and 

capmatinib have shown high efficacy in patients with high-level 

amplification or expression of MET as well as MET splice site 

 mutations in clinical trials, retrospective analyses, and case reports 

[77, 80–83]. However, further comprehensive analyses are needed 

to define reliable cut-offs for true MET positivity predicting re-

sponse to MET inhibition.

BRAF

Mutations in BRAF may have different effects on the encoded 

RTK. Mutations involving codon V600 are activating, whereas mu-

tations involving other bases may be inactivating. However, both 

kinds of mutations harbor oncogenic potential and were described 

in 2–4% of NSCLCs [19–21, 84–86]. BRAF mutations are predomi-

nantly found in adenocarcinomas and patients share similar epide-

miological characteristics with the overall NSCLC population. In-

hibitors of BRAF have long been used in patients with BRAF V600-

mutated melanoma [87, 88]. Recently, clinical trials have shown 

moderate activity of the BRAF inhibitors dabrafenib and vemu-

rafenib in V600-mutated NSCLC as monotherapy [89, 90]. RR are 

considerably increased to 63 % when dabrafenib is combined with 

the MEK inhibitor trametinib, whereas, toxicity profiles are simi-

lar. In patients with BRAF V600E-positive lung cancer suffering 

from relapse after standard chemotherapy, treatment with this 

combination should be considered either in clinical trials or 

off-label. 

New Targets in SCLC and NSCLC

The number of biomarkers accessible to targeted treatments is 

continuously increasing in adenocarcinomas of the lungs. In squa-

mous cell lung cancer and SCLC major screening efforts have long 

failed to identify targetable aberrations. 
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Most recently, a promising targeted approach was brought to 

clinical development in SCLC. A major fraction of 72–85% of 

SCLC shows an overexpression of the delta-like 3 surface protein 

(DLL3), a marker for neuroendocrine phenotype [91]. These find-

ings led to the development of the antibody-drug conjugate (ADC) 

rovalpituzumab teserine (Rova-T) targeting DLL3. An early clini-

cal trial presented at ASCO 2016 showed a RR of 30% in patients 

with SCLC harboring DLL3 expression of 50% independent of 

the number of prior lines of therapy [92]. Trials further investigat-

ing the drug in DLL3-positive SCLC patients in different lines of 

therapy have been launched (NCT02674568, NCT02819999). 

The discovery of amplifications of FGFR1 in SCLC has led to 

the investigation of several FGFR inhibitors in these tumors [93–

95]. However, the results of early clinical trials with lucitinib, 

BGJ398, dovitinib or ADZ4547 in FGFR1-amplified NSCLC have 

been disappointing [96–98]. Nevertheless, long-lasting responses 

are proof-of-principle for the activity in patients with FGFR1-am-

plified NSCLC [98]. Yet, it is unclear what co-occurring factors in-

fluence response to FGFR inhibition or whether amplification as-

sessed by FISH is the right biomarker for prediction of response.

Rearrangements of NTRK1, encoding the RTK TRKA have re-

cently been found in 0.1% of all NSCLC patients and in 3% of 

driver-oncogene negative adenocarcinoma patients [99–101]. Pa-

tients with NTRK1-rearranged NSCLC are particularly young and 

predominantly never-smokers. The pan-TRK inhibitors entrec-

tinib and LOXO-101 are subject to clinical development and show 

promising activity in pre-clinical models and early clinical setting 

[68, 99, 102–104]. 

Other genetic aberrations such as mutations in HER2 or rear-

rangements of RET have been reported in subsets of patients with 

NSCLC. TKIs and monoclonal antibodies that potentially inhibit 

the two proteins do exist, but clinical evaluation is still ongoing 

[49, 105–107]. 

How and What to Test?

One of the most crucial challenges of precision medicine lies in 

the detection of the increasing number of genetic aberrations that 

are subject to targeted drugs. Currently, conventional approaches 

by sequential single gene testing are widely applied. Tissue from 

biopsies of lung cancer is often restricted and requires reasonable 

processing. The amount of DNA needed for single gene based mo-

lecular pathologic characterization of a tumor increases with every 

sequential analysis. Starting with the most likely aberration, it may 

be possible that rare oncogenic events are not identified for the lack 

of further tumor tissue. The main hurdle of modern diagnostics are 

therefore the need to test an increasing number of genetic aberra-

tions in a limited amount of tumor tissue. 

Next generation sequencing (NGS) approaches are able to over-

come these difficulties. Targeted massively parallel (MPS) or hy-

brid-capture based DNA-sequencing allow the analysis of multiple 

amplicons of a pre-defined subset of relevant genes of a large num-

ber of individuals in a single run [19–21, 108, 109]. Aberrations 

can be detected on single-nucleotide level, such as point mutations 

in EGFR or KRAS, or at a larger scale, including deletions, amplifi-

cations, or rearrangements. In clinical routine, however, amplifica-

tions and rearrangements are often detected by fluorescence in-situ 

hybridization, which is the most evaluated method and still the 

gold-standard in most cases. 

Modern approaches to detect and sequence cell-free tumor 

DNA (cfDNA) have been developed to detect genetic aberrations 

on nucleotide level [110, 111]. The third-generation EGFR inhibi-

tor osimertinib has been approved for the treatment of patients 

with EGFR T790M detected by cfDNA analyses. However, tumor 

heterogeneity responsible for more complex resistance profiles, 

such as MET or HER2 amplification, may not be detected by con-

ventional single gene sequencing technologies [44]. The value of 

liquid biopsies in the treatment of lung cancer, especially in the re-

sistance setting needs further evaluation.

Recommendations on what genes to test in metastasized NSCLC 

are inconsistent and underlie constant change. A recently published 

consensus report from the Molecular Analysis for Personalised 

Therapy Conference (MAP) recommends testing for mutations in 

EGFR, ALK, and ROS1 in daily routine but also recommends test-

ing of further 20 genes within screening programs to allow patients 

the participation in clinical trials or off-label treatment [112]. With 

an increasing number of potential treatment options as outlined 

above, determination of EGFR, ALK, and ROS1 status is insuffi-

cient nowadays. Large European screening platforms like the Net-

work Genomic Medicine or the French Cooperative Thoracic Inter-

group have proven to efficiently perform screening for a large sub-

set of relevant genes in huge numbers of NSCLC patients [19, 21]. 

Conclusions

An increased understanding of the molecular mechanisms un-

derlying malignancy has led to a new perception of lung cancer as a 

disease of many genetically defined subgroups. This has enabled 

the development of biologically rational stratified treatment strate-

gies against molecular alterations defining these subgroups. Today, 

about 20% of lung cancer patients benefit from such approaches 

either with approved drugs or in clinical trials. For patients with 

oncogenic aberrations in EGFR, ALK, and ROS1 specific kinase in-

hibitor therapy has already become standard of care. Genetic aber-

rations in BRAF, HER2, RET, MET, NTRK, and others are in clini-

cal evaluation. More and more the biological mechanisms underly-

ing the resistance to TKI therapy are understood and enable the 

successful therapy with next-generation inhibitors, in particular in 

EGFR-mutated and ALK-positive patients. The application of these 

stratified therapies requires broad molecular testing of tumor biop-

sies and, in the near future, possibly also blood, at first diagnosis as 

well as in relapse. In view of the enormous dynamics in the field a 

particular challenge of this development is the reorganization of 

the collaboration between highly specialized academic centers, 

community hospitals, and private practice-based physicians to en-

able access of all lung cancer patients to these therapeutic options.  
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