
RESEARCH ARTICLE Open Access

Stratifying patients using fast multiple
kernel learning framework: case studies of
Alzheimer’s disease and cancers
Thanh-Trung Giang1,2, Thanh-Phuong Nguyen3,4* and Dang-Hung Tran5

Abstract

Background: Predictive patient stratification is greatly emerging, because it allows us to prospectively identify
which patients will benefit from what interventions before their condition worsens. In the biomedical research, a
number of stratification methods have been successfully applied and have assisted treatment process. Because of
heterogeneity and complexity of medical data, it is very challenging to integrate them and make use of them in
practical clinic. There are two major challenges of data integration. Firstly, since the biomedical data has a high
number of dimensions, combining multiple data leads to the hard problem of vast dimensional space handling.
The computation is enormously complex and time-consuming. Secondly, the disparity of different data types
causes another critical problem in machine learning for biomedical data. It has a great need to develop an efficient
machine learning framework to handle the challenges.

Methods: In this paper, we propose a fast-multiple kernel learning framework, referred to as fMKL-DR, that optimise
equations to calculate matrix chain multiplication and reduce dimensions in data space. We applied our framework
to two case studies, Alzheimer’s disease (AD) patient stratification and cancer patient stratification. We performed
several comparative evaluations on various biomedical datasets.

Results: In the case study of AD patients, we enhanced significantly the multiple-ROIs approach based on MRI
image data. The method could successfully classify not only AD patients and non-AD patients but also different
phases of AD patients with AUC close to 1. In the case study of cancer patients, the framework was applied to six
types of cancers, i.e., glioblastoma multiforme cancer, ovarian cancer, lung cancer, breast cancer, kidney cancer, and
liver cancer. We efficiently integrated gene expression, miRNA expression, and DNA methylation. The results
showed that the classification model basing on integrated datasets was much more accurate than classification
model basing on the single data type.

Conclusions: The results demonstrated that the fMKL-DR remarkably improves computational cost and accuracy for
both AD patient and cancer patient stratification. We optimised the data integration, dimension reduction, and
kernel fusion. Our framework has great potential for mining large-scale cohort data and aiding personalised
prevention.

Keywords: Patient stratification, Alzheimer’s diseases, Cancers, Multiple kernel learning, High dimensional data
space, Dimension reduction
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Background

Patient stratification has widespread biomedical and

clinical applications, including diagnosis, prognosis, and

treatment response prediction. A clinically useful predic-

tion algorithm should be accurate, generalizable, be able

to integrate diverse data types, and handle sparse data

[1–5]. To achieve effective personalised medicine, pa-

tient stratification models are essentially required for all

of diseases. Amongst the most emerging diseases, cancer

and Alzheimer’s disease (AD) have been attracted a lot

of research due to the severity, the complication and the

high prevalence.

Alzheimer’s disease is a neurological disorder in which

the death of brain cells causes memory loss and cognitive

decline. Aging is the primary cause of AD, however, there

are several other reasons related to lifestyle, such as phys-

ical inactivity, obesity, unhealthy diets, alcohol abuse, etc.

[6]. Among AD’s phases, Mild Cognitive Impairment

(MCI) are a critical phase because patients with MCI have

higher risks for late stage of AD or other dementias.

Stratifying AD patients in the early stage is crucial, so that

we identify cases whose MCI signs may potentially be

converted to the last severe stage of AD [7].

Magnetic Resonance Imaging (MRI) data has been

popularly used in AD patient stratification due to MRI’s

high-quality three-dimensional images of brain. Based

on MRI data, regions of interest (ROI) which affect dis-

ease development could be revealed, contributing signifi-

cantly to AD diagnosis and treatment. There are two

main approaches based on ROIs, the single-ROI based

approach [8] and the multiple-ROI based approach [9–

11]. Chupin et al. [8] used probabilistic and anatomical

priors for hippocampus segmentation to determine AD,

NC, MCI. Ahmed et al. [11] proposed an automatic clas-

sification framework for AD, normal controls (NC),

MCI, considering visual features from the most involved

regions in AD. Several multivariate approaches, such as

partial least squares and principal component analysis,

were developed to build a discrimination model [12]. Liu

et al. [13] constructed an individual network based on

ROIs and used it as input of a classification model.

Other previous work on multiple ROIs showed that they

increased the performance of AD diagnosis [14]. In [15,

16], Liu et al. demonstrated not only ROIs, but also the

correlations between ROIs were closely related to AD

diagnosis results. Even though the previous methods

have achieved remarkable results, they have not com-

pletely solved the problem of high dimensional data, in

terms of accuracy and computational cost.

Cancer is not only threatening but also very diverse.

Cancer patient stratification has been one of most chal-

lenging topics in biomedical informatics. Previous work

have either focused on a specific data type of interest,

such as gene expression, DNA methylation [17–20] or

combined multiple data [21, 22]. Nowadays patient data

has immensely been available with diverse information,

such as gene expression, DNA methylation, miRNA ex-

pression, protein expression, exon expression, etc. [23].

It has been shown that there are multiple factors con-

tributing to cancer pathology. Developing novel methods

to combine a wide range of data is emerging and chal-

lenging [24–28].

The computation for learning high dimensional space

is extremely complex and time-consuming. Since data

types are of great difference (for example, categorial

data, numerical data, imaging data), it is therefore essen-

tial to unify data measurement before integrating them.

Lin et al. in [28] have proposed an effective method to

combine data from different sources. They used multiple

kernel learning to solve the second challenge and re-

duced data dimension basing on graph embedding. The

method was applied to the image processing problem

for ten data types in the Caltech-101 dataset [29]. In a

recent study, Spacher et al. employed this method to

cluster cancer patients and attained good results [30].

However, their work limited on the distribution of pa-

tients into different clusters and subtypes of cancers.

In this paper, we have proposed a novel computational

framework based on fast multiple kernel learning and di-

mension reduction (fMKL-DR in short), addressing chal-

lenges in AD and cancer patient stratification. In the

case study of AD patients, we enhanced significantly the

performance of the multiple-ROIs approach when com-

paring with previous methods. Accuracy and Area

Under a Curve (AUC) demonstrated that our proposed

method was more accurate and robust than previous

work. In the case study of cancer patients, the frame-

work was applied to six types of cancers, i.e., glioblast-

oma multiforme cancer, ovarian cancer, lung cancer,

breast cancer, kidney cancer, and liver cancer. We effi-

ciently integrated gene expression, miRNA expression,

and DNA methylation. The results showed that the clas-

sification model basing on integrated dataset was much

more accurate than classification model basing on the

single data type. The results obtained by both AD and

cancer applications manifest that our developed model

potentially stratifies patients and later aid disease pre-

vention and prognosis.

Methods

The proposed framework is demonstrated in Fig. 1.

There are five main steps. In the first step, we obtained

biological data related to cancer and AD from various

information sources. These data in different types (e.g.

imaging data, numerical data, textual data) were pre-

processed in the second step. Data transformation is re-

quired to obtain a complete matrix, in which each row is

a sample data and each column represents a feature.
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We employed a number of data pre-processing

methods to eliminate redundant and noisy data. Fur-

thermore, machine learning algorithms expect the

scale of the training data to be equivalent, so we also

used normalization to scale feature values to the

range between − 1 and 1. We further employed a

number of data pre-processing methods to eliminate

redundant and noisy data. Specifically, we removed a

feature if its data were missed in any subject (about

3% of the total number of features). Secondly, we

generated kernel matrices from the above data matrix

using different kernel functions. Each kernel matrix is

a square symmetric and positive definite matrix, that

represents the similarity of data samples based on a

specific kernel function. In the next step, the kernel

matrices are integrated into a final matrix using a

multi-kernel learning framework. Since the kernel

matrices have a large number of dimensions, we pro-

posed the fast multi kernel learning framework com-

bined with dimensional reduction algorithm, so-called

fMKL-DR. Finally, we modelled predictive binary clas-

sifications with SVMs to stratify cancer and AD pa-

tients. Details of each step are described in the

following sections.

Data curation and pre-processing

In this section, we present the methods for collecting

and pre-processing MRI images and genomics data for

Alzheimer’s disease; proteomics and genomics data for

cancer diseases.

Image data from AD patients

MRI images of Alzheimer’s disease patients were ex-

tracted from Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI).1 The dataset consists of 710 T1-weighted

subjects (data samples), including 200 subjects diagnosed

with AD, 280 subjects with MCI, and 230 normal con-

trol (NC) subjects. Among 280 subjects with MCI, there

are 120 subjects, that have MCI and convert to AD

within 18months (MCIc) and 160 subjects who have

MCI and do not convert to AD (MCInc). To analyse the

MRI images, we applied the six measures for cortical

and sub-cortical regions proposed by Liu et al. [13].

More specifically, those six measures are Cortical Gray

Matter Volume (CGMV), Cortical Thickness (CT), Cor-

tical Surface Area (CSA), Cortical Curvature (CC), Cor-

tical Folding Index (CFI) and Sub-cortical Volume (SV).

We performed a complete procedure of image pre-

processing, including spatial normalization, intensity

normalization, skull stripping, segmentation and fill for

obtaining the higher quality images. As the result, all im-

ages were registered with AAL atlas [31] before ana-

tomic re-construction by FreeSurfer software.2

After calculating the six measures for cortical and sub-

cortical regions, we represented the obtained data in

terms of graphs. We generated six graphs Gk corre-

sponding to six measures, namely as GCGMV, GCT, GCSA,

GCC, GCFI, GSV. In a graph Gk, the set Vk denotes set of

vertices (vi), representing the regions. We denote Ek as

Fig. 1 The systematic pipeline of the proposed method. Step 1 is to collect data from different data sources. Step 2 is to pre-processing data,
removing noisy data, rescaling data, normalizing data. Step 3 is to generate kernel matrices and then the kernel matrices are then combined in
the Step 4. The number of dimensions is also optimised to obtain the most suitable numbers of dimensions and reduce the computation cost.
The last step is to stratify patients using SVMs

1http://adni.loni.usc.edu
2https://surfer.nmr.mgh.harvard.edu
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the set of edges (eii), consisting the weighted connections

between two regions. The weight wij of the edge eij be-

tween two regions i and j is calculated as following:

wij ¼
1

dij þ 1

where dij is the distance between two regions and dij = ∣

mi −mj∣ (given mi and mj are measure values of region

i and region j, respectively). For example, GCGMV con-

sists of 78 vertices and 3003 edges. In case of the sub-

cortical region, GSV was constructed by the set Vi of 12

vertices and the set Ei of 66 edges. Both Vi and set Ei are

matrices R[m,n], where m is the number of samples/sub-

jects in our model, and n is the number of vertices or

the number of edges, respectively. The illustration of the

AD’s MRI images pre-processing is shown in Fig. 2.

Genomic data from AD patients

In addition to MRI images, gene expression data of AD

patients is very interesting for stratifying AD patients.

From the ADNI database,3 we downloaded a raw gene

expression dataset of 442 subjects, which includes 43 AD

subjects, 139 MCI subjects, and 260 NC subjects. We

extracted 22,609 genes for each subject and represented

the gene expression dataset as a matrix, in which col-

umns are subjects and rows are genes.

Proteomic and genomic data from cancer patients

We extracted six cancer patient datasets from the TCGA

database (The Cancer Genome Atlas, 2019)4 including

Glioblastoma Multiforme (GBM), Ovarian Serous Cysta-

denocarcinoma (OV), Squamous Cell Lung Carcinoma

(LUNG), Breast Invasive Carcinoma (BREAST), Kidney

Renal Clear Cell Carcinoma (KIDNEY), and Liver Can-

cer (LIVER). In order to acquire multiple biomedical as-

pects related cancer, three data features were

investigated in our model of cancer patient stratification,

specifically gene expression, miRNA expression, DNA

methylation. The statistics of cancer datasets are pre-

sented in Table 1. The raw data were pre-processed by

removing the missing data and represented each data

type as a matrix R[m,n], in which columns are subjects,

and rows are genes.

Data rescaling

The values in each dataset have different magnitudes,

units, and ranges. This variety causes an issue that the

higher magnitude dataset will have greater weight than

the lower ones. Therefore, we rescaled all of data values

into the same range, enabling the equity between

datasets. We used min-max scaling to scale the data into

the range [− 1, 1].

Multiple kernel learning combined with dimensionality

reduction (MKL-DR)

Multiple Kernel Learning (MKL) is a machine learning

method, modelling a kernel ensembled from many ker-

nel functions or kernel matrices. Recent research on

MKL have shown that learning SVMs with multiple ker-

nels not only increases the accuracy but also enhances

the expandability of the classification [25]. The MKL

framework aims to the optimal for linear combination

from input kernels. MKL’s illustration is shown in Fig. 3.

In Lin et al. [28], multiple kernel learning was im-

proved by combining it with dimensionality reduction

algorithm, so-called the MKL-DR. This framework was

developed basing on graph embedding [32]. Yan et al.

constructed an ensemble model, which enabled the in-

corporation of several dimensional reduction methods.

The method presented data in the form of graph and

provided a unified framework for a broad set of DR algo-

rithms. Moreover, the paper developed a new dimen-

sional reduction method. Based on the input graph, the

rejection vector was found to project the vertices of

graph in new low-dimensional space so that it best char-

acterised the similar relationship between pairs of train-

ing samples basing on the graph preserving criterion.

MKL-DR integrated better data from different sources

and reduced the data dimensions, enhancing accuracy

and computational cost. In this paper, we embedded

Linear Discriminant Analysis [33] into the MKL-DR

framework.

Fast MKL-DR using dynamic programming

There are three parameters that affect the performance

of the MKL-DR, i.e., the number of samples (N), the

number of data types (M), and the dimensions after be-

ing reduced (P). In case that the value of M is small,

often between 3~10, the number of dimensions after be-

ing reduced is small (in our experiment, we chose P = 5).

Therefore, the computation complexity is O(N3), which

is polynomial time. The MKL-DR training algorithm cal-

culates iterative equations:

SAW ¼
X

N

i; j¼1

wij K
ið Þ−K jð Þ

� �T

AAT
K

ið Þ−K jð Þ
� �

ð1Þ

SAW 0 ¼
X

N

i; j¼1

w0
ij K

ið Þ−K jð Þ
� �T

AAT
K

ið Þ−K jð Þ
� �

ð2Þ

S
β
W ¼

X

N

i; j¼1

wij K
ið Þ−K jð Þ

� �

ββT K
ið Þ−K jð Þ

� �T

ð3Þ
3http://adni.loni.usc.edu
4https://www.cancer.gov/tcga
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S
β

W 0 ¼
X

N

i; j¼1

w0
ij K

ið Þ−K jð Þ
� �

ββT K
ið Þ−K jð Þ

� �T

ð4Þ

Given SAW ; SAW 0 ; S
β
W ; S

β

W 0 are the matrices, which is used

in the optimization problem [28]; wij, w’ij are elements of

the similarity matrices aggregated from the kernel matri-

ces; A is the sample coefficient matrix, and β is the ker-

nel weight vector.

Each of four above Eqs. (1), (2), (3), (4) calculates the

sum of the matrix chain multiplication (see more details

in [28]). As the result, the MKL-DR will become

Fig. 2 The illustration of the AD MRI images pre-processing. Firstly, we pre-processing MRI images by FreeSurfer software based on AAL atlas.
Then, we construct six individual networks on cortical and subcortical areas from MRI images based on six anatomical measures, which included
GCGMV, GCT, GCSA, GCC, GCFI, GSV. Each network includes two kinds of dataset: V and E

Giang et al. BMC Medical Informatics and Decision Making          (2020) 20:108 Page 5 of 15



exhaustively time-consuming when increasing the num-

ber of samples.

Matrix chain multiplication has a combinatory prop-

erty, meaning that changing calculation order between a

pair of the matrices will affect the number of product

operations without modifying the multiplication results.

Therefore, we propose to use a dynamic-programming-

based procedure to find the calculation sequence that

gives minimum product operations. If the number of

product operations is minimum, the computation time

of the equations will be reduced.

The minimum product operation order problem based

on dynamic programming:

Given N matrices A1, A2,…, AN with size of Ai is di− 1× di.

Problem: Find the order of product matrix chain A1 ×

A2 ×… ×AN to minimize the number of product

operations.

Solution: Construct matrix F is a matrix N ×N, with

element F(i, j) is the total product operations to calculate

matrix chain multiplication from Ai to Aj (Ai ×Ai + 1 ×

… ×Aj). The formula to calculate F(i, j) defined by:

F i; ið Þ ¼ 0;

F i; iþ 1ð Þ ¼ di−1 � di � diþ1;

F i; jð Þ ¼ min F i; tð Þ þ F t þ 1; jð Þ þ di‐1 � dt � d j

� �

with t = i + 1, i + 2, …, j − 1. In other words, t is a mid-

point to insert the parentheses to change the calculation

order so that the number of product operations is

minimum:

Ai � Aiþ1 �…� A j ¼ Ai � Aiþ1 �…� Atð Þ
� Atþ1 � Atþ2 �…� A j

� �

The dimension of the matrix of (Ai ×Ai + 1 ×… ×At) is

di–1 × dt, and the dimension of the matrix of (At + 1 ×At +

2 ×… ×Aj) is dt × dj.

Based on the above assumption, we developed an im-

proved algorithm to matrix chain multiplication to

minimize product operations shown in Algorithm 1.

The MCMO complexity is O(N3). However, in the

above equations, N (the number of matrices in chain) is

small and equals to 4. Consequently, the time consump-

tion of MCMO is trivial. Moreover, MCMO only calls 2

Table 1 Statistics of datasets in the cancer case study

Cancer Number
of
Samples

Number of features (dimensions) per data type

Gene expression DNA methylation miRNA expression

LUNG 106 12,042 23,074 352

GBM 275 12,042 22,896 534

BREAST 435 12,042 24,978 354

OV 541 12,042 21,825 799

KIDNEY 122 17,899 24,960 329

LIVER 451 13,426 25,168 216

Fig. 3 The illustration of Multiple Kernel Learning given that X i is
original dataset, Ki is kernel matrix that is constructed by kernel
function ki, βi is weighted coefficient combining K1 to KM to unify a
final kernel matrix K, H i is the Hilbert space of ith dataset in the
kernel method
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times in fMKL-DR, which is built as demonstrated in Al-

gorithm 2.

The fast MKL-DR algorithm is described below.

The matrices SAW ; SAW 0 ; S
β
W ; S

β

W 0 are calculated in the

lines 6th and 8th of Algorithm 2 based on the ordering

of OA and Oβ. These matrices have the same values as

MKL-DR ones.

Experimental design

We carried out three main experiments to investigate

the performance of our method. The first experiment

was done on the AD patients’ the MRI image dataset,

comparing our proposed method to previous work. In

the second experiment, we tested our method on the

AD patients’ gene expressions. The last experiment was

designed based on the six cancer patient datasets. In all

of the experiments, we evaluated three measurements

including accuracy, AUC, and computational time.

E1: Experiment based on MRI images dataset of Alzheimer’s

disease patients

After pre-processing the Alzheimer’s disease patients

MRI images datasets, we generated 12 individual net-

works. We designed the experiment as follows:

� Step 1. We built multiple kernel matrices by using

different parameters from 12 original datasets.

Specifically, from each dataset, we used the Gaussian

kernel function k(x, x') = exp(−‖x − x'‖2/2σ2). We

run the experiments with 5 different parameters σ∈

{10− 6, 10− 3, 1, 103, 106} to generate 5 kernel

matrices. We constructed 60 kernel matrices from

12 original datasets, that were used as input data for

the next step.

� Step 2. Develop four models for the four binary

classification problems, AD and NC, AD and MCI,

NC and MCI, and MCIc and MCInc, denoted by

CAD/NC, CAD/MCI, CNC/MCI, and CMCIc/MCInc

correspondingly. We employed libSVM library5 with

60 kernel matrices generated in Step 1. The set of

parameters is the default one in libSVM with -s

(svm_type) = 0 (C-SVC), −c (cost) = 1, −wi

(weight) = 1.

� Step 3. For each classification problems (CAD/NC,

CAD/MCI, CNC/MCI, and CMCIc/MCInc), 20

experiments were performed. In each experiments,

2/3 dataset were randomly selected from the original

dataset for training, and the rest was used for

testing. The best result among the 20 experiments is

reported and statistically tested.

� Step 4. Compare the results between our proposed

method and the recent other methods.

E2: Experiment based on Alzheimer’s disease patient gene

expression dataset

We designed the experiment based on AD patient gene

expression dataset as follows:

� Step 1. Generate four different kernel matrices by

four different kernel functions including Gaussians,

Polynomial, Linear, Sigmoid kernel function,

which were developed in the dimensionality

reduction library.6 Default parameters were set

as below.

Gaussian Kernel: t is number of samples.

Polynomial: d = 2

Linear: c = 0

Sigmoid: α = 1/D, D is the number of dimensions

of dataset, and c = 0.

� Step 2. Integrate and reduce dimensions from the

four kernel matrices from Step 1 by fMKL-DR into a

unified kernel.

� Step 3. Develop five classification models based on

the libSVM library, i.e., CGaussian with Gaussian

kernel matrix), CPolinomial with Polinomial kernel

matrix), CLinear with Linear kernel matrix), CSigmoid

with Sigmoid kernel matrix), and CfMKL-DR with

unified kernel matrix that is got in Step 2). The

libSVM parameters were set as default values

(showed in Step 1 of E1).

� Step 4. Carry out the same procedure as Step 3 in

E1.

� Step 5. Compare the results between the

classification model using single gene expression

5https://www.csie.ntu.edu.tw/~cjlin/libsvm/
6http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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dataset with different kernel functions (Step 1) and

the unified kernel (Step 2).

E3: Experiment based on cancer patient datasets

We carried out the following four steps on each dataset

to evaluate the proposed method.

� Step 1. Run the fMKL-DR algorithms by initializing

A or β. Both of initializations produce similar re-

sults, even though the first initializing A obtains fas-

ter convergence. Integrate multiple data sources and

reduce the number of data dimensions by fMKL-DR.

� Step 2. Develop four classification models based on

three single datasets and one combined dataset and

SVMs, i.e., CGE for the gene expression dataset,

CDNA for the DNA methylation dataset, CmiRNA for

the mirRNA expression dataset), and CfMKL-DR for

the unified kernel matrix obtained in Step 1. For the

three models (CGE, CDNA, and CmiRNA), we used the

default values in libSVM with Gaussian kernel

function (gamma = 1/num_features, num_features is

the number of features of data). In the case of the

model CfMKL-DR, the kernel is the one obtained

unified kernel matrix and the other parameters are

set as the default values in libSVMs.

� Step 3. Perform the same procedure as Step 3 in E1.

� Step 4. Compare the results between the

classification model using a single data type and the

one with data integration.

These abovementioned experimental steps were run

on the six patient datasets of cancer patients to evaluate

the efficiency of the methods.

Statistical test

We performed statistical tests to assess the robustness of

the obtained results, specifically one sample t-test with

n = 20. At 95% confidence level, the hypothesis tests (on

mean of accuracy and AUC) were done to evaluate

whether they are statistically significant.

Results

Application of stratifying Alzheimer’s disease patients

To investigate performance of our classification model,

we carried out four experiments for four classification

subgroups including AD/NC, AD/MCI, NC/MCI, MCIc/

MCInc (MCI and converted to AD/ MCI and not con-

verted to AD). We evaluated our method by comparing

accuracy and area under curve (AUC) of our classifica-

tion model to previous works, which used the same

dataset of the MRI images from ADNI.

Table 2 Accuracy of the previous methods and the proposed method for different AD patient groups

Method Classification Model Accuracy (%)

AD/NC AD/MCI NC/MCI MCIc/MCInc

Chupin et al., 2009 [8] 80.51 73.48 71.94 64.21

Ahmed et al., 2015 [11] 86.40 74.51 76.29 68.72

Khedher et al., 2015 [12] 88.96 84.59 82.41 70.11

Dai et al., 2013 [9] 90.81 85.92 81.92 71.04

Suk et al., 2014 [10] 93.05 88.98 83.67 72.86

Liu et al., 2018 [13] 95.24 90.85 86.35 74.28

Proposed method (the best result among 20 runs) 96.50 91.25 87.65 78.49

Proposed method (at 90% confidence level of t-test) 95.80 90.63 86.47 77.42

Table 3 Comparative AUC results of the previous methods and the proposed method for different AD patient groups

Method AUC

AD/NC AD/MCI NC/MCI MCIc/MCInc

Chupin et al., 2009 [8] 0.7851 0.7328 0.7155 0.6638

Ahmed et al., 2015 [11] 0.8487 0.7562 0.7677 0.6814

Khedher et al., 2015 [12] 0.9256 0.8859 0.8134 0.7076

Dai et al., 2013 [9] 0.9429 0.8743 0.8118 0.7086

Suk et al., 2014 [10] 0.9475 0.9007 0.8203 0.7123

Liu et al., 2017 [13] 0.9754 0.9355 0.9107 0.7885

Proposed method (the best result among 20 runs) 0.9786 0.9412 0.9151 0.8024

Proposed method (at 90% confidence level of t-test) 0.9705 0.936 0.911 0.7945
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Tables 2 and 3 showed accuracy and AUC of the

previous work and our method applied to the four patient

subgroups, respectively. In term of both accuracy and

AUC, the whole brain-based method achieved significantly

better results than single ROI-based method [8] or mul-

tiple ROIs-based method proposed by [11]. The results

showed that the multiple ROIs-based approach was more

appropriate than the other. It is well aligned with clinical

practice that AD related to all of brain regions, rather than

a specific one or some regions. In comparison with the

whole brain-based methods proposed by Khedher et al.

[12], and Suk et al. [10], and Dai et al. [9], or Liu et al.

[13], we obtained better accuracy and AUC than they did.

AUC of our proposed method is close to 1, demonstrating

the accurateness and robustness of the method.

Figure 4 shows the ROC curves of four analysis

groups. We achieved high AUCs for all of the groups.

The AD/NC model had the highest value equal to 0.978,

followed by AD/MCI equal to 0.941, NC/MCI equal to

0.915, and MCIc/MCInc equal to 0.802. The ROC con-

firmed that our method was highly efficient in stratifying

AD patients for all phases.

Gene expression data of the AD patients was proc-

essed and run with different kernels functions in our

framework, specifically k1 = Gaussians, k2 = Polyno-

mial, k3 = Linear, k4 = Sigmoid, and our integrated

kernel function (see more in Table 4). Accuracy of

the integrated kernel function method was higher

than all of single-kernel function methods on the

same dataset.

Fig. 4 The four ROC curves of the classification models on the MRI data of AD patients

Table 4 Case study of the AD patient stratification, accuracy between gene expression and proposed method integrated four
kernels (different kernel functions: k1 = Gaussians, k2 = Polynomial, k3 = Linear, k4 = Sigmoid). fMKL-DR is the best accuracy among
the 20 runs, and fMKL-DRa is accuracy tested at 95% confidence level

Tasks #
Subjects

Accuracy (%)

Gaussian Polynomial Linear Sigmoid fMKL-DR fMKL-DRa

AD/NC 303 88.12 87.13 88.19 87.13 91.09 90.1

AD/MCI 182 83.33 81.67 83.33 80.00 85.00 83.33

NC/MCI 399 70.68 69.92 69.92 69.17 75.94 75.19
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Application of stratifying cancer patients

The accuracy and reliability of classification models is

shown in Fig. 5 and Table 5. The results demonstrated

that classification models based on a single data type

were less accurate than the one basing on integrated

data. Specifically, testing the method on all cancer data-

sets, the fMKL-DR model produced the best accuracy.

Table 5 shows accuracy of the classifiers on the differ-

ent datasets. In this table, the fourth, fifth, and sixth

columns represent accuracy of the classifiers based on

single datasets, such as Gene expression, DNA methyla-

tion, and miRNA expression. The last two columns show

accuracy of the classifier based on the integrated dataset

with fMKL-DR. The classifier on the integrated dataset

has a high accuracy ranging from ~ 72% to ~ 94%. Espe-

cially, accuracy on BREAST and KIDNEY datasets were

very high, values of 94.29 and 87.50%, respectively. Thus,

in all cancer patient datasets, the classifiers based on

Fig. 5 The ROC curves of the classifiers for the six cancer datasets
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fMKL-DR have demonstrated to be effective for patient

stratification since it obtained better results than the

other classifiers based on each single dataset.

Figure 5 shows the ROC curve of the classifiers on the

different cancer datasets, including lung cancer, GBM,

breast cancer, OV cancer, liver cancer, and kidney can-

cer. For each data type of cancers, we drew four ROC

curves corresponding to the four classifiers training on

Gene Expression, DNA Methylation, miRNA Expression

and the integrated dataset. The classifier implemented

by our method (fMKL-DR) obtained the best AUC value

when compared to classifiers on each individual dataset.

In addition, these AUC values are relatively high, ran-

ging from 0.63 to 0.75, this implies that the predicted re-

sults of our models are reliable.

Discussion

The fMKL-DR framework has been showed the robust-

ness and accurateness in both applications of AD and

cancer patient stratification. We have tested different

datasets of heterogenous data types, from imaging data

to numerical data. The numbers of dimensions are also

varied. The classification models were built for various

cancer types and all of them achieved significant results,

showing the high generalization of the model. When

stratifying AD patients, the method could classify even

the different phases of AD patients, not only AD or non-

AD patients. Therefore, it is very promising for early

diagnosis and follow up of effective treatment for AD

patients, especially since the late phase of AD is

untreatable.

Fig. 6 Computational time of the methods for the AD patient stratification with the different sizes of samples (iterations equals 10)

Table 5 Case study of the cancer patient stratification: accuracy obtained for each dataset and data integration. fMKL-DR is the best
accuracy among the 20 runs, and fMKL-DRa is accuracy tested at 95% confidence level

Cancer Number of Samples Alive/Dead Gene expression DNA methylation miRNA expression fMKL-DR fMKL-DRa

LUNG 106 42/64 62.50 65.63 71.88 78.13 75.00

GBM 275 202/73 77.44 75.56 76.67 81.11 80.00

BREAST 435 360/75 88.57 88.57 91.43 94.29 93.57

OV 541 258/283 59.44 58.33 55.00 62.22 61.67

KIDNEY 122 90/32 81.25 81.25 78.13 87.50 85.00

LIVER 451 277/174 66.00 69.00 65.00 72.00 71.33
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In addition to high accuracy for both cancer and AD,

our proposed method is much faster than the previous

work. This advantage is of great significance because

there are more and more data available, and data will be

more and more complex. The problems of data sparsity,

and heterogeneity requires cost-effective and accurate

methods. Figure 6 and Table 6 show the computation

time of two previous methods, MKL-DR, rMKL-DR and

the proposed method fMKL-DR on Alzheimer’s Disease

dataset. Figure 7 and Table 7 demonstrate the computa-

tional time when running the experiments on the cancer

datasets. In all cases, our method reduced notably the

computational cost. Especially, we saved more time than

previous method did when the scales of datasets were

increased. For example, we saved 702 s for the breast

cancer dataset of 435 subjects, and 958 s for the ovarian

cancer dataset of 541 subjects. Our proposed method is

very beneficial when analysing huge data cohorts.

The fMKL-DR method is advantageous in optimizing

the best number of dimensions/features after reduction,

denoted as f. Feature selection and feature engineering

are crucial steps to acquire the best performance. We set

f from 100 to 1000 by step of 50, and run all the tests

with set values of f. The results of AD patient stratifica-

tion with different numbers of features are showed in

Fig. 8. The highest accuracy is obtained with about 400

features for AD/NC classification, about 450 AD/MCI

and NC/MCI classifications, and about 500 features for

MCIc/MCInc classification. It turns out two main

points. Firstly, the optimal number of features is

classifier-independent, meaning that there is no com-

mon set up of dimension reduction for all classifiers.

Table 6 The comparison of the computational time of MKL-DR, rMKL-DR and the proposed method (in bold) on Alzheimer’s
Disease MRI dataset

Tasks #Samples Computation time (seconds)

5 iterations 10 iterations 20 iterations

MKL-DR rMKL-DR fMKL-DR MKL-DR rMKL-DR fMKL-DR MKL-DR rMKL-DR fMKL-DR

AD/NC 430 1005 1014 702 2011 2029 1408 4022 4060 2817

AD/MCI 480 1322 1337 843 1646 1675 1687 3292 3351 3374

NC/MCI 510 1506 1528 996 3013 3057 2108 6027 6115 4217

MCIc/MCInc 280 73 73 43 146 147 86 293 294 173

Fig. 7 Computational time of the methods for the cancer patient stratification with the different sizes of samples (iterations equals 10)
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Secondly, increasing number of dimensions does not al-

ways improve performance of the model, even decrease

accuracy. As the result, our framework optimised the

numbers of dimensions to ensure the best performance

of the classifier.

There are some limitations that will be improved in the

future work. Firstly, data preprocessing, including missing

data handling, will be better performed. In this paper, we

removed a feature if its data were missed in any subject.

Therefore about 3% of the total number of features (e.g.,

20,000 genes of the whole genome) were removed. The

missing mechanism will be deeply analysed to define the

type of missing data, missing completely at random or

missing at random or missing not at random. Depending

on the types of missing data, a appropriate technique, such

as data imputation, will be applied. Secondly, parameter

optimisation will be of interest. We set the default values

in our experiments to ensure the comparative evaluation

with the other related work, however the better perform-

ance can be obtained by testing several sets of parameters

and parameter optimisation algorithms.

The proposed framework is very useful when analysing

high dimensional genomics data. Dimension reduction

can be applied in the significance analysis on gene expres-

sion data. In multi-assay data exploration, dimension re-

duction facilitates downstream gene set, pathway and

network analysis of variables. Integrative data analysis is of

great interest due to the complexity of biology and medi-

cine. Because multi-omics data, such as DNA sequence,

epigenome, transcriptome, protein, metabolites, is more

and more available, there is an increasing need for devel-

oping methods with high performance. Single kernel

methods are not suitable to encode heterogenous or

multi-modal datasets. The proposed framework can be

easily adjusted to ingrate new data types, making it flexible

in other applications, such as biomarker identification.

The framework is adaptable for other disease studies, in

addition to cancer and AD. Precision medicine is required

big data integration, especially electronic health records

and whole genome sequencing data. Therefore, our

method will be very beneficial to precision medicine.

Conclusions

In this paper, we have proposed the accurate and fast

kernel learning framework. We employed the framework

to stratify AD patients and cancer patients. We handled

a wide range of data, including the MRI image data for

AD, the gene expression data for both AD and cancer,

miRNA expression, DNA methylation for cancer. By car-

rying out a number of testing strategies, the results

showed that our model performed better than previous

Table 7 Computation time (in second) in comparing to previous methods for the cancer datasets

Cancer Num of
Samples

Computation time (seconds)

5 iterations 10 iterations 20 iterations

MKL-DR rMKL-DR fMKL-DR MKL-DR rMKL-DR fMKL-DR MKL-DR rMKL-DR fMKL-DR

LUNG 106 4 4 3 9 9 6 18 19 13

KIDNEY 122 5 5 4 12 12 8 36 37 27

GBM 275 69 69 41 138 139 82 276 279 165

BREAST 435 1064 1074 714 2130 2149 1428 4262 4298 2857

LIVER 451 1183 1195 752 2367 2391 1508 4734 4782 3017

OV 541 1716 1750 1237 3433 3502 2475 6867 7005 4952

Fig. 8 The accuracy of the models with different numbers of reduced dimensions for AD/NC, AD/MCI, NC/MCI, and MCIc/MCInc classification
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work, in term of accuracy, AUC, and computational

time. In fact, the electronic health records will be more

and more available, offering better insights of patient

studies. As there are more and more data available from

diverse sources, it is emerging to develop computational

method to combine and mine those heterogenous data.

Our proposed framework is very promising to handle

high dimensional data and to aid precision medicine.
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