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Abstract

Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes,
but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be
different in lean (BMI,25 Kg/m2) compared to obese cases (BMI$30 Kg/m2). We performed two case-control genome-wide
studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases
(BMI,25 kg/m2) or 4,123 obese cases (BMI$30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881
lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual
and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets,
we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with
type 2 diabetes in lean cases (P = 8.461029, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese
cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—
was associated with type 2 diabetes in obese cases (P = 1.361028, OR = 1.11 [95% CI 1.07–1.15]), although this association was
not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had
a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk
allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2610214. This was larger than the same model fitted in the obese analysis where the
OR = 1.06 [95% CI 1.05–1.08], P = 2.2610216. This study provides evidence that stratification of type 2 diabetes cases by BMI may
help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
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Introduction

Common diseases such as type 2 diabetes are highly phenotyp-

ically heterogeneous. Few studies have performed genome wide

association studies in subsets of patients defined by more stringent

phenotypic characteristics. It is possible that reducing the

heterogeneity of disease cases may increase power to detect

associations over and above the loss of power resulting from

reduced numbers. To address these questions we hypothesized

that the genetic predisposition to Type 2 diabetes may be different

in two strata of cases defined by well-accepted cut-offs for body

mass index, the strongest known risk factor for type 2 diabetes.

Genome-wide association (GWA) studies have identified ,50

independent loci robustly associated with type 2 diabetes

[1,2,3,4,5,6,7]. These studies have highlighted new candidate

pathways involved in the disease [8,9], identified overlap with

monogenic forms of the disease [1], and provided genetic links

with correlated phenotypes [10,11].

The GWA studies of type 2 diabetes have not so far provided

a greatly improved understanding of the clinical heterogeneity of

the disease. Type 2 diabetes cases vary appreciably in their

clinical characteristics, particularly age of diagnosis and body

mass index (BMI). There is also a group of patients who may

present with evidence of an autoimmune component to their

diabetes, but who are not insulin dependent [12]. In contrast,

the identification of the genetic component to monogenic forms

of diabetes has often explained the clinical heterogeneity ob-

served [13].

Previous studies have provided some evidence of genetic

heterogeneity between non-obese and obese type 2 diabetic cases

[14,15,16,17]. For example, the variant with the strongest effect

on type 2 diabetes risk, in TCF7L2, has a stronger effect in non-

obese cases (odds ratio = 1.53 [0.37–1.71] compared to obese

cases (OR = 1.21 [1.09–1.35]) [14]. The effect of FTO variation

on type 2 diabetes risk depends on how cases and controls are

ascertained by BMI status, but this was expected given FTO’s

known primary effect on BMI. In the most recent GWA studies of

type 2 diabetes [1], risk variants tended to have stronger effects in

non-obese compared to obese individuals – of 30 loci examined,

23 showed stronger associations in non-obese compared to obese

individuals.

We designed the present study in an attempt to understand

better the genetic heterogeneity of type 2 diabetes. Type 2

diabetes GWA studies tend to be enriched with cases with

stronger family histories and lower average BMIs compared to

community based studies. Nevertheless, there is a wide spectrum

of BMI amongst type 2 diabetes cases used in GWA studies, with

more cases being obese than lean. In this study we tested the

hypothesis that we would identify new genetic variants by limiting

the clinical heterogeneity of type 2 diabetes. By stratifying cases

by their BMI status and performing separate GWA studies for

each strata of BMI we identified two signals of association not

previously reported in the largest GWA studies in Europeans [1],

although one signal has been identified in a South Asian study

[7]. In addition we confirmed with additional data that the

majority of known type 2 diabetes genetic associations have

stronger effects in lean type 2 diabetic cases compared to obese

cases.

Methods

Descriptions of all cases are available in Table 1, and combined

with control details in Tables S1 and S2. Our study was designed

to limit the clinical heterogeneity of type 2 diabetes by

stratification on BMI, whilst also using the largest sample sizes

available:

Study design—choice of strata
To test the hypothesis that we would identify new variants

associated with type 2 diabetes in different BMI strata, we used the

following study design. We used two separate strata of type 2

diabetes cases defined by the two arbitrary, but well established,

cut-offs for classifying people as overweight or obese. The first

stratum consisted of non-overweight cases, here defined as ‘‘lean’’

(BMI,25 kg/m2). The second strata consisted of obese cases

(BMI$30 kg/m2). For each stratum we used all controls, not

selected on BMI to increase statistical power and provide a more

robust estimate of the population allele frequency. We did not

correct for BMI as BMI was not available in all controls. To check

whether or not associations were being driven primarily by effects

on BMI we assessed novel variants in an existing GWA studies of

BMI using 123,865 individuals from the GIANT consortium [18].

Finally, we performed sensitivity analyses, confirming our findings

by stratifying controls by BMI as well as cases.

Study design—choice of studies
We chose to include the largest set of studies available. These

studies differed in the proportion of total cases defined as lean

(8.4–30.4%), the proportion of total cases defined as obese (21.2–

77.8%, plus one GWA study, DGDG, that only selected non-

obese cases). Some studies were specifically designed as case

control studies and some as case-cohort studies, and we note that

the extent of phenotyping performed to exclude autoimmune

processes was different across studies, ranging from not requiring

insulin treatment in the first year of diagnosis and GAD

autoantibody negative, to general practitioner diagnosis of type 2

diabetes.

Descriptions of the participating studies are available in the

most recent DIAGRAM manuscript [1], with summary statistics

also presented in Table 1 and in Tables S1 and S2. The two

discovery GWA study meta-analyses comprised 2112 lean type 2

diabetes cases or 4123 obese type 2 diabetes cases, compared

against up to 54,412 controls. For a subset of SNPs available on

the Metabochip (a custom Illumina iSelect SNP array that

included the SNPs identified by GWA studies for several diseases

and traits including type 2 diabetes loci) we included data from an

additional 263 lean type 2 diabetes cases, 1735 obese type 2

diabetes cases, and 3691 controls from the GoDARTs study [19].

GWA study methodology
With the exception of the BMI-stratification of cases, the meta-

analyses, individual study quality control, and analytical methods

were the same as those recently reported [1]. A genomic control

inflation factor was calculated for each study for each analysis, and

their test statistics were adjusted accordingly. Inverse-variance

fixed effect meta-analyses were performed on imputed SNP

Stratifying T2D by BMI Identifies LAMA1 Risk Locus
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datasets, testing for an additive genetic effect. All single point effect

estimates are given with their [95% confidence intervals (CI)].

Only autosomal SNPs with imputation quality scores .0.5 and a

minor allele frequency .1% were included from each study. A

SNP was excluded from the meta-analysed dataset if it was present

in less than half of the studies. Given the use of two strata, we used

a p-value threshold of 2.561028 as the criterion for genome-wide

significance.

Follow-up studies—replication of novel associations in
lean and obese GWA studies

An additional 4 studies, totalling 2881 lean cases, 8702 obese

cases, and 18957 controls were available for de novo genotyping of

SNPs (Table S2). For the DGDG replication, all polymorphisms

were genotyped using the KASPar system (KBiosciences). For

Malmo CC, ADDITION-Ely, and Norfolk Diabetes Case Control

Study (NDCCS), Taqman assay genotyping was performed. For

all four studies genotyping success rate was .95%, the genotyping

error rate was 0% based on re-genotyping of 384 individuals, and

all SNPs were in Hardy-Weinberg equilibrium (P.0.05). We re-

performed the inverse-variance weighted meta-analysis for the

replication SNPs using data from all the discovery and replication

datasets.

Association of variants with BMI
To test whether or not type 2 diabetes associations could be

primarily driven by effects on BMI, we assessed the association of

novel SNPs with BMI using data from the GIANT consortium

consisting of 123,865 individuals.

Association of variants in case-only analyses
There are two possible reasons why a variant may be associated

with type 2 diabetes in a stratified sample compared to using all

data. First, the variant may have a genuinely larger effect in that

stratum compared to the overall sample. Second, chance will

influence which SNPs are most strongly associated in different

subsets of data. To distinguish between these two possibilities we

performed a case only analysis in which we tested whether variants

associated with lean or obese type 2 diabetes were also associated

with BMI within type 2 diabetes cases. We analysed BMI as a

quantitative trait in cases from the GWA studies and meta-

analysed the summary statistics. If a variant is genuinely associated

with type 2 diabetes with stronger effects in the lean stratum, for

example, we would expect the risk allele to be associated with

lower BMI within cases. This phenomenon was previously

reported for the variant in TCF7L2 [14].

Continuous glycaemic measures
SNP association statistics on glyacemic traits in healthy

individuals were provided by the Meta-Analyses of Glucose and

Insulin-related traits Consortium (MAGIC). Phenotypes available

were fasting insulin (N = 38,238, fasting glucose (N = 46,186), beta-

cell function (HOMA-B, N = 36,466), insulin resistance (HOMA-

IR, N = 37,037), HbA1C (N = 46,368) and 2 hour glucose

(N = 15,234) after an oral glucose challenge. All traits are naturally

log transformed, besides fasting glucose, 2 hour glucose and

HbA1c. The studies and methodology for these GWA study data

are described in their recent publications [2,20,21] and available

online at www.magicinvestigators.org. We also had access to data

from joint meta-analyses of SNP and SNPxBMI interaction on

fasting glucose (N = 58,074), insulin (N = 51,570), and 2-hr glucose

(N = 15,141), also provided by MAGIC (Manning et al, in press).

eQTL assessment
Identified SNPs were searched against a collected database of

expression SNP (eQTL) results including a range of tissues

[22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38].

Testing the role of known SNPs in lean and obese
individuals

In addition to identifying new loci, we tested the impact of BMI

stratification on SNPs previously identified as associated with type

2 diabetes. We calculated the individual SNP association statistics

using the lean and obese meta-analyses described above.

To assess the effects of combining information from all known

type 2 diabetes SNPs, we next used a single study, the GoDARTs

[19] study, independent from the discovery GWA studies. In

GoDARTs there were a total of 263 lean type 2 diabetes cases,

1735 obese type 2 diabetes cases, and 3691 controls. Known SNPs

(N = 36 on the metabochip) were defined as those reaching

genome-wide significance in studies using samples of European

descent (excluding FTO due to primary effect on BMI, and DUSP9

not present on the chip) [1,2,3]. We also combined the 36 SNPs

into a single allele count model. This analysis consisted of a logistic

regression model comparing the count of an individual’s type 2

diabetes risk alleles, against case-control status. Each risk allele

count was weighted by the point estimate effect size of that SNP

from the DIAGRAM meta-analysis [1]. We repeated this analysis

using stratified controls (BMI,25 kg/m2 versus lean cases and

BMI$30 kg/m2 versus obese cases) instead of all controls. Finally,

individuals were binned into quintiles based on their weighted

allele score and per-quintile odds ratios calculated.

Results

Genome-wide association in lean type 2 diabetic
individuals

Three independent association signals reached P,2.561028 in

the lean case genome wide meta-analysis (Table 2). Two

Author Summary

Individuals with Type 2 diabetes (T2D) can present with
variable clinical characteristics. It is well known that obesity
is a major risk factor for type 2 diabetes, yet patients can
vary considerably—there are many lean diabetes patients
and many overweight people without diabetes. We
hypothesized that the genetic predisposition to the
disease may be different in lean (BMI,25 Kg/m2) com-
pared to obese cases (BMI$30 Kg/m2). Specifically, as lean
T2D patients had lower risk than obese patients, they must
have been more genetically susceptible. Using genetic
data from multiple genome-wide association studies, we
tested genetic markers across the genome in 2,112 lean
type 2 diabetes cases (BMI,25 kg/m2), 4,123 obese cases
(BMI$30 kg/m2), and 54,412 healthy controls. We con-
firmed our results in an additional 2,881 lean cases, 8,702
obese cases, and 18,957 healthy controls. Using these data
we found differences in genetic enrichment between lean
and obese cases, supporting our original hypothesis. We
also searched for genetic variants that may be risk factors
only in lean or obese patients and found two novel gene
regions not previously reported in European individuals.
These findings may influence future study design for type
2 diabetes and provide further insight into the biology of
the disease.
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represented previously reported loci - TCF7L2 (OR = 1.58 [1.47–

1.68], P = 2610240) and CDKAL1 (OR = 1.26 [1.17–1.35],

P = 7610210). One novel locus reached genome-wide significance,

lead SNP positioned ,25 kb from the HLA-DQA2 gene (OR = 1.3

[1.19–1.42], P = 161028). Three further independent signals

reached P,561027, two of which were previously identified

(SNPs in or near ADCY5, OR = 1.25 [1.15–1.35] P = 661028, and

SLC30A8, OR = 1.23 [1.15–1.33] P = 461028) and one of which

was novel (SNPs in LAMA1, OR = 1.22 [1.12–1.30] P = 161027).

Rs numbers are given in Table 2.

Genome-wide association in obese type 2 diabetic
individuals

In the obese case genome wide meta-analysis, five signals reached

genome-wide significance (Table 2), all in or near known loci

TCF7L2, FTO, CDKAL1, HHEX, and IGF2BP2. A further three

signals reached P,561027; SNPs in or near the MC4R gene

(previously associated with BMI), and two other signals; in HMG20A

(previously reported in South Asians -OR = 1.14 [1.09–1.19]

P = 261027) and in ANKS1A (OR = 1.3 [1.18–1.43] P = 561027).

Follow-up of putative novel signals
We sought to replicate the signals reaching P,561027 not

previously reported in Europeans. SNPs representing the LAMA1

(rs8090011), HLA-DQA2 (rs3916765), HMG20A (rs7178572), and

ANKS1A (rs16896390) signals were genotyped in up to 2,881 lean

cases, 8,702 obese cases and 18,957 control individuals. Combined

discovery and follow-up association statistics for these SNPs are

shown in Table 2. In the lean case analysis, the LAMA1 variant

was associated with type 2 diabetes (combined P = 8.461029,

OR = 1.13 [1.09–1.18], total lean cases N = 4,993, con-

trols = 70,515) compared to an OR = 1.03 [1.00–1.06] in the

obese case analysis (Figure 1 and Figure 2). In the obese case

analysis, the HMG20A signal was associated with type 2 diabetes

(combined P = 1.361028, OR = 1.11 [1.07–1.15], total obese

cases N = 8,583, controls = 62,063) compared to an OR = 1.09

[1.02–1.17], P = 0.015, in the lean analysis (Figure 3 and Figure 4).

In previously published studies including 8,130 cases not stratified

by BMI [1], the LAMA1 and HMG20A variants reached only

nominal levels of significance of P = 0.002 (OR = 1.07 [1.03–1.12])

and P = 0.003, OR = 1.07 [1.02–1.12] respectively (both in the

same directions as reported here).

Considering a random-effects model [39] for both LAMA1 and

HMG20A signals gave similar evidence for association (LAMA1

lean analysis: P = 5610210, obese analysis: P = 0.02; HMG20A

lean analysis: P = 0.04, obese analysis: P = 2.761028). Evidence for

association at the HLA-DQA2 and ANKS1A signals was reduced

when follow-up data were included.

Association of variants with BMI
We next attempted to understand further the associations

between SNPs in the LAMA1 and HMG20A loci and lean and

Table 1. Patient characteristics for discovery and replication type 2 diabetes case samples.

Lean Patients Obese Patients

Study N M/F Age Diag BMI mean SD N M/F Age Diag BMI mean SD

GWA studies discovery

DGI 225 106/119 59.47 (10.57) 22.93 (1.51) 303 143/160 56.49 (9.90) 33.10 (2.52)

WTCCC 257 160/97 n/a 23.00 (1.54) 1,011 533/478 n/a 35.63 (4.98)

FUSION 123 78/45 53.67 (9.73) 23.22 (1.61) 529 265/264 53.62 (8.72) 34.00 (3.37)

deCODE 214 117/97 54.60 (14.90) 23.20 (1.78) 625 346/279 54.10 (11.20) 34.69 (4.38)

KORA 36 21/15 57.48 (11.92) 23.47 (1.33) 219 115/104 56.77 (9.82) 34.64 (4.07)

DGDG 185 99/86 44.30 (9.13) 22.72 (1.81) - - - -

Rotterdam 301 144/157 n/a 22.87 (1.58) 247 62/185 n/a 33.05 (3.02)

Eurospan-MICROS - - - - 22 15/7 n/a 34.30 (3.65)

Eurospan-Orcades - - - - 21 14/7 n/a 35.25 (4.52)

Eurospan-ERF - - - - 25 14/11 n/a 34.98 (3.80)

Eurospan-Vis - - - - 38 25/13 n/a 32.83 (2.74)

FHS 93 47/46 58 23.07 331 181/150 56.00 36.27

ARIC 111 52/59 47.90 (12.00) 23.06 (1.50) 358 174/178 51.40 (9.35) 34.95 (4.27)

NHS 567 0/100 57.68 (13.37) 22.67 (1.67) 394 0/100 56.01 (10.10) 33.88 (3.77)

Total 2,112 54.14 (11.66) 23.02 (1.59) 4,123 54.91 (9.84) 34.43 (3.76)

Replication

GoDarts 263 151/112 56.83 (8.95) 22.97 (1.77) 1,735 950/785 54.8 (8.96) 35.94 (5.33)

DGDG 1,161 680/530 48.00 (10.02) 22.53 (1.51) 2,972 1,599/1,504 49.00 (11.12) 34.43 (4.36)

Malmo CC 477 291/186 59.2 (11.6) 22.9 (1.9) 1080 583/497 55.8 (10.8) 34.70 (4.30)

ADDITION-Ely 39 27/12 66.59 (5.20) 23.31 (1.57) 586 346/240 60.67 (7.65) 35.69 (4.78)

EPIC-NDCCS 941 544/397 63.35 (12.29) 22.96 (1.76) 2,329 1,208/1,121 58.01 (11.25) 35.04 (4.81)

Total 2,881 58.79 (9.61) 22.93 (1.7) 8,702 55.66 (9.96) 35.16 (4.72)

Eurospan represents a single cohort in the main text, however is split into its component studies in this table. There were too few lean cases in the Eurospan studies to
include in meta-analysis. - = individuals not used. n/a = individuals used in analyses but data not available.
doi:10.1371/journal.pgen.1002741.t001
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Figure 1. Test statistics for LAMA1 association in lean and obese cases versus all controls.
doi:10.1371/journal.pgen.1002741.g001
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obese type 2 diabetes cases respectively. Our study design, together

with the associations between the FTO and MC4R variants in the

obese strata, suggested that variants that primarily operate through

BMI could drive our newly identified associations. We therefore

assessed the two signals in the existing GWA studies of BMI

performed by the GIANT study and consisting of 123,865

individuals [18]. The LAMA1 SNP was not associated with BMI

(P = 0.19) whilst the type 2 diabetes risk allele at the HMG20A SNP

was nominally associated with increased BMI (P = 0.02).

Association of variants with BMI within cases only
If the associations at the LAMA1 and HMG20A loci are

genuinely stronger in one strata of diabetic cases compared to the

other, we should observe an association of those variants with BMI

within cases only. This phenomenon has previously been reported

for the variants in TCF7L2[14]. The LAMA1 type 2 diabetes risk

allele was associated with lower BMI within cases alone

(P = 261026 when analysing BMI as a quantitative trait in

26,366 cases), a result consistent with its association being stronger

in the lean case analysis. The HMG20A risk allele showed no

evidence of association (P.0.05).

Association of variants with continuous glycaemic
measures

Next we used data from MAGIC to assess potential roles of

variants in normal glycaemia. The SNP representing the novel

LAMA1 association showed no association with fasting glucose

(P = 0.48, beta(se) = 0.0027(0.004) N = 46,186), fasting insulin

(P = 0.87, beta(se) = 0.0006(0.004) N = 38,238), HbA1C (P = 0.19,

beta(se) = 0.005(0.004) N = 46,368), 2-hour glucose response

(P = 0.43, beta(se) = 20.016(0.02), N = 15,234), or any of the

SNP6BMI-interaction models. However, LAMA1 isn’t unique

amongst type 2 diabetes loci in showing no effect on glycemic traits

in the MAGIC study.

The HMG20A diabetes risk allele was associated with higher

fasting glucose (P = 0.04, beta(se) = 0.008(0.004), N = 46,186),

higher HbA1C (P = 0.002, beta(se) = 0.01(0.004), N = 46,368)

and higher fasting glucose after accounting for BMI and

SNPxBMI interaction (P = 0.008, N = 58,074).

Association of variants with cis gene expression levels
In an attempt to gain further insight into likely functional genes

in the LAMA1 and HMG20A loci, we tested the lead SNPs at for

association in a number of eQTL datasets. Tissues tested included

various blood, brain, liver and fat samples (see Methods). Only ‘cis’

associations were considered (eQTL effects on a transcript within

1 Mb of the signal SNPs). The rs7178572 SNP in the HMG20A region

was significantly associated with mRNA expression levels of HMG20A

in the liver (P = 461025), supported by two separate expression probes,

and was the strongest known regional SNP for both the liver eQTL

and type 2 diabetes. No other study-wide significant results were

observed (N = 14 tissues, 24 datasets/analyses).

Evidence that genetic variants associated with type 2
diabetes have different effects between lean and
obese cases

For each of 36 published type 2 diabetes loci (identified in

European studies and available on the metabochip) we compared

the effect sizes between the lean and obese GWA study meta-

analyses (Table 3). Among the 36 independent variants, 29 had a

Figure 2. Regional association plot for the LAMA1 gene in lean type 2 diabetes samples.
doi:10.1371/journal.pgen.1002741.g002
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Figure 3. Test statistics for HMG20A association in lean and obese cases versus all controls.
doi:10.1371/journal.pgen.1002741.g003
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larger point estimate odds ratio in the lean analysis compared to

the obese analysis (binomial test of 29/36 versus 50% under the

null hypothesis of no difference, P = 0.0002). We next assessed the

combined effect of these SNPs in a case control study independent

of the GWA studies - GoDARTs (Figure 5). In the lean stratum,

we observed a weighted per-risk allele OR = 1.13 [1.10–1.17],

P = 3.2610214. This was larger than the same model fitted in the

obese strata where the OR = 1.06 [1.05–1.08], P = 2.2610216.

Results were very similar when stratifying the controls as well as

the cases by BMI: lean weighted per risk-allele OR = 1.13 [1.09–

1.17]; obese weighted per risk-allele OR = 1.08 [1.05–1.10]

(heterogeneity of odds ratios P = 0.036). We also observed a

difference between lean and obese cases when removing controls

and fitting a regression model of lean cases vs obese cases

(P = 0.0001). None of these 36 variants were associated with BMI

in 28,000–32,000 individuals from GIANT [1,2].

We next divided the case/control samples into risk quintiles,

based on the number of risk alleles they carry, weighted by the

relative effect sizes of those alleles from the larger DIAGRAM

meta-analysis. The risk of being in each quintile relative to the

median quintile is shown in Figure 6. For the lean group, we

observed an OR = 2.1 [1.47–3.01] for the quintile of individuals

carrying the most risk alleles compared to the middle quintile. This

effect was larger than that in the obese group where the equivalent

OR = 1.37 [1.15–1.64].

Discussion

We have confirmed our hypothesis that it is possible to identify

genetic associations in previously tested samples by constraining

the phenotypic heterogeneity of disease cases. By stratifying type 2

diabetes into two well accepted definitions of lean and obese cases,

we identified and replicated one locus in each BMI stratum, each

previously unreported in European studies: a signal in the LAMA1

gene in the lean stratum and a signal in the HMG20A gene in the

obese stratum. Lack of evidence for association with BMI for these

two signals in 123,000 individuals [18] argues that these

associations are not driven by a primary association with BMI.

There are two reasons why previously undetected genetic

associations may be observed in stratified data. First chance, in this

context ‘‘sampling error’’, may occur – new signals may reach

statistical thresholds in subsets of data due to a combination of real

association and chance. Second, the signal may represent genuine

heterogeneity. The enrichment of the LAMA1 signal in lean type 2

diabetes cases compared to obese cases is likely to be a real effect

but the enrichment of the HMG20A signal in obese cases is more

likely to be due to chance. Whilst we observed some regression to

the mean (or ‘‘winner’s curse’’) for the LAMA1 signal, the effects

remained different in lean compared to obese cases in the

replication samples alone (Figure 1). In addition, the LAMA1 type

2 diabetes risk allele was associated with lower BMI within cases

alone (P = 261026 when testing BMI as a quantitative trait in

cases) – a similar result was previously reported for the TCF7L2

risk allele [16]. In contrast there is no evidence that the HMG20A

signal is stronger in obese replication strata compared to lean

replication strata (Figure 3) and there was no association with

increased BMI within cases alone (P.0.05 when testing BMI as a

quantitative trait in cases).

The LAMA1 signal falls in a recombination block within the

LAMA1 gene (Figure 2), with the lead SNP positioned within

Figure 4. Regional association plot for the HMG20A gene in obese type 2 diabetes samples.
doi:10.1371/journal.pgen.1002741.g004
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intron 61. Searching for correlated SNPs (r2.0.5) using 1000

Genomes Project data identified only additional intronic SNPs.

Previous cell biology studies support a role for LAMA1, encoding

laminin-1, in diabetes etiology - inhibition of LAMA1 expression

reduced glucose-stimulated secretion in INS1E cells [40].

Several studies observed the beneficial effects of laminin-1,

and extracellular matrix (highly enriched with laminin-1)

preparations on pancreatic islet development and function

[41,42,43,44,45,46]. Laminin-1 is expressed in intra-islet cap-

illaries [47] and a role for laminin receptor 1 was proposed in

angiogenesis [48].

The confidence in the HMG20A association is enhanced by

several lines of evidence from other studies. The HMG20A signal

was previously identified in a GWA study of South Asian

individuals [7] and was nominally associated with fasting glucose

(P = 0.04, N = 46,186) and HbA1C (P = 0.002, N = 46,368) in non-

diabetic individuals analysed by the MAGIC consortium. The

association with fasting glucose became stronger when adjusting

for BMI in an interaction model (P = 0.008).

We initially discovered a genome-wide significant signal near

the HLA-DQA2 locus, which subsequently failed to replicate

(rs3916765, P = 161026). This variant is not in the same gene or

Table 3. Association statistics for known European type 2 diabetes loci in the lean and obese GWA studies strata.

Lean T2D Cases N = 2112 vs all controls Obese T2D Cases N = 4123 vs all controls

SNP
Nearest or
Candidate Gene Chr Risk Allele OR P-value OR P value

rs7903146 TCF7L2 10 T 1.58[1.47–1.68] 2.0E240 1.26[1.20–1.32] 4.40E221

rs11708067 ADCY5 3 A 1.25[1.15–1.35] 5.7E208 1.07[1.01–1.14] 0.01

rs10923931 NOTCH2 1 T 1.22[1.11–1.35] 0.00007 1.06[0.98–1.13] 0.14

rs13266634 SLC30A8 8 C 1.24[1.15–1.34] 5.1E208 1.12[1.06–1.19] 0.00005

rs2237892 KCNQ1 11 C 1.29[1.12–1.48] 0.0003 1.11[1.01–1.22] 0.02

rs10010131 WFS1 4 G 1.14[1.07–1.22] 0.00005 1.07[1.02–1.12] 0.004

rs10811661 CDKNA/2B 9 T 1.22[1.12–1.33] 0.000007 1.12[1.05–1.19] 0.0002

rs5215 KCNJ11 11 C 1.15[1.08–1.23] 0.00002 1.08[1.03–1.13] 0.0007

rs4457053 ZBED3 5 G 1.14[1.05–1.24] 0.002 1.06[1.00–1.12] 0.04

rs340874 PROX1 1 C 1.12[1.05–1.19] 0.0008 1.06[1.01–1.11] 0.02

rs7957197 HNF1A 12 T 1.07[0.99–1.16] 0.07 1.01[0.96–1.07] 0.69

rs243021 BCL11A 2 A 1.12[1.05–1.20] 0.0006 1.07[1.01–1.12] 0.01

rs896854 TP53INP1 8 T 1.02[0.96–1.09] 0.44 1.07[1.03–1.12] 0.002

rs757210 HNF1B 17 T 1.17[1.05–1.29] 0.003 1.09[1.02–1.17] 0.02

rs7578597 THADA 2 T 1.20[1.08–1.33] 0.0008 1.12[1.04–1.20] 0.004

rs1111875 HHEX 10 C 1.18[1.10–1.25] 5.3E207 1.13[1.08–1.18] 6.4E208

rs972283 KLF14 7 G 1.13[1.06–1.20] 0.0002 1.09[1.04–1.14] 0.0003

rs7593730 RBMS1/ITGB6 2 C 1.12[1.03–1.22] 0.005 1.07[1.00–1.14] 0.03

rs7754840 CDKAL1 6 C 1.19[1.11–1.27] 3.80E207 1.14[1.09–1.20] 2.0E208

rs4607103 ADAMTS9 3 C 1.03[0.95–1.11] 0.47 1.07[1.01–1.13] 0.01

rs1531343 HMGA2 12 C 1.13[1.01–1.27] 0.03 1.20[1.10–1.31] 0.00003

rs7961581 TSPAN8,LGR5 12 C 1.17[1.08–1.26] 0.00007 1.13[1.06–1.20] 0.00007

rs8042680 PRC1 15 A 1.07[1.00–1.14] 0.05 1.04[0.99–1.09] 0.10

rs11634397 ZFAND6 15 G 1.08[1.01–1.16] 0.03 1.05[1.00–1.10] 0.04

rs7578326 IRS1 2 A 1.10[1.03–1.18] 0.008 1.07[1.02–1.13] 0.006

rs1552224 CENTD2 11 A 1.05[0.96–1.14] 0.27 1.08[1.02–1.15] 0.01

rs1801282 PPARg 3 C 1.14[1.04–1.26] 0.008 1.11[1.04–1.18] 0.003

rs12779790 CAMK1D 10 G 1.12[1.03–1.22] 0.009 1.09[1.02–1.16] 0.008

rs864745 JAZF1 7 T 1.09[1.03–1.16] 0.006 1.08[1.03–1.12] 0.001

rs780094 GCKR 2 C 1.04[0.98–1.11] 0.19 1.03[0.98–1.08] 0.22

rs13292136 TLE4 9 C 1.15[1.00–1.31] 0.04 1.12[1.00–1.24] 0.04

rs231362 KCNQ1 11 G 1.09[1.02–1.17] 0.01 1.08[1.03–1.14] 0.003

rs4607517 GCK 7 A 1.03[0.94–1.12] 0.55 1.04[0.98–1.10] 0.20

rs1470579 IGF2BP2 3 C 1.15[1.07–1.23] 0.00009 1.16[1.10–1.23] 6.4E208

rs10830963 MTNR1B 11 G 1.11[1.03–1.20] 0.007 1.10[1.04–1.16] 0.0005

rs2191349 DGKB/TME195 7 T 1.03[0.97–1.10] 0.38 1.04[0.99–1.08] 0.13

KCNQ1 appears twice as it has two independent signals confirmed through conditional analysis.
doi:10.1371/journal.pgen.1002741.t003
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Figure 5. Risk allele distribution for known type 2 diabetes SNPs in GoDARTs. Plot shows number of type 2 diabetes risk alleles carried by
the 263 lean type 2 diabetes cases, 1,735 obese type 2 diabetes cases and 3,691 controls from the GoDARTs study.
doi:10.1371/journal.pgen.1002741.g005

Figure 6. Relative risk for type 2 diabetes depending on risk allele quintile, split by lean and obese BMI. Individuals binned into
quintiles based on risk-allele count of known SNPs, weighted by effect size of SNP. Risk estimates relative to median quintile. Total sample size across
all quintiles is 263 lean type 2 diabetes cases, 1735 obese type 2 diabetes cases and 3691 controls from the GoDARTs study.
doi:10.1371/journal.pgen.1002741.g006
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in linkage disequilibrium with previously reported associations

between HLA loci and type 2 diabetes [1,49]. Concerned with the

prospect of this association being due to auto-immune diabetes

case admixture, we assessed the association of the strongest known

type 1 diabetes signals in our lean meta-analysis. None of these

showed any significant evidence of association – including the lead

signals from the WTCCC type 1 diabetes study in the HLA region

(rs3129941, P = 0.08), or near the INS (rs3842748, P = 0.64) or

PTPN22 (rs2476601, P = 0.38) genes.

This study has provided the most robust evidence to date that

lean type 2 diabetic cases are likely to carry a disproportionately

high load of known type 2 diabetes risk alleles. More than 80%

(29/36) of type 2 diabetes variants established in Europeans had

stronger effects in lean compared to obese cases and the odds ratio

for the 20% of lean cases carrying the most risk alleles was more

than twice that of the 20% of obese cases carrying the most risk

alleles. The corollary of these findings is that obese cases on

average carry a disproportionately low load of confirmed type 2

diabetes risk variants, but their diabetes risk will likely be more

heavily influenced by their genetic and environmental predispo-

sition to gaining weight in adulthood.

Despite this enrichment of stronger effects in lean versus obese

cases, analyses focused only on lean cases is not a more powerful

study design compared to using all cases. For each of the known

loci tested, the power gained by increased effect sizes is easily offset

by the reduced power of having a case sample size of ,25%.

Nevertheless our data indicate that, given limited resources,

recruitment strategies that target leaner type 2 diabetes cases will

have more power than those that target a similar number of cases

but without enrichment for lower BMI.

There are several limitations to our study. First, the use of an

unstratified control group made testing the significance of

differences between lean and obese cases difficult in the context

of a genome wide meta-analysis. However, several lines of

evidence support our conclusions that lean individuals are

enriched for known type 2 diabetes genetic effects. This evidence

includes: the very large differences between the upper and lower

95% confidence intervals of the weighted per allele effects in lean

and obese, the consistency of the weighted per allele results when

stratifying controls as well as cases, and the 80/20 proportion of

SNPs showing stronger effects in lean compared to obese

individuals respectively. Second, after stratifying by BMI, we did

not use other criteria to reduce the clinical heterogeneity of type 2

diabetes. Of note, cases within the BMI strata differed appreciably

in their age at diagnosis and the degree to which autoimmune or

monogenic diabetes had been excluded. Instead, having stratified

by BMI, we opted to use the largest available sample sizes. It is

possible that a small number of monogenic or autoimmune forms

of diabetes amongst our cases could have reduced our power to

detect novel variants. Further studies may help refine how known

and novel diabetes signals operate in more clinically homogenous

settings. Finally, known type 2 diabetes signals are likely to account

for only a small fraction of all risk variants that exist in the genome

and any inferences we make are limited to the known signals.

In conclusion, we report associations with the LAMA1 and

HMG20A (not previously associated at genome-wide significance

in Europeans) gene regions with type 2 diabetes risk. We have

demonstrated that lean diabetic cases are enriched for known type

2 diabetes risk alleles compared to obese cases. This enrichment is

consistent with the observation that many of the variants with the

strongest effects on diabetes are associated with reduced beta cell

function [1]. At the opposite end of the spectrum, obese cases

presumably need fewer diabetes risk variants to push them towards

diabetes, as they are already under strain from the physiological

impact of obesity and insulin resistance. These data suggest a

disease model where type 2 diabetes cases lie across a continuous

distribution with regards to genetic/environmental risk, and beta-

cell dysfunction versus insulin resistance aetiologies.
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