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ABSTRACT

Aims. The stability of the dissipative Taylor-Couette flow with a stable axial density stratification and a prescribed azimuthal magnetic
field is considered.
Methods. Global nonaxisymmetric solutions of the linearized MHD equations with toroidal magnetic field, density stratification, and
differential rotation are found for both insulating and conducting cylinders.
Results. Hydrodynamic calculations for various gap widths show that flat rotation laws such as the Kepler rotation are always unstable
against SRI. Quasigalactic rotation laws, however, are stable for wide gaps. The influence of a current-free toroidal magnetic field on
SRI strongly depends on the magnetic Prandtl number Pm: SRI is supported by Pm > 1 and it is suppressed by Pm <∼ 1. For rotation
laws that are too flat, when the hydrodynamic SRI ceases, a smooth transition exists to the instability that the toroidal magnetic field
produces in combination with the differential rotation. For the first time this nonaxisymmetric azimuthal magnetorotational instability
(AMRI) has been computed in the presence of an axial density gradient.
If the magnetic field between the cylinders is not current-free, then the Tayler instability occurs, too. The transition from the nonmag-
netic centrifugal instability to the magnetic Tayler instability in the presence of differential rotation and density stratification proves
to be complex. Most spectacular is the “ballooning” of the stability domain by the density stratification: already a small rotation
stabilizes magnetic fields against the Tayler instability.
An azimuthal component of the electromotive force 〈u′ × B′〉 for the instability only exists for density-stratified flows. The related
α-effect for magnetic-influenced SRI with Kepler rotation appears to be positive for negative dρ/dz < 0.
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1. Introduction

This work is motivated by the theoretical and experimental
progress in studies of the stratorotational instability (SRI) and
the magnetorotational instability (MRI) in MHD Taylor-Couette
experiments. It has been shown theoretically (Molemaker et al.
2001; Yavneh et al. 2001; Dubrulle et al. 2005; Shalybkov &
Rüdiger 2005; Umurhan 2006) and in the laboratory (Le Bars
& Le Gal 2007) that a combination of a centrifugal-stable
nonuniform rotation law and a stable axial density stratification
leads to the SRI in the Taylor-Couette flow. This instability ex-
ists only for nonaxisymmetric disturbances. On the other hand,
there are also nonaxisymmetric instabilities for a combination
of Rayleigh-stable rotation laws and azimuthal magnetic fields
(Pitts & Tayler 1985). The question is whether the combination
of density stratification, differential rotation, and toroidal fields
acts as stabilizing or destabilizing or whether even new instabil-
ities arise.

Such a combination of axial density stratification, stable ro-
tation law, and strong toroidal magnetic field is the typical con-
stellation in accretion disks (Ogilvie & Pringle 1996; Curry &
Pudritz 1996; Papaloizou & Terquem 1997). There the rotation
is Keplerian with Ω ∝ R−3/2 and the toroidal field is generated
from weak large-scale poloidal fields by induction due to the dif-
ferential rotation. The standard case is that the resulting toroidal
field strongly exceeds the amplitude of the original poloidal
field if the magnetic Reynolds number of the differential rota-
tion Rm = ΩR2/η is much larger than unity. If this is true, then
the standard MRI, i.e. the influence of the poloidal field on the

stability of the differential rotation, would be of minor impor-
tance1. The question is whether the toroidal magnetic field can
reach such high amplitudes or whether it already becomes un-
stable for much lower values. It is known that toroidal fields
with strong electric currents become unstable (Tayler instabil-
ity, “TI”) but it is also known that, in combination with differ-
ential rotation, toroidal fields also become unstable, which are
current-free in the considered domain (azimuthal MRI, “AMRI”,
see Rüdiger et al. 2007a). In the latter case, with Bφ ∝ R−1,
the questions are whether the density stratification destabilizes
AMRI and/or whether the toroidal field stabilizes the SRI too
strongly, so that its existence becomes basically suppressed.

We consider the interaction of the differential rotation with
both an axial density stratification and a toroidal magnetic field
in the simplified Taylor-Couette geometry. The density stratifi-
cation is always supposed to be stable, but the magnetic field
and the rotation law between the cylinders can be both sta-
ble or unstable. If, in particular, the toroidal field is Tayler-
unstable, then the interaction of differential rotation, density
stratification and magnetic field becomes very complex. We find
stabilization and destabilization to depend strongly on the mag-
netic Prandtl number. Again, in experiments, for small magnetic
Prandtl number, the flows are predicted to be stabilized. For
galaxies and protoneutron stars (PNS, with their high magnetic
Prandtl numbers, we find the opposite. The magnetic influence
supports the SRI leading to even smaller Reynolds numbers than
in hydrodynamics.

1 The same is true for calculations about the stability of strong poloidal
fields without or with rotation.
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Fig. 1. The geometry of the problem – two concentric cylinders with
radii Rin and Rout rotating with Ωin and Ωout. Bφ is the azimuthal mag-
netic field which, generally, is produced by both an axial current inside
the inner cylinder and an axial current through the fluid.

2. The Taylor-Couette geometry

A Taylor-Couette container is considered that confines a toroidal
magnetic field with given amplitudes at the cylinder walls that
rotate with different rotation rates Ω (see Fig. 1). The fluid be-
tween the cylinders is assumed to be incompressible and dissipa-
tive with the kinematic viscosity ν and the magnetic diffusivity η.
Then the rotation law Ω(R) in the fluid is

Ω = a +
b

R2
, (1)

with

a =
μΩ − η̂2

1 − η̂2
Ωin, b =

1 − μΩ
1 − η̂2

R2
inΩin, (2)

and

η̂ =
Rin

Rout
, μΩ =

Ωout

Ωin
· (3)

Cylindric coordinates (R,φ,z) are used, and Ωin and Ωout are the
imposed rotation rates at the inner and outer cylinders of radii Rin
and Rout.

Similarly, the magnetic profiles are restricted by the az-
imuthal component of the induction equation to

Bφ = AR +
B
R
, (4)

where the first term corresponds to a uniform axial electric cur-
rent at radius R and the second term is current-free for R > 0. In
analogy with μΩ, it is useful to define the quantity

μB =
Bout

Bin
=

ARout + BR−1
out

ARin + BR−1
in

, (5)

measuring the variation in Bφ between the cylinders. The coeffi-
cients A and B are

A =
Bin

Rin

η̂(μB − η̂)
1 − η̂2

, B = BinRin
1 − μBη̂

1 − η̂2
· (6)

The MHD equations for incompressible stratified fluids are

∂u
∂t
+ (u∇)u = −1

ρ
∇P + g + νΔu +

1
μ0

curlB × B,

∂B
∂t
= curl(u × B) + ηΔB,

∂ρ

∂t
+ (u∇)ρ = 0,

and

div u = 0, div B = 0, (7)

where u is the velocity, B the magnetic field, P the pressure,
g the gravitational acceleration (supposed as vertical and con-
stant), ν the kinematic viscosity, η the magnetic diffusivity, and
μ0 the magnetic constant.

In the presence of a vertical density gradient (ρ = ρ(z), it
has been shown for B = 0 that the system (7) allows the angular
velocity profile (1) only in the limit of slow rotation and small
stratification∣∣∣∣∣∣

RΩ2

g

∣∣∣∣∣∣� 1,

∣∣∣∣∣∣
dlog(ρ)
dlog(z)

∣∣∣∣∣∣� 1. (8)

It easy to show that the same is true of B � 0. Thus, we are
interested in the stability/instability of the basic state

U = (0,RΩ(R), 0), B = (0, Bφ(R), 0),

P = P0(R) + P1(R, z), ρ = ρ0 + ρ1(z), (9)

where ρ0 is the uniform reference density, P the total pres-
sure including the magnetic one with |P1/P0| � 1, and
|ρ1/ρ0| � 1.

The linear stability problem is considered for the perturbed
state of U + u, B + b, ρ0 + ρ1 + ρ

′, P0 + P1 + P′. Using the
conditions (8), the linearized system (7) takes the Boussinesq
form with the coefficients only depending on the radial coor-
dinate. Hence, a normal mode expansion of the solution F =
F(R)exp(i(mφ + kz + ωt)) can be used with F as any of the dis-
turbed quantities.

After a normalization we find

d2uR

dR2
+

1
R

duR

dR
− uR

R2
−

(
k2 +

m2

R2

)
uR − 2i

m
R

uφ

−i Re(ω + mΩ)uR + 2ReΩuφ − dP′

dR

+i
m
R

Ha2BφbR − 2Ha2 Bφ
R

bφ = 0,

d2uφ
dR2

+
1
R

duφ
dR
− uφ

R2
−

(
k2 +

m2

R2

)
uφ + 2i

m
R

uR

−i Re(ω + mΩ)uφ − i
m
R

P′ − Re
R

d
dR

(R2Ω)uR

+
Ha2

R
d

dR

(
BφR

)
bR + i

m
R

Ha2Bφbφ = 0,

d2uz

dR2
+

1
R

duz

dR
−

(
k2 +

m2

R2

)
uz − i Re(ω + mΩ)uz

−i kP′ − Re ρ′ + i
m
R

Ha2Bφbz = 0,

i(ω + mΩ)ρ′ − N2uz = 0,
duR

dR
+

uR

R
+ i

m
R

uφ + ikuz = 0,
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d2bR

dR2
+

1
R

dbR

dR
− bR

R2
−

(
k2 +

m2

R2

)
bR − 2i

m
R2

bφ

−i Pm Re(ω + mΩ)bR + i
m
R

BφuR = 0,

d2bφ
dR2

+
1
R

dbφ
dR
− bφ

R2
−

(
k2 +

m2

R2

)
bφ + 2i

m
R2

bR

−i Pm Re(ω + mΩ)bφ + PmReR
dΩ
dR

bR

−R
d

dR

(
Bφ
R

)
uR + i

m
R

Bφuφ = 0,

d2bz

dR2
+

1
R

dbz

dR
−

(
k2 +

m2

R2

)
bz

−i Pm Re(ω + mΩ)bz + i
m
R

Bφuz = 0, (10)

where the same symbols are used for the normalized quan-
tities, except P′, which denotes P′/ρ0 and redefining ρ′ as
PmRe gρ′/ρ0.

The dimensionless numbers of the problem are the magnetic
Prandtl number Pm, the Hartmann number Ha, the Reynolds
number Re

Pm =
ν

η
, Ha =

BinR0√
μ0ρνη

, Re =
ΩinR2

0

ν
, (11)

and the buoyancy frequency N

N2 = − g
ρ0

dρ1

dz
· (12)

We used R0 = (Rin(Rout − Rin))1/2 as the unit of length, η/R0 as
the unit of the perturbation velocity, Bin as the magnetic field
unit, Ωin as the unit of ω, N, and Ω, R0Ω

2 as the unit of g; ρ0 is
the density unit and νη/R2

0 is the unit of the redefined P′. It is
convenient to describe the influences of the density stratification
and the basic rotation by the Froude number

Fr =
Ωin

N
· (13)

A detailed description of the numerical methods has been given
in earlier papers (see e.g. Rüdiger et al. 2007b), so it will not be
reproduced here. No-slip boundary conditions for the velocity
on the walls are always used. The tangential electrical currents
and the radial component of the magnetic field vanish on the
conducting walls. For insulating walls, the magnetic field must
match the external vacuum magnetic field.

3. Hydrodynamics

According to the Rayleigh condition, the Taylor-Couette flow
with the rotation law (1) is stable for

μΩ > η̂
2. (14)

(This condition has been extended to stratified fluids by Ooyama
(1966).) The general condition for nonaxisymmetric solutions is
not known. It is known, however, that the axisymmetric mode
is the most unstable mode for dissipative Taylor-Couette flows
for μΩ > 0. The nonaxisymmetric modes can be more unstable
than the axisymmetric ones only for counterrotating cylinders
(see Langford et al. 1988).

As we know, a stable vertical density stratification desta-
bilizes the Taylor-Couette flow with decreasing angular veloc-
ity even beyond the Rayleigh line. This SRI is nonaxisymmet-
ric and the most unstable mode is the mode with m = 1.

Fig. 2. The marginal-stability line for m = 1 disturbances in a container
with η̂ = 0.5 and μΩ = 0.3. The instability is stabilized for stratifications
that are both too weak and too strong. The minimum Reynolds number
belongs to a Froude number of 1.4 depending on the rotation law.

Shalybkov & Rüdiger (2005) find that the instability condition
is μΩ < η̂ instead of μΩ < 1, which has been confirmed exper-
imentally by Le Bars & Le Gal (2007). This finding, however,
based on a restricted number of calculations.

In Fig. 2 the marginal-stability line (the line that separates
stable and unstable regions) is calculated as a function of N2/Ω2

in
for m = 1 disturbances and for a container with η̂ = 0.5 and with
μΩ = 0.3. After (14) the last value lies beyond the Rayleigh line
where nonstratified flows are linearly stable.

We are looking for the minimum critical Reynolds number
that exists for a buoyancy frequency N/Ωin � 0.71, or – which
is the same – Fr � 1.4. Figure 2 reveals the SRI as a delicate
balance of buoyancy and centrifugal force. Both the frequencies
must be approximately equal, otherwise one of the two stabilities
dominates the constellation and stabilizes the flow.

The question is how this balance depends on the rotation
law and on the geometry of the container. In Fig. 3 three con-
tainers are used with different gap sizes. The computations also
concern various density stratifications. Three vertical lines are
given for any gap size. Left is the line for the Rayleigh limit
where Ωout = ΩinR2

in/R
2
out. The right line mimics the rotation law

Ω ∝ 1/R, which is typical of galaxies (Ωout = ΩinRin/Rout), and
the central line represents the Kepler rotation law Ω ∝ R−1.5,
i.e. μΩ = η̂1.5, which we call the quasi-Kepler limit. The main
result of the Fig. 3 is that the quasi-Kepler rotation is always
unstable. This, however, is not true for the flatter quasi-galactic
rotation, which becomes stable for large gaps. From the bottom
plot in Fig. 3, we have to realize that the quasi-galactic rotation
law with Ω ∝ 1/R is already too flat for the possible existence of
nonmagnetic SRI in galaxies.

The present calculations do not confirm the μ̂Ω = η̂ line as
the limit for the SRI. This limit can be higher for small-gap con-
tainers and can be lower for wide-gap containers. The stability
limit seems to approach the Rayleigh line in the limit of very
wide gaps and goes to unity for very narrow gaps. We ask in the
following whether such results are influenced by the existence
of a toroidal magnetic field.
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Fig. 3. The marginal-stability lines for a small gap (top, η̂ = 0.78), mod-
est gap (η̂ = 0.5, middle) and wide gap (η̂ = 0.3, bottom). The vertical
dotted lines denote the Rayleigh limit, the quasi-Kepler rotation, and
the quasi-galactic rotation (μΩ = η̂). The curves represent different den-
sity stratifications with Fr = 2.2 (dot-dashed), Fr = 1 (dashed), Fr = 0.7
(dotted), Fr = 0.5 (solid, maximum stratification).

4. SRI with azimuthal magnetic field

Without density stratification the ideal Taylor-Couette flow with
imposed azimuthal magnetic field is stable against axisymmetric
disturbances, if

1
R3

d
dR

(R2Ω)2 − R
μ0ρ

d
dR

(
Bφ
R

)2

> 0. (15)

(Michael 1954). This condition is the combination of the
Rayleigh stability condition for differential rotation without
magnetic field and the magnetic field stability condition without
rotation. Without a global rotation, the magnetic field is stable

(the second term in (15) is positive) for the magnetic field
profile (4) if

0 < μB <
1
η̂
≡ μ̂0. (16)

Therefore, all magnetic profiles with positive μB and with μB < 2
(for η̂ = 0.5) are stable against axisymmetric perturbations. As
the dissipative effects are stabilizing, the flow of a magnetic field
with μB beyond the interval (16) becomes unstable against ax-
isymmetric disturbances in case the magnetic field amplitude (or
its Hartmann number) exceeds a critical value.

The stability condition for the azimuthal magnetic field
against nonaxisymmetric disturbances after Tayler (1961) is

d
dR

(RB2
φ) < 0. (17)

For the magnetic field profile (4), it takes the form

0 < μB <
4η̂(1 − η̂2)

3 − 2η̂2 − η̂4
≡ μ̂1 (18)

for the m = 1 (kink) mode, which is the most unstable mode.
Hence, all azimuthal magnetic fields with positive μB smaller
than 0.62 (for η̂ = 0.5) are stable against nonaxisymmetric dis-
turbances. Current-free fields with Bφ ∝ 1/R, i.e. μB = 0.5 for
η̂ = 0.5 are thus always stable against m = 0 and m = 1.

As μ̂1 < μ̂0, the stability interval (18) is smaller than
the stability interval (16). In this sense the nonaxisymmetric
(“kink”) disturbances are more unstable than the axisymmetric
(“sausage”) disturbances. However, the situation is much more
complex in the presence of (differential) rotation, and which
instability really dominates depends on the parameters of the
problem.

In the present paper the influence of stable vertical density
stratifications on the Taylor-Couette flow stability with imposed
azimuthal magnetic fields is considered for three different cases:

1) both the rotation law and the magnetic field are individually
stable, and both together are unstable (i.e. μB = 0.5, no criti-
cal Hartmann number);

2) the magnetic field is stable for m = 0 but unstable for m = 1
(e.g. μB = 1, one critical Hartmann number);

3) the magnetic field is so steep that it is unstable for m = 0 and
for m = 1 (e.g. μB = 3, two critical Hartmann numbers).

4.1. AMRI with density stratification
The azimuthal magnetic field with Bφ ∝ 1/R (i.e. μB = 0.5 for
η̂ = 0.5) is considered which is current-free between the cylin-
ders as the simplest example of an azimuthal magnetic field that
is basically stable without rotation for both axisymmetric and
asymmetric disturbances.

The typical stability diagram is presented by the Figs. 4 and 5
for containers with conducting/insulating cylinders, medium gap
width (η̂ = 0.5, and a rather flat rotation law (quasi-Kepler ro-
tation with μΩ = 0.35 and a slightly steeper rotation law with
μ̂Ω = 0.3), which are both stable without density stratification
and without magnetic field. We find that the results hardly de-
pend on the conducting properties of the cylinder material.

Figures 4 and 5 indicate the (dashed) marginal-stability line
of a homogeneous fluid with Pm = 1. There are no solutions at
both the vertical axis and the horizontal axis. The MHD flow is
only unstable as a combination of differential rotation and the
azimuthal magnetic field. For any supercritical Hartmann num-
ber, there are two critical Reynolds numbers between which the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809565&pdf_id=3
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Fig. 4. The marginal-stability lines for the flow with conducting cylin-
ders, η̂ = 0.5, current-free (μB = 0.5) azimuthal magnetic field, quasi-
Kepler rotation (μΩ = 0.35), Fr = 0.5 for perturbation modes with
m = 1 (solid), and m = 2 (dotted). The curves are labeled by their mag-
netic Prandtl numbers. For comparison the dashed line demonstrates
AMRI (m = 1) for homogeneous fluids (N = 0).

Fig. 5. The same as Fig. 4 but for insulating cylinders with μΩ = 0.3 (as
in Fig. 2) but without m = 2 mode.

fluid is unstable. Similarly, for any supercritical Reynolds num-
ber, there are two critical Hartmann numbers between which
the fluid is unstable. We called this phenomenon the Azimuthal
MagnetoRotational Instability (AMRI), which scales with the
magnetic Reynolds number in the same way as for the stan-
dard MRI in Taylor-Couette experiments. However, magnetic
Reynolds numbers around 100 are too high to be realized in the
MHD laboratory.

The situation changes with a density stratification (Fr = 0.5).
The following results can be interpreted as either AMRI for
density-stratified fluids or as the influence of an azimuthal mag-
netic field on SRI. There is now an instability (SRI) without any
magnetic field for Re > 296 at m = 1 and for Re > 366 at m = 2
(for conducting cylinders, quasi-Kepler rotation law, Fig. 4) and
for Re > 264 at m = 1 (insulating cylinders, μΩ = 0.3, Fig. 5).

Fig. 6. The eigenfunctions for the radial components of flow (uR, left)
and field (bR, right) for Pm = 1. Solid: real part, dashed: imaginary part;
the (arbitrary) amplitude is normalized. Fr = 0.5, Ha = 100, m = 1, see
Fig. 4.

For this case, the calculations are restricted to the kink (m = 1)
instability.

For conducting boundaries (see Fig. 4) and for a special case
(Ha = 100, m = 1) the radial eigenfunctions are given for
Pm = 1 (Fig. 6), which demonstrate that the SRI modes do not
form boundary phenomena. The profiles are normalized, since
the amplitudes have no own physical meaning in linear theory.

For the linear growth time in units of the rotation period of
the inner cylinder for the solution with Pm = 1, one obtains

τgrowth

τrot
� 243

Re − 341
· (19)

Hence, the e-folding time is about four rotations for Re = 400.
The vertical wave number at the critical Reynolds number Re =
341 is 8.63, which means that the vertical cell size in units of
the gap width is about 0.36. Without magnetic field, the wave
number is 8.16. Common action of magnetic field and density
stratification leads to flat cell configurations.

The influence of the azimuthal magnetic field on the SRI
strongly depends on the magnetic Prandtl number Pm. For Pm ≤
1, the SRI is stabilized by the magnetic field, but it can be sup-
ported for Pm > 1 (for fixed viscosity see Figs. 4, 5). For
Pm = 10 the critical Reynolds number is reduced (by a fac-
tor of two) for Ha � 200. In this case AMRI supports the SRI.
This behavior is similar to that of the standard MRI with axial
magnetic field and hydrodynamically unstable rotation where for
Pm > 1 the magnetic field also supports the centrifugal instabil-
ity (Rüdiger & Shalybkov 2002).

Note also that the magnetic suppression of the SRI for small
Pm is rather weak. Even for Pm = 10−5, a (large) Hartmann
number around 100 only leads to the small critical Reynolds
number of about 500. The lines for Pm = 10−5 in Figs. 4 and 5
are identical to the lines for all smaller Pm; i.e., they also hold for
gallium (10−6) and mercury (10−7). Here all the curves scale with
Re rather than Rm so that the corresponding magnetic Reynolds
numbers are quite small compared with those for AMRI. As
the corresponding Hartmann numbers with Ha <∼ 100 are also
not too high, laboratory experiments with fluid metals should be
possible provided a sufficiently density stratification can be pro-
duced, e.g. by heating from above (see Gellert & Rüdiger 2008).

It is also shown in Fig. 4, that for a given Pm, the critical
Reynolds numbers for m = 2 exceed those for m = 1. The differ-
ences, however, are not too big so that, for slightly supercritical
Re, several modes should be excited. This is surprising insofar as
the known smoothing action of differential rotation upon modes
with high m here seems to be weak.

The small Reynolds numbers and Hartmann numbers lead
to the impression that the instability should be observable in the
laboratory. For hydrodynamically unstable situations, we only

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809565&pdf_id=4
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Fig. 7. AMRI for stratified fluids with Fr = 0.5 between insulating
cylinders (η̂ = 0.5, μB = 0.5). The rotation law is so flat (μΩ = 0.6)
that nonmagnetic SRI does not exist (see Fig. 3, middle). Lines are la-
beled by their Pm numbers.

have a suppression of the instability by the magnetic field for
small Pm. For hydrodynamically stable situations (Figs. 4 and 5)
it was shown for uniform fluids that the appropriate numbers
of the problem are the magnetic Reynolds number Rm and the
Lundquist number S

Rm = Pm · Re, S = Pm1/2 · Ha, (20)

rather than Re and Ha. Figure 7 demonstrates that the same is
true for density-stratified fluids with such flat rotation laws that
hydromagnetic SRI does not operate (see Fig. 3). Both the criti-
cal magnetic Reynolds number and the Lundquist number do not
vary remarkably when the magnetic Prandtl number varies over
3 orders of magnitude.

Stratified flows without magnetic field become stable for μΩ-
values slightly over μΩ = 0.5. According to Fig. 7, the flow is
stable for μΩ = 0.6 without a magnetic field, but it becomes un-
stable with magnetic fields. The critical Rm are not monotonous
with Pm. The values of Rm decrease with Pm for small Pm
and v.v. The result can be seen in Fig. 7, which differs in this re-
spect from the AMRI without density stratification (see Rüdiger
et al. 2007a).

The solid line in Fig. 8 demonstrates that the AMRI (like
the standard MRI) exists for all rotation laws with decreasing
angular velocity as a function of radius (i.e. for μΩ < 1).

According to the Figs. 4 and 5, the marginal-stability lines
have always a minimum for some Hartmann number includ-
ing Ha = 0. These minimum Reynolds numbers are plotted in
Fig. 8 as functions of μΩ. The dashed line is SRI without mag-
netic field, which disappears for rotation laws that are too flat
(μΩ >∼ 0.52). There is a smooth transition, however, to the in-
stability AMRI (current-free toroidal field plus differential ro-
tation), which has been computed here for the first time with
a density gradient. The comparison with standard AMRI with-
out dρ/dz yields the expected suppression by density stratifica-
tion. Note, however, that for quasi-galactic rotation (μΩ = 0.5 in
Fig. 8), the SRI with magnetic field can be excited more easily
than without magnetic field. As the figure shows, the necessary
magnetic field has a Hartmann number of about 137.

Fig. 8. The minimum Reynolds numbers for insulating cylinders, η̂ =
0.5, Pm = 1 and for the kink (m = 1) mode. The vertical lines are
the same as in Fig. 3. The numbers on the curves are Hartmann num-
bers which correspond to the minimum Reynolds numbers. The solid
line is AMRI without a stratification, the dot-dashed line is AMRI with
stratification (Fr = 0.5, see Fig. 7) and the dashed line is SRI without
magnetic field.

Because AMRI scales with Rm rather than Re, the “smooth”
transition interval from the hydrodynamic solutions to the mag-
netohydrodynamic scales with Pm−1. Hence, the dot-dashed line
in Fig. 8 becomes steeper and steeper for decreasing Pm.

4.2. Density stratification and Tayler instability (m = 1)

The influence of the vertical density stratification on the non-
axisymmetric TI (i.e. μ̂1 < μB < μ̂0) is considered for rotation
laws that are steep enough to be Rayleigh unstable. Again the
gap width is η̂ = 0.5, the outer cylinder is resting (μΩ = 0), and
the toroidal field is fairly homogeneous (μB = 1) so that only
the mode m = 1 is unstable without rotation. Calculations were
made for both insulating and conducting cylinders (Fig. 9). The
difference between conducting and insulating boundary condi-
tions proves to be only quantitative.

For m = 1 the critical Hartmann numbers above which the
flow is unstable for Re = 0 are 150 for conducting cylinders
and 109 for insulating cylinders. These critical numbers are not
influenced by the density stratification. No critical Hartmann
numbers exist for m = 0; the magnetic field stabilizes this
Rayleigh-mode for both homogeneous and density-stratified
fluids. For homogeneous fluids the marginal-stability line for
axisymmetric disturbances does not depend on the magnetic
Prandtl number Pm (Shalybkov 2006).

The critical Reynolds numbers for the Rayleigh instability
for Ha = 0 do not depend on the conducting properties of the
cylinders. They are 68 (m = 0) and 75 (m = 1) without strat-
ification. The density-stratification stabilizes the flow, and the
critical Reynolds numbers are 294 for m = 0 and 226 for m = 1
(for Fr = 0.5). With density-stratification, the kink mode (m = 1)
proves to be the most unstable mode.

Moreover, for given Pm the kink mode is the most unstable
one for all Ha for Fr = 0.5. For small Pm, this mode is stabi-
lized by weak magnetic fields before a dramatic destabilization
happens for larger magnetic fields. For increasing Pm the flow
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Fig. 9. The marginal-stability lines for a flow with insulating (top) and
conducting (bottom) cylinders. It is η̂ = 0.5, μΩ = 0 (resting outer
cylinder) and μB = 1. The curves are labeled by their magnetic Prandtl
Pm. The m = 0 (dotted) mode (no dependence on Pm) and m = 1 (solid)
mode for homogeneous fluid and m = 0 (dot-dot-dot-dashed) and m = 1
(dot-dashed) modes for density-stratified fluids with Fr = 0.5.

becomes unstable for decreasing Reynolds numbers at a fixed
Hartmann number. The opposite is also true: the smaller Pm, the
stronger is the magnetic field influence and the flow becomes
unstable for smaller Hartmann numbers at a fixed Reynolds
number.

Note that the competition between magnetic and centrifu-
gal instabilities can lead to a rather complex behavior as illus-
trated by the marginal-stability line with Pm = 10. Generally,
however, the stability region is much larger for density-stratified
fluids so that we find that a stable stratification increases the
flow stability. Of particular interest is the phenomenon that, for
density-stratified fluids generally, the critical Hartmann numbers
are larger than without rotation and the same is true for small Pm
with respect to the critical Reynolds number (“ballooning”). For
large magnetic Prandtl number, however, the magnetic field basi-
cally destabilizes the Rayleigh instability. Even for weak fields,
the critical Reynolds number is smaller than the Reynolds num-
ber for the nonmagnetic case.

Fig. 10. The marginal-stability lines for conducting cylinders with η̂ =
0.5, μΩ = 0, μB = 3, Pm = 10−5 (top), and Pm = 1 (bottom). The
lines connect the Rayleigh instability without magnetic field with the
TI without rotation. The dotted lines are for m = 0; the solid lines for
m = 1. The inner curves are for homogeneous fluids (N = 0) and the
outer curves for stratified fluids with Fr = 1. The density stratification
stabilizes in both directions.

4.3. Density stratification and Tayler instability (m = 0, 1)

The most complex situation appears when both the modes with
m = 0 and m = 1 are Tayler-unstable. Only conducting cylin-
ders with medium-sized gap (η̂ = 0.5), outer cylinder at rest
and a toroidal magnetic field with strong currents (μB = 3) are
analyzed. The differential rotation is Rayleigh unstable without
magnetic field and density stratification and the magnetic field is
Tayler-unstable without rotation (for m = 0 and m = 1). The
critical Hartmann number for Re = 0 is nearly equal for all
cases: m = 0 gives Ha0 = 21 and m = 1 gives Ha1 = 20.6.
For other parameters it can be more different. Either the m = 0
or the m = 1 mode can be the most unstable mode. Often the
m = 0 mode is also the most unstable for small Ha numbers and
fast differential rotation (see Rüdiger et al. 2007b).

The critical Reynolds numbers above which the rotation be-
comes unstable without a magnetic field (Ha = 0) for m = 0 and
m = 1 are called Re0 and Re1, resp., and Re0 is smaller than Re1
for homogeneous flows with 0 < μΩ < η̂2. The density stratifica-
tion increases Re0 and Re1 (Fig. 10). With density-stratification,
the m = 1 mode becomes the most unstable mode (Re1 < Re0).
With a magnetic field, it is also the most unstable mode almost
everywhere except for Pm = 10−5 and Ha > Ha0.

“Ballooning” of the stability region is produced by the
density stratification. The density stratification in combination
with the basic rotation stabilizes the flow for larger magnetic
fields. Under the influence of differential rotation and density
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Fig. 11. The correlation function (22) for AMRI with conducting cylin-
ders and with η̂ = 0.5, μΩ = 0.35 (quasi-Kepler), μB = 0.5, Pm = 1.
Density stratification is zero (top) and finite (bottom, Fr = 0.5). The
Reynolds numbers Re = 141 (top) and Re = 341 (bottom) were taken
from Fig. 4.

stratification stronger magnetic field amplitudes prove to be sta-
ble than they were without rotation. The effect already exists
for rather slow rotation rates (see Fig. 10, Pm = 1). This phe-
nomenon is a consequence of the explicit inclusion of the sta-
ble density stratification into the MHD equations. One finds that
both the Rayleigh instability and the TI are stabilized by the den-
sity stratification. Without rotation, however, the density influ-
ence of the Tayler instability would remain negligibly small.

5. Electromotive force for SRI with magnetic field,
the α-effect

Stratorotational instability under the influence of a toroidal field
is tempting to apply to the concept of the mean-field electrody-
namics in turbulent fields. The nonaxisymmetric components of
flow and field can be used as fluctuations, while the axisymmet-
ric components are considered as the mean quantities. Simply
the averaging procedure is the integration over the azimuth φ.

It is standard to express the turbulence-induced electromo-
tive force as

E = 〈u′ × B′〉 = α ◦ 〈B〉 − ηTcurl〈B〉 (21)

with the alpha-tensor α and the (scalar) eddy diffusivity ηT.
In cylindric geometry, the mean magnetic field 〈B〉 only has
a φ-component and the mean current curl〈B〉 only has a z-
component. Hence, Eφ = αφφ〈Bφ〉 and Ez = −ηTcurlz〈B〉 = 0.
The latter relation only holds for AMRI where the mean mag-
netic field is current-free.

In the present paper we only consider the α-effect in the
frame of a linear theory where all functions are free to one and
the same (complex) arbitrary parameter. This is only possible
if the second-order quantities such as Eφ are normalized with a
second-order quantity. In the considered case it makes sense to
form the correlation function

f α =
〈u′ × B′〉φ

MAX(
√
〈u′2〉〈B′2〉)

, (22)

where all the correlations along the radius R are normalized with
one and the same parameter. Hence, this function no longer con-
tains the arbitrary factor of the eigenfunctions, and by defini-
tion it is smaller than unity. The main questions are the sign of
this quantity and the influence of the density stratification. Note
that the Bφ has been given as positive in the model setup where
rotation axis and density gradient are antiparallel. The latter is
quite characteristic of the situation at the poles of rotating stars
or disks, so that the old question of whether an α-effect at the
poles exists or not is the concern here.

One can easily show that second-order correlations of quan-
tities running with exp(i(kz + mφ)) after integration over φ do
not depend on the coordinate z. The term kz only fixes the phase
where the integration starts.

The correlation function f α can be estimated for fast-rotating
magnetoconvection in the high conductivity limit α � √〈u′2〉
and with 〈B′2〉 � (ηT/η)〈B〉2 after Krause & Rädler (1980)
so that

f α <
√
η

ηT
· (23)

For stellar convection, this is a small number; hence, the numer-
ical constraints for the exact calculations of the eigenfunctions
are very high. One must keep this finding in mind when dis-
cussing the numerical results given in Fig. 11 for an example
without density stratification and another one with density strat-
ification. For simplicity the magnetic Prandtl number is put to
unity. Note the influence of the density stratification. The ex-
amples are taken from the Fig. 4 for Ha = 100. The resulting
correlations for N = 0 are much more antisymmetric than the
values for Fr = 0.5. Averaged over the radius, the f α vanishes
for N = 0 but not for the presence of a density stratification.

This cannot be a boundary effect. A boundary effect is im-
plausible because the preferred radial direction is perpendicu-
lar to the rotation axis for cylinders, which mimics the equator
in rotating spheres and there the α-effect must vanish. Indeed,
the antisymmetry is reduced if a density stratification is allowed
(Fig. 11, bottom). Then the density gradient is now the preferred
direction in the system parallel to the rotation allowing the for-
mation of large-scale helicity (as in rotating spheres at the poles).
We are thus tempted to assume that the presented calculations for
the presence of a density gradient have indeed demonstrated for
the existence of an α-effect for the magnetic SRI.

Figure 12 presents similar results but for the small magnetic
Prandtl number Pm = 0.01. The correlation functions provide
a dominance of the positive contributions, but for higher and
higher magnetic fields, the difference becomes smaller. It seems
that the numerical results reflect a magnetic quenching of the
α-effect here.

6. Conclusions

The stability of the dissipative Taylor-Couette flow under consid-
ering the joint influence of a stable vertical density stratification
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Fig. 12. The correlation function (22) for η̂ = 0.5, μΩ = 0.35 (quasi-
Kepler), μB = 0.5, Pm = 0.01. Fr = 0.5). The Reynolds numbers are
Re = 531 for Ha = 100 and Re = 999 for Ha = 200 and Re = 2137 for
Ha = 400. The α-effect is quenched for stronger magnetic fields.

is considered and an azimuthal magnetic field is considered.
The problem is of interest for future laboratory experiments but
also within the frame of accretion disk physics. The Kepler ro-
tation generates strong toroidal magnetic fields dominating the
poloidal components. The standard MRI that works with only
axial fields may not be very relevant for the stability of the
Kepler rotation law compared with the azimuthal MRI in con-
nection with the density stratification and Tayler instability. We
mainly considered nonaxisymmetric “kink” modes (m = 1), but
there are also examples where the axisymmetric modes are the
most unstable ones.

We started with a discussion of the SRI without magnetic
fields. For a flat rotation law, a stratification value Fr exists for
which the critical Reynolds number of the rotation has a min-
imum (see Fig. 2). The SRI is basically stabilized both by too
weak or too strong stratification. The instability only appears if
the characteristic buoyancy time approaches the rotation period.
Also, if the rotation is too flat, the instability disappears.

The limiting ratio μΩ strongly depends on the gap width (see
Fig. 3). For small gaps, rotation laws with μΩ > η̂ even prove to
be unstable while the condition μΩ < η̂ results for SRI for wide
gaps. Our previous finding that μΩ <∼ η̂ limits the SRI is only
reproduced for medium-sized gaps. In all cases, however, the
quasi-Kepler rotation proves to be unstable. New experiments
with different gap sizes and larger Reynolds numbers could ver-
ify these results.

Figures 4 and 5 yield the basic results for SRIs subject to
toroidal fields. The magnetic field is assumed to be as current-
free in the fluid between the cylinders, i.e. Bφ ∝ 1/R exclud-
ing TI. Without any density stratification, no Rayleigh instabil-
ity exists for quasi-Kepler rotation, but nonaxisymmetric modes
with m = 1 are unstable as a result of the interaction between
differential rotation and magnetic field (“AMRI”).

The magnetic influence strongly depends on the magnetic
Prandtl number. The instability needs a higher Reynolds num-
ber for Pm <∼ 1, and it needs a lower Reynolds number for
Pm >∼ 1. After our experiences with MHD instabilities, this is
not a surprise. It is a surprise, however, that the magnetic influ-
ence is always weak. Up to Hartmann numbers of Ha � 100,
only a magnetic-induced factor of two plays a role2. Hence, our
conclusion is that the SRI survives for rather high magnetic

2 Ha = 100 for gallium corresponds to B ≈ 2200/R0 [Gauss] with R0

in cm.

fields. For large Pm it is even supported by the toroidal magnetic
field.

The combination of rotation, density stratification, and mag-
netic field leads to complex results. However, one basic finding is
that the critical Reynolds numbers, if they exist, above which the
flow becomes unstable without a magnetic field, are increased by
the stable density stratification. In contrast, the critical Hartmann
numbers, if any exist with the TI, above which the field becomes
unstable without a rotation, do not depend on the stratification.
Different transitions are possible between the two limits.

Generally speaking, the density stratification ‘balloons’ the
stability region, and in this sense it stabilizes the flow. For slow
rotation the maximal stable magnetic field exceeds the critical
magnetic field without rotation while the maximal stable mag-
netic field is smaller for faster rotation than this critical value.
Even rather low values of the Reynolds numbers lead to a stabi-
lization of those fields that are unstable for Re = 0. The effect is
strong for Pm = 1 but becomes weaker for decreasing magnetic
Prandtl numbers.

For steep radial profiles of the magnetic field (i.e. strong ax-
ial currents) and magnetic Prandtl numbers Pm >∼ 1, one also
finds the magnetic field destabilizing the Rayleigh instability;
i.e., the critical Reynolds numbers with magnetic field are lower
than the Reynolds numbers without magnetic field. This mag-
netic destabilization only exists for magnetic Prandtl numbers
that are not too small. It exists for both uniform and density-
stratified fluids (Fig. 10).

Finally, the φ-component of the electromotive force repre-
senting the α-effect of the mean-field dynamo theory has been
computed. The computations require an extreme degree of ac-
curacy. The results demonstrate the importance of the density
stratification for the existence of the α-effect. Without density
stratification, the correlations are vanishing in the radial aver-
age. With an axial density stratification, the calculations model
the polar region of a rotating sphere or disk. With this interpreta-
tion accepted, we found the αφφ at the northern pole as positive
for negative density gradients (Fig. 11).
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