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Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that
often underlie biological phenomena such as polygenic effects and protein dispensability. An important
conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular
task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae,
it has been suggested that the global protein interaction network is segregated such that highly connected proteins,
called hubs, tend not to link to each other. Moreover, it has been suggested that hubs fall into two distinct classes:
‘‘party’’ hubs are co-expressed and co-localized with their partners, whereas ‘‘date’’ hubs interact with incoherently
expressed and diversely localized partners, and thereby cohere disparate parts of the global network. This structure
may be compared with altocumulus clouds, i.e., cotton ball–like structures sparsely connected by thin wisps. However,
this organization might reflect a small and/or biased sample set of interactions. In a multi-validated high-confidence
(HC) interaction network, assembled from all extant S. cerevisiae interaction data, including recently available
proteome-wide interaction data and a large set of reliable literature-derived interactions, we find that hub–hub
interactions are not suppressed. In fact, the number of interactions a hub has with other hubs is a good predictor of
whether a hub protein is essential or not. We find that date hubs are neither required for network tolerance to node
deletion, nor do date hubs have distinct biological attributes compared to other hubs. Date and party hubs do not, for
example, evolve at different rates. Our analysis suggests that the organization of global protein interaction network is
highly interconnected and hence interdependent, more like the continuous dense aggregations of stratus clouds than
the segregated configuration of altocumulus clouds. If the network is configured in a stratus format, cross-talk
between proteins is potentially a major source of noise. In turn, control of the activity of the most highly connected
proteins may be vital. Indeed, we find that a fluctuation in steady-state levels of the most connected proteins is
minimized.
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Introduction

One of the advantages of a systems biological approach to
understanding the relationship between genomes and phe-
notypes is that it permits conceptualization of intermediary
levels of organization, which may not be evident from more-
focused studies [1–3]. Although some of these levels can be
objectively defined (e.g., cliques [4–6] and motifs [7,8]), others
attempt to capture novel levels of organization in a more
subjective fashion. Increasingly, biological network organiza-
tion is viewed as ‘‘modular.’’ The underlying notion behind
the idea of a module is that certain proteins function along
with certain partners in a manner that renders the collections
of proteins an entity in itself [9]. A simple example is the
alpha and beta chains of hemoglobin that combine into a
functional tetramer with cooperative oxygen-binding proper-
ties. Modules need not be stable complexes [10–13], however.
One might also talk of modularity in signaling pathways, such
as the bacterial chemotaxis pathway [14] or the yeast mating
pathway [9]. That modules can be treated as an entity might
be defended on the basis that the proteins in the same
module have a similar knockout phenotype (i.e., if one is
essential, all are essential; if one is nonessential, all might be
nonessential), that they are phylogenetically correlated (i.e., if
one is present in a given species, all are present, and vice

versa) [15] or, possibly, on the basis that the constituent
proteins are co-expressed.
One problem with the module concept, however, is that it

is not clear where to set the boundary of the module; this
nebulous aspect limits the objective definition of a module.
Importantly then, Maslov and Sneppen [16] have argued that
the hub proteins, i.e., those with many interactions, tend not
to interact with other hub proteins, but rather prefer to
interact with lowly connected proteins. This apparent
tendency, termed ‘‘anticorrelation.’’ helps to delimit modules
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because the reduced interaction between hubs results in
dense sub-networks that are distant from and sparsely
connected to other dense sub-networks. In other words, the
dense subparts are the modules. Bacterial metabolic networks
often exhibit just this sort of physical modularity [14,15].

It does not follow from the above that all hub-centered
parts of the network need function in the same manner. Han
et al. [17], for example, contend that hubs are of two varieties,
‘‘date’’ and ‘‘party,’’ which can be distinguished on the basis
of interaction partner co-expression patterns. Hubs that are
co-expressed with many of their interaction partners are
called ‘‘party hubs,’’ as all members are either present or
absent together. Most protein complexes exhibit this prop-
erty to some degree. In contrast, hubs that show no correlated
expression with their binding partners are called ‘‘date hubs,’’
as in a series of two-partner dates. It has been suggested that
the two categories of hubs may be intimately related to
modules. Removal of date, but not party, hubs shatters the
network into many smaller components, suggesting a unique
role for date hubs in global network topology and, possibly,
resilience to genetic disturbances [17]. Because sub-network
fragments formed upon deletion of date hubs are function-
ally more homogeneous than fragments formed upon
deletion of party hubs, it appears that party hubs reside
within single modules that perform biologically discrete tasks,
whereas date hubs mediate communication between different
modules [17].

Two properties of hub proteins thus relate to and help
define this hub-centric view of modularity in protein
interaction networks: the lack of contact between hubs (i.e.,
anticorrelation) and the date/party hub distinction. Under-
standing whether these distinctions are viable is important
not least because date and party hubs might be differently
important in therapeutic intervention [17]. Moreover, if we
are to understand the basis of dispensability of proteins, for
example, then it is important that our classification of
network structures reflects biological reality. Unfortunately,
it is currently unclear whether these distinctions are real and
helpful.

The propensity for anticorrelation is strongly influenced by
the choice of dataset [16,18–20]. In the original anticorrela-
tion analysis, Maslov and Sneppen [16] used a high-
throughput (HTP) two-hybrid dataset of Saccharomyces cerevi-
siae protein interactions [21]. A subsequent re-analysis [18],
however, suggested that exclusion of prolific baits from the
dataset reduced the suppression of links between highly
connected proteins, suggesting that degree anticorrelation
was most likely an artifact of the particular two-hybrid
dataset. In yet a third analysis, degree anticorrelation was still
present when a more reliable subset of two-hybrid data
(known as the Ito ‘‘core’’ data) in conjunction with additional
two-hybrid data [22] was re-analyzed [20]. In contrast, a
recent study [19] using data from the DIP (Database of
Interacting Proteins) database [23] and affinity purification
studies [10,21], found that the average degree of nearest
neighbors is independent of node degree. Moreover, the
suppression of interaction among hubs is also inconsistent
with the observation that essential hubs, which tend to be
highly connected, are more likely to interact with other
essential hubs [24,25]. A proposed functional interpretation
of anticorrelation is also tenuous. In particular, it has been
argued that anticorrelation minimizes cross-talk between the

highly connected proteins and thereby insulates each module
from adventitious activation [16]. It is not, however, obvious
that this need be so: if hub–hub suppression is a primary
means to suppress ‘‘cross-talk,’’ then network structure alone
should provide a passive mechanism to prevent unwanted
communication between modules. By passive mechanism, we
mean that because proteins in one module do not have
binding sites for proteins in another module, no unwanted
interaction can take place. Why then, we should ask, do cells
use active co-localization and co-regulation of interacting
partners extensively as a means to spatially regulate cellular
processes [26–28]?
To circumvent the high error rate problem with HTP

interaction data, all extant data have recently been distilled
into a dataset of approximately 2,500 S. cerevisiae protein
interactions, termed the ‘‘Filtered Yeast Interactome’’ (FYI)
dataset [17]. This dataset was used to originally formulate the
distinction between party and date hubs [17]. A strong
argument that the date/party distinction is meaningful is that
it holds both for partitioning based on expression correlation
and, independently, for informational entropy of the hub
neighborhood, which measures the localization concordance
of proteins in the vicinity of hubs [17]. Thus, partners of date
hubs exhibit more heterogeneous localizations than those of
party hubs. However, one significant drawback with the FYI
dataset is that it reflects only a very limited sub-fraction of all
protein–protein interactions, probably less than 10% of the
total. That the dataset may not be representative is suggested
by the finding that, whereas biological networks are believed
to be scale free [1], the FYI dataset used by Han et al. [17] is
not scale free [29]. In addition, the evidence for co-expression
of the party hubs with their binding partners was based on
only a limited number of expression studies [17].
Since the publication of the above studies, three new, large-

scale S. cerevisiae interaction datasets have become available:
two from proteome-wide mass spectrometry–based screens
[12,13] and one from comprehensive curation of the primary
yeast literature [25]. The latter set of literature-curated (LC)
data is of particular importance because interactions
reported in the primary literature tend to be reliable because
domain expertise, additional independent controls, prior
contextual supporting information, and peer review reduce
the likelihood of false positives. Here, using the LC data from
five major interaction databases (BIND [30], BioGRID [25],
DIP [23], MINT [31], and MIPS [32]) and all published HTP
interaction data [10–13,21,22,33], we generated a large multi-
validated dataset of 9,258 S. cerevisiae protein interactions
among 2,998 proteins, which we termed the ‘‘high con-
fidence’’ (HC) network. The minimum criterion for inclusion
in the multi-validated dataset is that the relevant interaction
was independently reported at least twice. We use the HC
dataset to re-examine the issue of global organization of
intermodule connectivity [16] and the generality of the date/
party hub phenomenon [17] .

Results

Network Layout Suggests Different Global Organization
To allow direct comparison to the FYI network, we used a

framework of all FYI proteins, to which interactions were
added from the HC dataset to yield the HCfyi dataset (see
Methods). As the methods to create the FYI and HC datasets
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[17] were similar, it was not surprising that over 91% of the
interactions in FYI were also present in HCfyi. However, as
three additional large datasets were used to assemble HC
[12,13,25], 51% of the HCfyi interactions were not present in
the FYI network. The qualitative global topologies of the FYI
and HCfyi networks were markedly different. The FYI network
was composed of 160 unlinked sub-networks and thus highly
fragmented with sparsely linked dense sub-networks in the
main component, whereas the HCfyi network contained one
massive cohesive network bearing 93% of all proteins,
accompanied by only 37 small satellite networks (Figure 1A
and 1B). The most striking difference between the two
networks was the suppression of connectivity among hubs in
FYI; this result is encapsulated in the degree anticorrelation
pattern observed previously for a HTP network [16].

Global Degree Correlation Suggests No Bias against Hub–
Hub Interactions

Degree correlations were computed as described [16] for
the HC network and for a HTP network created from five
large-scale datasets [10,11,21,22,33] (see Methods). Proteins
were grouped into connectivity classes, and the number of
interactions between each class determined. Random net-
works were generated using the original network as a seed by
the edge-swapping method as described [16] in order to
calculate the expected mean and the variance of means of
interactions in each bin. On the assumption that the means
were distributed normally, z-score normalization was per-
formed to determine statistical significance. Connectivity of
each interaction partner was plotted, and the region
pertinent to modularity, i.e., connections between highly
connected nodes, was bounded by a rectangle (Figure 2). The
HTP network showed a clear degree anticorrelation pattern
as reported previously [16] (Figure 2A). However, no such
tendency was observed for the HC network: the observed
fraction of interactions in the hub–hub region was no

different from that expected for a scale-free network with
the same degree distribution (Figure 2B).
Might this just be a peculiar property of the HC network?

To investigate this possibility, we established two new
datasets, called HCm and HCh. The HCm dataset consisted
of only those interactions from HC that were validated by at
least two different methods, and the HCh dataset consisted of
only those interactions from HC that were multi-validated via
HTP methods only. In both of these new datasets, we again
found no evidence for anticorrelation (Figure S1). As a
further check, we examined the trend in hub–hub interaction
suppression as we imposed ever-more stringent definitions
on what constitutes a hub. For HTP, as the hub threshold was
increased, the suppression became stronger, consistent with
previous assertions of hub–hub suppression. However, for
HC, HCm, and HCh as the hub threshold was increased, the
suppression became weaker and eventually vanished. Thus in
the HC networks, there was no tendency for hubs to avoid
interacting with other hubs.
This conclusion was further supported by analysis of

protein essentiality. It is known that a protein is more likely
to be essential if it has many protein interactions [34]. Hubs
that show more interactions with fellow hubs might therefore
be more likely to be essential than hubs with fewer such
connections. In the HC dataset we found that this was indeed
the case (mean number of hub connections for nonessential
hubs¼ 11.15 6 0.58, n¼ 118, for essential hubs¼ 14.1 6 0.47,
n ¼ 189, Mann Whitney U test, p ¼ 0.0002). Employing the
residuals of the regression of log10-transformed connectivity
against the number of hub–hub interactions, we additionally
found that the above result held when allowing for differ-
ences in absolute number of connections (Mann Whitney U
test, p ¼ 0.01). We surmise both that hubs with more hub
interactions are more likely to be essential and that hub–hub
interaction must in turn be a real phenomenon.

Figure 1. Comparison of Network Topology

(A) Layout of FYI network [17].
(B) Layout of HCfyi network.
The small size and fragmented nature of FYI as compared to HCfyi are evident: FYI contained 160 disconnected components with 57% in the main
component, whereas HCfyi contained 37 disconnected components with 93% in the main component. The global organization of FYI network is that of
dense local regions that are sparsely interconnected (altocumulus structure), whereas that of the HCfyi is densely interconnected overall, suggestive of
extensive coordination and dependencies among diverse processes (stratus structure).
DOI: 10.1371/journal.pbio.0040317.g001

PLoS Biology | www.plosbiology.org October 2006 | Volume 4 | Issue 10 | e3171722

Stratus-Like Protein Interaction Network



Fraction of Hub–Hub Interactions Reduce with
Experimental Scale

To examine the assertion that proteome-wide interaction
screens may have limited capacity to discern hub–hub
interactions, we partitioned the LC dataset into sub-networks
according to scale. That is, curated publications were
partitioned by the number of interactions reported in each
(i.e., the scale of the experiment) such that the total number
of interactions in each bin were approximately similar in
number. For each sub-network, we defined hubs as proteins
whose connectivity exceeded the connectivity of 95% of the
other proteins in that sub-network. By this measure, the
fraction of hub–hub interactions decreased with the scale of
experiment (r¼�0.85, p , 0.01, Spearman rank correlation).
The sharp drop beyond a scale of 20 interactions per paper
indicated an onset of bias against hub–hub interactions after
this point (Figure 3). This result suggests that large-scale
screens have difficulty in assessing interactions among hubs
(see Discussion).

No Evidence for Date and Party Hub Distinction
The above results indicate that the apparent avoidance of

hub–hub interactions is an artifact of prior data, most
parsimoniously explained by potential experimental biases
rather than natural selection [16]. What then of the
distinction between date and party hubs? Evidence for these
came originally from four sources: (1) effect of hub deletion;
(2) correlated neighbor expression profiles; (3) shared local-
ization annotation of neighbors; and (4) centrality in the
genetic interaction network. Subsequently, further support
came from the finding of different rates of evolution of date
and party hub protein [35]. Given the different topologies of
the FYI and HCfyi networks, we re-examined each property in
turn.

The HCfyi network is tolerant to hub deletion. To probe the
assertion that date hubs serve as intermodule linkers, we
determined the effect of date and party hub deletion on the
HCfyi network. Note that provided the date/party distinction
is a biologically meaningful property, as new interactions are
integrated into an existing network, the identity and

Figure 2. Global Degree Correlation Suggest Bias against Hub–Hub Interactions

Proteins in either a combined HTP dataset (A) or the full HC dataset (B) were binned logarithmically by connectivity (with two bins per decade), and
interactions among nodes in each of these bins were computed. The ratios of observed over the expected number of interactions are shown; the x- and
y-axes both represent connectivity. Degree correlation profiles were computed as described in the Methods section; expected values were computed
by generating 50 random networks generated via edge-swapping procedure as described [16]. All colored regions are statistically significant (standard
deviation greater than or equal to 63, representing p , 0.01), with enrichment highlighted in blue and depletion in red; ratios colored in white do not
deviate significantly from unity. Areas bounded by rectangles represent interaction space between hubs, defined as the degree threshold exceeded by
10% of the hubs. This threshold was 18 for HTP and 21 for HC.
DOI: 10.1371/journal.pbio.0040317.g002

Figure 3. Fraction of Hub–Hub Interactions Reduce with Scale of

Experiments

Protein interactions from the LC dataset were separated into subgroups
based on the number of interactions reported in the same publication,
which was taken as a proxy for experimental scale. For each sub-network,
hubs were defined as protein with connectivity exceeding the 90th
percentile. The strong negative correlation (r ¼ �0.85, p , 0.01,
Spearman) indicates that as the size of the screen increases, bias against
hub–hub interactions begins to appear.
DOI: 10.1371/journal.pbio.0040317.g003
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attributes of date and party hubs should not change. To
measure susceptibility of HCfyi network integrity to disrup-
tion, we serially deleted either the entire set of putative date
hubs or the entire set of putative party hubs in descending
order of connectivity, and computed the size of the largest
remaining component at each step (Figure 4A). The drastic
collapse of the FYI network originally observed upon deletion
of date, but not party, hubs was recapitulated [17]. In

contrast, in the HCfyi network, neither date nor party hub
deletion had any effect beyond that of random node deletion.
A smaller FYI-derived network constructed only from
interactions present in the LC dataset, called LCfyi, was
similarly resistant to date and party hub deletion (Figure S2).
The complete HC, HCm, HCh, and LC networks were also
highly resistant to date hub deletion (Figure S2 and
unpublished data).
To test whether the differences in hub–hub interactions

could explain the differential sensitivity of the FYI and HCfyi

networks, we both added random interactions among hubs to
the smaller FYI network, or deleted random hub–hub
interactions from the larger HCfyi network, and then
repeated the deletion analysis. An increase of just 10% in
random hub–hub connections to FYI dramatically increased
its tolerance to hub deletion, whereas removal of 40% hub–
hub connections from HCfyi was required to partially increase
its sensitivity to hub deletion (Figure 4B). The 40% decrease
in hub–hub connections reduced the size of HCfyi to the size
of FYI; we note that in order to have sufficient hub–hub
interactions to enable this massive level of deletion, the
connectivity threshold used to define a hub in the reduced
HC network was set to 50%. Network sensitivity to hub
deletion is thus explained in part by small size of the FYI
network and in part by bias against hub–hub interactions in
HTP-derived datasets.
The marginal topological effect of date/party hub deletion

on the HCfyi network at first seemed to conflict with the
established property that scale-free networks are sensitive to
deletion of hubs [36]. However, despite the fact that FYI date
and party hubs were also hubs in the HCfyi or full HC
networks, these were not necessarily the most connected
nodes in these networks. Indeed, when we deleted the top
20% of the most-connected nodes and compared the size of
the residual largest component, HCfyi network topology was
severely compromised (Figure S3), as observed previously
[36].
No evidence for bimodality in expression correlation of

hub partners. A primary criterion for the distinction between
date and party hubs in the FYI network is the bimodality in
expression correlation of hubs [17]. This bimodality is
important as it would indicate that, pooling all hubs together,
the party hubs (with high co-expression) are a qualitatively
distinct subclass, rather than part of a continuum. However,
the statistical significance of this apparent bimodality was not
determined in the original analysis [17]. We therefore used
Hartigan’s DIP test [37,38] to test whether the probability
density of neighbor expression of date/party hubs matched a
null unimodal distribution. The DIP test fits the best
unimodal distribution of any shape and then scores the
deviation of the observed data from this distribution. Higher
DIP scores imply greater deviation from unimodality. For
empirical distributions of the mean expression correlation of
hubs with their neighbors computed using 25 different large
expression datasets, unimodality could not be rejected for all
networks tested (Table 1).
To determine whether distinct classes of date and party

hubs exist in the full HC network, we defined the top 15% of
highly connected proteins in HC as hubs, and tested whether
the density of neighbor expression correlation showed
bimodality across the same 25 expression datasets. The full
HC network invariably exhibited a single mode (Table 1). We

Figure 4. Network Tolerance to Hub Deletion

The size of the largest component after deletion of hubs in the indicated
networks was normalized by the initial size of the largest component. In
all cases, hubs were deleted in descending order of connectivity.
(A) The FYI network is sensitive to hub deletions, whereas the HCfyi

network is tolerant to hub deletions.
(B) Topological sensitivity to node deletion can be modulated by varying
the fraction of hub–hub interactions. Addition of 10% of random hub–
hub interactions is sufficient to increase the tolerance of the FYI network
to hub deletion (‘‘augmented’’). Deletion of 40% of interactions among
hubs is necessary to increase the sensitivity of the HCfyi network to hub
deletion (‘‘reduced’’).
DOI: 10.1371/journal.pbio.0040317.g004
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concluded that the putative bimodality in the small FYI
network represents random fluctuations in the empirical
distribution due to small sample size, rather than a mean-
ingful partition of hubs into two distinct spatio-temporal
classes. This small sample-size effect may also be exacerbated
by the enrichment for interaction amongst strongly co-
expressed proteins as judged by higher fractions of inter-
actions in FYI but not in HC with shared GO annotations
(Table S1).

Localization entropy of date and party hubs. The bimo-
dality of neighbor co-expression is apparently also buttressed
by an independent attribute, namely the differential enrich-
ment of shared localization annotation [27] among neighbors
of date and party hubs [17]. That is, neighbors of date hubs
have more diverse localizations than neighbors of party hubs,
as measured by information entropy [17]. The more evenly
distributed the set composition, i.e. no enrichment of any
character, the higher the entropy. However, this conclusion is
subject to several caveats. First, spatial diversity was not
normalized to account for the increased connectivity of date
hubs [17]. Since the entropy measure used to assess diversity
is not independent of size, neighbors of date hubs, which are
more connected than party hubs, might be artificially
enriched for more diverse locations by virtue of more
connections. Second, cytoplasmic and nuclear localization
were excluded from consideration in the FYI analysis without
adequate justification [17]. When these compartments were
included and/or data were appropriately normalized, date

hubs in fact showed lower entropy (i.e., enrichment) for
common localization in their neighbors, than party hubs in
five networks (Table 2). This lack of enrichment was
consistent with the absence of bimodality in the gene
expression in rejecting the date/party distinction (Table 1).
The above tests, while rejecting the hypothesis that date

hubs have higher entropy, nonetheless reveal an unexpected
finding, namely that the inverse correlation appeared to be
true, i.e., party hubs actually had higher entropy than date
hubs. This property appeared to derive from the fact that
party hubs tend to be more abundant proteins. In both rich
and poor media, entropy was positively correlated with
abundance: in both media conditions, Pearson product
moment correlation, Log(Abundance) versus Ln(Entropy) r
; 0.25, p , 0.005, Nrich¼ 117, Npoor¼ 110. Importantly, when
controlled for abundance, date and party hubs did not differ
in their entropy (for HC: analysis of covariance [ANCOVA]
with Ln(Entropy) predicted by date/party with Log(Abun-
dance) of a covariable: rich media: p for date/party effect,
0.72, p for effect of abundance, 0.01; poor media: p for date/
party effect, 0.68, p for effect of abundance, 0.01). Why
abundance might affect entropy is unclear; however, highly
abundant proteins may have more diffuse locations in the cell
[26]. Indeed, the more highly abundant a protein, the more
different cellular compartments it is seen in, although the
effect is very weak (Spearman rank correlation, rho¼ 0.04, p
, 0.02, n ¼ 2,508). This effect may be real or may indicate a

Table 1. Statistical Test for Multi-Modality in the Distribution of Neighbor Expression Correlation

Dataset FYI

(0.037)

HC

(0.037)

HCfyi

(0.037)

HCh

(0.039)

HCm

(0.037)

HC DIP

(0.025)

hughes00 0.016 0.020 0.019 0.016 0.016 0.011

mnaimneh04 0.016 0.022 0.024 0.020 0.018 0.011

gasch00 0.016 0.016 0.025 0.022 0.018 0.015

orourke04 0.025 0.022 0.015 0.019 0.017 0.009

spellman98 0.023 0.016 0.023 0.022 0.017 0.012

roberts00 0.017 0.021 0.021 0.022 0.017 0.013

gasch01 0.021 0.014 0.012 0.016 0.015 0.012

causton01 0.026 0.019 0.022 0.015 0.018 0.015

segal03 0.018 0.015 0.018 0.017 0.016 0.012

fleming02 0.018 0.016 0.021 0.023 0.021 0.012

schuller03 0.016 0.018 0.020 0.019 0.016 0.012

jellinski00 0.021 0.014 0.020 0.015 0.017 0.013

zhu00 0.016 0.019 0.019 0.019 0.019 0.012

primig00 0.020 0.015 0.020 0.022 0.019 0.010

yoshimoto02 0.026 0.017 0.016 0.026 0.020 0.009

ideker01 0.026 0.016 0.019 0.024 0.015 0.013

chitikila02 0.016 0.017 0.014 0.025 0.023 0.012

nautiyal02 0.022 0.020 0.018 0.014 0.027 0.012

shamji00 0.019 0.019 0.013 0.022 0.018 0.017

mutka01 0.016 0.020 0.021 0.022 0.025 0.010

mccammon03 0.017 0.015 0.018 0.021 0.019 0.011

chu98 0.019 0.019 0.026 0.014 0.018 0.011

gross00 0.018 0.023 0.018 0.019 0.017 0.009

ferea99 0.027 0.024 0.018 0.023 0.016 0.011

travers00 0.023 0.016 0.016 0.023 0.016 0.009

Hartigan’s DIP test [37,38], a non-parametric test for unimodality, was performed using the R-package diptest. The DIP value is a measure of the deviation of the observed distribution
away from the best-fit unimodal distribution (a DIP score of 0 means no deviation, whereas a high DIP score indicates non-unimodality). DIP score cutoff for significance at the 5% level is
indicated in the header for each column. Hubs with a neighbor expression correlation exceeding 0.5 in any one of the expression data were defined as party hubs, according to
convention [17]. The right-most column indicates the DIP test scores for new date and party hubs defined in the full HC network.
DOI: 10.1371/journal.pbio.0040317.t001
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higher rate of misclassification for the more abundant
proteins.

Genetic centrality of date versus party hubs. A further
distinguishing feature of FYI date hubs is their apparent
propensity to exhibit more synthetic lethal interactions than
either party hubs or non-hubs, suggesting a central genetic
role for date hubs [17]. However, this analysis was based on a
small set of approximately 1,000 synthetic lethal interactions
[32]. For a more exhaustive comparison of genetic centrality
of date, party, and non-hubs, we used two different sets of
genetic data recently compiled from the primary literature
[25], grouped into systematic methods (called HTP-GI,
consisting of SGA [39,40] and dSLAM [41] genome-wide
screen data) and conventional focused tests of genetic
interactions (called LC-GI). On average, date hubs had more
genetic interactions than party hubs or non-hubs in the LC-
GI network, whereas in the HTP-GI network, date hubs
actually had fewer synthetic lethal partners (Figure S4). Due
to this contradictory result, we conclude that at this point, it
is not possible to make an unequivocal statement that date
hubs are genetically more central than party hubs. However,
because HTP genetic screens are inherently non-biased, at
least as regards to cellular process, whereas focused genetic
interrogations are often biased towards interaction partners
[25], we suspect that as the genetic network grows, the
residual genetic centrality of date hubs will disappear.

Date and party hub proteins evolve at the same rate. It has
been claimed that data and party hub proteins evolve at
different rates [35]. The logic of why this might be can be
simply explained by comparison with electrical circuits. In
such circuits there are sets of switches that control electrical
units (e.g., light bulbs). Although the electrical switch can be
rewired to control a different set of lights, the structure of the
light bulb cannot be changed. Party hubs, it is then argued,
form coherent modular elements (c.f., light bulbs) whose
structure is fixed. Date hubs, by contrast, function as switches
that can evolve to control different sets of lights. For this sort
of reason, it is suggested that date hubs evolve faster than

party hubs. Were this difference in evolutionary rate real (and
the interpretation correct), it would suggest that, contrary to
what we have identified above, there is some genuine and
verifiable difference between date and party hubs.
To re-examine the relationship between rates of evolution

for party and date hubs, we established a new, much larger
dataset and used the new HC network to define date and
party hubs, using the same criteria employed previously [17].
Naturally, the two hub classes have drastically different co-
expression values as this parameter is used to define the two
sets (median co-expression for date hubs ¼ 0.05, for party
hubs ¼ 0.28). Using rates of protein evolution from the S.
cerevisiae–S. bayanus alignments (see Methods), we found no
significant difference in evolutionary rates between the two
classes (median dN for party¼ 0.055, n¼ 110, for date¼ 0.074,
n ¼ 200, Mann-Whitney U test: p ¼ 0.08). Transforming the
data by natural log transformation, such that the distribu-
tions were approximately normally distributed, reinforced
this lack of difference between the two classes (mean Ln(dN)
for party¼�3.2 6 0.086, for date¼�3.0668 6 0.083, p¼ 0.27,
t-test).
The small residual difference between the two hub classes

in the HC network was readily explained by differences in
protein abundance, which is a major predictor of both rates
of evolution [42] and a strong correlate to the level of co-
expression (Spearman rank correlation between protein
abundance [43] and co-expression: rho ¼ 0.40, p , 0.0001).
The difference in protein abundance between the date and
party hubs was striking: the median abundance for party hubs
was 6,560 molecules per cell and for date hubs was 2,740
molecules per cell (p , 0.0001, Mann Whitney U test). If we
allowed for this difference, there was not even a weak
tendency toward different evolutionary rates between date
and party hubs (ANCOVA, Ln(dN), predicted by date versus
party with log10(Abundance) as a covariate: p for effect of
date versus party ¼ 0.73, p for effect of log10(Abundance) ,

0.001; Figure 5A). Note that in a fuller model permitting an
interaction term between hub type and protein abundance,

Table 2. Localization Entropy Difference of Hubs

Network Hub

Type

Normalized

(C and N Included)

Unnormalized

(C and N Included)

Unnormalized

(C and N Excluded)

FYI Date 0.33 1.15 1.01

Party 0.39 1.26 0.67

p-Value 0.06 0.06 0.03

HC Date 0.35 1.45 1.27

Party 0.41 1.62 1.07

p-Value 0.006 0.025 0.15

HCfyi Date 0.34 1.37 1.02

Party 0.40 1.52 0.87

p-Value 0.01 0.047 0.37

HCh Date 0.26 1.01 1.28

Party 0.36 1.41 0.81

p-Value 0.0006 0.0003 0.01

HCm Date 0.33 1.29 1.05

Party 0.40 1.41 0.78

p-Value 0.004 0.031 0.19

Localization diversity was computed for the indicated networks as described [17]. The lower the informational entropy, the more homogenous the localization of hub neighbours. Values
were either normalized to account for hub size or not. To allow direct comparison to previous results [17], un-normalized values that disregarded cytoplasmic (C) or nuclear (N) localized
proteins were also calculated. Statistical significance was computed using Mann-Whitney U test.
DOI: 10.1371/journal.pbio.0040317.t002
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the interaction term was not significant (p¼ 0.545); hence we
could not reject the null of equal slopes, and so the ANCOVA
assumption of equal slopes was valid.

We further verified this result by employing dN/dS (using
corrected dS) derived from a different species comparisons
across the sensu strictu yeasts [44]. As dN/dS correlated very
highly with the dN measure (Spearman rho¼ 0.97), it was not
surprising that employing this measure did not alter the
above conclusions (ANCOVA, Ln(dN/dS), predicted by date
versus party with log10(Abundance) as a covariate: p for effect
of date versus party¼ 0.72, p for effect of log10(Abundance) ,

0.001; Figure 5B). Controlling again for protein abundance,
we also found no evidence that essential hubs evolve slower
than nonessential hubs (ANCOVA, Ln(dN), predicted by
essential/nonessential with log10(Abundance) as a covariate:
p for effect of essential/nonessential ¼ 0.53, p for effect of
log10(Abundance) , 0.001; for ANCOVA of Ln(dN/dS), p ¼
0.97 and p , 0.001 respectively). Dispensability was, hence,
not an important variable for this analysis.

Finally, using a general linear model, we found that,
controlling for abundance, in both rich and minimal media
[43], co-expression rate was not a predictor of dN, nor dN/dS:
Ln(dN/dS) predicted by date/party (p¼ 0.59), co-expression (p
¼ 0.68), and log10(Abundance) (p , 0.001); Ln(dN) predicted
by date/party (p ¼ 0.81), co-expression (p ¼ 0.50), and
log10(Abundance) p , 0.001). From this exhaustive analysis
of the larger HC dataset, we conclude that the prior claim of
an evolutionary difference between date and party hubs [35]
appears not to be robust.

Discussion

In the large, multi-validated HC network generated from
all extant S. cerevisiae protein interaction data, we find that the
global interaction network does not show degree anticorre-
lation nor do hubs fall into clear date and party sub-
populations based on neighbor expression correlation. More
generally, we find no coherent evidence that the date/party
distinction evident in the FYI network is helpful in under-
standing the behavior of the global protein interaction
network. By contrast, we find that the number of interactions
with fellow hubs is helpful in understanding the dispens-

ability of hub proteins. Finally, we demonstrate that HTP
methods appear to have difficulty in assessing interactions
among hubs, as compared to more focused interaction
studies.
Two possibilities might explain the observed discrepancy in

degree correlation patterns in HC versus HTP networks:
either the degree anticorrelation observed in HTP networks
is due to a bias of HTP approaches against hub–hub
interactions, or the lack of degree anticorrelation in HC is
due to enrichment of essential nodes. As essentials are more
connected than nonessentials [34] and essentials are more
likely to be connected to other essential proteins [25],
enrichment for essentials necessarily increases hub–hub
interactions. To test this latter explanation, we computed
degree correlation for a reduced HC network that had
interactions among nonessential proteins only; however,
there was no degree anticorrelation in this reduced network
either (Figure S5). Our analysis suggests that degree anti-
correlation derives from ascertainment bias of large-scale
screens against hub–hub interactions, rather than by natural
selection for physical isolation of modules previously
surmised [16]. Suppression of hub–hub interactions in HTP
data may arise from non-saturating coverage of interactions,
perhaps as a consequence of signal suppression by partner–
partner competition. It is also possible that surface masking
of binding sites on highly connected proteins suppresses
detection of hub–hub interactions and/or that nonspecific
interactions of abundant proteins creates false hubs in HTP
data.
A combination of small network size, high false-negative

rate, and depletion of hub–hub interactions explains why FYI
date and party hubs no longer have their defining character-
istics in the HCfyi or the full HC network, which are two and
four times larger than the FYI network, respectively. Indeed,
we demonstrate that addition of a small fraction of random
hub–hub interactions to the FYI network is sufficient to
increase tolerance to hub deletion, whereas removal of 40%
of hub–hub interactions from the HCfyi network is needed to
increase susceptibility to network collapse. We also find that
the distinction between party and date hubs on the basis of
bimodality, localization entropy, genetic centrality, and rates
of evolution does not bear scrutiny.
These results not only reject the notion of hub-centric

modularity, they also suggest a new view of the yeast protein
interaction network. To illustrate the differences between the
old and the new views of the network, we make a simple
analogy with cloud formation. In the now-standard view, in
which functional modularity is thought to derive from
physical modularity, the protein network is rather like
altocumulus clouds, i.e., with wisps of thin cloud connecting
and blue sky visible between the high-density clouds. In the
new view espoused here, the network is more akin to stratus
clouds, i.e., a much more dense and lumpy distribution of
cloud that forms a thick cover through which blue sky cannot
be seen, just varying levels of grey and white.
What do these results mean for our conception of

modularity in the protein interaction network? The new
stratus conceptualization has the advantage that it can
accommodate two well-established facts of signal trans-
duction networks (Figure 6). First, many proteins are multi-
functional and/or take part in multiple complexes [12,45];
second, signalling pathways or modules often overlap or share

Figure 5. Date and Party Hubs Evolve at the Same Rate When Controlled

for Protein Abundance

The relationship between dN (A) and dN/dS (B) as a function of protein
abundance was determined for party hubs (open circles) and dates hubs
(filled circles). Best-fit lines assuming equal slopes for the two hub types
are shown (party hub, dashed line; date hub, solid line).
DOI: 10.1371/journal.pbio.0040317.g005
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sub-circuits (Figure 6B). By contrast, the hub-centric view of
modularity [16] does not support participation of proteins in
multiple complexes (Figure 6A). Consequently, if the global
network is indeed stratus-like in nature, then the search for
modules will likely not be as straightforward as finding
densely connected regions or cliques.

We stress that the idea of modularity in the S. cerevisiae
proteome is an eminently useful concept. Discrete functions
are often carried out by protein sub-networks or something
that one might like to call modules. The interactions between
these modules, however, appear to meld the global network
into the stratus-like whole, thereby rendering meaningful
topological definition of modules harder to establish. This
view is further buttressed by the stratus structure of the
global genetic interaction network [39,40]. We also point out
that our observations in budding yeast may or may not hold
in other species. For example, prokaryotic networks appear
to exhibit modularity [46] in part owing to co-transfer of
genes in the same metabolic pathways via horizontal gene
transfer [47], a process, for the most part, not seen in yeast.

One might reasonably suggest that the new stratus view of
the cellular network could be positioned somewhere on a
continuum between a homogenous network and the pre-
viously accepted discretized altocumulus model. What is the
significance of repositioning of the network on this contin-

uum away from the altocumulus model, and what, if any, is
the use of the stratus metaphor? First, as we have shown, the
realization that hub–hub interactions are not suppressed
leads to a better understanding of knockout phenotypes, i.e.,
the more hub interactions a hub protein has, the more likely
it is to be essential. Moreover, we should like to suggest that
this new stratus view of the network is important as, like all
good metaphors, it should act to redefine the issues of
interest. In this instance, we suggest that we should now focus
on the problem of control of protein interaction noise and
cross-talk. In the altocumulus view of the network, the
relatively discrete nature of the modules was thought to
reflect an adaptation to minimize cross-talk that might arise
from promiscuous protein–protein interactions. That the
network is more stratus-like suggests, by contrast, that
inappropriate cross-talk could be a major problem for the
cell, while at the same time, appropriate cross-connections
could be a primary basis for coordinating different aspects of
cellular responses.
Given the possibility for egregious cross-talk, we would

expect to see that highly connected proteins are more tightly
regulated. In this vein, we recently showed that hubs (defined
in the LC set) do indeed have more phosphorylation sites, and
their mRNAs have shorter half-lives [48]. Similarly, we expect
that more-highly connected proteins should have less noise in
their expression than less-connected ones. To address this, we
considered the relationship between the variations in protein
abundance in single cells on the same growth media, this
being taken as a measure of gene expression noise [43]. This
variation was then normalized to allow for covariance
between the level of noise (i.e., the coefficient of variation)
and the absolute level of protein abundance (see Methods).
We then find for all datasets that the most-highly connected
proteins do indeed tend to have lower levels of noise, when
controlled for abundance (Table 3; Figure 7). To allow for the
fact that essential genes tend more often to be highly
connected and have lower noise, we repeated this analysis
for nonessential genes alone, and obtained the same result
(Table 3). We also controlled for growth rate of the
nonessential genes and compared the r2 values from the
analysis of noise predicted by growth rate controlled for
connectivity with those from noise predicted by connectivity
controlled for growth rate, for the same comparison data set.
We find that in six of eight cases (four networks, two growth

Figure 6. Modularity Paradigms

Two representations of protein interaction network topology are shown.
(A) Conventional view of functional modularity in which hub-centric
modules are sparsely interconnected, i.e., a modular physical topology
underlies functional modules [16,17].
(B) An integrated view in which functional modules are heavily
interconnected, as supported by the large-scale organization of dense
HC networks.
DOI: 10.1371/journal.pbio.0040317.g006

Table 3. Relationship between Noise in Protein Abundance and Connectivity

Growth Medium Statistic HC HCm LC HCh

Rich: All rho �0.13 �0.12 �0.16 �0.14

p ,0.0001 0.0001 ,0.0001 ,0.0001

Rich: NE rho �0.13 �0.12 �0.16 �0.14

p ,0.0001 0.0001 ,0.0001 ,0.0001

Poor: All rho �0.11 �0.09 �0.12 �0.14

p ,0.0001 0.006 ,0.0001 ,0.0001

Poor: NE rho �0.11 �0.09 �0.12 �0.14

p 0.0001 0.006 ,0.0001 ,0.0001

Spearman rank correlations (rho) between noise in protein abundance (controlled for absolute level of protein abundance) and connectivity of a protein. As all correlations are negative
and significant, hub proteins thus have lower levels of noise. The test is reported for four protein networks and two growth conditions, and either all proteins (All) or just nonessential
proteins (NE) are examined.
DOI: 10.1371/journal.pbio.0040317.t003
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conditions), abundance-corrected noise [43] predicted by
connectivity controlled for growth rate and mRNA half-life
had the higher r2 suggesting that connectivity per se is an
important variable predicting noise (unpublished data). The
mean r for these partial correlations is�0.095, suggesting that
any effect is probably relatively weak when covariance
between connectivity and dispensability is allowed for.

The relationship between network structure and cross-talk
may well have implications for understanding human disease.
For instance, disease states often arise from over-expression
of disease genes; salient examples include oncogenes that are
over-expressed in cancer cells and the chromosomal aneu-
ploidies that underlie many inherited syndromes. It is
possible that over-expression might be especially deleterious
if the protein involved is a hub with many hub interactions.
Analysis of the means by which, in a stratus-like network, the
control of promiscuous protein–protein interactions will, we
suggest, be an important avenue for future work.

Materials and Methods

Protein interaction data. A HTP dataset of 11,571 interactions
among 4,474 proteins in S. cerevisiae was created from the union of
five large-scale datasets [10,11,21,22,33]. An LC dataset of 11,334
interactions among 3,289 proteins was obtained from the BioGRID
database (http://www.thebiogrid.org) [25,49]. The FYI dataset of 2,491
interactions among 1,375 proteins was obtained from Han et al. [17].
FYI data were made from intersecting multiple curation, HTP, and in
silico–predicted interactions. The HC dataset of 9,258 interactions
among 2,998 proteins and the HCfyi dataset of 3,976 interactions
among 1,291 proteins were derived from the overlap of all extant
protein interaction datasets (i.e., all LC interaction data and all HTP
interaction data, including two recent proteome-wide surveys
[12,13]), as described below. For consistency checks, we generated
two subsets of the HC networks: the HCm dataset consisted of only
those interactions from HC that were validated by at least two
different methods, and the HCh dataset consisted of only those
interactions from HC that were multi-validated via HTP methods
only.

Generation of HC network. The FYI network was created with an
intersection method [17] in which only the interactions that were
observed at least twice in various datasets were retained. As three
large protein interaction datasets have become available since the
construction of FYI, we therefore generated a large HC network using
the same intersection approach. HC was built from LC interaction

datasets housed in five interaction databases (BIND [30], MIPS [32],
MINT [31], DIP [23], and BioGRID [25]), six large-scale interaction
datasets [10–13,21,22,33], and an in silico–predicted dataset [50]. For
all interactions detected by mass spectrometric analysis of protein
complexes [10–13,21,22,33], we represented interactions in a minimal
‘‘spoke’’ form, i.e., as single direct interactions between bait and prey
proteins [4]. After removing interactions derived from standard
large-scale experiments [10,11,21,22,33] from each of the interaction
databases, the remaining curated interactions from focused studies
were partitioned into two sets: those that came from papers that were
in at least one other curated database, and those that were from
papers unique to each curated database. Interactions in the same
direction, but from independent papers or different methods (if from
the same paper), and interactions in the reciprocal direction were
considered to be multi-validated. All singly validated interactions
from the reduced curation datasets were merged and multi-validated
interactions were added to the final HC network. In order to
construct the HC dataset in the most conservative manner possible,
we removed all interactions that occurred in 100 or more different
co-purifications from the raw Gavin et al. dataset [12]. In addition, we
did not include the MIPS [32] complexes dataset (as was done by Han
et al. [17]) because there was no bait defined for these complexes and
an exhaustive matrix model representation of all pairwise inter-
actions over-represents these complexes (i.e., adds false positives). All
network elements were thus minimal spoke model representations
[4]. See Figure S6 for a schematic of how datasets were combined; a
list of all interactions in the HC dataset is provided in Table S2. We
caution that the intersection method of selecting HC interactions
may add unexpected biases and increase the false-negative rate of the
filtered dataset. For example, established interactions are often not
published more than once and hence would be excluded; moreover,
interactions between low-abundance proteins, while real, may not be
readily repeated in different experiments and hence be eliminated
from the final dataset.

Genetic interaction data. For comparison of genetic centrality of
date, party, and non-hubs, we used two different sets of genetic
interactions, grouped into HTP (genome-wide SGA and dSLAM
methods, called HTP-GI) and small-scale studies curated from the
literature (called LC-GI). The HTP-GI network was curated from 39
different papers [25], including two large genome-wide screens
[39,40], and contained 6,103 interactions among 1,454 genes; this
network consisted of only synthetic lethal/synthetic sick interactions
and was depleted for essential genes because query genes are
screened against the approximately 5,000 viable gene deletion strains.
The LC-GI network contains 8,165 interactions among 2,689 mutants,
and was curated from 3,798 publications [25]; this network contained
the following classes of genetic interactions: synthetic rescue,
synthetic lethality, dosage lethality, phenotypic suppression, synthetic
growth defect, dosage growth defect, dosage rescue, and phenotypic
enhancement. Details of these classes of genetic interactions are
described elsewhere [25].

Figure 7. More Highly Connected Proteins Exhibit Less Noise

Under both nutrient-poor (A) and nutrient-rich (B) conditions, more-connected proteins show less noise in their prevalence at the single cell level [43]
when controlled for absolute protein abundance levels. For these plots, the data were split in to equal-sized bins of approximately equal connectivity.
The values on the x-axis indicate the mean log connectivity of each bin.
DOI: 10.1371/journal.pbio.0040317.g007
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Degree correlation profiles. Correlations in connectivity of inter-
acting proteins for each of the two networks were computed as
described [16]. Briefly, we calculated the likelihood P(k0 ,k1) that two
proteins with connectivity k0 and k1 are connected to each other, and
compared it to the samequantityPr(k0 , k1)measured in the randomized
version of the same network using an edge-rewiring procedure that
preserves the degree distribution. Correlations in connectivity are
readily apparent as systematic deviations of the ratio P(k0 , k1)/Pr(k0 , k1)
from unity. To reduce visual clutter and simplify interpretation, only
statistically significant regions (using a threshold of plus orminus three
standard deviations, representing p , 0.01) were reported.

Defining hubs in networks of different sizes. As connectivity scales
with network size, it is not possible to fix a static degree cutoff to
define a hub. We circumvent this problem by defining a different
threshold for each network as follows: in each dataset, hubs are
defined to be proteins whose connectivity exceeds the connectivity of
a certain percentile of the nodes in the dataset (thresholds set at
either 90% or 95% unless mentioned otherwise).

Neighbor expression correlation. All 25 expression data were
normalized to have a mean of 0 and a standard deviation of 1, and
missing data were replaced by the column mean. In all cases, Pearson
correlation coefficient was used. Because of their possible unusual
evolutionary selection for very high expression level and tight co-
regulation under stress, genes encoding ribosomal proteins were
excluded for the neighbour expression correlation analysis. Sources
of expression data are given in the supporting information.

Effect of hub deletion on network topology. Largest network
components were determined using Breadth First Search [51] and
normalized to the size of the largest component prior to node
deletion so that resilience of networks of different sizes can be
compared. In all cases, nodes were deleted in descending order of
connectivity.

Localization diversity. Using a large-scale localization dataset [27],
neighbor localization diversity or entropy was computed as�sum(Lij *
log2(Lij) )/ Mj, where Lij is the frequency of localization i in set j.
Multiple localizations were treated as additional entries (i.e., if a given
protein has localization of cytoplasm and nucleus then we counted
each one of these localizations) and use Kj instead of kj, to denote the
adjusted set size. As entropy depends on the set size, we normalized
by the uniform distribution, Mj, which is the maximum entropy
distribution [52]. As the set size may be smaller than the total number
of localizations (and consequently not all localizations could have
appeared), normalization not only depends on the actual size of the
set, but also on whether the set size is larger or smaller than the total
number of unique localizations: if the adjusted set size, Kj, is smaller
than the number of possible localizations, n, then the maximum
possible entropy is �log(Kj) otherwise it is �log(n).

Statistical test for bimodality. TheDIPtest [37,38], anon-parametric
test for testing for multimodality against the null of a unimodal
distribution, was computed using the ‘‘diptest’’ package for R (http://
www.r-project.org). The DIP statistic is the distance between the
‘‘tightest fitting’’ unimodal distribution function and the empirical
kernel distribution, i.e., the maximal difference between the empirical
kernel distribution function and the unimodal distribution function
that minimizes this maximum difference. The null DIP distribution is
the uniform distribution. To calculate significance, we obtained the
95% upper limits for dip from 106 simulations (variable ‘‘qDiptab’’ in
the diptest package).We then determined the best-fit curve relating the
95% critical DIP score and N the sample size, this being:

lnðdipÞ ¼ � 0:928138� 0:4436223 lnðNÞ
� 0:0081978ðlnðNÞ � 3:85139Þ2 ð1Þ

The fit between this line and simulation data hasR2 . 0.999. From this
line we determined the critical DIP score for a given sample size.

Relating noise to connectivity. Recent data [43] have been
presented relating the variation in protein abundance between cells

grown under the same growth conditions, with two different
conditions being employed. These data are reported as the coefficient
of variation in abundance for many yeast proteins (the higher the
coefficient of variance, the more noisy the expression of the protein).
This measure is by necessity related negatively to protein abundance.
To control for this, we compared the variation to the inverse of the
square root of abundance (which, as expected, provides a strong
linear fit). From the residuals of the regression of this inverse against
the coefficient of variation, we derive a measure of noise that is
independent of abundance. Positive values imply more noisy
expression. We then ask whether these residuals are predicted by
the level of protein connectivity. Results are given in Table 3.

Calculating rates of evolution. Protein evolutionary rate data were
based on the alignments of S. cerevisiae and S. bayanus orthologs.
Nonsynonymous divergence, dN, was then estimated using PAML [53]
with nine free parameters used to account for codon frequencies
(F3x4). Corrected measures of the number of synonymous changes
per synonymous site were taken from prior analysis [44].

Supporting Information

Figure S1. Degree Correlation for HCh and HCm Networks

Found at DOI. 10.1371/journal.pbio.0040317.sg001 (120 KB PDF).

Figure S2. The Topology of the LC and LCfyi Networks Is Not
Sensitive to Deletion of Date or Party Hubs

Found at DOI. 10.1371/journal.pbio.0040317.sg002 (122 KB PDF).

Figure S3. The Topology of the HC Network Is Sensitive to Deletion
of Hubs

Found at DOI. 10.1371/journal.pbio.0040317.sg003 (97 KB PDF).

Figure S4. Genetic Centrality of Date, Party, and Non-hubs

Found at DOI. 10.1371/journal.pbio.0040317.sg004 (61 KB PDF).

Figure S5. Degree Correlation Pattern for a Reduced HC Network
That Contains Only Nonessential Proteins

Found at DOI. 10.1371/journal.pbio.0040317.sg005 (41 KB PDF).

Figure S6. Method Used to Create the HC Network

Found at DOI. 10.1371/journal.pbio.0040317.sg006 (105 KB PDF).

Table S1. Fraction of Interactions with Shared GO Annotation

Found at DOI. 10.1371/journal.pbio.0040317.st001 (40 KB PDF).

Table S2. High Confidence Dataset of Multi-validated Protein
Interactions

Found at DOI. 10.1371/journal.pbio.0040317.st002 (1.2 MB TXT).

Acknowledgments

We thank R. Kafri, L. Harrington, and T. Ideker for comments on the
earlier version of the manuscript.

Author contributions. NNB, LDH, and MT conceived and designed
the experiments. NNB and LDH performed the experiments. NNB,
LDH, and MT analyzed the data. NNB, TR, AB, LB, BJB, LDH, and MT
contributed reagents/materials/analysis tools. NNB, LDH, and MT
wrote the paper.

Funding. This work was supported by a grant from the Canadian
Institutes of Health Research (CIHR) to MT; NNB is funded by a
CIHR postdoctoral fellowship; MT holds a Canada Research Chair in
Functional Genomics and Bioinformatics.

Competing interests. The authors have declared that no competing
interests exist.

References

1. Barabasi AL, Oltvai ZN (2004) Network biology: Understanding the cell’s
functional organization. Nat Rev Genet 5: 101–113.

2. Papp B, Pal C, Hurst LD (2004) Metabolic network analysis of the causes
and evolution of enzyme dispensability in yeast. Nature 429: 661–664.

3. Murray AW (2000) Whither genomics? Genome Biol 1: COMMENT003.
4. Bader GD, Hogue CW (2003) An automated method for finding molecular

complexes in large protein interaction networks. BMC Bioinformatics 4: 2.
5. Spirin V, Mirny LA (2003) Protein complexes and functional modules in

molecular networks. Proc Natl Acad Sci U S A 100: 12123–12128.

6. Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc
Natl Acad Sci U S A 100: 1128–1133.

7. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002)
Network motifs: Simple building blocks of complex networks. Science 298:
824–827.

8. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the
transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68.

9. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to
modular cell biology. Nature 402: C47–C52.

10. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, et al. (2002)

PLoS Biology | www.plosbiology.org October 2006 | Volume 4 | Issue 10 | e3171730

Stratus-Like Protein Interaction Network



Functional organization of the yeast proteome by systematic analysis of
protein complexes. Nature 415: 141–147.

11. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al. (2002) Systematic
identification of protein complexes in Saccharomyces cerevisiae by mass
spectrometry. Nature 415: 180–183.

12. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome
survey reveals modularity of the yeast cell machinery. Nature 440: 631–637.

13. KroganNJ, Cagney G, YuH, ZhongG, GuoX, et al. (2006) Global landscape of
protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–644.

14. Stelling J (2004) Mathematical models in microbial systems biology. Curr
Opin Microbiol 7: 513–518.

15. von Mering C, Zdobnov EM, Tsoka S, Ciccarelli FD, Pereira-Leal JB, et al.
(2003) Genome evolution reveals biochemical networks and functional
modules. Proc Natl Acad Sci U S A 100: 15428–15433.

16. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein
networks. Science 296: 910–913.

17. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. (2004) Evidence for
dynamically organized modularity in the yeast protein-protein interaction
network. Nature 430: 88–93.

18. Aloy P, Russell RB (2002) Potential artefacts in protein-interaction net-
works. FEBS Lett 530: 253–254.

19. Coulomb S, Bauer M, Bernard D, Marsolier-Kergoat MC (2005) Gene
essentiality and the topology of protein interaction networks. Proc Biol Sci
272: 1721–1725.

20. Maslov S, Sneppen K (2002) Protein interaction networks beyond artifacts.
FEBS Lett 530: 255–256.

21. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, et al. (2001) A compre-
hensive two-hybrid analysis to explore the yeast protein interactome. Proc
Natl Acad Sci U S A 98: 4569–4574.

22. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al. (2000) A
comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisiae. Nature 403: 623–627.

23. Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, et al. (2000) DIP:
The database of interacting proteins. Nucleic Acids Res 28: 289–291.

24. Pereira-Leal JB, Audit B, Peregrin-Alvarez JM, Ouzounis CA (2005) An
exponential core in the heart of the yeast protein interaction network. Mol
Biol Evol 22: 421–425.

25. Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, et al. (2006)
Comprehensive curation and analysis of global interaction networks in
Saccharomyces cerevisiae. J Biol 5: 11.

26. Batada NN, Shepp LA, Siegmund DO (2004) Stochastic model of protein-
protein interaction: why signaling proteins need to be colocalized. Proc
Natl Acad Sci U S A 101: 6445–6449.

27. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, et al. (2003) Global
analysis of protein localization in budding yeast. Nature 425: 686–691.

28. Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO, et al.
(2003) Widespread cytoplasmic mRNA transport in yeast: Identification of
22 bud-localized transcripts using DNA microarray analysis. Proc Natl Acad
Sci U S A 100: 11429–11434.

29. Tanaka R, Yi TM, Doyle J (2005) Some protein interaction data do not
exhibit power law statistics. FEBS Lett 579: 5140–5144.

30. Bader GD, Betel D, Hogue CW (2003) BIND: The Biomolecular Interaction
Network Database. Nucleic Acids Res 31: 248–250.

31. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich
M, et al. (2002) MINT: A Molecular INTeraction database. FEBS Lett 513:
135–140.

32. Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K, et al. (2002)
MIPS: A database for genomes and protein sequences. Nucleic Acids Res 30:
31–34.

33. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, et al. (2000) Toward a protein-
protein interaction map of the budding yeast: A comprehensive system to
examine two-hybrid interactions in all possible combinations between the
yeast proteins. Proc Natl Acad Sci U S A 97: 1143–1147.

34. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality
in protein networks. Nature 411: 41–42.

35. Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat
Genet 37: 351–352.

36. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of
complex networks. Nature 406: 378–382.

37. Hartigan JA, Hartigan PM (1985) The dip test for unimodality. Ann Stat 13:
70–84.

38. Hartigan PM (1985) Computation of the dip statistic to test for
unimodality. Appl Stat 34: 320–325.

39. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, et al. (2001)
Systematic genetic analysis with ordered arrays of yeast deletion mutants.
Science 294: 2364–2368.

40. Tong AH, Lesage G, Bader GD, Ding H, Xu H, et al. (2004) Global mapping
of the yeast genetic interaction network. Science 303: 808–813.

41. Pan X, Yuan DS, Xiang D, Wang X, Sookhai-Mahadeo S, et al. (2004) A
robust toolkit for functional profiling of the yeast genome. Mol Cell 16:
487–496.

42. Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve
slowly. Genetics 158: 927–931.

43. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, et al. (2006)
Single-cell proteomic analysis of S. cerevisiae reveals the architecture of
biological noise. Nature 441: 840–846.

44. Hirsh AE, Fraser HB, Wall DP (2005) Adjusting for selection on
synonymous sites in estimates of evolutionary distance. Mol Biol Evol 22:
174–177.

45. Krause R, von Mering C, Bork P, Dandekar T (2004) Shared components of
protein complexes—versatile building blocks or biochemical artefacts?
Bioessays 26: 1333–1343.

46. Campillos M, von Mering C, Jensen LJ, Bork P (2006) Identification and
analysis of evolutionarily cohesive functional modules in protein networks.
Genome Res 16: 374–382.

47. Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic
networks by horizontal gene transfer. Nat Genet 37: 1372–1375.

48. Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological
importance of hub proteins. PLoS Comput Biol 2: e88. DOI: 10.1371/
journal.pcbi.0020088

49. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, et al. (2006)
BioGRID: A general repository for interaction datasets. Nucleic Acids Res
34: D535–539.

50. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, et al. (2002)
Comparative assessment of large-scale data sets of protein-protein
interactions. Nature 417: 399–403.

51. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms.
Cambridge (Massachusetts): MIT Press. 1028 p.

52. Cover TM, Thomas JA (1991) Elements of information theory. New York:
Wiley. 542 p.

53. Yang Z (1997) PAML: A program package for phylogenetic analysis by
maximum likelihood. Comput Appl Biosci 13: 555–556.

PLoS Biology | www.plosbiology.org October 2006 | Volume 4 | Issue 10 | e3171731

Stratus-Like Protein Interaction Network


