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Abstract: A new analytic method for predicting the stray capacitance of a double layer coil with
conducting shield and air core is presented. The method involves construction of a two-layer turn-
to-turn circuit model, which includes the self-inductance and resistance of each turn, the mutual
inductance representing the flux linkage between all turns, and the capacitance between adjacent
turns and the capacitance between the outer turns and conducting shield. At high, low and zero
frequency the model is reduced to an effective capacitance, inductance, and resistance respectively:
for frequencies below the first self-resonant frequency the behaviour of the circuit is approximated
by an RLC circuit. A new result is a recursive calculation of the stray capacitance of the high
frequency circuit model. The method and stray capacitance value are compared to alternative
models and stray capacitance predictions, and the limitations of the different approaches discussed.
Comparisons with experimental measurements show good agreement at the fundamental self-
resonance and confirm that the effect of a conducting shield is likely to be small for a closely-
wound coil.

1 Introduction

At high frequencies, the impedance of an inductor ceases to
be ideal and is dominated by parasitic capacitances. The
cumulative effect of these capacitances is commonly
described as a ‘stray’ capacitance, Cs. Of particular interest
is the frequency at which the capacitive and inductive
impedances match, giving rise to a self-resonance, and
providing an upper-frequency bound to operation as an
inductor.

The magnitude of the stray capacitance is strongly
dependent on the winding geometry and the proximity of
any conducting surfaces. Calculation of it can be carried out
directly, by solving numerically the electrostatic field
equations [1], or by distributed capacitance modelling, in
which the inductor is represented by a network of
capacitance elements representing capacitances between
discrete conducting elements [2, 3]. Although the former
method is likely to be more accurate, particularly in the case
of more complex geometries, the latter approach is
particularly useful for scoping studies.

In the past, measurements of the stray capacitance have
been inferred from low frequency measurements of the
inductance, Lcoil, coupled with measurements of the first
self-resonant frequency, f0 [2–4]. In instances where the
inductance is also frequency dependent (e.g., inductors with
a ferrite core), the addition of an external capacitor has been
used to extract the inductance local to the self-resonant
frequency [5].

In this paper, a method for modelling a double-wound
coil with an air-core and conducting shield is presented. An
array of these coils (OMAHA) has been installed into the
Spherical Tokamak, MAST [6] for measuring magnetic
fluctuations up to 5MHz. Indeed, magnetic fluctuation
activity, believed to be compressional Alfven eigenmodes at
3.5MHz has already been detected using the OMAHA
array [7]. The function of the OMAHA coils favours a
double-wound winding configuration in order to maximise
magnetic pick-up away from the coil, with a large turns-
density to maximise the coil inductance per unit length, and
whose first self-resonant frequency, f0, is greater than
5MHz. The principal objective of this article is to determine
simple expressions for the stray capacitance. When
combined with well-known expressions for the coil
inductance, these expressions provide an estimate of f0,
and thus are a useful design tool. This work also
complements a recent study by Appel and Hole [8], which
provided a synopsis of coil in-situ remote calibration
techniques of Heeter et al. [9].

The model developed here builds principally upon the
work of Grandi et al. [2], in which a high frequency
equivalent circuit was used to generate expressions for the
stray capacitance of an n turn single layer air-cored
solenoid. In their work, a distributed capacitance network
was used to determine an expression for the stray
capacitance, valid at frequencies significantly above f0,
where the circuit model of the inductor retains only the
effects of capacitive circuit components.

In this work, the single layer model is extended to provide
predictions for the stray capacitance of a two-layer solenoid,
thereby allowing comparison to the multiple layer dis-
tributed capacitance model of Massarini and Kazimierczuk
[3]. Differences between the treatments are described in
Section 3. As in Massarini and Kazimierczuk, generation of
stray capacitance expressions for three or more layers is a
straight-forward generalisation of the two-layer result. The
advantage of distributed capacitance networks (e.g. Grandi
et al., Massarini and Kazimierczuk, this work), as compared
to full numerical solutions of the electrostatic field equations
(e.g. Yu and Holmes [1]), lies in the model simplicity, which
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affords a simple and fast computation of the the stray
capacitance. Measurements of the circuit model parameters
have been obtained by a least squares fitting of the
impedance profile over the frequency range 0ofo1:5f0.
To our knowledge, these are the first published results of
both the predicted and measured stray capacitance of a
double layer solenoid.

2 Lumped-circuit model

Figure 1a is an illustration of the coil to be modelled. To
describe the coil we introduce cylindrical co-ordinates
ðr; y; zÞ, with orientation as shown in Fig. 1a. The co-
ordinate origin has been placed at the terminal end of the
coil, and centred to the axis of the former. The non-
conducting former has radius R and length l, upon which
are layered two closely packed helical windings. In this
work the coil is taken to be sufficiently long such that the
fringing of the magnetic and electric fields near the end-
points of the coil may be ignored. In addition, the different
winding pitch (the axial direction of each winding) between
inner and outer layers is ignored. Figure 1b is an axial
enlargement of four turns of Fig. 1a. As shown, the coil
wire has a metal diameter of 2a, and is coated with a thin
dielectric insulator of thickness ðd � 2aÞ=2, where d is the
total diameter of the wire. Finally, Fig. 1c is a cross-section
of the coil, labelling the inner and outer layers.

In general, the electrical properties of a coil are governed
by both electrostatic and magnetostatic interactions, and a
lumped-circuit model must include both. Figure 2a is a
lumped circuit representation of the n turn coil, divided into
turn-to-turn elements. Such a discrete circuit model will be
valid providing the change in phase of a wave propagating
from any turn is small along its length. That is,
ð2pRÞ=l� 1, with l the wavelength of excitation. The
circuit model includes capacitive couplings between the ith
and jth turns, the turn to shield coupling of the ith outer
turns, the self-inductance Lt;i and resistance Rt;i of each
turn, and the mutual-inductance M representing the flux-
linkage of each turn to all other n� 1 turns. Only capacitive
couplings between adjacent turns have been retained: this
results from an extrapolation of the conclusions of Grandi
et al., who found that for a single layer solenoid the neglect
of capacitance between non-adjacent turns is reasonable
providing that jd=ð2aÞjo2. To simplify Fig. 2a, we next
neglect differences between the turn-to-turn capacitance Ctt
of the inner and outer layers (i.e. same z, different r) and
adjacent turns within the same layer (i.e. same r, different z).
We also neglect differences between the capacitance of
‘next’ nearest neighbours, which are henceforth labelled C�tt.
Finally, the variation in the turn-to-shield capacitance along
the solenoid has been ignored. With these reductions, the
circuit model of Fig. 2a is reduced to Fig. 2b. In Section 3
we compute C�tt=Ctt ¼ 0:1 and jd=ð2aÞj ¼ 1:07 forMAST
coils, and so the neglect of capacitive coupling between
more distant turns is not unreasonable.

In principal, analysis of the circuit shown in Fig. 2 will
yield the full circuit response including the first self-resonant
frequency f0, and higher resonances owing to reflected
waves coalescing with the same phase (i.e. transmission line
effects). However, assuming the primary purpose is to
establish f0, a simpler approach is to model the coil
characteristics in the two limits where the effect of the stray
capacitance can be ignored (low frequency limit), and where
the effect of the stray capacitance dominates (high
frequency limit).

In the low frequency limit, Wheeler [10] developed a
simple approximate formula for circular cross-section

inductors

Lcoil ¼
m0pn2�r2

lþ 0:9�r
ð1Þ

correct to within 1% providing that l=ð2rÞ40:4, where �r
is the mean coil radius. The coil resistance computes as
Rcoil ¼ nRtðoÞ, where o ¼ 2pf denotes a frequency
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Fig. 1 Illustration of a densely packed two layer inductor
a Full geometry of the two layer windings and external shield
b Magnification of four turns of the inductor, with a the wire radius
and d the diameter of the dielectric coated wire
c Cross-section of the solenoid
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dependence arising from the skin-effect. At the low
frequency limit, Rt � RDC;l, where

RDC;l ¼
rlt

pa2
ð2Þ

and where r is the conductor resistivity and lt the average
length of one winding. A general expression for RtðoÞ is
found from Bartoli [11]

RtðoÞ ¼RDC;l<
AðoÞ þ iAðoÞ

tanhðAðoÞ þ iAðoÞÞ

�

þ 2ðN2
l � 1Þ
3

ðAðoÞ þ iAðoÞÞ tanhðAðoÞ þ iAðoÞÞ
�

ð3Þ
For a compactly wound coil with d the spacing between
coils, AðoÞ can be written

AðoÞ ¼ p
4

� �3=4 ð2aÞ3=2

dðoÞd1=2
ð4Þ

with the skin depth dðoÞ given by

dðoÞ ¼ 2pr
mrwm0po

� �1=2

ð5Þ

where mrw is the conductor relative permeability.
At the high-frequency limit, the inductance limbs (i.e. Rt,

Lt, M paths) in Fig. 2 can be treated as an open circuit,
enabling a simpler calculation of the stray-capacitance Cs.
An estimate of the valid frequency range for this reduction
is jRt þ joðLt þMÞj � j1=ðjoCttÞj, with o ¼ 2pf the
angular frequency. That is, f � ft with

ft ¼ 1=ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLt þMÞCtt

p
Þ ð6Þ

¼
ffiffiffi
n
p

=ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LcoilCtt

p
Þ ð7Þ

where Lcoil ¼ nðLt þMÞ, and the mutual inductance
linking each turn with the other n� 1 turns is

M � ðn� 1ÞLt. In Section 3 we show a posteriori that this
frequency is well above f0. The coil characteristics over
both frequency limits is represented approximately by an
RLC circuit, comprising the series combination of a resistor
R and coil inductance Lcoil, in parallel with the stray
capacitance Cs.

As in previous treatments [2, 3], the effect of higher-order
self-resonant phenomena on the value of stray capacitance,
when used (together with the low frequency inductance) to
predict the fundamental self-resonance, is neglected. Such
effects are outside the scope of this work, which is to
produce simple scoping design estimates for the stray
capacitance. Qualitatively however, the presence of higher
order resonances means that the measured fundamental
self-resonance f0 will be down-shifted from the predicted
values computed in this work. To see this, we label
the successive resonant frequencies in the circuit f0, f1,
f2, . . ., fN . In a frequency range local to each resonance, the
circuit can be described by an LC circuit, with
fi ¼ 1=ð2p ð

p
LiCiÞÞ. In general, the highest resonance of

Fig. 2b will be the self-resonance of the turn-to-turn
element. For this element LN � Lt þM ¼ Lcoil=n, with
Lcoil � L0. We combine L0 and CN to yield a prediction
for the fundamental self-resonant frequency, f0;pred ¼
1=ð2p ð

p
L0CN ÞÞ. As fN4f0 and n� 1, it follows that

CNoC0 and f0;pred4f0. That is, the predicted frequency
will be an upper estimate to the measured self-resonant
frequency. More complete distributed circuit models,
motivated by communications [12] and semiconductor [13]
applications in the radio-frequency and microwave ranges,
are able to be fitted to the measured impedance profile, but
do not offer prescriptions for calculating the stray
capacitance at the design stage. The development of such
a predictive distributed model in realistic geometry would
provide a more accurate design tool, able to resolve all the
coil resonances.

3 Calculation of stray-capacitance

In the impedance domain, the capacitative coupling of any
four turns (except those at the end) can be described by the
circuit element shown in Fig. 3, where Zd ¼ 1=ðjoCtsÞ,
Zg ¼ 1=ðjoC�ttÞ, Za ¼ Zb ¼ 1=ðjoCttÞ and the current
loops Ia;i, Ib;i, Ig;i, and Id;i are as drawn. For the final four
turns, the capacitive coupling is described by the same
circuit, except that Zb ¼ 0 on the right hand side. Here,

j is complex notation, with j2 ¼ �1. The issue of model
completeness can be shown by current node analysis:
only three current loops contribute to the output coil
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Fig. 2 Lumped-circuit representation of the coil
a The labelled circuit components and couplings between the different
turns
b The simplified circuit, with the assumptions made in this work
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Fig. 3 One element of the lumped-circuit representation showing
constituent current paths
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impedance: Id;i, Ib;i, and Ia;i. For all but the last circuit,
Kirchhoff’s voltage law may be written as the matrix
equation

ZIi � LIi�1 þ RIiþ1 ¼ 0 ð8Þ
where Ii is the column vector (Ia;i, Ib;i, Id;i), and

Z ¼
�Za 0 2Zd þ Za

0 2ðZb þ ZgÞ 0
2ðZa þ ZbÞ 0 �Za

0
@

1
A ð9Þ

L ¼
0 0 Zd

Zb �Zb 0
Zb �Zb 0

0
@

1
A ð10Þ

R ¼
0 0 �Zd

Zb Zb 0
�Zb �Zb 0

0
@

1
A ð11Þ

External connections to the coil are taken to be left of the
circuit at i ¼ 1. At the last element on the right hand side
Ipþ1 ¼ 0, with Ib;p ¼ Id;p ¼ 0. Current conservation
implies Ip ¼ Cp�1Ip�1 with

Cp�1 ¼
�1 �1 0
0 0 0
0 0 0

0
@

1
A ð12Þ

For the second and third last elements,

Ip�1 ¼ ðZþ RZ�1LÞ�1LIp�2 ð13Þ

Ip�2 ¼ ðZþ RðZþ RZ�1LÞ�1LÞ�1LIp�3 ð14Þ
and so forth. This may be written more compactly as

Ii ¼ Ci�1Ii�1 ð15Þ
with the Cs generated by the recursion relation

Ci�1 ¼ ðZþ RCiÞ�1L; iop ð16Þ
Solving recursively for I1 we calculate the output impedance

Zout ¼
Ia;0 � Ib;0 � Ia;1 � Ib;1

Ia;0 � Ib;0

� �
Zb ð17Þ

and extract the output stray capacitance, Cout ¼ 1=ðjoZoutÞ.
Expressions for the output stray capacitance have been

checked in a number of physically relevant special cases.
The stray capacitance of a single layer solenoid without
shielding can be obtained by decoupling the inner and outer
layers. This involves setting Zg !1, Zd !1, and Zb !
1 of all but the last circuit, yielding Cs ¼ Ctt=ðn� 1Þ,
which is consistent with the results of Grandi et al. for a
single layer unshielded solenoid. If the turn-to-turn
capacitance within layers dominates over the turn-to-turn
capacitance between layers (i.e. Za=Zb ! 0, then
Cs ! ðn=2ÞCtt þ ðn� 2ÞC�tt. In the reverse ordering, where
the turn-to-turn capacitance between layers dominates the
turn-to-turn capacitance within layers (i.e. Zb=Za ! 0),
Cs ! Ctt.

Figure 4a plots the normalised stray capacitance against
the normalised diagonal turn-to-turn capacitance for
n ¼ 4, 6, 8 and 10, with the shield at infinity ðCts ! 0Þ.
The swift convergence with increasing n results from the
series and diagonal turn-to-turn capacitance, which succes-
sively reduce the contribution from higher turns. Figure 4b
plots the normalised stray capacitance against the normal-
ised turn-to-shield capacitance for n ¼ 4, 6, 8 and 10, and
C�tt=Ctt ¼ 0:1 (MAST case). As in Fig. 4a, the convergence
with increasing n results from the series and diagonal turn-
to-turn capacitance. In the limit of large Cts the series turn-
to-turn capacitance is short circuited, and it is the diagonal

turn-to-turn capacitance that couples the shield and higher
order circuits. Figure 4b shows that the maximal effect of a
shield is to increase the stray capacitance by around 20%.
However, this requires Cts=Ctt � 10, which can only be
achieved by a very closely fitting shield; for a shield placed
more than distance d from the coil, Cts=Cttt1, and the
increase in stray capacitance will be o7%.

In the two extremes that a shield is absent and the shield
is adjacent to the inductor, the stray capacitance reduces to
Cs ¼ 1:45Ctt and Cs ¼ 1:72Ctt, respectively, where n � 10
and C�tt=Ctt ¼ 0:1. These results compare well to earlier
calculations by Massarini and Kazimierczuk, who found
that for a two layer winding with n � 10, the stray
capacitance reduces to Cs ¼ 1:62Ctt for no shield, and Cs
¼ 1:83Ctt for a conducting core. Differences between the
expressions occur because in this model the windings lie in
cylindrical shells centred at radius r ¼ R and r ¼ Rþ d,
as opposed to the completely stacked layers of Massarini
and Kazimierczuk, which lie in cylindrical shells of radius

r ¼ R and r ¼ Rþ 2d= 3
p

. Both treatments have error
associated with windings of opposite winding pitch. Turns
of opposite pitch do not lie compactly stacked, and so the
spacing between layers will be underestimated in computa-
tions of Ctt in Massarini and Kazimierczuk. Whilst the
spacing between layers is correct in this treatment, the fact
that the winding pitch is opposite between layers is
neglected. Thus, the stray capacitance, parameterised by
the turn-to-turn capacitance of touching wires, will be an
overestimate, as turns in different layers will in general be
non-touching. In turn, the predicted self-resonant frequency
will be an underestimate.

Finally, in order to compute the stray capacitance,
expressions for Ctt and C�tt must be determined. Formal
solutions require calculation of the electrostatic field within
the windings. As mentioned, this is outside the scope of this
work, which is designed to provide simple scoping formulas.
Instead, we have used expressions for the capacitance in
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Fig. 4 Plot of the normalised stray capacitance Cs/Ctt against Ctt
*/
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a Normalised diagonal turn-to-turn capacitance Ctt
*/Ctt with no shield

Cts ¼ 0
b Normalised turn-to-shield capacitance Cts=Ctt with C�tt=Ctt ¼ 0:1
The different lines are: n ¼ 4 (dots), n ¼ 6 (dashes), n ¼ 8 (dash-
dot), and n ¼ 10 (solid)
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various limiting cases. For Ctt, the conductors are assumed
to be immersed in a medium of permittivity ed [14]

Ctt ¼
plted

cosh�1
d
2a

� � ð18Þ

Here, lt is the length of wire in one turn. For media in
which ed � eair, the permittivity of air, (18) will significantly
overestimate Ctt, as the electric field lines between the
windings will be different to those in a homogeneous
medium. Even when ed � eair however, (18) will slightly
overestimate Ctt, as all electric field lines do not start and
end on adjacent conductors. That is, the presence of other
conductors is not taken into account. Consequently, (18)
should be taken as an upper bound to Ctt, and therefore a
lower bound to f0. For C�tt, we have used the equivalent
capacitance of the series combination of the capacitance of
the insulated coating and the capacitance related to the air
gap between the turns [2]. This yields

C�tt ¼
plteair

ln F þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � ð1þ t=aÞ2eair=ed

q� � ð19Þ

where t is the thickness of the dielectric coating and

F ¼ d=
ffiffiffi
2
p

a

ð1þ t=aÞ1�eair=ed
ð20Þ

Taken together, (18) and (19), and Fig. 4 provide an
approximate description for determining the stray capaci-
tance of the circuit in the absence and presence of shielding.

Finally, for completeness, we note that the self-resonant
frequency of the RLC circuit is

f0 ¼ 1 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LcoilCs

p� �.
� 1 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LcoilCtt

p� �.

¼ ft=
ffiffiffi
n
p

ð21Þ
and so f0 � ft providing n� 1. In turn, reduction of the
circuit model of Fig. 2a to Fig. 2b with open circuit
inductance limbs, for the purposes of calculating Cs at
frequencies above f0 was reasonable.

The expressions used in this work for Ctt and C�tt differ to
earlier treatments in several respects. In Massarini and
Kazimierczuk, the electric field path in an infinite compact
lattice was assumed, and expressions for the capacitance per
unit surface area between connecting field lines derived. The
turn-to-turn capacitance was found by integrating over all
possible paths. In Grandi, where a single layer solenoid was
modelled, (19) was used for C�tt, and (18) with ed ! eair used
to describe Ctt for windings with large air spacing between
turns. For the double layer, oppositely wound coil
considered here, an infinite fixed lattice structure cannot
be assumed: turn-to-turn capacitance calculation requires a
full 3-D Maxwell electrostatic simulation (e.g. [1]). Given
the application of this model is to provide simple scoping
formulas, we have instead followed the simplified approach
of Grandi.

4 Experimental validation

To test the stray capacitance model, the characteristics of
a candidate double-layer coil to be used in MAST were
measured. The specifications of the coil were n ¼ 30,
l ¼ 14mm, a ¼ 0:38mm, d ¼ 0:81mm, with the coil
wire coated in a t ¼ 25 mm layer of polyamide/imide
insulator with relative permittivity 3:9 � ed=e0 � 5:4 [15].
The outer diameter of the wound coil was 23mm, giving a
mean turns radius, �r, of �r ¼ 10:7mm, and coil length to

radius ratio l=�r ¼ 1:3, which is within the range of
applicability for (1) (however since the formula is intended
for a single-layer winding, application to a double-layer
solenoid may result in an error which is more than 1%).
From (1), (2), (18), and (19), the derived parameters
are Lcoil ¼ 17:2 mH, RDC � nRDC;l ¼ 67:5mO, and
20.2pF� Ctt � 28:0 pF with C�tt ¼ 2:1 pF. Using Fig. 4
to obtain the ratio Cs=Ctt for n � 10, one obtains
29:3 pF � Cs � 40:6 pF, with mean �Cs ¼ 35:0 pF (overbar
denotes mean). The large uncertainty in the predicted stray
capacitance (716%) corresponds to the uncertainty in the
permittivity of the insulator.

The impedance profile of the coil was measured with a
ZVRE Rhodes and Schwarz 3GHz network analyser [16].
Measurements of the impedance, Zmeas, were obtained from
the S11 reflection coefficient [17]. Figure 5 shows the
absolute value of the impedance, jZj, over a 200kHz–
15MHz sweep range. Whilst the fundamental resonance f0

is defined by IfZg ¼ 0, for practical reasons, the
fundamental resonance was measured to be the frequency
at which <fZmeasg first peaked. The validity of this
assumption can be examined by noting the predicted
impedance [11, 18] can be written

Zpred ¼
Rcoil þ joLcoilð1� o2LcoilCs � CsR2

coil=LcoilÞ
ð1� o2LcoilCsÞ2 þ o2C2

s R2
coil

ð22Þ

If CsR2
coil=Lcoil � 1 then at o ¼ 2pf0 ¼ 1= ð

p
LcoilCsÞ,

one finds IfZpredg ¼ 0 and @<fZpredg=@o ¼ 0. Hence,
providing that the measured impedance profile can be
closely fitted by (22) and CsR2

coil=Lcoil � 1 (proven a
posteriori), peaks of <fZmeasg lie at the fundamental
resonance f0. Applying this technique to 10 measurements
yields f0 ¼ 5:32	 0:02MHz, where the error of
0.02MHz is inferred from the variance of the scatter of
ten f0 measurements. Higher order self-resonant frequen-
cies, discussed elsewhere (e.g. Rhea [12]), can also be
identified, at 30MHz and 74MHz.

Figures 6a and b show an enlargement of the magnitude
of the imaginary part of Z, jIfZgj, about f0. The frequency
response below f0 is dominated by the coil inductance, and
immediately above it by the coil capacitance. To obtain

0 20 40 60 80 100

10−2

100

102

frequency, MHz

|Z
|, 

kΩ
 

Fig. 5 Frequency dependence of the absolute value of the coil
impedance, 7Z7, as measured by a ZVRE Rhodes and Schwarz
network analyser
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fitted values for the RLC circuit model parameters (i.e.
frequency-independent measured values of RDC, Lcoil, and
Cs), a least squares fit to the residue

rfitðf Þ ¼ jðZpredðf Þ � Zmeasðf ÞÞ=ðZpredðf Þ
þ Zmeasðf ÞÞj ð23Þ

was performed, with Zpred given by (22). The frequency
range has been restricted to 0ofo1:5f0, so as to avoid
phenomena associated with the second self-resonant
frequency. In each fit, the components RDC, Lcoil and Cs

were varied to minimise the integral Lfit¼ð
R 1:5f0

0
rfitðf Þdf Þ=

ð1:5f0Þ using a simplex search algorithm [19] implemented
in Matlab. Initial values were taken to be the predicted
values, whilst the exit condition was DIfito10�8 with DIfit

the change in Ifit between iterations. For this fractional

exit condition, Ifito1:8
 10�2 for all experiments. Least
squares fitting over 10 experiments yields: RDC ¼
115	3mO, Lcoil¼17:29	0:01 mH, Cs ¼ 51:75	0:25 pF,
where the variance in RDC, Lcoil and Cs has been taken from
the scatter of the fits. The good agreement between the
fitted (dotted line) to the measured (solid points) impedance
profiles in Figs. 6a and b provides confidence in the circuit
model. For completeness, we note that at �f 0, Rcoil ¼ 4:7O,
yielding CsR2

coil=Lcoil � 7
 10�5 � 1, and so the funda-

mental resonance f0 ¼ 1=ð2p ð
p

LcoilCsÞÞ corresponds to
@<fZpredg=@o ¼ 0 in (22).

To compare the fitted capacitance to the predicted
capacitance, the value of RDC and Cs must be reduced by
RDC;test ¼ 31:1mO and Ctest ¼ 13:78 pF, being the d.c.
resistance and capacitance of the connecting test board and
cable measured (by a similar fitting technique) in isolation.
This yields RDC;fit ¼ 84	 3mO, Lcoil;fit ¼ 17:29	
0:01 mH, Cs;fit ¼ 37:97	 0:25 pF, values which compare
well to the predicted values RDC;pred ¼ 67:5mO, Lcoil;pred ¼
17:2 mH, Cs;pred ¼ 35:0	 5:7 pF. The discrepancy between
RDC values may be the result of additional conducting

structures in the test board, which cannot be adequately
represented by the cylindrical wire model of (3)–(5). The
predicted coil inductance is accurate to within 1% of
the fitted value, consistent with the estimates of accuracy of
(1) as proposed by Wheeler [10]. The fitted capacitance
lies within the range of the predicted values, with
mean �Cs;pred ¼ 35:0 pF, 8% below the fitted value. A
more detailed comparison between the predicted and mea-
sured stray capacitance would require the permittivity
of the insulator to be measured. Finally, the predicted
inductance, Lcoil;pred ¼ 17:2 mH, and stray capacitance
Cs;pred ¼ 35:0	 5:7 pF combine to yield the prediction
f0 ¼ 6:5	0:5MHz. If the capacitance of the test board and
cable is added in parallel, then 1=2p ð

p
LcoilðCsþCtestÞÞ ¼

5:5	 0:3MHz. As with Cs, the measured value for f0 ¼
5:32	 0:02MHz lies within the predicted range. The
predicted impedance profile, correcting for the test board,
is also shown in Figs. 6a and b.

It is useful to compare these predictions to those of
Massarini and Kazimierczuk [3]. Using their expression for
a two layer stacked coil structure in Massarini and
Kazimierczuk [3], Cs ¼ 1:62Ctt, together with (15) for Ctt
in that article, yields 17.7pFrCsr21.5pF, with mean
19.6pF. The mean represents a �46% error from the
measured value, thereby casting doubt on the accuracy of
the calculations of Massarini and Kazimierczuk [3] in
predicting the stray capacitance on double wound induc-
tors. It should be noted that the experimental measurements
of Massarini and Kazimierczuk [3], which quoted an
error of �17.2% for the predicted stray capacitance
compared to the measured value, were based only on a
single layer inductor. The difference between the results
of Massarini and Kazimierczuk [3] and our working stems
from a difference in Cs=Ctt (1.62 against 1.45) and �Ctt,
(�Ctt ¼ 24:1 pF against �Ctt ¼ 12:1 pF) respectively. Physi-
cally, the value of �Ctt in Hole and Appel is higher because
the whole structure is assumed to be completely immersed
in a dielectric.

Table 1 shows calculated values for Ctt, C�tt and Cs for
different models, and over the range of permittivity of the
polyamide/imide (PAI) insulator, 3:9 � er � 5:4. For
completeness, we also show predictions for Hole and
Appel, and Massarini and Kazimierczuk [3] in the limit that
the entire structure is immersed in a dielectric (with
permittivity eair ¼ ere0), where e0 is the permittivity of free
space. In these cases, the predictions of the two models
overlap more closely: differences are due to details of the
electric field path, which have not been calculated precisely
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Fig. 6 Measured, fitted and predicted magnitude of the imaginary
part of Z, jIfZgj, about the fundamental resonant frequency, f0

Solid points are the measured data, the dotted and dashed lines are the
fitted and predicted profiles, respectively. At frequencies lower than
f0 ¼ 5:32	 0:02MHz, the coil is inductive (i.e. IfZg40), and
immediately above it, the coil is capacitative (i.e. IfZgo0)
a Vertical line denotes the upper frequency limit used in fitting to an
RLC parallel circuit
b Enlargement of Fig. 6a about the self-resonant frequency

Table 1: Predictions for Ctt , C �tt and Cs across different
models and permittivity

eair er Ctt C�tt ; y
� Cs

Hole and Appel e0 3.9 20.2pF 2.1pF, – 29.3pF

Hole and Appel e0 5.4 28.0pF 2.1pF, – 40.0 pF

Hole and Appel 3:9e0 3.9 20.2pF 7.7pF, – 33.5pF

Hole and Appel 5:4e0 5.4 28.0pF 10.7pF, – 46.2pF

Massarini and
Kazimierczuk

e0 3.9 10.9pF –, 0.18 rad 17.7pF

Massarini and
Kazimierczuk

e0 5.4 13.3pF –, 0.15 rad 21.5pF

Massarini and
Kazimierczuk

3:9e0 3.9 20.7pF –, 0.36 rad 27.9pF

Massarini and
Kazimierczuk

5:4e0 5.4 23.8pF –, 0.36 rad 38.6pF
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in either structure. The similarity in predictions of Cs
between Massarini and Kazimierczuk with eair ¼ ere0 and
Hole and Appel with eair ¼ e0 occurs because in both cases
Ctt (which in Hole and Appel is the dominant capacitance)
is calculated assuming immersion of the structure in the
dielectric.

Finally, the effect of a shield was studied by measuring
the variation in the frequency of the fundamental resonance.
In these experiments, two thin copper sleeves of axial length
8mm and 11mm, and with an axial cut, were wrapped
around the terminal end of the coil, and molded to minimise
the air gap (see Fig. 1 schematic). The axial cut ensured that
currents in the shield did not affect the axial magnetic field,
and thereby the coil inductance. The effects of conducting
shields on the coil inductance have been examined elsewhere
[20]. In the shield experiments described here, the measured
fundamental resonance changed to f0 ¼ 5:37	 0:02MHz
and f0 ¼ 5:36	 0:04MHz for the wide and narrow
shields, respectively.

Correcting for the capacitance of the test board and
cable, corresponding fits to RDC, Lcoil and Cs yielded
RDC ¼75:8	1:9mO, Lcoil ¼17:28	0:02 mH, Cs ¼37:00	
0:36 pF, and RDC ¼ 76:2	 0:1mO, Lcoil ¼ 17:17	
0:02 mH, Cs ¼ 37:69	 0:65 pF, for the wide and narrow
shield, respectively. In both cases, the experimentally
derived values of Cs are equal to the unshielded stray
capacitance, to within error bounds; whilst the difference in
self-resonant frequencies between the shielded and un-
shielded cases is attributable to the change in coil
inductance. A possible reason why the stray capacitance
has not changed is that each turn is almost-touching the
shield, which is locally flat. Hence, we would expect
Cts=Ctt � 1, and so Cs=Ctt � 1:55 (see Fig. 6b), yielding
31:3 � Cs � 43:4 pF, with mean �Cs ¼ 37:4 pF, which is
2.4pF above from the unshielded prediction of 35.0pF.
Whilst the difference exceeds the uncertainty in the
measurements, the uncertainties in Cts=Ctt preclude a
definitive comparison of theory to measurements. A series
of more dedicated experiments, possibly involving the use of
a conducting paint would be required to fully explore the
upper limit of Cs=Ctt ¼ 1:7, shown in Fig. 4b.

5 Conclusions

A simple distributed circuit model has been developed to
compute the stray capacitance, Cs, of a double layer air-
cored solenoid. The use of recursive circuit modelling
techniques provide a prescription for generating algebraic
expressions for the stray capacitance of an arbitrary number
of coil turns. Providing that the number of coil turns is
larger than 10, our analysis shows that the stray capacitance
is proportional to the turn-to-turn capacitance of two wires
immersed in a dielectric of permittivity ed : for no shield,
Cs ¼ 1:45Ctt, with a shield, Cs � 1:7Ctt. Qualitatively,
these results consolidate earlier findings [2, 3] that the stray
capacitance is only weakly dependant on the number of
turns, and converges quickly with increasing number of
turns, n. In a single-layer solenoid [2] it is the capacitive
coupling with the shield that dominates the stray capaci-
tance, and is responsible for the swift convergence with
increasing n. In a two layer solenoid swift convergence with
n is achieved without the shield, and is due to the capacitive
coupling between the first few turns in the inner and outer
layer. We hypothesise that this result will extend to
solenoids with an even number of layers, where the
terminals are at the same end of the coil. In solenoids with
an odd number of layers, the capacitance will in general be
dominated by the electrical path through the shield.

The practical use of these estimates is that, when
combined with existing expressions for the coil inductance,
Lcoil, an estimate of the fundamental self-resonant frequency
of the coil, f0, can be obtained. Because our model: (1)
assumes that touching turns are immersed in a dielectric of
permittivity ed4e0, and (2) does not account for the
opposite winding pitch of the layers, the predicted values of
Cs and f0 are likely to be upper and lower limits,
respectively. Nonetheless, the expressions do provide a
useful scoping tool to determine the maximum frequency
operation as an inductor.

Experimental results were presented for a coil designed to
measure high frequency oscillatory magnetic fields in a
fusion plasma. The measured value of the stray capacitance
was determined by a least squares fit to an RLC circuit
model over the frequency range 0 � f � 1:5f0. Our results
show that the measured stray capacitance is within the
range of the predicted stray capacitance: uncertainties in
the permittivity of the insulator give a range of716%, with
the mean value of the stray capacitance �Cs ¼ 35:0 pF,
which is 8% lower than the measured value. A more
detailed comparison between the predicted and measured
stray capacitance would require the permittivity of the
insulator to be measured. When combined with an
expression for the coil inductance, the predicted self-
resonant frequency f0 is within the range of the measured
value, with mean 4% larger than the measured value. Our
results compare well to predictions of other models. For
example, the analysis of Massarini and Kazimierczuk [3]
predicts a stray capacitance and self-resonant frequency
46% below and 25% above the measured values,
respectively. In both treatments, the higher mean of the
predicted self-resonant frequency is also consistent with a
frequency upshift owing to the presence of higher-order
resonances discussed in Section 2.

Finally, the effect of a shield on the value of Cs is
predicted to be insignificant for the usual case of closely-
spaced windings when Cts=Ctto0:1. In the case of widely
spaced windings where Cts=Ctt410, Cs is predicted to
increase by not more than 20%. Experimental measure-
ments using the test coil confirm that a close fitting shield
(with axial cut) has a negligible effect on the stray
capacitance.

New results in this work are:

1. The construction of a simple model for the stray
capacitance of a two-layer, tightly packed inductor.
The model builds upon existing expressions for the turn-
to-turn capacitance, but differs to earlier multi-layer
models because the coils are not assumed to be
compactly packed.

2. Predictions for the unshielded stray capacitance and self-
resonant frequency, which overlap the measured range.
To our knowledge, these are the first published results of
both the predicted and measured stray capacitance of a
double layer solenoid. More precise predictions would
require measurement of the permittivity of the insulator.

3. Predictions, validated by experiment, that the effect of a
close-fitting conducting shield on the value of Cs and f0

is weak.

6 Acknowledgments

This work was funded jointly by the United Kingdom
Engineering and Physical Sciences Research Council and by
EURATOM. The authors would like to thank R. Martin
for providing a test coil, and the referees for useful feedback
and advice.

IEE Proc.-Circuits Devices Syst., Vol. 152, No. 6, December 2005 571



7 References

1 Yu, Q., and Holmes, T.W.: ‘A study on stray capacitance modeling of
inductors by using the finite element method’, IEEE Trans.
Electromagn. Compat., 2001, 143, (1), pp. 88–93

2 Grandi, G., Kazimierczuk, M.K., Massarini, A., and Reggiani, U.:
‘Stray capacitances of single-layer solenoid air-core inductors’, IEEE
Trans. Ind. Appl., 1999, 35, (5), pp. 1162–1168

3 Massarini, A., and Kazimierczuk, M.K.: ‘Self-capacitance of induc-
tors’, IEEE Trans. Power Electron., 1997, 12, (4), pp. 671–676

4 Bartoli, M., Noferi, N., Reatti, A., and Kazimierczuk, M.K.:
‘Modeling winding losses in high-frequency power inductors’,
J. Circuits Syst. Compat., 1995, 5, (4), pp. 607–626

5 Yu, Q., Holmes, T.W., and Naishadham, K.: ‘RF equivalent circuit
modeling of ferrite-core inductors and characterization of core
materials’, IEEE Trans. Electromagn. Compat., 2002, 44, (1),
pp. 258–262

6 Hole, M.J., Akers, R.J., Appel, L.C., Buttery, R.J., Brickley, C.,
Conway, N.J., Gryaznevich, M., Hender, T.C., Kwon, O.J., Valovic,
M., Medvedev, S., Patel, A., Saarelma, S., Taylor, D., Wilson, H.R.
and the MAST Team: ‘Ideal MHD stability of the mega-ampere
spherical tokamak’, Plasma Phys. Control Fusion, 2005, 47, (4),
pp. 581–613

7 Appel, L.C., Akers, R.J., Fullop, T., Martin, R., and Pinfold, T.:
‘Observations of CAE’s on MAST’. Proc. 31st EPS Conf. on
Controlled Fusion and Plasma Physics, 2004, P4.195

8 Appel, L.C., and Hole, M.J.: ‘Calibration of the high-frequency
magnetic fluctuation diagnostic in plasma devices’, accepted, Rev. Sci.
Instrum., 2005

9 Heeter, R.F., Fasoli, A.F., Ali-Arshad, S., and Moret, J.M.: ‘Fast
magnetic fluctuation diagnostics for Alfv!en eigenmode and magneto-
hydrodynamic studies at the Joint European Torus’, Rev. Sci.
Instrum., 2000, 71, (11), pp. 4092–4106

10 Wheeler, H.A.: ‘Simple inductance formulas for radio coils’, Proc.
IRE, 1928, 16, pp. 1398–1400

11 Bartoli, M., Reatti, A., and Kazimierczuk, M.K.: ‘Modelling iron-
powder inductors at high frequencies’. Proc. IEEE Industry Applica-
tions Soc. Ann. Meeting, 1994, pp. 1225–1232

12 Rhea, R.W.: ‘A multimode high-frequency inductor model’, Appl.
Microw. Wirel., 1997, 9, (6), pp. 70–80

13 Horng, T.-S., Wu, J.-M., Yang, L.-W., and Fang, S.-T.: ‘A novel
modified-T equivalent circuit for modeling LTCC embedded inductors
with a large bandwidth’, IEEE. Trans. Microw. Theory Tech., 2003,
51, (12), pp. 2327–2333

14 Smythe, W.R.: ‘Static and dynamic electricity’ (McGraw-Hill, New
York, 1950)

15 GoodFellow Catalogue, http://www.goodfellow.com/csp/active/
STATIC/E/Polyamide-imide.HTML, 2004

16 Rhodes and Schwarz website, http://www.rsd.de, 2005
17 Sander, K.F., and Reed, G.A.L.: ‘Transmission and propagation of

electromagnetic waves’ (Cambridge Univeristy Press, 1978)
18 Bartoli, M., Reatti, A., and Kazimierczuk, M.K.: ‘High-frequency

models of ferrite core inductors’, Proc. IEEE Int. Conf. on Industrial
Electronics (IECON), 1994, pp. 1670–1675

19 Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E.:
‘Convergence properties of the Nelder-Mead simplex method in low
dimensions’, SIAM J. Optim., 1998, 9, (1), pp. 112–147

20 Simpson, T.L.: ‘Effect of a conducting shield on an air-core solenoid’,
IEEE Trans. Magn., 1999, 35, (1), pp. 508–515

572 IEE Proc.-Circuits Devices Syst., Vol. 152, No. 6, December 2005


