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Streaks in skilled performance
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Experiments in golf putting and darts demonstrated that skilled performance is streaky, The ten
dencyfor outcome sequences to form streaks was greatest when the task difficultywas such that about
half the trials were successful. Mixtures of the two activities were also streaky, even when periodic
interruption made the individual components resemble a random Bernoulli process, Formal models
of sequence structure revealed that waves in hit rate are associated with the appearance of streaks,

There is a common perception shared by athletes, sports
fans, and perhaps anybody who has ever attempted a
skilled activity that there are moments when a person is
"hot," or "in the zone," or alternatively is "cold," or in a
slump. M. Csikszentmihalyi (1975,1990; M. Csikszent
mihalyi & I. S. Csikszentmihalyi, 1988) has written ex
tensively about the notion off/ow as a dimension of ex
perience where the intimate coupling ofactor and activity
results in a specific psychological state anecdotally re
ferred to as being "hot." Other investigators have been
leery of flow as a description of performance and have
questioned its empirical support. An issue germane to
studies of subjective probability is whether the alleged
signature of the flow state, streaky performance, arises
from some factual aspect of skilled activity or from mis
taking chance fluctuations as evidence of a heightened
state of ability. Judgments of one's own and other's per
formance would not be controversial if it were not for the
well-documented observation (Tversky & Kahneman,
1971, 1974) that people have systematic biases concern
ing whata random process looks like, and therefore are not
competent to discriminate chance occurrence from truly
remarkable performance.

Understandings of random processes incorporate a
bias known as the "law of small numbers" (Tversky &
Kahneman, 1971); people expect statistical regularities
that hold only in the long run to also obtain locally in the
short run. The gambler's fallacy (e.g., the beliefthat tails
are "due" after a long run of heads) illustrates this type
of thinking. When asked to mimic the flip of a fair coin,
people invariably generate sequences that have too few
long runs ofheads and tails, they balance the frequencies
of heads and tail in short runs, and they produce an ex
cessive number ofruns compared with the output from a

We wish to extend special thanks to Kerstin MacDonald for assis
tance in running the experiments and preparing the data for analysis,
Correspondence should be directed to D.L. Gilden, Department ofPsy
chology, Mezes 330, University of Texas, Austin, TX 78712 (e-mail:
gilden@psyvax.psy.utexas.edu).

Bernoulli process (Kubovy & Gilden, 1989). Given this
strong cognitive bias, it would not be surprising if peo
ple mistook a real Bernoulli process for streaky perfor
mance.

The game of basketball provides a singular opportu
nity to study the perception ofskilled performance, since
fans, coaches, athletes, and announcers all consider streaks
to be a factual part of the game. Gilovich, Vallone, and
Tversky (1985) compared individual shot records ofpro
fessional NBA players with the expectation of a station
ary Bernoulli process-a process characterized by the
invariance of the probability of a successful field goal.
Evidence for streak shooting (hot or cold) would be a
positive correlation between outcomes of successive
shots. Gilovich et al. (1985) found that individual shoot
ing records did not support the existence ofa "hot hand."
In fact, the data supported the opposite conclusion; out
comes were negatively correlated (hits are more likely to
follow misses than hits). This analysis implies that the
widespread belief in streak shooting is due to misper
ception of chance.

Larkey, Smith, and Kadane (1989) criticized this con
clusion on the grounds that a Bernoulli process does not
capture important contextual features of event outcome
in basketball. Defensive interference, pauses in the ac
tion, and variations in the opportunity to manifest the re
quired skills together contribute to nonstationarity in the
probability ofa successful shooting attempt. Larkey et al.
argued that observers of the game are highly sensitive to
context and do not base their judgments of performance
on individual shot records abstracted from the potpourri
of activity that constitutes the spectacle.

Lacking in this discussion has been a consistent ex
perimental paradigm that permits a rigorous demonstra
tion of the phenomena. In this regard, basketball is man
ifestly not the optimal activity for analysis. Indeed, any
game that is sufficiently interesting to draw spectators
may be too complex for a rigorous streak analysis. Wehave
chosen to study games that do not incorporate the sto
chastic variables of shooting opportunity and interfer-
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ence, and so are able to enormously simplify the problem
of selecting an appropriate normative model of chance.
In our studies, people simply repeat a set task for a pre
determined number of trials. Although rote repetition
substantially vitiates the factors that impel people to ex
ercise their abilities, the Bernoulli process generates the
natural sampling distribution under these conditions.

The primary purpose of this article is to develop an
experimental framework for investigating the existence
of the "hot hand." We address the relatively straightfor
ward empirical question of whether the serial execution
of a skilled action is distinguishable from a Bernoulli
process when the playing conditions are identical on all
trials. We selected two motor skills that seemed to offer
the opportunity for streaky performance: golf-ball putting
and dart throwing. These games have the virtues that
there is minimal delay in the action, there is no interfer
ence, there is an unequivocal criterion of success, and
there is anecdotal evidence that these activities produce
streaks.

that the first-order transition probability p(hlh) is not as sensitive to
global structure as is the serial correlation or run count. It is necessary
to look at the first-, second-, and third-order transition probabilities to
begin to adequately characterize a sequence. Often sequences with
large disparities in their runs z scores differ only subtly in their transi
tion probabilities. Transition probabilities are more useful as measures
of local sequence structure, and for this reason we shall use the runs
z score to characterize the departure from a Bernoulli process.

Runs z scores are subjected to two types of statistical tests, depend
ing on the type of null hypothesis that is being considered. In every ex
periment reported here, we shall test whether the ensemble ofoutcome
sequences is distinguishable from a Bernoulli process. The null hy
pothesis that sequences are samples from a Bernoulli process entails
(I) each sequence's being independent (as are parts ofsequences) from
all others, and (2) the ensemble ofrunsz scores having a mean of zero.
In testing this null, we simply form the distribution of observed runs
z scores and ascertain whether the mean is significantly less than zero
(we are only interested in the case where there are fewer runs than ex
pected). Each sequence in such an analysis forms a separate degree of
freedom by virtue of the mutual independence required by the null. We
also test whether the runs z scores at different hit rates have different
means. Here the null hypothesis has nothing to do with whether or not
the sequences are Bernoulli, and we shall resort to more traditional re
peated measure analyses where the different subjects comprise the de
grees of freedom.

Figure 1. zscores for run number versus hit rate for 40 subjects in
a goIfputting study. Runsz scores are computed for each sequence in
dividually on the assumption that successive trials are samples from
a Bernoulli process defmed by the average hit rate. Negative runs
z scores indicate that fewer runs were observed than expected.

Results
The results for this experiment are shown in Figure 1.

The distribution ofruns z scores had a mean of - .49, which
is distinguishable from a Gaussian with a mean of zero,
the expected distribution derived from the null hypothesis
of sampling from a Bernoulli process [t(39) = -2.69,
p < .005]. Most people showed some amount ofstreakiness
in golfputting (25 of40 hadz < O;p = .077). In addition,
there were a number ofpeople who had runs z scores that
were sufficiently negative for them to be regarded as streak
performers. Of the sequences, 12.5% had runs z scores
less than -2, where only 2.3% are expected to have
z scores this negative. These data also suggest that there
is a suppression of streaky performance if the task diffi
culty exceeds the person's competence-that is, ifthe hit
rate was .3 or less.
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INITIAL GOLF PUTTING STUDY

Method
Subjects. Forty subjects were recruited by advertisement. They re

ceived $5 per session plus 5 cents per hit.
Stimuli. A standard l2-ft putting green, putter, and regulation golf

balls were used.
Design and Procedure. Each subject completed one session of 300

putts following a brief practice session of 25 putts. Putting was initi
ated for all subjects at the far end of the putting green. The experi
menter was placed near the hole and continuously resupplied the sub
ject with fresh balls. Trials were self-paced. Hits and misses were
encoded as Is and Os,respectively.

Analysis. There are a number of sequence statistics that measure de
viation from the output of a Bernoulli process. Gilovich et al. (1985)
used conditional probabilities, run counts, and serial correlations to
characterize the basketball sequences in their studies. These measures
are not independent. For a given hit rate, sequences with fewer runs than
expected under the null hypothesis of Bernoulli trials must have more
internal repetition than expected, and consequently a positive serial
correlation. In addition, for such sequences,p(hlh) > p(h)-the prob
ability of a hit following a hit is greater than the probability of a hit.

Unlike the serial correlation between successive trials, denoted here
as r12' and the contingent probability difference, t.p = p(hlh) - p(h),
the hit rate influences the expected number ofruns. A sequence with a
hit rate near 1.0, for example, must have very few runs, although this
does not mean that the sequence is streaky. Removal ofhit rate as a fac
tor in a runs analysis is accomplished by referring the run count in an
observed sequence to the ensemble of counts calculated from all pos
sible permutations. The sampling distribution ofrun counts is approx
imately normal with mean 2Np(l-p)+ I, where N is the number oftrials
and p is the probability of a hit. Deviations from normality are suffi
ciently large for p * .5 for us to use the exact hypergeometric distri
bution (Hays, 1988) to compute the probability of observing R, or
fewer, runs. For the purposes ofstatistical testing and displaying our re
sults, we have converted this probability to a z score by inverting the
cumulative Gaussian distribution-a quantity that we refer to as the
runs z score. The runs z score is a measure of outcome clustering that
is independent ofboth sequence length and hit rate, and its expectation
for a Bernoulli process is zero.

Although r12' Sp, and the runs z score are related measures of se
quence structure, they are not identical. The Fisher Z associated with r12

and the runs z score are numerically indistinguishable to three signifi
cant digits. t.p, however, is not a function of the runs z score. Simple
regressions of these two variables captures only about 50% of the vari
ance for the sequences discussed in this article. The reason for this is
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commensurate with the ability of the performer. In the in
struction ofa skill, there is the commonsensible idea that
learning is facilitated when difficulty is matched to abil
ity, and it is surprising to see this notion instantiated in a
formal measure of streak magnitude. We have assessed
the generality of this result by repeating the three levels
of hit-rate design in dart throwing. Darts is one "sport"
where there is a folklore ofstreak shooting, although the
documentation for this is presently limited to eyewitness
accounts.

DART THROWING STUDY:
THREE-LEVEL nrr RATE

Discussion
A plausible account of the U'-shaped functions must

take into account what a person is doing when the task is too
easy or too hard. At low hit rates, the performer manifestly
does not possess the control to execute the required task.
Successful trials must become increasingly random events
as the hit rate approaches zero. At the other extreme,
when the task is too easy, intermittent distraction may

Results
The data from this experiment are summarized as box

plots of runs z score in Figure 3. A repeated measures
analysis showed that the quadratic trend in runs z score
with hit-rate range was significant [F(I,14) = 7.26,p <
.02]. Dart throwing, however, did not generate solid evi
dence ofstreakiness per se. Ofthe 24 sequences generated
in this experiment, only I had a runs z score sufficiently
negative (z = -1.6,p < .05) to be regarded as anomalous.
Chance mixing ofoutcome is expected to generate about
I z score in 20 this negative. The mean runs z score was
0.11, not significantly different from zero [t(23) = 0.47,
P = .68].

Method
Subjects. Eight subjects were recruited by advertisement. They re

ceived $5 per session plus 5 cents per hit. All ofthem considered them
selves to be well-practiced and highly trained.

Stimuli. A standard Nodor dart board was placed at the regulation
height of5 ft 8 in. Subjects threw darts from a distance of8 ft measured
from the back of the board. The target for the calibration phase was a
series of concentric alternating black and white rings that were 1I2-in.
thick. During the test phase, the target was a filled black circle on a uni
form white field. These targets were taped onto the Nodor dart board
and were replaced after each set of25 darts to facilitate accurate count
ing of hits.

Designand Procedure. We determined the dart throwing ability of
each subject during an initial phase in which they threw 300 darts at a
special calibration target. These data served to define individual cali
bration functions tabulating the number of hits within a radius, r, on a
grid spaced at 1I2-in. intervals. The appropriate sizes of targets for
achieving hit rates in the ranges, [.3-.5], [.5-.7], and [.7-.9], were in
terpolated from splines of the calibration functions. In the subsequent
experimental sessions, hit-rate levels were chosen at random and sub
jects were given targets consistent with their calibrated abilities. The
subjects completed one session of300 throws at each of the three lev
els of difficulty. Trials were self-paced, as in the golf study, but safety
dictated that the subjects retrieve their own darts. The subjects used ei
ther 3 or 5 darts depending on whether they brought their own or used
those supplied.
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GOLF PUTTING STUDY
THREE-LEVEL HIT RATE

Method
Subjects. Five subjects were recruited by advertisement. They re

ceived $5 per session plus 5 cents per hit.
Stimuli. The 12-ft putting green, putter, and balls were the same as

those used in Experiment I. The only difference in this experiment was
that the subjects often initiated their putts some additional distance be
yond the end of the putting green on a carpeted floor.

Design and Procedure. Each subject completed three sessions of
300 putts at each of the three levels of difficulty. Prior to each putting
session, we calibrated the putting distance for each subject to achieve
hit rates in the target ranges of .3-.5, .5-.7, and .7-.9. The difficulty
level was chosen at random for each block of trials with the constraint
that each subject complete three blocks at each level. Otherwise, the
procedure was identical to that of the first putting experiment.

A second putting experiment assessed the implied de
pendence of streakiness on hit rate by systematically
varying the putting distance for each subject.

Results
The ensemble of sequences generated in this experi

ment had a mean runs z score of - .59. This is significantly
smaller than zero [t(44) = -3.94,p< .0001], implying
a runs deficit relative to the expectation of a Bernoulli
process. There was additional structuring by hit rate ob
served in the runs z scores. Box plots of runs z score by
difficulty level are shown in Figure 2. As anticipated, we
found a suppression of streakiness in the low-hit-rate
condition; the distribution of runs z scores in the range
[.3-.5] had a median closer to zero, the expected value for
independent trials. There also appeared to be a comple
mentary and weaker suppression when the task was rel
atively easy. A repeated measures analysis showed that
the U-shaped trend evident in Figure 2 was significant
[F(I,8) = 9.558,p < .02].

The existence ofa quadratic trend in runs z score with
hit rate is a potentially important result. Outcome se
quences are streakiest when the difficulty of the task is

.5-.7

hit rate range
Figure 2. Box plots of runs z score versus hit rate in a golf putting

study. The data are grouped according to the level ofdifficulty. Hor
izontallines in the box plots mark the 10th, 25th, 50th, 75th, and 90th
percentiles. Outliers are plotted as individual points.
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INTERLEAVED GOLF AND DART TRIALS

3-5 5-3 3-S

hit rate range
Figure 3. Box plots of runs zscore versus hit rate in a dart-throwing

study. The data is grouped according to the level ofdifficulty.

Golfputting and dart throwing both generate V -shaped
trends in runs z score with hit rate, but golf putting is
much streakier than dart throwing. The difference in over
all streakiness may be due to subtle differences in the de
signs ofthe respective studies. One way in which the golf
putting and dart studies differed was in the pacing oftri
also In the putting experiment, it was possible to contin
uously supply subjects with golf balls so that there was
no break in activity; in the dart-throwing study, it was not

Method
Subjects. Four subjects were recruited by advertisement. They were

paid $5 per session.
Stimuli. The equipment was the same as that used in the earlier

studies.
Design and Procedure. The subjects alternated activities in sets of

5 trials to accommodate the retrieval of golf balls and darts. A block
consisted of 150 trials of each activity, and each subject completed 10
blocks. Half ofthe subjects began with darts, and halfbegan with golf.
Prior to the collection of data, we calibrated each subject's scores to
achieve hit rates of about 0.5 in both activities.

possible for the experimenter to continuously supply the
subjects with darts without incurring the danger ofbeing
hit. Subjects in the dart study threw 3 to 5 darts and then
collected them for another round. There was invariably a
5- to 10-sec delay between sets. Such delays render out
come sequences more Bernoulli-like in signal detection
(Gilden & Gray Wilson, 1995) and may have caused a
general suppression of streaks in dart throwing.

Time delay in the exercise ofmotor skills is relevant not
only for understanding streaks in our dart-throwing ex
periment, but also for explaining the negative results re
ported by Gilovich et a1. (1985) in the context offree-throw
shooting. Gilovich et a1. did not report the pacing oftheir
free-throw study, and they may not have recognized the
importance of allowing trials to be self-paced. We have
assessed the importance of interruptions in motor activ
ity by mixing golf trials with dart trials. In this design,
dart throwing serves to interrupt golf putting and vice
versa. We conjectured that interruptions would make
both tasks resemble a Bernoulli process.

Results and Discussion
Separate runs analyses were performed on the golfand

darts parts of the sequences, as well as on the combined
mixture. The mean runs z scores for the golf component,
darts component, and mixture were .027, .01, and -.26,
respectively. The isolated components were in
distinguishable from the output ofa Bernoulli process, but
the combined activity, which is realistically what the sub
ject experienced, was moderately streaky [t(39) = -1.8,p<
.05]. We have checked that this result is not an artifact of
the two games' being played at different hit rates. Our cal
ibrations proved to be quite stable, and the resultant distri
bution of hit rates was contained in the interval [.4-.65].

The results of this experiment may point the way to an
ecologically sensible assessment of basketball. While a
player is not shooting, he/she may be executing another
activity (rebounding, passing, or whatever) with the elan
that would be termed "in the zone" if it were shooting ac
tivity. Statistical analyses that concentrate on shooting ac
tivity may misrepresent the structure ofthe sport insofar
as shooting opportunities are intermittent even when the
action is continuous.

There is some aspect ofskilled performance that causes
hits and misses to cluster together in specific regimes of
task difficulty. In this section, we investigate several mod-
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produce random failure. When successes or failures are
truly random, then the runs z scores should approach the
expectation value ofzero. In this way, positive sequential
dependency is most likely to manifest itself at interme
diate hit rates by virtue of the true randomness that ex
ists near ceiling and floor. Analysis of the dart data sup
ports this argument. Runs z scores for sequences derived
from the easiest (largest) and most difficult (smallest)
targets were not distinguishable from a Bernoulli process.
For the largest targets, the mean runs z score was 0.29
[t(7) = .63, P = .55]. For the smallest targets, the mean
was 0.62 [t(7) = 1.58, p = .16]. Streaky performance
was evident only for intermediate-size targets, where the
mean runs z score of -.58 was significantly different
from zero [t(7) = -2.88, p < .02]. The golf data are in
partial agreement with this interpretation. At the longest
putting distances, where hit rates were lowest (hit rate < .5),
the mean runs z score of - .11 was not significantly dif
ferent from zero [t(14) = -1.02,p = .32]. However, un
like the dart data, the high-hit-rate (hit rate> .7) golf
sequences had a mean runs z score of - .66 that is in
consistent with output from a Bernoulli process [t(14) =
-2.97,p < .01]. Still, at putting distances where hit rates
were in the range [.5-.7], the mean runs z scores was
- .99, the most negative value obtained in this set ofstud
ies [t(14) = -6.4,p < .0001]. We tentatively interpret the
V-shaped functions as demonstrating that intermittency
may make outcomes more Bernoulli-like at the endpoints
of the hit-rate range.
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els of sequence structure in an effort to better understand
what might be causing streaks to occur.

Learning is a prime example of hit-rate nonstationar
ity that could make performance appear to be streaky. A
secular increase ofhit rate over a block of trials could re
sult in a deficit of runs relative to the expectation of a
stationary Bernoulli process operating at the average hit
rate. In this case, streaks would be an artifact ofa process
that might well be expected to occur and would be of lit
tle interest as a phenomenon in itself.

We have evaluated the role oflearning in the second golf
study (which showed the clearest evidence for streaki
ness) by constructing explicit learning curves that relate
hit rate to trial number. While virtually any monotonic
relationship between trial number and hit rate could
serve as a model of learning, we have considered a rep
resentative and fairly exhaustive set of relations by al
lowing the hit rate to be a power law of trial number:

hit rate cc (trial number)f3, f3 > O.

This set includes all relations that are everywhere concave
or convex.

We evaluated the importance oflearning by partialing
out the power-law models of hit rate from the outcome
serial correlation in the observed data sequences. To the
extent that a model describes the process whereby serial
correlation arises, the part correlation will be smaller than
the serial correlation. In the limit that the outcome se
quence has no stochastic component and the learning
model is an exact description, the part correlation van
ishes. Let rl2 represent the serial correlation (the corre
lation between the data sequence and itselflagged by one
trial), riM the correlation between the sequence and the
learning model, and r2M the correlation between the se
quence lagged by one trial and the learning model. Then
the part correlation is

_ r l2- rlM r2M
rpart- ~ ~-2 •

V l-r2M
If learning is occurring, then both rIM and r 2M > 0 and
rpart < r12'

For a given sequence of outcomes, there is generally
some value of f3 that minimizes rpart' Using standard nu
merical techniques, we have computed the minimum rpart
for all sequences in the second golf study that had posi
tive sequential dependency. The magnitude ofthe differ
ence between the serial and part correlations is an index
of the importance oflearning in outcome clustering.

Gilden and Gray Wilson (1995) argued that streaks in
signal detection were unrelated to learning and were due,
rather, to oscillations in hit rate. We conjectured that a
wave model would apply here as well. In wave models,
the hit rate is conceived to vary as

hit rate oc sin(21tk/L+8),

where k is the trial number, L is the wave period (measured
as number oftrials), and 8 is the phase. A wave in hit rate
can easily produce positive sequential dependency; hits

congregate at the crests, and misses congregate in the
troughs. Here both Land 8 entered as free parameters in
finding the minimum part correlation for each sequence.

The results from these analyses were straightforward.
The part correlations for every sequence were smaller in
the wave model. On average, the serial correlation for golf
sequences was rl2 = .060, while the part correlations were
rpart(wave) = .037 and rpart(learning) = .053. (Although
the magnitude of the serial correlation may not appear to
be large, serial correlations on the order of0.10 correspond
to runs z scores more negative than -2.0.) Relative to
wave modulation, learning appears to be a rather small ef
fect in explaining hit-rate structure.

Gilden and Gray Wilson (1995) considered a larger
class ofmodels that included a second-order Markov pro
cess and a stochastic version of a two-state wave model.
The Markov model explicitly incorporates the idea that
present outcome is correlated with earlier outcomes
"success breeds success." The stochastic two-state wave
model (referred to as the intermittent effort model) sim
ulates the fluctuations in performance that arise when
the operator's attention drifts to and from the task. This
model treats the hit rate as moving between two states
dependent upon a transition probability. Stochastic oc
cupation of states generates positive sequential depen
dency for the same reason the wave model does. Hits
occur preferentially in the high-hit-rate state and misses
in the low-hit-rate state. The primary difference between
the wave and intermittent-effort models is one of deter
minism. In the wave model, selection of the phase, am
plitude, and period fixes the hit rate on all trials.

Assessment ofthe Markov and intermittent-effort mod
els requires considerably more effort than calculation of
the part correlations. These models are inherently sto
chastic and require Monte-Carlo simulation. In this tech
nique, a given hit-rate model prescribes a rule for gener
ating pseudodata, sequences ofbinary digits that represent
algorithmic performance. Gilden and Gray Wilson (1995)
measured the local similarity between pseudo and real
data sequences in terms of the probability of encounter
ing m hits on n consecutive trials. In our signal detection
studies, we found that the wave model generated pseudo
sequences that had the greatest resemblance to the data.
We have repeated the same analyses on the golfdata with
the same result. Wave modulation of hit rate with a pe
riod ofabout 20 trials (20-50 sec given the pacing oftri
als) and an amplitude of 0.2 produces sequences that re
semble golf data both globally (the runs z score) and
locally (probability of m hits on n consecutive trials).

GENERAL DISCUSSION

Our finding that streaky performance in motor skills exists in labo
ratory studies does not contradict the main arguments of Gilovich et al.
(1985) insofar as their work concerned the cognitive illusion of streaks
in the full context of a basketball game. The work presented here does
challenge the general claim, implicit in Gilovich et al., that streaks are al
ways an illusion. To the contrary, we have found evidence not only for
streaky performance, but also for a V-shaped function relating streak
magnitude and hit rate. The difference between our results and those of



Gilovich et al. (1985) may be due to the pacing of trials. Delay between
trials does tend to make outcomes independent. We have observed this
in our first dart-throwing study, in the mixed golf and dart study, and
generally in signal detection (Gilden & Gray Wilson, 1995).

We have also attempted to characterize the form of hit-rate nonsta
tionarity that is associated with streaky performance. Two determinis
tic models (learning and wave modulation) and two stochastic models
(Markov and intermittent effort) of hit rate have been considered. Wave
modulation of hit rate provided the best description of observed se
quence structure within this group of models. This result is consistent
with our analysis of streaks in signal detection tasks (Gilden & Gray
Wilson, 1995), and may point to a common etiology.

Our work is hardly the first to suggest that there are oscillations in
performance. Circadian rhythms, for example, modulate performance
quite generally (Hockey, 1986, reviews this field), but on time scales
measured in hours. On the short time scales, 10-100 sec, implied by our
models of outcome sequences, there is evidence for fluctuations in
threshold that dates back to the beginning of psychophysical research
(see Guilford, 1927, for a review). Guilford's account of threshold vari
ability centered on retinal adaptation and eye movements, constructs
that have no clear relevance to the exercise of motor skills. Threshold
effects and adaptation of motor neurons may playa role in streak for
mation, although development of such a theory will require a more
complete understanding of what is involved in skilled action.

Wave-like structures have not been reported in the domains ofvig
ilance and controlled attention (see reviews by Davies & Parasuraman,
1982; Parasuraman, 1986). This may be due to several factors. Our in
ferences rely upon correlation minimization and Monte-Carlo simula
tion, numerical methods that are not common in the treatment of psy
chological data. In addition, our experimental design permits
particularly sensitive tests ofhit-rate models. Finally, we stress that the
attentional demands made by skilled action are difficult to evaluate.
Golf and darts implicate both controlled and automatic processes, and
it is part of the lore of streak shooting that it occurs on those occasions
when performance feels effortless.
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