
STREAM-ADD – Supporting the Documentation of Architectural Design Decisions
in an Architecture Derivation Process

Diego Dermeval1, João Pimentel1, Carla Silva1,
Jaelson Castro1, Emanuel Santos1, Gabriela Guedes1

1 Centro de Informática, Universidade Federal de
Pernambuco – UFPE

{ddmcm,jhcp,ctlls,jbc,ebs,ggs}@cin.ufpe.br

Márcia Lucena2, Anthony Finkelstein3

2 Departamento de Informática e Matemática Aplicada,
Universidade Federal do Rio Grande do Norte – UFRN

marciaj@dimap.ufrn.br
3 Department of Computer Science, University College

London – UCL
a.finkelstein@ucl.ac.uk

Abstract – Requirements Engineering and Architectural
Design are activities of the software development process
that are strongly related and intertwined. Thus, providing
effective methods of integration between requirements
and architecture is an important Software Engineering
challenge. In this context, the STREAM process presents a
model-driven approach to generate early software
architecture models from requirements models. Despite
being a systematic derivation approach, STREAM does not
support the documentation of architectural decisions and
their corresponding rationale. Recent studies in the software
architecture community have stressed the need to treat
architectural design decisions and their rationale as first
class citizens in software architecture specification. In this
paper we define an extension of this process, named
STREAM-ADD (Strategy for Transition between
Requirements and Architectural Models with Architectural
Decisions Documentation). This extended process aims to
systematize the documentation of architectural decisions by
the time they are made and to support the refinement of the
architecture according to such decisions. In order to
illustrate our approach, it was applied for creating the
architecture specification of a route-planning system.

Keywords – Requirements Engineering; Software
Architecture; Architectural Decisions; Software Architecture
Documentation; Architectural Knowledge

I. INTRODUCTION
Requirements Engineering (RE) and Architectural

Design are initial activities of the software development
process strongly related and overlapped [1]. In this
context, some efforts have been done to understand the
integration between these activities [2, 3, 4]. More
specifically, some works present systematic methods to
design software architecture from goal-oriented RE
approaches [5, 6, 7, 8]. In particular, the STREAM
(Strategy for Transition between REquirements and
Architectural Models) process [8] presents a model-driven
approach for generating initial architectures - in Acme [9]
- from i* requirements models [10]. It consists of the
following steps: (i) Requirements Refactoring, (ii)
Generate Architectural Model and (iii) Refine
Architecture. Horizontal and vertical model-
transformation rules were proposed to aid the steps (i) and

(ii), respectively. Lastly, in step (iii) the architecture is
refined by using architectural styles.

The architecture obtained from the STREAM process
is represented in Acme using components and connectors.
However, this representation is not sufficient. According
to [11], software architecture must be sufficiently abstract
to be quickly understood by new staff, concrete enough to
serve as a blueprint for the development team and should
contain sufficient information to serve as a basis for
system analysis.

Moreover, recent studies have emphasized the need to
treat architectural design decisions and their rationale as
first class citizens in the software architecture
specification [12, 13, 14]. Thus, it is necessary to include
activities for documenting, capturing and managing
architectural decisions in the architectural design process.
In fact, performing these activities implies in an extra
effort that can be compensated by some benefits obtained
later in the software development process [11]. For
example, traceability between requirements models and
architectural models is produced during the software life
cycle [14]. Traceability along with (architectural decision-
making) rationale documentation enables estimating more
precisely the impact of changes in requirements or
architecture and decreasing costs of software maintenance
[15]. Besides, documenting the rationale associated to the
architectural decision-making process aids the
communication between the stakeholders and serves as an
auxiliary memory for the architect [14].

Facing the potential benefits of documenting
architectural design decision, we propose the STREAM-
ADD (Strategy for Transition between Requirements and
Architectural Models with Architectural Decisions
Documentation) process, an extension of the STREAM
process to guide the documentation of architectural
decisions and the refinement of the architectural model
according to the decisions taken.

The remainder of this paper is organized as follows.
Section II briefly describes our running example, the
BTW route-planning system, along with the main
concepts of i* language. Section III gives an overview of
our approach. Section IV describes the activities of the
STREAM-ADD process, applying them to the running

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.81

597

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.81

597

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.81

600

2012 IEEE 36th International Conference on Computer Software and Applications

0730-3157/12 $26.00 © 2012 IEEE

DOI 10.1109/COMPSAC.2012.81

602

example. Section V discusses related works. Finally yet
importantly, Section VI summarizes our work, presents
our conclusions and points out future works.

II. RUNNING EXAMPLE
This section briefly describes the BTW (By The Way)

system, which is going to be used to illustrate our
approach. The BTW system [16] consists on a route-
planning system that helps users define a specific route
through advices given by another user. This information
might be filtered to provide only relevant information
about the place that a user intends to visit.

Fig. 1 presents an excerpt of the requirements model
of the BTW system, represented with the i* notation [10].
Using i*, we can describe both the system and its
environment in terms of intentional dependencies among
actors. In a dependency, an actor, called a depender,
requires a dependum that can be provided by an actor,
called dependee. The dependum may be a goal, a softgoal,
a task or a resource. Goals represent the intentions, needs
or objectives of an actor. Softgoals are objectives of
subjective nature – they are generally used to express
non-functional requirements. The tasks represent a way to
perform some action to obtain the satisfaction of a goal or
a softgoal. The resources denote data, information or a
physical resource that an actor may provide or receive.

Figure 1. Modular i* model of the BTW system

In Fig. 1 there is an actor which represents the
software system to be developed (BTW), actors illustrative
of human agents (Travelers, that can be Advice Giver and
Advice Receiver), and an actor on behalf of an external
system (Internet Provider). The software system actor
(BTW) is also refined in the SR (Strategic Rationale)
model by exploiting its internal details to describe how
the dependencies are accomplished. For the sake of space,
the SR model of BTW system is suppressed in this paper;
however it can be seen in [8].

III. STREAM-ADD OVERVIEW
The goal of the original STREAM process is to

generate architectural models, in Acme, from

requirements models in i*, by using model
transformations [8]. That process has an activity focused
on the refinement of architectural models by the
application of architectural styles and architectural
refinement patterns. However, this activity is not entirely
systematized and does not allow the documentation of the
rationale involved in the decision-making performed
during the architectural design refinement.

To overcome this limitation, we have defined the
STREAM-ADD process, which is an extension of the
STREAM process richer support to making and
documenting architectural decisions. The three activities
of this new process are depicted in Fig. 2. The first two
activities, Requirements Refactoring and Generate
Architectural Model, were maintained as-is from the
original STREAM [8]. The last activity (Refine
Architectural Model With Architectural Decisions) has
been extended to support the documentation of
architectural decisions and to make the architectural
refinement more systematic.

Figure 2. Overview of the STREAM-ADD process

 The Requirements Refactoring activity is concerned
with the modularization of the i* model. It is a first step
towards identifying the system’s components. To achieve
this, a set of model transformation rules is applied [17].
During the Generate Architectural Model activity the
requirements model is mapped onto components and
connectors of an early architectural model also, based on
a set of model transformation rules.

Before presenting the last activity, we apply the two
first activities to our running example, the BTW system.
The Requirements Refactoring activity relies on using a
decomposition criterion based on the separation and
modularization of elements or concerns that are not
strongly related to the application domain. Fig.1
illustrates the i* model for the BTW system obtained as
result of this activity. The highlighted elements in Fig. 1
represent new system actors, which are linked to the BTW
itself.

During the Generate Architectural Model activity,
transformation rules are used to translate the modular i*
model (Fig. 1) onto an early architecture model in Acme
[8]. The main elements of Acme are components,
connectors, ports, roles, and representations. Acme
components represent computational units of a system.
Connectors represent and mediate interactions between
components. Ports correspond to external interfaces of
components. Roles represent external interfaces of
connectors. Thus, ports and roles are points of interaction,

598598601603

respectively, between components and connectors.
Representations allow a component, connector, port, or
role to describe its design in detail by specifying a sub-
architecture that refines the parent element.

The transformation rules provided in this activity
define the mapping from i* actors to Acme components,
and from i* dependencies to Acme connectors and ports.
Applying this mapping to our running example (Fig. 1),
seven components are generated: BTW system (the main
actor); User Access Controller, Map Information
Publisher and Mapping Handler (actors not related to the
application domain); Advice Giver, Advice Receiver and
Internet Provider. Fig. 3 shows the early architectural
model mapped from the i* model. More details about the
systematic application of these activities can be found in
[8].

Figure 3. The result of mapping the BTW system model from i* to

Acme

In the following section we will focus on the Refine

Architecture With Architectural Decisions sub-process,
since it is the novel contribution of this present work.

IV. STREAM-ADD – ARCHITECTURAL MODEL
REFINEMENT

The Refine Architectural Model With Architectural
Decisions sub-process aims to refine the early
architectural model, mapped from the i* model,
by making and documenting architectural decisions. To
do so, we designed a template (based on [12][13][18])
that relates the requirements (i*) and architecture (Acme)
models used in the process. The defined template contains
the following fields: Requirements, Stakeholders, Non-
Functional Requirements, Alternative solutions,
Rationale, Decision, Design Fragment, Group, Status,
Related artifacts, Phase/Iteration, Consequences, and
Dependencies. This template will be used to document
architectural decisions made during this sub-process.

Moreover, to define the activities of this sub-process,
we analyzed a classification scheme of architectural
decisions presented in [13]. Our sub-process supports
Existence Decisions related to structural aspects and
Executive Decisions related to technology aspects.

Hereafter, we briefly describe each of these architectural
decisions types used in the STREAM-ADD process.

Existence Decisions state that some element/artifact
will positively be included in the architecture. This
concerns both structural and behavioral decisions.
Structural decisions lead to the creation of subsystems,
layers, partitions and components in some view of the
architecture. Behavioral decisions are related to how the
elements interact together to provide functionality or to
satisfy some non-functional requirement. Executive
Decisions do not relate directly to the design elements or
their qualities, but are essentially driven by the business
environment, and affect the development process, the
people, the organization, and to a large extent the choices
of technologies and tools, e.g., the programming language
to be used.

Fig. 4 presents the activities that constitute the Refine
Architectural Model With Architectural Decisions sub-
process. It is worth noting that we do not intend to guide
architectural decision-making in this process, but rather to
guide the documentation of these decisions, at the
moment they are made, using a specific template. Fig. 5
will show the refinement of the BTW early architectural
model after making and documenting one structural and
one technology decision.

Figure 4. The Refine Architectural Model With Architectural Decisions

sub-process

A. Structural Decisions Documentation
We consider as structural the following types of

decisions: (i) architectural style application; (ii)
refinement pattern application to specific non-functional
requirements [5]; and (iii) component decomposition. The
inputs of this activity are the modular i* model, the early
architectural model, the documentation template and a
NFRs list. This activity will be illustrated with an
architectural style decision in the BTW system.

In the following we describe a set of steps that must be
performed to fill the documentation template for each
architectural decision made for a system. For the sake of
space, here we are going to focus only on the architectural
style decision.

1) Identify Requirements and Stakeholders Addressed
by the Decision

In this step, the requirements and stakeholders related
to a decision are identified and documented in the
template – the former in the Requirements and NFRs

599599602604

fields, the latter in the Stakeholders fields. The
Requirements field captures intentional elements of i*
models, i.e., goals, tasks, resources and softgoals that
influence the current decision-making. The Stakeholders
field captures the stakeholders interested in these
requirements. They may be actors in i* model that have
dependency links with the identified requirements or
actors from the organization that is developing the
system, e.g., project manager, client, quality assurance
staff, and so on.

In addition, considering the three types of NFRs –
Product NFRs, External NFRs and Process NFRs [19] –
the first type refers to NFRs that are essentially quality
attributes of a product (e.g. performance). Thus, in this
paper we consider that Product NFRs and softgoals are
semantically equivalent. The second and third types
influence architectural alternatives to consider during the
decision-making process (e.g. use Free/Libre and Open
Source Software technologies). However, these two NFR
types are not usually represented in i* models. Hence, the
External and Process NFRs are recorded in NFR field of
the documentation template, as shown in the next step.

Table I – BTW system NFRs list

Softgoals Other NFRs

Usability; Performance,
Security; Recommendation
Relevance; Precise Advices.

Minimize Costs; Minimize
Development Time; Maximize
Mashup Engineering.

Table I illustrates the list of NFRs for our running

example. This list is an input of the Structural Decisions
Documentation activity. Softgoals were captured from the
i* model (Fig. 1) and NFRs were identified from other
artifacts of the BTW system, especially the project plan
[16]. Since we are considering an architectural style
decision, and Product NFRs (softgoals) affect the
software architecture globally [7], the Requirements field
of the template (Table II) is filled with all softgoals
presented in Table I. The Stakeholders field of the
template is filled with a non-software actor present in Fig.
1 that has some dependency with these softgoals – in this
case, the Traveller actor. The “NFRs” field is empty
because it was noticed that the system’ NFRs do not
affect the architectural style decision.

2) Identify Architectural Alternatives
This step is concerned with considering possible

architectural alternatives to attend the captured
requirements. These alternative solutions will be recorded
in the Alternatives field of the documentation template.
For the case of identifying a suitable set of alternatives for
deciding which architectural style to apply, we suggest
consulting architectural style catalogues (such as [20]).
By analyzing such catalogues, we identified two possible
styles that could be applied to the early architectural
model of the BTW system (Fig. 3): Model-View-
Controller and Layers. So, the field “Alternatives” of the

template documenting this decision is filled with these
architectural alternatives (Table II).

Table II – Documentation Template for the Apply Layers Architectural

Style Architectural Decision

Requirements Usability, Performance, Security, Recommendation

Relevance, Precise Advices
Stakeholders Traveller

NFRs --

Alternatives Apply Layers Architectural Style; Apply MVC Architectural
Style

Rationale

U
nknow

n

Unknown

Unknown

U
nkn ow

n

Help

Decision Apply Layers Achitectural Style

Design Fragment

Group Architectural Style Application
Status APPROVED

Related Artifacts BTW i* Model
BTW Early Acme Model

Phase/Iteration Architectural Design
Consequences --
Dependencies --

3) Perform Contribution Analysis of Alternatives

In this step, a contribution analysis is performed, based
on [21]. The identified alternatives may contribute
(negatively or positively) to the fulfillment of the
softgoals and the NFRs documented in the template.
Contributions are represented by a link whose source is an
architectural alternative and whose target is a softgoal or a
NFR. Each link has a label to express different kinds of
contributions from the source to the target element: help
(positive contributions), hurt (negative contributions) and
unknown (neutral contributions).

The contribution analysis performed in this step for
our running example was aided by the catalog presented
in [20]. By consulting this catalog we have identified that,
in general, the layer architectural style has neutral impact
on Performance and Usability, and positive impact on
Security. Additionally, we considered that the layer
architectural style does not impact the Precise Advices
and Recommendation Relevance softgoals. Therefore, this
alternative has a neutral impact on these softgoals.

With respect to the MVC architectural style, the
catalog indicates that this style has a positive impact on
the Usability softgoal and a neutral contribution to the
Performance and Security softgoals. The contributions to

600600603605

Precise Advices and Recommendation Relevance
sotfgoals are also neutral for this architectural alternative.

Last but not least, architectural alternatives can also
impact on NFRs. Since there are no NFRs involved in this
decision, there is no contribution from the alternatives to
NFRs. The model capturing the contributions of the
architectural style alternatives to the Softgoals/NFRs
satisfaction are illustrated in the Rationale field of the
documentation template (Table II). This model will be
modified in the next step, by adding prioritization
information.

4) Perform Trade-off Analysis of Alternatives
After performing the contribution analysis, the software

architect must identify which are the priorities of each
softgoal/NFR involved in the analysis. High priority
elements are marked with exclamation marks [21]. Then,
the architect must perform a trade-off analysis of the
alternatives and choose the one that best fulfills the set of
softgoals and NFRs as a whole. The trade-off analysis
should focus on maximizing the satisfaction of softgoals
and NFRs with higher priority. Some reasoning
mechanism, such as the one presented in [21], can also be
used in order to identify the most suitable architectural
alternative.

Once the architectural alternative has been chosen, it
should be inserted in the Decision field of the
documentation template. Besides that, the model in the
Rationale field of the template must be updated with the
prioritization information.

In the BTW system, the softgoals with highest priority
are Performance and Security. Analyzing the architectural
alternatives contributions we can see that the Apply
Layers Architectural Style alternative contributes
neutrally to Performance softgoal and contributes
positively to Security softgoal. On the other hand, the
Apply MVC Architectural Style alternative contributes
positively to Usability softgoal. Thus, as Performance and
Security softgoals have higher priority than Usability
softgoal, the selected alternative is Apply Layers
Architectural Style (documented in the Decision field of
Table II).

5) Specify Architectural Decision Design Fragment
Once the architectural alternative is already selected

and documented in the template, the architect must
specify a design fragment associated with the
architectural decision. A design fragment is composed of
architectural elements in Acme, to be incorporated to the
early architectural model during the Architectural
Refinement With Structural Decisions activity.

A design fragment has different characteristics,
depending on the type of the structural architectural
decision. For the case of architectural style application, it
usually has a global impact in software architecture [7].
Thus, a design fragment produced by an architectural
style application decision may modify the architecture as
a whole, or a large part of it. In doing so, an architectural

style design fragment should be composed of a high level
architectural configuration representing the structure of
the selected architectural style.

To specify the design fragment associated with the
architectural style of BTW, we used the guidelines
proposed by [8] to define a three-layer design fragment,
whose layers are: Interface, Business and Services. This
fragment illustrates how the layers are interconnected
(Table II). Each layer is represented as an Acme
representation to enable the insertion of other
architectural elements in it.

It is important to note that the fragment specified in
this step is going to be incorporated to the early
architectural model in the Architectural Refinement with
Structural Decisions activity (Section B).

6) Fill Additional Information
The last step for the documentation of an architectural

decision is to fill the additional information in the
documentation template. It includes: (i) Group –
information about the type of architectural decision; (ii)
Status – the status of the architectural decision (rejected,
approved, and so on [13]); (iii) Related Artifacts –
documents the artifacts related to the documented
decision; (iv) Phase/Iteration – captures the phase or
iteration in which the architectural decision was made; (v)
Consequences – all consequences that arise when an
architectural decision is made must be recorded in this
field. For instance, the decision may result in other
architectural decisions, or require to create or modify
requirements, to create new constraints in the
environment, and so on [12]; (vi) Dependencies – the
dependencies between new architectural decisions with
decisions already made are recorded in this field. The
identification of decisions dependencies can be aided by
the work presented in [13].

Applying this step to the BTW system, the Group
field is filled with the type of the decision made, that is
Architectural Style Application. The Status field is filled
with the attribute APPROVED to indicate that this
decision has been accepted. With respect to the Related
Artifacts field, it is filled with the names of the
requirements model and the early architectural model of
BTW system. The Phase/Iteration field is filled with the
“Architectural Design” phase. Finally, it was not
identified consequences and dependencies for this
decision, thus the Consequences and Dependencies fields
of the documentation template are empty. The complete
structural architectural documentation template of the
Apply Layers Architectural Style decision is presented in
Table II.

B. Architectural Refinement With Structural Decisions
In this activity, all structural architectural decisions

made on the previous activity are used to refine the early
architectural model derived from the i* model. This
activity receives as input a set of structural architectural

601601604606

decisions documented and the early architectural model of
the system. The architectural refinement occurs by
applying the structural decisions design fragments to the
early architectural model.

There is no predefined order to refine the architectural
model using the structural decisions design fragments
documented in the decisions made. Nevertheless, we
propose two general guidelines that might help the
selection of an appropriate sequence for the architectural
refinement:

Guideline 1. The architectural style decisions should
have the highest priority in the architectural refinement
sequence. This guideline is motivated by the idea that, in
general, architectural styles affect the system architecture
in a global way [7].

Guideline 2. Architectural decision design fragments
whose architectural configuration is more complex should
have higher priority. The complexity of the fragments
may be measured according to the number of Acme
components, representations and connectors.

After establishing a refinement sequence for the
architectural decisions, for each structural decision, the
architect must analyze its design fragment, identify the
architectural model elements affected by the fragment and
perform the refinement. It is important to note that the
refinement of architectural models is incremental, so that
a decision should be applied to refine the architectural
model derived from the refinement according to the
previous decision.

In our running example, the early architectural model
of the BTW system (Fig. 3) is refined with the Apply
Layers Architectural style (Table II). The architecture
represented in Fig. 5 is the BTW architectural model
refined with this architectural decision. For the moment
ignore the blue dashed (Google Maps) component as it is
the result of an activity to be explained below. This
refinement was made based on a set of guidelines
proposed in [8]. Hence, each component was mapped as
follows: (i) Advice Giver and Advice Receiver
components were mapped to the “Interface” layer; (ii)
Internet Provider and Map Info Publisher components
were included in the “Services” layer, and; (iii) BTW,
User Access Controller, Mapping Handler and Internet
Business components were mapped to the “Business”
layer. Therefore, in order to respect the strict definition of
the Layers pattern, Internet Business component is
introduced in the middle layer to provide internet services
to the top layer.

C. Technology Decisions Documentation
Similarly to structural decision, technology decisions

need to be documented. Technology decisions should not
contain specific details about implementation but
decisions that affect the architecture globally or specify
how particular structural aspects must be implemented
[11]. This is the main reason why the technology

architectural decision-making usually occurs after the
structural architectural decision-making. In addition,
technology architectural decisions also limit the
technologies used when implementing the system [13].
Technology decisions may be related to programming
language, specific frameworks or APIs (Application
Programing Interfaces), component reuse, database
management system and so on.

The inputs to this activity are: the modular i* model
(Fig. 1), the architectural model refined with structural
decisions in the previous activity (Fig. 5), the system
NFRs list (Table I) and the decisions documentation
template.

Figure 5. BTW final architectural model

In order to fill the documentation template with
technology decisions, we rely on the same steps presented
in the Structural Architectural Decisions activity, but with
some variations. Given the similarities, we will focus on
the application of these steps in a decision related to the
selection of a technology for maps visualization and
interaction to be used in the BTW system.

1) Identify Requirements and Stakeholders Addressed
by the Decision

In order to illustrate this activity, we are going to
consider the decision made in our running example to
determine which maps visualization and interaction
technologies available are more appropriate to be used in
the BTW system.

The Information Be Published in Map goal, present in
the i* model, is affected by this technology decision, as
well as the Usability softgoal. In this sense, the
Requirements field of this decision documentation
template (Table III) is filled with these requirements.

602602605607

Regarding the Stakeholders field, as the Traveller actor
has a dependency relationship with Usability softgoal, it
is inserted in this field of the documentation template. By
analyzing Table I, we have identified that all NFRs are
affected by the considered architectural alternatives. This
way, the NFRs field of Table III is filled with Minimize
Costs, Minimize Development Time and Maximize
Mashup Engineering.

2) Identify Architectural Alternatives
In order to illustrate this step to a technology decision,

we considered possible alternatives to the maps
visualization and interaction technology for the BTW
system. In this sense, the available technologies to handle
the visualization and interaction of maps that were
identified are: Use Google Maps, Use Bing Maps and
Implement Own Maps Solution. These alternatives were
included in the Alternatives field of the documentation
template presented in Table III).

Table III – Documentation Template for the Use Google Maps Decision

Requirements Information be Published in Map; Usability
Stakeholders Travellers

NFRs Minimize Costs, Minimize Development Time, Maximize
Mashup Engineering

Alternatives Use Google Maps; Use Bing Maps; Implement Own Maps
Solution

Rationale

Decision Use Google Maps

Design Fragment

Group Maps Visualization and Interaction Services
Status APPROVED

Related Artifacts BTW Modular i* Model; BTW Acme Model Refined with
Structural Decisions

Phase/Iteration Architectural Design

Consequences BTW software developers should learn how to use Google
Maps API.

Dependencies --

3) Perform Contribution Analysis of Alternatives
At this point, we analyze the contributions from the

alternatives to the satisfaction of the softgoals and NFRs,
identified in the previous steps. It was identified that the
Use Google Maps alternative contributes positively to the
Minimize Costs NFR because the former is a free solution.
This alternative also contributes in a positive way to the
Minimize Development Time NFR, because it is already
implemented and has a good documentation, and also

contributes positively to the Maximize Mashup
Engineering NFR, since it is a service available online.
Moreover, Google Maps provides an intuitive and easy
graphical user interface. Hence it contributes positively to
the Usability softgoal.

Regarding the Use Bing Maps alternative, it
contributes positively to the Minimize Costs NFR,
because it is also a free solution, but it has neutral impact
on the Minimize Development Time NFR, because its
documentation is not satisfactory. Moreover, this
alternative contributes in a positive way to the Maximize
Mashup Engineering NFR, because it is available as an
online service as well. At last, the Use Bing Maps
alternative provides an intuitive and friendly graphical
user interface, so that it contributes positively to the
Usability softgoal. Finally, the Implement Own Maps
Solution contributes negatively to the Minimize Costs
NFR, since it is necessary to spend time and people to the
development of this solution. It also contributes
negatively to the Minimize Development Time NFR,
because it needs to be implemented from scratch. This
alternative also contributes negatively to the Maximize
Mashup Engineering NFR, because this alternative does
not use online services. Moreover, it has an unknown
impact on the Usability softgoal, since its usability can
only be evaluated after its development starts. Please note
that in the Rationale field of the Table III NFRs and
alternatives are both graphically represented as clouds;
however, architectural alternatives are represented as
clouds with a thicker border.

4) Perform Trade-off Analysis of Alternatives
 This step is concerned with choosing the most

suitable alternative regarding the fulfillment of softgoals
and NFRs. For doing this, it is required to define the
priorities of softgoals and NFRs. In our running example,
the Usability softgoal and the Minimize Development
Time NFR have the highest priority. Observing the model
present in the Rationale field of Table III, we conclude
that the Implement Own Maps Solution alternative is
dismissed because it does not contribute at all to the
NFRs/Softgoals. We also can see that the Use Google
Maps alternative contributes positively to the Minimize
Development Time NFR, whereas the Use Bing Maps
alternative contributes neutrally to the same NFR.
Regarding the Usability softgoal, both remaining
alternatives have positive impact on its fulfillment. Thus,
we conclude that Use Google Maps is the most suitable
alternative and it is included in the Decision field of the
template presented in Table III, whereas the model used
to perform this analysis is updated in the Rationale field.

5) Specify Architectural Decision Design Fragment
In this step, the design fragment associated with the

selected architectural alternative is specified. In general,
an architect needs to analyze if an architectural decision
produces a design fragment that can affect/modify the
structure of the software architecture. However,

603603606608

depending on the technology decision type, a design
fragment can be produced in different ways, or even not
be produced at all. Therefore, we do not propose in this
step general guidelines to aid the specification of design
fragments. In this case, the architect is in charge to
specify the design fragment according to each
architectural decision made.

The design fragment produced for the Use Google
Maps decision is presented in the Design Fragment field
of the documentation template (Table III). This fragment
is composed of an architectural configuration that shows
how the Mapping Handler and Map Info Publisher
components of the BTW system (previously responsible
for addressing the requirements affected by this decision)
use the services of the Google Maps component.

6) Fill Additional Information
Finally, in this step, the additional information

regarding the technology decision made is filled in the
documentation template. Thus, the Group field is filled
with the requirements group addressed by this
architectural decision: Maps Visualization and Interaction
Services. The Status field is filled with the APPROVED
attribute. The Related Artifacts field is filled with the
project artifacts involved in this decision: BTW modular
i* model and BTW Acme model refined with structural
decisions. The Phase/Iteration field is filled with
Architectural Design. Regarding the Consequences field,
the decision taken implies that software developers have
to learn how to use Google Maps services. Finally, it was
not identified any dependencies between this decision and
others, so that the Dependencies field is empty.

D. Architecture Refinement With Technology Decisions
After making and documenting all technology

decisions, they are used to refine the architectural model
that was previously refined with structural decisions. To
perform this refinement, this activity receives as input a
set of technology decisions documented in a template and
the architectural model obtained from the Architectural
Refinement with Structural Decisions activity. It is worth
noting that only technology decisions that produce a
design fragment can be used to refine the architectural
model.

As commented before, there is no predefined sequence
to apply the architectural decisions in the architectural
model refinement. Hence, the architect is in charge of
defining this sequence. However, the architect can rely on
the Guideline 2 defined in Section B to determine the
proper refinement sequence. After doing this, the design
fragment of each documented decision has to be analyzed,
to identify which parts of the architectural model are
going to be affected by them. Then, the refinement can be
performed.

As a result, the dashed blue component in Fig. 5
represents the Google Maps component that was inserted
in the architectural model. The Map Info Publisher and

Mapping Handler components delegate the responsibility
of providing maps visualization and interaction services
to the Google Maps component.

V. DISCUSSION
The original Strategy for Transition between

REquirements models and Architectural Models
(STREAM) [8] is a systematic process aimed to define
architectures through a model-driven approach. It strongly
relies on transformation rules to incrementally evolve a
requirements model in i* onto an architectural model. If
necessary, this architecture is further detailed through
architectural style or refinement patterns application.
However, even though STREAM offers a systematic way
for deriving architectural models that takes benefits of
using goal-oriented models and models transformations, it
does not support the documentation of architectural
decisions and their rationale.

In order to address this limitation, we defined in this
work the STREAM-ADD process. This extended process
brings to the original STREAM the benefits of
documenting architectural design decisions. Even though
we did not perform a thorough evaluation of our process,
the results reported by the software architecture literature
suggests that documenting architectural decisions
compensates by far the extra architectural design effort
required to document architectural decisions in this
process.

Moreover, our process also allows the early
architectural model derived by the application of the two
first STREAM activities to be better refined through
architectural decisions. The architectural model
refinements with structural and technology decisions
activities of STREAM-ADD allows the specification of a
more complete components-and- connectors architectural
view than the original STREAM process.

It is important to note that the new STREAM-ADD
process does not aim to systematize the actual decision-
making. Instead, it provides a set of activities that aid the
architect in documenting these architectural decisions. In
other words, a software architect can make every
architectural decision that she considers necessary but she
needs to document the rationale that lead her to make the
decision and how this decision affects requirements and
architectural models. Nonetheless, as a positive side
effect, the documentation steps provide some guidance to
the software architecture regarding the decision-making,
as it requires the documentation of some elements that
could be otherwise overlooked.

In the interest of clarity, the proposed process was
sequentially presented, like a waterfall model. However,
in fact it was conceived as an iterative and incremental
process. For instance, considering the two first activities
of the Architectural Model Refinement sub-process in the
context of an industrial project, it is more likely that some
structural decisions will be documented, and then applied

604604607609

to the model. Next, other new structural decisions will be
documented, and also applied to the model, so on and so
forth.

It is also worth noting that, as in the original STREAM
approach, the outcome the process depends on the quality
of the input artifacts (e.g., i* models). Thus, if poor
quality i* models are used it is likely that the resulting
architectural model derived will also be of poor quality.

In the following sub-section we discuss our approach
in comparison with other approaches for architecture
derivation from requirements models and for architectural
decisions documentation.

A. Related Work
Different strategies, techniques and models can be

used when deriving architectures from requirements
models. The SIRA approach [6], for instance, uses i*
models as input, resulting an architectural model using
organizational architectural styles. The work by Chung et
al. [22] has some similarities with our process, but it lacks
the documentation activities that are essential in our
proposal. The UML Components process [23] proposes a
set of activities in order to derive a UML component
diagram from use cases models and from a business
conceptual model. However, it derives a limited
architecture (always in fours layers) and does not allow
the structural and technological decision-making. Other
approaches that use i* modeling language as the starting
point of software specification, such as PRIM [24], do not
support a systematic transition from requirements
specifications to architectural design description.

Silva et al. [25] proposes a set of mapping rules
between an aspectual goal model and an aspectual version
of Acme. However, it does not support any kind of
architectural decision. The CBSP approach [26] creates
intermediate models to facilitate the development of
architectures from requirements. It lacks proper support
for making and documenting technology decisions.
Galster et al. [27] defines requirements for architecture
derivation processes, based on a review of approaches
presented in the literature. Our approach does not
properly satisfy the following requirements: underlying
formal approach; manage different architectural views;
reuse of architectural knowledge; handle different
modeling notations. In particular, we plan to tackle the
issue related to architectural views in future work.

Architectural design decisions documentation plays a
key role in our approach and has been the focus of several
studies presented in the literature. Shahin et al. [18]
describes a survey on architectural decisions
documentation models, which vary on their degree of
formality from textual templates to well-defined
metamodels. It defines four major elements – decision,
constraint, solution, rationale – and eight minor elements
– problem, group, status, dependency, artifact,
consequence, stakeholder, phase/iteration. All these

twelve elements are included in our template. A novel
contribution of our paper is the use of goal-based
requirements model to drive documentation activities.
Moreover, our approach relies on NFR-based models to
define the decision rationale, which not only describe the
rationale but also may help in the decision-making
process. It is worth noting that architectural design
decisions documentation is the foundation of architectural
knowledge management area, see [3] for some works in
this research line.

VI. CONCLUSIONS
This paper presented STREAM-ADD, a process that

extends the original STREAM architectural derivation
process in order to create a more complete architectural
model by encompassing both the architectural models and
the architectural decisions. The first and second activity
were maintained as-is from the original STREAM
process. In the third activity, the early architectural model
generated by models transformations is refined with
further architectural decisions.

The third activity was extended by defining a sub-
process composed of four sub-activities: the first two are
related to the structural architecture, whereas the last two
are related to technology decisions-. In order to support
the realization of these sub-activities, we presented a set
of steps and general guidelines for each activity.

As future work, we expect to develop tool support for
our approach. Such a tool would need to support all
documentation and modeling activities of the process. We
also intend to apply the STREAM-ADD process in the
architecture specification of more complex systems,
especially in an industrial context.

Our approach still needs to be extended in order to
support the systematic specification of other architectural
views specification in systematic way, including behavior
characteristics of the architecture. Finally, we
acknowledge that a thorough experimentation must be
performed in order to evaluate and improve the
STREAM-ADD process.

ACKNOWLEDGMENTS
This work has been supported by the Brazilian
institutions: Conselho Nacional de Desenvolvimento
Cientí co e Tecnológico (CNPq) and Coordenacão de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

REFERENCES
[1] B. Nuseibeh, “Weaving together requirements and

architectures,” Computer, vol. 34, no. 3, pp. 115-119,
Mar. 2001.

[2] J. Castro and J. Kramer, “From software
requirements to architectures,” in Proceedings of the
23rd International Conference on Software
Engineering, 2001, p. 764--765.

605605608610

[3] P. Lago, P. Avgeriou, and P. Kruchten, “Sixth
international workshop on SHAring and Reusing
architectural Knowledge,” Proceedings of the 33rd
International Conference on Software Engineering,
ICSE, 2011.

[4] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I.
Mistrík, Relating Software Requirements and
Architectures, vol. 152, no. 4. Springer, 2011, pp.
141-142.

[5] A. Van Lamsweerde, “From system goals to software
architecture,” Formal Methods for Software
Architectures, pp. 25–43, 2003.

[6] L. Bastos and J. Castro, “From requirements to multi-
agent architecture using organisational concepts,”
SELMAS 05 Proceedings of the fourth international
workshop on Software engineering for largescale
multiagent systems, vol. 30, no. 4. ACM Press, pp. 1-
7, 2005.

[7] M. Lucena, “STREAM�: A systematic process to
derive architectural Models from requirements
models”. Thesis, Universidade Federal de
Pernambuco, 2010.

[8] J. Castro, M. Lucena, C. Silva, F. Alencar, E. Santos,
and J. Pimentel, “Changing attitudes towards the
generation of architectural models,” Journal of
Systems and Software, vol. 85, no. 3, pp. 463-479,
Mar. 2012.

[9] D. Garlan, R. Monroe, and D. Wile, “Acme: an
architecture description interchange language,” in
Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research, 1997,
p. 7.

[10] E. Yu, “Modelling strategic relationships for process
reengineering”. Thesis, University of Toronto, 1995.

[11] D. Garlan et al., Documenting software architectures:
views and beyond, 2nd ed. Addison-Wesley
Professional, 2010.

[12] J. Tyree and A. Akerman, “Architecture decisions:
Demystifying architecture,” Software, IEEE, vol. 22,
no. 2, pp. 19–27, 2005.

[13] P. Kruchten, P. Lago, and H. van Vliet, “Building up
and reasoning about architectural knowledge,”
Quality of Software Architectures, pp. 43–58, 2006.

[14] P. Kruchten, R. Capilla, and J. C. Dueñas, “The
Decision View’s Role in Software Architecture
Practice,” IEEE Software, vol. 26, no. 2, pp. 36-42,
Mar. 2009.

[15] L. Bratthall, E. Johansson, and B. Regnell, “Is a
design rationale vital when predicting change
impact?-A controlled experiment on software
architecture evolution,” in Product Focused Software
Process Improvement, 2000, vol. 1840, pp. 126-139.

[16] J. Pimentel, C. Borba, and L. Xavier, “BTW: if you
go, my advice to you Project,” 2009. [Online].
Available: https://jaqueira.cin.ufpe.br/jhcp/docs/.
[Accessed: 18-Nov-2011].

[17] J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos,
F. Alencar, “Deriving software architectural models
from requirements models for adaptive systems: the
STREAM-A approach”, in Requirements
Engineering Journal, published online, 2011.

[18] M. Shahin, P. Liang, and M. R. Khayyambashi,
“Architectural design decision: Existing models and
tools,” in Software Architecture, 2009 & European
Conference on Software Architecture. WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on,
2009, pp. 293–296.

[19] I. Sommerville and G. Kotonya, Requirements
Engineering: Processes and Techniques. John Wiley
& Sons, Inc., 1998.

[20] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture Volume 1: A System of Patterns, vol.
Vol. 1. Wiley, 1996, p. 476.

[21] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos,
Non-Functional Requirements in Software
Engineering. Springer, 1999.

[22] Lawrence Chung, Sam Supakkul, Nary Subramanian,
José Luis Garrido, Manuel Noguera, Maria V.
Hurtado, María Luisa Rodríguez, and Kawtar
Benghazi. Goal-Oriented Software Architecting. P.
Avgeriou et al. (eds.), Relating Software
Requirements and Architectures, DOI 10.1007/978-
3-642-21001-3_7.

[23] J. Cheesman and J. Daniels, UML components: a
simple process for specifying component-based
software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2000.

[24] Grau G, Franch X, Ávila S (2006) J-PRiM: A Java
Tool for a Process Reengineering i* Methodology.
In: Proceedings of the 14th IEEE International
Conference on Requirements Engineering (RE�06).
Minneapolis, USA, pp. 359–360.
doi:10.1109/RE.2006.36

[25] Silva L, Batista T., Garcia A, Medeiros L, Minora L
(2007) On the symbiosis of aspect-oriented
requirements and architectural descriptions. Early
Aspects: Current Challenges and Future Directions -
LNCS 4765/2007:75-93. doi:10.1007/978-3-540-
76811-1_5

[26] Paul Grünbacher, Alexander Egyed, Nenad
Medvidovic. Reconciling software requirements and
architectures with intermediate models. SoSyM
2003. DOI: 10.1007/s10270-003-0038-6

[27] M. Galster, A. Eberlein, and M. Moussavi,
“Transition from Requirements to Architecture: A
Review and Future Perspective,” Software
Engineering Artificial Intelligence Networking and
Parallel Distributed Computing 2006 SNPD 2006
Seventh ACIS International Conference on, vol. 0,
pp. 9-16, 2006.

606606609611

