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Stream ambient noise, spectrum and propagation of sounds
in the goby Padogobius martensii: Sound pressure and particle
velocitya)

Marco Luglib�

Dipartimento di Biologia Evolutiva e Funzionale, Universitá di Parma, Italy

Michael L. Fine
Department of Biology, Virginia Commonwealth University, Richmond, Virginia 23284-2012

�Received 31 May 2006; revised 31 July 2007; accepted 10 August 2007�

The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius

martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic

pressure was previously measured although Padogobius likely responds to particle motion. In this

study a combination pressure �p� and particle velocity �u� detector was utilized to describe ambient

noise of the habitat, the characteristics of the goby’s sounds and their attenuation with distance. The

ambient noise �AN� spectrum is generally similar for p and u �including the quiet window at noisy

locations�, although the energy distribution of u spectrum is shifted up by 50–100 Hz. The energy

distribution of the goby’s sounds is similar for p and u spectra of the Tonal sound, whereas the

pulse-train sound exhibits larger p–u differences. Transmission loss was high for sound p and u:

energy decays 6–10 dB/10 cm, and sound p /u ratio does not change with distance from the source

in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds

indicates that this species is well adapted to communicate acoustically in a complex noisy

shallow-water environment. © 2007 Acoustical Society of America.

�DOI: 10.1121/1.2783113�

PACS number�s�: 43.80.Ev, 43.80.Ka, 43.30.Nb �WWA� Pages: 2881–2892

I. INTRODUCTION

Acoustic pressure and particle velocity are physically

related components of sound �Morse Uno Ingard, 1968;

Michelsen, 1983�. Pressure p is a scalar, i.e., its magnitude at

a given point is the same regardless of the orientation of an

�omnidirectional� receiver to the sound source. Particle dis-

placement and its derivatives, particle velocity u and accel-

eration, are vectors, and their magnitude is maximal along

the propagation axis of the sound.

In the far field several lengths from the source and in

absence of reflecting boundaries, the front of an acoustic

wave is approximately planar, and p and u are in phase; their

ratio �p /u� is proportional to the product of the water density

��� and sound velocity �c� in the medium �Michelsen, 1983�.

In the near field well below one wave length to the source,

particle velocity predominates over pressure, and the phase

difference between the two quantities changes with distance.

Further, the magnitude of p /u increases with propagation

distance for simple sound sources, i.e., a pure tone produced

by a monopole, dipole or quadrupole source �Kalmijn, 1988�.

Velocity depends on factors such as the geometry and fre-

quency response of the source and the presence of nearby

reflecting boundaries �Michelsen, 1983; Rogers and Cox,

1988�. Excluding simple sound sources under ideal condi-

tions, the relationship between the two quantities becomes

quite complex and unpredictable in the near field. To our

knowledge there are no theoretical or empirical studies de-

scribing the p /u amplitude and phase changes with propaga-

tion distance for acoustic frequencies below the cutoff fre-

quency, i.e., under very shallow water conditions.

Many sonic fishes live in shallow waters �near the shore

of the sea or lakes, in small rivers, ponds, etc.� and emit low

frequency acoustic signals �i.e., with long wavelengths� in-

tended for receivers at short distances. For example the

wavelength of a 100 Hz sound would be approximately

15 m. Thus, acoustic communication in many teleosts occurs

mainly or exclusively in the near field, and many fishes that

communicate at close distance are primarily or exclusively

particle-motion sensitive species �reviewed in Popper and

Fay, 1973�.

Sensing particle velocity in water for military purposes

such as submarine detection has long been performed using a

geophone in sonobuoys. However, particle displacement of

fish sounds has been rarely reported in the fish literature.

Horch and Salmon �1973� measured both acoustic pressure

and particle displacement components of the sound in the

squirrelfish, Myripristis violaceus. Using separate sensors, an

omnidirectional hydrophone for p and a bidirectional geo-

phone for u, they found similar spectral energy distribution

and attenuation levels for both components. Simultaneous

characterization of the scalar and vectorial quantities of the

same sound was not performed. The recent development of a

p–u probe for underwater measurements allows simulta-

a�
The species’ scientific name has recently changed to Padogobius bonelli.

However, P. martensii is retained in this paper to facilitate the tracking of

the subject species across related papers.
b�

Electronic mail: Marco.Lugli@Unipr.it
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neous measurement of both parameters along a single axis at

the same point in the acoustic field. Bastyr et al. �1999�

discussed the advantages of a p–u probe over other methods

that employ the finite differencing technique �i.e., p– p or

u–u probes� for accurate intensity measurements in complex

acoustic fields.

The Italian freshwater goby, Padogobius martensii, is a

bottom-dwelling species whose acoustic behavior has been

investigated thoroughly �Torricelli and Romani, 1986; Lugli

et al., 1997�. This small goby �maximum size: 9 cm total

length �TL�� lives in small stony streams and rivers. Indi-

vidual adult males defend a hollow under a large stone. Dur-

ing the breeding season �March–July�, males court ripe fe-

males to attract them to the nest hollow for mating �Torricelli

et al., 1986; Lugli et al., 1992�, after which the male cares

for the eggs. The nest hollow has one or, most often, two

openings.

Courting males produce two sound types �Lugli et al.,

1995�. The tonal sound, typical of early courtship, is made of

rapidly repeated pulses �sound duration: �0.5 s, pulse rate:

150–200 pulses/s �pps�; Torricelli et al., 1990�. The pulse-

train sound, emitted only when the female enters the nest

hollow, is a short train of low-frequency pulses repeated at a

lower rate �around 50 pps, Lugli et al., 1995�. Pulse-train

sounds are often combined with a short tonal sound to form

complex “spawning sounds” �Lugli et al., 1995�. Female P.

martensii are silent during courtship and spawning �Torricelli

et al., 1986�. The sound-producing mechanism is unknown.

Lugli and Fine �2003� measured ambient noise �AN� and

sound propagation in a small stony stream inhabited by this

species. They found a quiet window around 100 Hz in the

noise spectrum at many noisy sites �e.g., near small water-

falls, riffles, etc.�. The window lies between low-frequency

turbulent noise and higher-frequency noise from bubbles as-

sociated with breaking water �see Franz, 1959�. The quiet

window is also present in another stony river inhabited by

the goby Gobius nigricans �Lugli and Fine, 2003�, and simi-

lar windows are a recurrent feature of the AN spectrum also

of Austrian rivers and streams �Amoser, 2007�. Lugli and

Fine �2003� found sound propagation in the stream was lim-

ited to only a few decimeters from the source because of low

water depths �15–50 cm�. Lugli et al. �2003� also found a

match between stream AN, sound frequency spectrum and

hearing sensitivity of the goby. The main frequencies of the

sound, and the most sensitive frequencies of the goby audio-

gram, fit within the low-frequency window/notch of the

noise spectrum.These studies utilized acoustic pressure, but

the goby is likely sensitive to particle motion. Its small oval-

shaped gas bladder is not involved in sound production or

hearing, i.e., bladder deflation does not affect sound level

and spectrum or hearing range and sensitivity �Lugli et al.,

2003�. Therefore, measurement of particle velocity for both

the stream AN and P. martensii sounds is essential to obtain

a realistic picture of their relationship and to validate conclu-

sions about communication.

Here we measure pressure and particle velocity of

stream AN and P. martensii sounds with the p–u sensor to

reexamine the relationship between the noise spectrum of the

stream and the communication frequencies of the goby. Ad-

ditionally, we measure propagation of P. martensii sounds to

investigate the relationship between acoustic pressure and

particle velocity close to the sound source in a complex near-

field environment. Results will be relevant to the understand-

ing of the fish acoustic communication in the presence of

high AN levels and short-range sound propagation.

II. MATERIALS AND METHODS

The freshwater goby, P. martensii, inhabits Stream

Stirone, a small hill stream in Northern Italy �Lugli et al.,

1992�. The study site is a 2.5 km stretch of the stream with a

stony bottom, water depths usually �30 cm, and low water

current �under non-flood conditions�. Quiet areas alternate

with small waterfalls, rapids, riffles, places with high water

turbulence, where water breaks the surface and clouds of air

bubbles form underwater. The goby population is widespread

at both quiet and noisy areas �Lugli et al., 1992�.

A. Ambient noise measurements

AN was measured at five representative noisy sites near

small waterfalls and rapids. Although adjacent to noise

sources, the probe was placed in locations with no or modest

underwater flow to minimize flow induced noise �McCon-

nell, 2003� and self-induced turbulent pressure fluctuations

by the probe and mounting support �Morse Uno Ingard,

1968�. AN was also measured at two quiet sites away from

the waterfalls for comparison. A single noise recording was

made at each location for approximately 1 min. The AN

spectrum shows only minor changes with sample duration

�Lugli and Fine, 2003�, being remarkably stable over time

�M. Lugli, 2003�.

AN was measured with an underwater acoustic pressure-

velocity probe �Mk.2, Acoustech©; outer �: 4.3 cm� contain-

ing two built-in units: a piezoelectric, omni-directional hy-

drophone �sensitivity: −203.1 dB re:1 V/�Pa� to measure

acoustic pressure �p�, and a bidirectional geophone �sensitiv-

ity: 10.5 V/m/s� to measure particle velocity �u� along one

axis. The geophone has resonance peaks at 17 and 28 Hz.

The response of both sensors is almost flat �hydrophone:

±1 dB; geophone: ±1 V� between 60 and 800 Hz. The probe

was connected to an external, battery powered two-channel

preamplifier �Acoustech@�. Separate output jacks of the pre-

amplifier for pressure and velocity were connected respec-

tively to a portable Digital Audio Tape �DAT� recorder �Ca-

sio DA-7, sampling rate: 48 kHz�. The probe was mounted

on an iron support anchored to the stream bottom �Fig. 1�.

The support holds the outside of the unit rigidly, and the

inner core containing the sensors is neutrally buoyant and

free to register acoustic pressure and particle velocity. The

distance between the top of the probe �mounted on its sup-

porting harware� and the bottom substrate was about 9 cm.

The probe’s main axis was aligned toward the noise source

like waterfalls or parallel to the stream axis at quiet sites.

Additionally, three orthogonal measurements were made at

two sites with minimal underwater flow that were adjacent to

noisy sites: facing the stream axis �x�, perpendicular �y�, and

vertical �z�. Location 1 was a quiet pool below a small wa-

terfall �water depth 28 cm�. Location 2 was a riffle with low
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current and places of gas-bubble release �water depth of

26 cm�. Therefore, these data exhibit differences from AN at

noisy sites and are treated separately �see below�.

Noise recordings were stored on a PC �sampling rate

44,100 Hz�, and analyzed with AVISOFT© software. Re-

cordings were band-pass filtered between 50 Hz - 1 kHz to

avoid the geophone’s two resonance peaks and capture fre-

quencies important for acoustic communication �Lugli et al.,

1995; Lugli and Fine, 2003; Lugli et al., 2003�. The AN

spectrum was determined for each location following Lugli

and Fine �2003�. Three noise segments of approximately

700 ms were randomly selected from the 1-min recording.

Each segment was analyzed for the pressure spectrum level

�the sound energy in 1 Hz bands of noise, dB re:1 �Pa2 /Hz�

and particle velocity spectrum level �the sound energy in

1 Hz bands of noise, dB re:1 �cm/s�2�. Levels from the con-

tinuous spectra were measured at 50 Hz intervals from 50 to

900 Hz, using the power spectrum function of AVISOFT©.

Decibel values referenced to 1 V were converted to absolute

measurements using the calibration factors for all compo-

nents of the measuring system �i.e., probe sensitivity, gain of

the preamplifier, gain of the DAT recorder�. Data from the

three noise segments were averaged to compute the AN pres-

sure and particle velocity spectrum level curves.

B. Sound measurements

Spectrum shape, level and propagation of P. martensii

sounds were also measured using the p–u probe. To avoid

corruption of sound measurements by AN, recordings uti-

lized nests far from sources of elevated AN levels in places

with low water current. Sound production was elicited by

presenting territorial males with a ripe, conspecific female

inside a small plastic-mesh cage, in front of the nest en-

trance. Males produced courtship sounds �i.e., tonal, pulse-

train, and complex sounds, �Lugli et al., 1995��. The sensor

was anchored to the substrate facing the nest entrance and

the female, and multiple sounds were recorded. Five males

were recorded with the probe approximately 10 cm from the

nest entrance, and three were also recorded at 20, and 40 cm

�the exact distance depended upon positioning the sensor be-

cause of bottom complexity�. The male was then netted and

FIG. 1. Schematic of the p–u probe and the mounting hardware, anchored to the stream bottom. For the measurements along three orthogonal directions �L1,

L2, and V� �respectively x, y, and z� at two nonturbulent locations �see also Fig. 2� the mounting harware and the probe were oriented parallel to the stream

axis �L1�, perpendicular to it �L2�, and vertical axis �V�.
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measured for total length �mm�, and water temperature was

measured.

Pressure and velocity spectra and amplitudes were deter-

mined for 5 sounds with the best signal-to-noise �S/N� ratio

in the pressure modality for each male at 10 cm from the

nest. Twenty-five sounds �see the following� were high-pass

filtered at 50 Hz and analyzed �FFT length: 512 Hz, band-

width: 15 Hz, Hamming window�. The frequency spectrum

of the P. martensii sounds resolves into few �tonal sound� to

many �pulse-train sound� harmonic bands between 50 and

900 Hz �Lugli et al., 1995, 2003�. To compare the level and

frequency distribution of the P. martensii sound spectrum

with stream AN spectrum, the continuous p and u spectra of

each sound were partitioned into seventeen 50 Hz frequency

bands. Each band was examined for the presence of harmon-

ics. Amplitude and peak ��center� frequency of all harmon-

ics were measured, i.e., a harmonic band with peak fre-

quency at 320 Hz was assigned to the 300–350 Hz class.

Amplitudes were converted to absolute dBrms �re:1 �Pa,

pressure mode; re:1 cm/s, velocity mode� �bandwidth:

10 Hz, Hamming window� using the calibration factors for

all components of the measuring system. Sound spectra were

FIG. 2. Pressure �top� and particle velocity spectra �bottom� of the ambient noise at two nonturbulent locations close to sites of gas-bubble formation,

measured with the sensor positioned in each of the three orthogonal directions: L1, L2, and V �respectively x, y, and z�. Pressure levels above 100 Hz are

similar in the x–y–z plane, whereas velocity levels are more variable. However, in the lower part of the spectrum �i.e., at 100 Hz and below�, noise level

variability in the three directions is larger for pressure.
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determined for 25 sounds �12 tonal and 13 pulse-train

sounds�, and mean p and u spectra were obtained by averag-

ing the frequency and amplitude within each frequency band.

Sound propagation was examined by measuring the am-

plitude of the fundamental frequency �i.e., the pulse repeti-

tion rate of the sound; Watkins, 1967; Torricelli et al., 1990�

and higher harmonics, as the logarithmic root mean square

pressure �SPL re:1 �Pa� or particle velocity �SL re:1 cm/s�

converted to absolute dBrms �bandwidth: 10 Hz, Hamming

window�. Only tonal sounds were used for the analysis as

pulse-train sounds were not consistently present at each dis-

tance. Levels of at least five sounds from each male at each

distance were averaged to determine the transmission loss of

p and u. Our measurements are an estimate of transmission

loss as they do not control for variation in call level. How-

ever, call levels in a single recording typically vary by

1–4 dB standard deviations �s.d.�, which is considerably less

than the propagation losses observed in the field �around

20 dB/20 cm, Lugli and Fine, 2003; Fig. 9, present paper�.

C. Statistical analysis

Noise spectra from the five locations, tested with Ken-

dall’s concordance test �Siegel and Castellan, 1988�, demon-

strated significant concordance �see Lugli and Fine, 2003 for

details� and therefore averaged within each frequency band

to compute mean AN spectra for p and u. Similarly, the mean

spectrum of sounds of individual males was calculated to

determine if differences occurred in spectral shape. Finally,

the magnitude �i.e., the real part� of the p /u ratio was calcu-

lated for frequencies of both AN spectra and sounds �see Sec.

III for details�. A preliminary analysis of the phase relation-

ships between p and u showed the p–u shift was around

−90° �the theoretical near-field value� for most sound and

noise frequencies. These relationships will be considered in a

forthcoming paper.

Mean p and u spectra for each individual were calcu-

lated by measuring the amplitude of the peak frequency �if

present� in each 50 Hz band and averaging regardless of

sound type. Not every frequency band contained significant

sound energy �i.e., �3 dB above the background noise�, and

therefore, the number of sounds used to calculate means was

usually less than the number of sounds analyzed. Mean

sound spectra for p and u across males were concordant, and

therefore all sounds recorded in a given modality were

pooled, and the mean sound spectra for p and u were calcu-

lated regardless of sound type. The P. martensii sound spec-

trum is not affected by male size �Torricelli et al., 1990�.

III. RESULTS

A. Spectral characteristics of the stream ambient
noise

AN spectra in the x–y–z plane for acoustic pressure �p�

and particle velocity �u� exhibit similarities in shape and

level at two nonturbulent locations �Fig. 2�. Above 100 Hz, p

levels are relatively similar in the three orthogonal direc-

tions, whereas corresponding u levels are more variable. At

50 and 100 Hz however, pressure is more variable. The p

and u spectra vary considerably at location 1 but are more

similar at location 2. At location 2 p and u spectra of bubble

noise �i.e., frequencies above 100 Hz� peak around 250 Hz,

except for the vertical u spectrum, which peaks at 150 Hz.

Thereafter, noise levels fall off with increasing frequency for

both spectra although the u slope is greater ��9–13 dB for p

and u, respectively, between 400 and 800 Hz�, i.e., the mag-

nitude of p /u increases with frequency �Fig. 5, top graph�.

At quiet locations, AN levels for both p and u are higher

at low frequencies and decrease slowly and irregularly with

frequency although the u curve is somewhat flatter �Fig. 3�.

At noisy locations, both spectra feature a quiet window �see

also Fig. 2� below 300 Hz, increased levels in the

FIG. 3. The pressure spectrum �top� and the particle velocity spectrum

�bottom� of the ambient noise at two noisy locations and two quiet locations

�a given location is identified by the same symbol on the pressure and

velocity spectra; triangles: quiet locations�. Notice the region of lower noise

levels at frequencies below 250 Hz is more marked on the velocity than on

the pressure spectrum at the two noisy locations �i.e., the quiet window,

Lugli and Fine, 2003, see also Fig. 4�.
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300–700 Hz band, and decreasing levels at higher frequen-

cies. U spectra however, have a wider window that is

10–15 dB deeper. Although p and u spectra appear similar,

some peaks exhibit differences in amplitude and frequency.

For instance, in Fig. 3 �square symbols�, both exhibit peaks

at 400 Hz, but a second peak occurs at 650 Hz for p and 750

for u.

Shifts between the p and u components are also apparent

in the mean AN spectrum �Fig. 4�. The quiet window exhib-

its minimal variability in both p and u spectra, although the u

window is displaced from 150 to 200 Hz.

The magnitude of p /u at noisy locations �Fig. 5, bottom

graph� exhibits peaks between 200 and 300 Hz and between

600 and 700 Hz, and the mean value �Fig. 5, bottom graph:

thick line� peaks at 200 and 650 Hz, the two peaks reflecting

the p–u shift of individual AN spectra �Fig. 3� and of the

mean spectrum �Fig. 4�, respectively.

B. Spectral characteristics of P. martensii sounds

Tonal �n=12� and pulse-train sounds �n=13� have simi-

lar levels and generally similar energy distributions for p and

u. In the tonal sound from male #4 �Fig. 6, top� both the p

and u spectra have four harmonic bands between 180 and

800 Hz, with the largest band at the fundamental frequency

of 180 Hz. The pressure peaks are distributed relatively

equally between bands, but the second harmonic of the u

spectrum is almost absent. The u waveform of the tonal

sound in Fig. 6 builds up more slowly and decays more

quickly, although this response was not present in all signals.

Differences between p and u spectra are greater in the

multiharmonic pulse-train sound than in the tonal sound �Fig.

6, bottom�. The fundamental frequency �around 100 Hz� is

the dominant p band, but the second harmonic �220 Hz� is

larger in the u spectrum. Pressure exhibits a harmonic series

of three decreasing bands and a second set of peaks with a

maximum at about 500 Hz, which then exponentially decays

to around 800 Hz �Fig. 6, bottom�. Most of the energy in the

u spectrum is concentrated in the lower half of the spectrum

�i.e., below 400 Hz�, with a secondary component between

700 and 900 Hz. The greater energy at lower frequencies on

the u spectrum of the pulse-train sound is determined by the

longer period components of u sound pulses �Fig. 7�. The

pulse waveform differs considerably between p and u oscil-

lograms, with the single pulses barely distinguishable in the

u sound �Fig. 7: male #4�.

Mean spectrum shape of the tonal sound �Fig. 8, top� is

similar for p and u: energy is concentrated within a narrow

band around 150 Hz and a wider band around 500 Hz. How-

ever, the position of the peak frequency within these bands

differs between the spectra. The u spectrum also contains

more energy at higher frequencies ��600 Hz�, where the p

spectrum drops off. The mean p and u spectra of the pulse-

train sound exhibit greater differences than for the tonal

sound �Fig. 8, bottom�. As in the tonal sound spectra, both

spectra of the pulse-train sound exhibit a low frequency

maximum around 100 Hz, and a secondary peak at middle

frequencies. However, both peaks are shifted toward lower

frequency bands in the u spectrum, particularly the second-

ary one. In the p spectrum of the pulse-train sound, energy is

concentrated within a single low frequency band �from 100

to 150 Hz�, and the secondary peak is distributed over a

broader frequency band, than in the u spectrum. Finally,

FIG. 4. Mean �thick lines� +1 s.d.

�thin lines� pressure spectrum levels

�left Y axis� and particle velocity spec-

trum levels �right Y axis� of Stream

Stirone AN �noisy locations, n=5�.

The presence of lower spectrum levels

at around 100 Hz �i.e. the quiet win-

dow, Lugli and Fine, 2003� is clear in

both pressure �dark-gray horizontal

bar� and velocity �light-gray horizontal

bar� spectra. However the quiet win-

dow for particle velocity is displaced

by 50 Hz, and maximal levels about

150 Hz toward higher frequencies.
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pressure falls off above 600 Hz, whereas velocity varies by

only about 3 dB from 500 to 900 Hz. Notice spectra shape of

tonal and pulse-train sounds are more similar for p than u.

C. Propagation of sound pressure and particle
velocity in the stream

The two nests were located over a stony bottom with

low current speed and maximum water depth of 11 cm �male

#1, total length=80 mm, water temperature: 27.8 °C� and

21 cm �male #4, total length=88 mm, water temperature:

26.7 °C� respectively. The tonal sound generally exhibits a

large transmission loss at all frequencies for p and u �Fig. 9;

exception: 400 Hz for u sounds recorded at 10 cm from male

#1�. Attenuation of the fundamental frequency was

6–7 dB/10 cm for p, and 7–10 dB/10 cm for u. P losses

are similar to those previously recorded for this species

�8 dB/10 cm from 5 to 45 cm �Lugli and Fine, 2003��. At-

tenuation of p and u for other frequencies is similar to those

determined for the fundamental frequency. Notice in male #1

an increase of 4 dB between 10 and 20 cm for 400 Hz for u,

whereas p decreases. The magnitude of p /u for the funda-

mental frequency �ranging from 100 000 to 150 000 Pa/m/s

for male #1 and 50 000 to 100 000 Pa/m/s for male #4� is

independent of distance from the nest �Kruskal-Wallis tests:

t=3.44, NS, male #1; t=0.09, NS, male #4�.

D. Relationship between sound and ambient noise
spectrum

The dominant frequencies of P. martensii sound occur

within the quiet window for both p and u �Fig. 10�. Both p

and u levels of the sound mean spectrum peak between 100

and 150 Hz, the band with lowest AN levels for p and u in

the fish’s hearing range, which extends to about 700 Hz

�Lugli and Fine, 2003; Lugli et al., 2003�. Maximal S/N ratio

within the quiet window is similar �i.e., about 10 dB� for

pressure and velocity. A secondary, broad p peak around

500 Hz simultaneously occurs with a drop off in the AN

spectrum, which peaks at 250 Hz. The presence of a second-

ary peak around 450 Hz in the call’s u spectrum is less clear.

In addition, this peak is only 50 Hz higher than the noise

peak at 400 Hz. However, this peak is considerably above

the noise in the quiet u spectrum �Fig. 3� and could provide

information under quiet conditions.

IV. DISCUSSION

A. Noise

Previous work demonstrates that acoustic pressure in the

AN spectrum is concentrated between 300 and 700 Hz, and a

quiet region exists around 100 Hz in AN spectra from most

noisy sites, i.e., pools below small waterfalls, small rapids,

riffles, etc. �Lugli and Fine, 2003�. The window is a recurrent

and stable feature of the stream AN at such places and has

recently been reported in Austrian rivers and streams

�Amoser, 2007�. The current study demonstrates the quiet

window is also present in velocity spectra at noisy but not

quiet locations, and in some cases can be deeper for the u

than the p spectrum �Fig. 3�. Noisy sites are characterized by

high water turbulence and formation of air bubbles �Lugli

and Fine, 2003�. Water flowing around submerged objects

�and the sensor� generates noise at the lowest frequencies

�i.e., below 10–20 Hz; Strasberg, 1979�, and this flow-

induced noise may corrupt noise measurements at higher fre-

quencies relevant to goby communication. We minimized

this effect by placing the sensor in areas with low or no water

current. Therefore, most of the noise energy between 50 Hz

and 1 kHz is from nearby turbulence and bubble sources.

Lugli and Fine �2003� argued that the low-frequency notch/

window in the AN pressure spectrum results from the com-

bined effect of the turbulence noise falling off above infra-

sonic frequencies and the presence of bubble noise above

200 Hz.

Shapes of the mean p and u AN spectra at noisy sites are

generally similar although the u spectrum is shifted up

50–100 Hz �i.e., a minor p–u mismatch�. The magnitude of

the p /u ratio of the AN spectrum at noisy sites exhibits a

frequency-dependent pattern consistent with the p–u mis-

match of the mean spectrum. The reason for the shift at

turbulent sites is unclear. This pattern is not present in the x,

FIG. 5. Relationship of the magnitude of p /u to frequency in the three

orthogonal directions at location 1 �top graph�, and along an axis of AN

propagation at the five noisy locations �bottom graph; CASCADE: probe in

a riffle close to a cascade; RIFFLE: probe in a riffle close to places of bubble

noise release; POOL: probe in a pool located below a small waterfall�. The

mean p /u ratio curve of the five locations �bottom graph: thick line� was

computed by averaging the five values of p /u at each frequency. P /u ratios

were computed by converting decibel levels of pressure and velocity into

original units and computing the ratio as Pascals per meter per second.
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y, and z spectra at two nonturbulent sites �locations 1 and 2�.

At location 1 the p /u ratio increases with frequency regard-

less of sensor orientation. Theoretically, pressure–velocity

ratios should increase with frequency in the nearfield of

simple noise sources �Siler, 1969; Kalmijn, 1988�. Simple

theoretical predictions, however, may not apply to complex

sources of underwater bubble noise which may interact de-

structively, as well as constructively, and whose energy at

lower frequencies decays rapidly because of the very shallow

depths �see the following�. The ratio measured at noisy loca-

tions does not increase linearly with frequency but exhibits a

remarkably similar pattern suggesting the presence of

environment-specific relationships between p and u ambient

noise close to the source.

FIG. 6. Spectrogram �bottom-right,

FFT=512 points, Hamming window�,

power spectrum �bottom-left half of

panel, amplitude on a linear scale of

100 mV/division, arbitrary units�, en-

velope �trace above the spectrogram�,

and oscillogram of a 150 ms section of

the sound �top trace�, of a representa-

tive �A� tonal sound �male #4� and �B�

pulse-train sound �male #2� of P. mar-

tensii, recorded as pressure �left� and

particle velocity �right�. The expanded

waveforms illustrate the portion of the

sound between the two arrows. �A�

Tonal sound: the pressure and particle

velocity envelopes differ, but the tonal

structure is clear in both cases. Notice

sound energy is concentrated at the

fundamental harmonic �about 200 Hz�

in both spectra. The signal at about

100 Hz in the velocity sonogram is

background noise. �B� Pulse-train

sound: the oscillograms illustrate the

end of the sound. The pulse-train

waveform differs for pressure and par-

ticle velocity. Like the tonal sound, the

velocity spectrum of the pulse-train

sound has relatively more energy con-

centrated at the lower harmonics.
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B. Sounds

All male P. martensii emitted tonal and pulse-train

sounds to a caged ripe female near the nest opening. Sounds

were recorded while the male was inside the nest �a hollow

underneath a flat stone�, a situation typical for courtship

sound production in this species �Lugli et al., 1997�. Spectral

characteristics of pressure for tonal and pulse-train sounds

were similar to those determined in earlier studies �e.g.,

Lugli et al., 1997; Lugli and Fine, 2003�, i.e., the sound

energy is concentrated at the fundamental frequency ��pulse

repetition rate �Watkins, 1967; Torricelli et al., 1990�� around

200 Hz �tonal sound�, or at the lower harmonics at around

100 Hz �pulse-train sound�. Laboratory recordings of P. mar-

tensii courtship sounds indicate little or no energy above

0.5 kHz in either sound �e.g., Lugli et al., 1997�. In this

study however, both types of sound had notable energy

above 500 Hz �likely due to the higher recording temperature

in the stream; M. Lugli, private communication�, allowing us

to compare pressure and particle velocity over a broader fre-

quency range. Most energy in p and u spectra of both sounds

is still below 200 Hz. The frequency distribution is similar

for p and u spectra of the tonal sound, but the pulse-train

sound exhibits larger differences between spectra. In several

pulse-train sounds, some frequencies in the p spectrum are

missing from the u spectrum, and vice-versa �Fig. 6�.

Because of the complexity of the acoustic environment,

reasons for these differences are speculative. Position of the

emitter might affect radiation of directional and nondirec-

tional components of the sound field. Additionally, the acous-

tics of the nest, a hollow under a flat stone, might affect

sound propagation. Laboratory experiments indicate the nest

may amplify pressure �M. Lugli, private communication�.

Perhaps sound is reflected from the back of the nest hollow

resulting in constructive interference. Additionally, some of

the sound energy could propagate through the substrate as in

other bottom-dwelling species such as the mottled sculpin

�A. Whang and J. Janssen, 1994� and other gobiids �Janssen,

private communication�. This effect however, is likely mini-

mized in a rock-lined stream compared to a sandy or muddy

bottom.

A gas bladder may change the directional properties of

the sound through scattering, even if it is not involved in

sound generation. Barimo and Fine �1998� found a direc-

tional field that matched the heart-shaped swim bladder in

the oyster toadfish in which the swim bladder is the acoustic

radiator. For the goby passive effects of the swim bladder

would likely dominate at the resonant frequency of the blad-

der’s gas cavity, and it is unlikely that the small bladder in P.

martensii would exert large effects at various frequencies.

Possible filtering effects of stones and gravel surrounding the

fish nest �rocks: density approximately 2–3 times the water

density� could attenuate and/or change directionality of some

frequencies, thereby accounting for differences in the p and u

spectra. The amplitude and frequency spectrum of croaker

sounds �acoustic pressure� was not affected by enclosing a

hydrophone within a terra cotta drainage tile �Barimo and

Fine, 1998�. However, particle velocity is more likely to be

affected by stone barriers. Still, given the long wavelength of

goby sounds, it is unlikely that rock positions would dramati-

cally affect low frequency propagation, and we suggest that

p and u are affected separately by destructive and construc-

tive interference.

The tonal sound has a simpler acoustic structure than the

pulse-train sound, and acoustic differences in waveform be-

tween p and u spectra are less pronounced in the tonal sound.

Although both sounds attenuate rapidly, the tonal sounds has

features that may allow longer distance propagation than the

pulse-train sound, which is only emitted when the female is

in the male’s nest. For instance, the tonal sound is frequency

��pulse-rate� modulated, a feature common to acoustic sig-

nals used for long-range communication among birds and

mammals �Wiley and Richards, 1982�.

C. Transmission loss

Far from the sound source �i.e., in the far-field� pressure

and particle velocity are in phase and decay slowly with

distance from the source; furthermore, the p /u ratio is con-

stant for all frequencies and noise-source types, being equal

to the product of the density of the medium times the sound

velocity �Michelsen, 1983; Rogers and Cox, 1988�, i.e., the

acoustic impedance of the medium, which is about 1.4

�106 Pa/m/s in freshwater �sound velocity: 1430 m/s;

FIG. 7. Two examples of a pulse-train sound �A: male #2, recording dis-

tance of 10 cm; B: male #4, recording distance of 8 cm� illustrating the

waveform of the sound �left� and an expanded portion of it �right� between

the two arrows for acoustic pressure �p� and particle velocity �u�. Notice the

sound by male #2 is different from the selection in Fig. 6 �bottom�.
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water density: 1000 kg/m3�. In this study recordings were

conducted close to the sound source �i.e., in the extreme near

field� and near the air–water–bottom interfaces at shallow

depths ��40 cm�. Therefore biologically relevant sound fre-

quencies �50–700 Hz, Lugli et al., 2003� will not propagate

�Urik, 1983�. Transmission loss is high for pressure and ve-

locity at all frequencies, and the observed values �i.e.,

6–10 dB/10 cm� are much larger than expected from spheri-

cal spreading in an acoustic free field, 6 dB loss per distance

doubled, equivalent to a decay of 1/r, r�source distance

�1 m �Urik, 1983�. Considering the shallow depths and cy-

lindrical spreading of 3 dB/DD, attenuation is even more

striking.

There is a tendency for p and u transmission loss to

decrease at higher frequencies. The high, frequency-

dependent attenuation can be predicted using the waveguide

model analogy for sound transmission in small tanks with

low water depths �Akamatsu et al., 2002�: a sound frequency

below the cutoff within a circular tank whose diameter is

larger than its depth. The energy of, e.g., a 200 Hz tone will

be reduced by 20 dB every 15 cm for a water depth of 20 cm

and 22 dB for a water depth of 30 cm. Slightly longer dis-

tances are obtained for higher harmonics �e.g., a 400 Hz

tone�. Thus, our propagation measurements are consistent

with theoretical predictions for frequencies traveling below

the cutoff in very shallow bounded bodies of water.

The magnitude of the p /u ratio for the fundamental fre-

quency of the tonal sound �around 200 Hz� does not change

with distance from the source in the near field, and the ratios

are 10-fold lower than the theoretical value for the free-field

situation �see Fig. 9�. Again, this result is reasonable consid-

ering that sound energy decreases rapidly below the cutoff,

and particle displacement predominates over sound pressure

in the near field. Note Rogers and Cox �1988� caution that

the p /u ratio is not a meaningful quantity in nonfree-field

situations, and we use it here to permit simple comparisons

FIG. 8. Mean spectrum of the tonal

sound �top, n=12� and the pulse-

train sound �bottom, n=13� of male

P. martensii. Acoustic pressure

�black symbols�, particle velocity

�light symbols�.
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D. Relationships between sound and AN spectrum:
Implications for acoustic communication and
hearing in noise

By fitting the main sound frequencies into the quiet re-

gion, P. martensii increases the S/N ratio for the perception

of sound under high AN levels, regardless of the physical

stimulus used for detection �i.e., pressure or velocity�. Maxi-

mum auditory sensitivity of P. martensii occurs between 70

and 150 Hz, i.e., within the quiet window, and thresholds are

above 105 dB �re:1 �Pa�. Thus SPL of P. martensii sounds

recorded 10 cm from the nest �see Fig. 10, top� should be

audible only within several centimeters of the emitter. Yet,

laboratory experiments indicate both sexes respond to court-

ship sound playback at typical levels through a speaker

placed 30 cm from the test fish �Lugli et al., 1996, 2004�.

The stream goby is likely a velocity sensitive species, and a

complete understanding of signal/AN matching must also

consider velocity sensitivity.

Noisy sites will impair sound detection. In the quiet re-

gion, levels at 10 cm from the nest exceed spectrum levels

by 10 dB, or less, for both pressure and velocity. A 10 dB

S/N ratio for p is below the minimum �generally 15–25 dB

for frequencies below 1 kHz� required by teleosts for detec-

tion of tone signals under masking conditions �e.g., Popper

and Fay, 1973; Fay and Megela-Simmons, 1999�. Goby

sounds however, are composed of multiple frequencies and

thus will excite more auditory neurons than a tone of a single

frequency. Torricelli et al. �1986� found that courting males

leave the nest and approach ripe females using visual dis-

plays and courtship sounds to entice them back to the nest.

Communication over truly short distances may be all that is

required in this species although communication will be fa-

FIG. 9. Transmission loss �mean +1 s.d.� with distance �cm� for the funda-

mental frequency and higher harmonics of sounds by two males, recorded as

pressure �top� and particle velocity �middle�, and p /u ratios of the funda-

mental frequency �bottom�. Sounds were emitted by the male at the nest

entrance. Mean levels for pressure �dB re:1 �Pa� and velocity �dB

re:1 cm/s� of each harmonic were calculated from five sounds at each dis-

tance. Differences in fundamental frequency �and higher harmonics� be-

tween the two males are explained by water temperature �Torricelli et al.,

1990�. Changes in the mean value of the p /u ratio with distance were

determined for the fundamental frequency of sounds of the two males. P /u

ratios were computed by converting decibel levels of pressure and velocity

into original units and computing the ratio as Pascals per meters per second.

FIG. 10. The relationship between P. martensii mean sound spectrum

�10 cm from the calling male� and the stream mean AN spectrum for sound

pressure �top� and particle velocity �bottom�. Mean spectrum was calculated

using 30 sounds by 5 males recorded at quiet sites of the stream �i.e., far

from sources of elevated AN levels, see Sec. II�. Square symbols without

standard error bar indicate mean values computed using n�3 sounds. The

AN mean spectra for pressure and particle velocity are those reported in Fig.

4.

J. Acoust. Soc. Am., Vol. 122, No. 5, November 2007 M. Lugli and M. L. Fine: Pressure–velocity measurements in the stream 2891

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.172.48.57 On: Mon, 11 May 2015 17:55:44



cilitated under noisy conditions by the quiet window. Detec-

tion distances would of course increase in quiet regions.

E. Pressure versus particle motion measurements:
suggestions for future studies on fish
bioacoustics

P and u components of stream AN and for fish sounds

may, or may not, track each other for single measurements

although mean spectra are more similar. The presence of the

low-frequency quiet window is clear in both p and u AN

spectra as is the concentration of the energy at the fundamen-

tal in p and u spectra of the tonal sound. Therefore SPL

pressure measurements, either for environmental noise or

sounds emitted by a particle-sensitive teleost are likely rel-

evant for characterization of the dominant frequencies used

for communication in the u dimension. However, the peak

values of particle velocity may be under- or overestimated on

the pressure spectrum. These conclusions are drawn for fre-

quencies below the cutoff �i.e., under conditions of non

propagation of the sound wave�. Further investigations are

needed to validate them in the case of a propagating sound

wave.
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