
Stream As You Go: The Case for Incremental
Data Access and Processing in the Cloud

Romeo Kienzler 1, Rémy Bruggmann 2, Anand Ranganathan 3, Nesime Tatbul 1

1Department of Computer Science, ETH Zurich, Switzerland
romeok@student.ethz.ch, tatbul@inf.ethz.ch
2Department of Biology, University of Bern, Switzerland

remy.bruggmann@biology.unibe.ch
3IBM T.J. Watson Research Center, NY, USA

arangana@us.ibm.com

Abstract— Cloud infrastructures promise to provide high-
performance and cost-effective solutions to large-scale data pro-
cessing problems. In this paper, we identify a common class
of data-intensive applications for which data transfer latency
for uploading data into the cloud in advance of its processing
may hinder the linear scalability advantage of the cloud. For
such applications, we propose a “stream-as-you-go” approach for
incrementally accessing and processing data based on a stream
data management architecture. We describe our approach in the
context of a DNA sequence analysis use case and compare it
against the state of the art in MapReduce-based DNA sequence
analysis and incremental MapReduce frameworks. We provide
experimental results over an implementation of our approach
based on the IBM InfoSphere Streams computing platform
deployed on Amazon EC2, showing an order of magnitude
improvement in total processing time over the state of the art.

I. INTRODUCTION

Cloud infrastructures provide high-performance and cost-
effective solutions to large-scale data processing problems. For
computational tasks where linear scale-out is feasible through
parallel processing over partitioned data, task completion time
can be roughly halved by doubling the cluster size. Depending
on the degree of scale-out as well as the pricing model of
the cloud provider, it is possible to improve performance
essentially at no additional cost, when cost of the additional
cluster nodes can be amortized by a cutdown in the overall
run time at each node.

This theory has a catch. It assumes that the complete
input data is already stored in the cloud (has either been
generated in the cloud or been transferred into the cloud
in advance of processing) so that data transfer latencies can
be ignored. However, in reality, there are many applications
where this assumption does not hold. For example, in scientific
applications such as DNA sequence analysis, large amounts
of data are generated by special devices outside the cloud.
While this data needs to be shipped into the cloud for scalable
analysis, it is not a critical requirement to store the complete
input and output data in the cloud on a long-term basis.
Furthermore, in some use cases, data may involve sensitive
information (e.g., use of DNA data in personalized medicine
[1]), where it may even be undesirable to store the complete

data in the cloud. On the other hand, transferring large data
sets into the cloud can introduce significant latencies and
may even become a bottleneck that hinders the scalability
advantage of the cloud (not to mention the additional storage
costs). Therefore, we believe that data transfer latency should
be minimized unless in-advance/long-term storage of complete
data sets is an explicit requirement of the application.

In this paper, we propose an incremental data access and
processing approach for data-intensive cloud applications that
can hide data transfer latencies while maintaining linear
scalability. Similar in spirit to pipelined query evaluation in
traditional database systems [2], data is accessed and processed
in small increments, thereby propagating data chunks from
one stage of the data analysis task to another as soon as
they are available instead of waiting until the whole dataset
becomes available. This way we can process data mostly in
memory (hence, reduce time-consuming I/O to local disk and
cloud storage, and avoid storage costs) as well as achieving
pipelined parallelism (in addition to the existing partitioned
parallelism), leading to a reduction in overall task completion
time. In our approach, data is accessed in a “stream-as-you-go”
fashion instead of in whole batches, making a stream-based
data management architecture a good base for implementation.

We have designed our “stream-as-you-go” approach for
a certain class of cloud applications characterized by the
following. First of all, the data analysis algorithms involved
in the application should be suitable for incremental pro-
cessing (like only non-blocking operators can be evaluated
in a pipelined fashion in traditional databases). Furthermore,
workload intensity in terms of data size and computational
complexity are also important factors. In particular, for ap-
plications that involve small datasets, data transfer latency
would not play a major role in total processing time, and
therefore, incremental processing would not make much of a
difference in performance (the first column in Figure 1). On the
other hand, for applications that involve simple computations,
incremental processing would only be effective at very high
uplink bandwidths, which may not be feasible in practice
(the first row in Figure 1). However, complex computations
over large datasets are pre-destined for incremental processing,



Fig. 1. Stream-as-you-go for data- and compute-intensive cloud applications.

since in this case, both the bandwidth requirements are feasible
and the transfer latencies constitute a significant fraction of
the total processing time (the “stream-as-you-go” quadrant in
Figure 1). As also evidenced by our real-life use case described
in the next section, this class of data- and computation-
intensive workloads is very common in practice.

The work we describe in this paper has been inspired by a
real use case from bioinformatics (DNA sequence analysis).
In a recent publication, we have described this use case in
detail together with an initial stream-based implementation
and some preliminary results [3]. In this paper, we provide
a more thorough investigation of the problem, covering the
whole data analysis pipeline (which involves a challenging
sorting stage) and comparing our approach to the state of the
art, including an experimental study over larger datasets. More
specifically, in this paper we use new DNA analysis software
in our use case implementation (Bowtie [4] and SOAPsnp [5]
instead of SHRiMP [6]), so that we can directly compare our
implementation against the state of the art (Crossbow [7]).
Furthermore, we present a parallel sorting algorithm based on
data partitioning, distributed insertion sort, and red-black trees.
Last but not least, we show experimental results that provide
an order of magnitude improvement in total processing time
over the state of the art.

The rest of this paper is organized as follows: In Section II,
we provide a brief summary of our bioinformatics use case.
Then in Section III, we give an overview of the state of the art.
Section IV describes our stream-based, incremental processing
solution. In Section V, we present experimental results over an
implementation of our solution based on the IBM InfoSphere
Streams computing platform [8] deployed on Amazon EC2
[9]. Finally, we conclude with a discussion of future work in
Section VI.

II. LARGE-SCALE DNA SEQUENCE ANALYSIS

Determining the order of the nucleotide bases in DNA
molecules and analyzing the resulting sequences have become
very essential in biological research and applications. With the
invention of the Next Generation Sequencing (NGS) methods
in 2004 [10], higher amounts of genetic data can be read in
much less time and at lower cost [3], which have led to the
generation of very large datasets.

NGS is used to sequence DNA in an automated and
high-throughput process. DNA molecules are fragmented into
pieces of 100 to 800 base pairs (bps), and digital versions
of DNA fragments are generated. These fragments, called
reads, originate from random positions of DNA molecules.
Therefore, the reads must first be aligned into a sequence
by mapping them back to a reference genome [11]. While
doing this, polymorphisms between analyzed DNA and the
reference genome (e.g., T replaced by C, or A replaced by
G) can be observed. A polymorphism of a single bp is called
Single Nucleotide Polymorphism (SNP) and is recognized as
the main cause of human genetic variability [12].

Aligning NGS reads to genomes is computationally inten-
sive. Li et al give an overview of algorithms and tools currently
in use [11]. To align reads containing SNPs, probabilistic
algorithms have to be used, since finding an exact match
between reads and a given reference is not sufficient because
of polymorphisms and sequencing errors. For example, on a
small cluster consisting of 25 nodes with a total of 232 CPU
compute cores and 800 GB main memory, a single genome
alignment process can take up to 10 hours.

It is predicted that the NGS technology will eventually
become available on a clinical level, making it a part of
the standard healthcare process to check patients’ SNPs
before medical treatment (a.k.a., ”personalized medicine”).
Widespread use of this technology in research as well as in
everyday applications will make the efficient analysis of the
generated datasets an important requirement. Thus, this is an
application area which can greatly benefit from cloud-based
infrastructures. Although existing solutions show nearly linear
scalability, they pose significant limitations in terms of data
transfer latencies and cloud storage costs, which we explore
in this paper.

III. STATE OF THE ART

In this section, we summarize the state of the art in large-
scale DNA sequence analysis as well as incremental data
processing in the cloud, focusing on recent works that are
the closest to ours.

A. MapReduce-based DNA Sequence Analysis

We have found two MapReduce-based DNA sequence anal-
ysis software in the literature: Cloudburst [13] and Crossbow
[7]. Both of these have been built on Hadoop to be deployed
in the cloud and they make heavy use of the sort function
provided by Hadoop.
Cloudburst. Cloudburst is a simple NGS read aligner like
Bowtie [4]. It generates k-mers (i.e., small subsequences of
DNA with k around 4), which are emitted by the Map function.
This is done for reads as well as for the reference genome.
Since Hadoop sorts and partitions data between Map and
Reduce, the reducers work on a subset of data only containing
reads and parts of the reference genome with at least k
common characters. Therefore, the search space is drastically
reduced.



Fig. 2. Crossbow workflow [7].

Crossbow. Crossbow provides a Hadoop-based implemen-
tation of the SNP detection process using Bowtie [4] and
SOAPsnp [5], where reads aligned by Bowtie are sorted and
fed into SOAPsnp for SNP calling (another term for SNP
detection). Figure 2 shows the complete Crossbow workflow.
Bowtie is implemented as part of a Map function and SOAP-
snp is implemented as part of a Reduce function. The sorting
is handled by Hadoop’s shuffling and sorting stage between
Map and Reduce. The workflow also involves Preprocessing
and Postprocessing steps. Preprocessing is done in order to
convert from a four-lines-per-read format (FASTQ) [14] to an
internal one-line-per-read format. The reason for this format
conversion is the underlying HDFS file system [15]. HDFS
automatically splits files into 64 MB (by default) blocks, and
with a four-lines-per-read format, the split boundaries may
possibly lie within reads and break them. It is important to
note that the Preprocessing step is not parallelized. Finally, the
Postprocessing step is included to concatenate the distributed
results residing in HDFS to an output file residing on the local
file system.

We experimentally compare our stream-based approach to
the MapReduce-based approach of Crossbow in Section V.

B. Incremental MapReduce

Incremental data processing in the cloud is not a new idea.
In particular, there have been many proposals recently for
turning MapReduce from a batch processing framework into a
more incremental one. We have found two categories of related
work in this space:
Incremental Processing. Significant effort has been made
recently to extend the traditional MapReduce paradigm to
break the barrier between the Map and the Reduce phases,
allowing reducers to run on partial results from mappers (e.g.,
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27]). One of the key differences across these is the way
the sorting phase is handled: Some apply it on partitions
of the post-mapper or the pre-reducer stages, while others
do so in chunks using a spill file. Like in our approach,
these approaches are also capable of processing data in small
increments and returning early results (for various purposes
including delta processing or online aggregation). However,
unlike in our approach, the complete input dataset has to be
materialized in HDFS before the Map phase can start, which
requires in-advance transfer of data into the cloud.
MapReduce over a Streaming Engine. A smaller number
of works have applied the MapReduce programming model
to streaming engines (e.g., [28], [29]). Like in our approach,
these approaches use a stream-based data processing system
underneath, and therefore, can both provide an incremental
and a stream-as-you-go processing model. The fundamental
difference to our work is their use of MapReduce as the
programming model.

IV. THE STREAM-AS-YOU-GO APPROACH

As discussed in the previous section, MapReduce-based
Crossbow provides a state-of-the-art, cloud-enabled software
package for DNA sequence analysis with nearly linear scala-
bility. Unfortunately, it does not avoid the data upload latency
problem. Although the incremental processing extensions can
help solve the barrier problem within the MapReduce frame-
work, they also suffer from the upload latency. In this paper,
we propose a “stream-as-you-go” approach that solves this
problem by incremental data access and processing over a
stream-based data management architecture.

In this section, we describe the “stream-as-you-go” ap-
proach in the context of our DNA sequence analysis use
case and using the IBM InfoSphere Streams (or Streams for
short) computing platform, noting that the approach is general
enough to be applied to other similar use cases or using other
stream processing engines.

Figure 3 shows our complete data processing pipeline
consisting of Streams operators and Figure 4 illustrates the
different data formats we are using for the streams flowing
between these operators. While we do not use the MapRe-
duce programming model, Map, Sort, and Reduce steps of
the Crossbow workflow (Figure 2) correspond to Bowtie,
PartitionByGenomePosition + In-memory Insertion Sort, and
SOAPsnp operators in our Streams operator graph (Figure 3),
respectively. The rest of this section will explain the major



Fig. 3. Streams-based data processing pipeline: Client sends compressed read data to the cloud. After being uncompressed, data gets submitted to a Streams
application which first splits it across the available cluster nodes. Split reads are then aligned in parallel using Bowtie. The output from each Bowtie instance
is further partitioned by genome position to be then sorted using a distributed in-memory insertion sort algorithm. After some data conversion steps, the sorted
data is fed into SOAPsnp for SNP calling. Results which are incrementally generated on each processing node in parallel are finally merged and sent back
to the client over a TCP connection.

Fig. 4. Different intermediate data formats: (1) FASTQ read file, single read with read quality; (2) Aligned read, 3393863 indicates position on the reference
genome, where read GAAGATCCGGTACAACAAAACCTGATGTAAATGGTA has been found; (3) SOAPsnp needs a slightly different order of fields and a
converted cigar string; (4) At position 28480, C has been mutated to G.

steps of our Streams-based data processing pipeline in more
detail.

A. Client and Input Data Entry

A client application running on a node outside the cloud
reads a file from its local hard disk and streams it into the cloud
through a TCP connection. The UNIX command “netcat”
could be used for this purpose. We have implemented a Java
version of this command, extending it with a progress bar and
some built-in performance measurement functions. Further-
more, in order to reduce the amount of data to be transferred,
we have transparently added Compress and Uncompress steps
to the pipeline using a TCP tunnel (Zebedee [30]). Zebedee
uses the “zlib” compression library, providing a factor of 4
compression on NGS read data.

TCPSource, a built-in Streams operator, provides the single
data entry point for input data by listening to a specific TCP
port. Besides receiving data, conversion to an internal data
format and type checking are handled as part of this stage.

B. Data Split

ThreadedSplit, a multi-threaded Streams operator, splits data
into disjoint partitions based on the number of processing
nodes in a given cluster. This provides that each queue to the
succeeding operators on each node is served by its own thread,
ensuring that all queues are always filled to their maximum
capacity before the ThreadedSplit operator blocks. Blocking
means not accepting any further tuples, causing the whole
upstream pipeline to also block. This blocking determines the
upstream bandwidth requirement.

C. Read Alignment using Bowtie

The Bowtie operator implements the read alignment stage
based on a Bowtie process and standard UNIX pipes. More
specifically, it consists of three threads: (i) one for accepting
tuples from ThreadedSplit and writing them to the input pipe
of the Bowtie process; (ii) another one for encapsulating the
Bowtie UNIX process; and (iii) the last one for reading results
from the pipe of Bowtie process and forwarding them to the
succeeding operator.

D. Partitioning the Data by Genome Position

Horizontal partitioning divides a dataset into disjoint subsets
based on a predicate. Each subset can then be streamed to a
separate cluster node. In order to maintain load balance across
these nodes, subsets should roughly be of equal size, which
might be challenging in case of data skew.

In our use case, we partition the mapped reads generated by
Bowtie based on their position on the reference genome. As
can be seen in Figure 5, the mapped reads follow a uniform
distribution across genome positions, leading to equal-sized
subsets. Therefore, range partitioning can be used without
facing the data skew problem. As a result, each subset contains
reads from one particular region of the genome, providing
continuous ranges to downstream operators.

In general, there are three main use cases for genome
sequencing: whole genome re-sequencing [31], whole exome
sequencing [32], and RNA-seq gene expression analysis [33].
Our use case falls under whole genome re-sequencing, where
the complete genomic DNA of an organism is fragmented to
be sequenced and aligned to a reference genome. While the



Fig. 5. Reads across genome positions are uniformly distributed.

two other use cases sequence genes slightly differently, in all
of these use cases, the read distribution among the reference
genome is either known or can be derived in advance based on
gene annotations. Therefore, data can be easily divided into
even-size partitions based on genome positions.

E. In-memory Insertion Sort

After aligned read data is partitioned by genome positions,
each partition needs to be sorted in parallel. To achieve this,
we use a distributed in-memory insertion sort, where we keep
a list in heap memory of each node and insert tuples at their
correct positions in this list as they arrive. The list itself is
organized as a red-black tree [34] so that insertions and re-
balancing thereafter can be handled in logarithmic time.

We now analyze our sorting algorithm more closely in
terms of its complexity and memory requirements. For red-
black trees, insertion time is within O(log(n)) and tree re-
balancing after insertions is within O(log(1)). As O(log(1)) ∈
O(log(n)), the sorted insertion of each tuple into a list of size
n is O(log(n)). Considering that our parallel sort algorithm
operates over data (of size n) partitioned across a cluster
(of size s), insertion time of each tuple is O(log(ns )). In
Figure 6, we plot complexity for n ∈ 0..5500000 and s ∈
1..128. Starting from 16 nodes, complexity converges to 10.
This means that for each sorted insertion, 10 accesses to the
heap memory segment are done. Every EC2 instance of type
m1.large comes with about 7 GB free main memory. Assuming
a cluster of 128 nodes, this would give us nearly 1 TB of
available memory for sorting. The sorted dataset in our use
case is about 1 GB; but even for much larger datasets, we do
not consider main memory usage as a potential limitation for
NGS read data processing.

F. SNP Detection using SOAPsnp

Next, Bowtie’s sorted output partitions must be processed
in parallel for SNP detection. However, since Bowtie’s output
format is not compatible with the input format of SOAP-
snp (illustrated in Figure 4), a conversion step is needed

Fig. 6. Already at small cluster sizes (16 nodes), sorting complexity
converges to a small number (requiring 10 memory accesses per insertion).

(Bowtie2SOAPsnp in Figure 3). The conversion includes
changing the positions of certain fields as well as expressing
differently the information on how many and which letters are
different between the reference and the read.

Since SOAPsnp is not capable of reading from standard
UNIX pipes, input has to be provided as a file. For this,
we have used extended versions of the built-in FileSink and
FileSource operators in Streams.

G. Output Data Delivery

All output streams from the parallel SOAPsnp processes
are merged at a single node to be sent back to the client
over a TCP connection. At this stage, application-specific
compression techniques (e.g., returning back only the positions
of matched reads instead of the reads themselves) could be
used to reduce the amount of output data transferred between
the cloud and the client. In our use case, this was not a critical
need, since the size of the output data was not that large.

V. EXPERIMENTS

A. Experimental Setup

Our experiments compare three alternative solutions to
cloud-based DNA sequence analysis, all of which use Bowtie
for read alignment and SOAPsnp for SNP detection:

• a trivial (standalone) solution that is based on standard
UNIX commands,

• the Hadoop-based Crossbow solution, and
• our stream-as-you-go solution that is based on the idea of

incremental processing using a stream processing engine
(IBM InfoSphere Streams).

In all of the experiments, we measure the total process-
ing time in minutes, as the number of Amazon EC2 nodes
(m1.large) is exponentially varied between 1 and 16. Each
EC2 instance provides 7.5 GB of main memory and 2 virtual
CPU cores equivalent to four 1.2 GHz Xeon processors.

As our dataset, we have used the “E. Coli Small Example”
dataset provided at the Crossbow website [35]. The read
file in this dataset is taken from an E. Coli experiment and



Fig. 7. The trivial solution.

contains 8922730 reads with a total size of 1.4 GB. The
process aligns these reads against the E. Coli reference genome
(NC 008253.1) containing 5594158 base pairs with a total size
of 5.4 MB.

B. Experimental Results

The Trivial Solution. This solution is implemented based on
standard UNIX commands rsync, scp, split, cat, sort as well as
command line tools bowtie and soapsnp. Assuming the input
read file is located on a local system, rsync is used to copy
the data to a single cloud node. rsync provides online data
compression, which helps us reduce the data transfer time.
After the data transfer, the read file is split into n partitions
using the UNIX command split, where n indicates cluster size.
After the split, data partitions are transferred to the n cluster
nodes using scp. In this case, rsync is not used, since within
the cluster, compression is not necessary due to sufficient
bandwidth (more than 200 MBit/s). Using the partitioned read
data, bowtie is invoked in parallel on each cluster node. Bowtie
results are then transferred to a single cloud node to be merged
using cat and sorted using sort. After the sort, partitions are re-
built using split which are then transferred to the cluster nodes.
Since Bowtie output and SOAPsnp input are not completely
compatible, we have used a custom-written Java program in
order to convert between these two data formats in a parallel
fashion. Subsequently, soapsnp has been invoked in parallel
as well. After transferring the results of SOAPsnp to a single
cloud node, we again use the cat command to merge all results
to a single file, which is finally transferred back to the local
client machine using rsync.

Figure 7 shows the total processing time for different
stages of the trivial implementation as the number of cluster
nodes is increased. In all cases, the times for initial data
upload, the single-node sorting stage, and the SOAPsnp stage
stay constant, whereas the times for Bowtie and the data
format conversion step get reduced with increasing number of

Fig. 8. Crossbow.

nodes, converging towards the upload time. Overall, the total
processing time asymptotically converges towards the upload
time.
Crossbow. This solution represents state of the art in
MapReduce-based DNA sequence analysis in the cloud. In
Crossbow, Bowtie is implemented as a mapper and SOAPsnp
is implemented as a reducer using Hadoop streaming [36]
allowing the usage of UNIX binaries for data processing.
Furthermore, Crossbow makes heavy use of Hadoop’s sorting
facility, where Bowtie simply emits tuples which get sorted
by the Hadoop framework. Sorted partitions of Bowtie output
are fed into SOAPsnp reducers. Finally, data is merged into a
single file via a postprocessing step.

Figure 8 shows the total processing time for different stages
of the Crossbow workflow as the number of cluster nodes
is increased. Like in the trivial solution, there is a constant
upload latency. In addition, there is a constant latency for
the preprocessing step, which is higher. This non-parallelized
preprocessing step dominates the total processing time as the
cluster grows, constituting a significant bottleneck. Otherwise,
processing times for the rest of the stages decrease as more
nodes are added. It is interesting to observe that SOAPsnp
in Crossbow needs significantly more time than that of the
trivial solution, which we believe is because the reduce time in
Hadoop also includes the times spent for hashing, partitioning,
and sorting.
The Stream-as-you-go Solution. The main difference of this
approach over the previous two is that data is transferred,
accessed, and processed in small increments as it streams
through the processing pipeline. We first discuss if the up-
stream bandwidth requirements of our experimental use case
are feasible (i.e., are we in the “stream-as-you-go” quadrant
of Figure 1?). Upstream bandwidth requirements can be esti-
mated with the following function: f(n, t) = n∗t

4 , where n is
the number of parallel processing nodes and t is the throughput
of the slowest operator in the parallel pipeline. The factor of 4



Fig. 9. The stream-as-you-go solution.

in the formula is due to the data compression achieved using
Zebedee (Section IV). In our use case, Bowtie came out to
be the slowest operator with 9.3 MBit/s throughput measured
on a single m1.large EC2 instance, whereas SOAPsnp has a
throughput of 41 MBit/s. Therefore, for a 16-node cluster,
the upstream bandwidth requirement can be estimated as 37.2
MBit/s (i.e., 9.3 MBit/s divided by the compression factor
4 and multiplied by the number of nodes 16). As a result,
although our university network has more than 80 MBit/s
uplink capacity, we have limited it to 37.2 MBit/s in our
experiments.

Figure 9 shows the total processing time for different stages
of our stream-as-you-go implementation as the number of clus-
ter nodes is increased. However, the graphs of this experiment
should be interpreted differently than the previous graphs,
since, due to the incremental processing model, different stages
of the processing pipeline overlap in time. More specifically,
each graph shows the time difference between the upload start
time and the termination time of the process that belong to
that stage of the pipeline (i.e., the graphs from bottom to top
are cumulative). We see that the total processing time for all
stages of the processing pipeline scales linearly with the size
of the cluster. Although we do not suffer from the data transfer
latency any more, the lower bound for total processing time is
still determined by the total data transfer time in the network.
Summary. Figure 10 summarizes the total processing time
graphs of all three approaches on the same plot. As it can
be clearly seen, our incremental stream-as-you-go approach
achieves almost an order of magnitude reduction in processing
time compared to the state of the art.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a stream-as-you-go ap-
proach to data- and compute-intensive cloud applications
which can hide data transfer latencies while maintaining
linear scalability. We have shown that re-implementing a

Fig. 10. Summary of experimental results.

MapReduce-based DNA sequence analysis application on a
stream processing engine to provide incremental data pro-
cessing capabilities can reduce the total processing time by
almost an order of magnitude when deployed in a cloud-based
environment. Furthermore, our incremental distributed sort
implementation shows that even a stage of the data processing
pipeline which require access to the whole data set can benefit
from incrementality.

Future work includes adding fault tolerance support to
our stream-based approach, an important feature that is also
supported by the MapReduce-based alternatives. Moreover,
we would like to further explore the stream-as-you-go idea
in a way to provide a more generally applicable incremental
processing framework than an application-specific one.
Acknowledgments. We would like to thank Tamer Özsu for
his valuable input. This work has been supported in part by
an IBM faculty award.

REFERENCES

[1] G. H. Fernald, E. Capriotti, R. Daneshjou, K. J. Karczewski, and
R. B. Altman, “Bioinformatics Challenges for Personalized Medicine,”
Bioinformatics, vol. 27, no. 13, 2011.

[2] G. Graefe, “Query Evaluation Techniques for Large Databases,” ACM
Computing Surveys, vol. 25, no. 2, 1993.

[3] R. Kienzler, R. Bruggmann, A. Ranganathan, and N. Tatbul, “Large-
scale DNA Sequence Analysis in the Cloud: A Stream-based Approach,”
in Euro-Par 6th Workshop on Virtualization in High-Performance Cloud
Computing (VHPC’11), August 2011.

[4] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, “Ultrafast and
Memory-efficient Alignment of Short DNA Sequences to the Human
Genome,” Genome Biology, vol. 10, no. 3, 2009.

[5] R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang,
“SNP Detection for Massively Parallel Whole-genome Resequencing,”
Genome Research, vol. 19, no. 6, 2009.

[6] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and
M. Brudno, “SHRiMP: Accurate Mapping of Short Color-space Reads,”
PLoS Computational Biology, vol. 5, no. 5, 2009.

[7] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg,
“Searching for SNPs with Cloud Computing,” Genome Biology, vol. 10,
no. 11, 2009.

[8] “IBM InfoSphere Streams,” http://www.ibm.com/software/data/infosphe
re/streams/.



[9] “Amazon Elastic Compute Cloud,” http://aws.amazon.com/ec2/.
[10] K. V. Voelkerding, S. A. Dames, and J. D. Durtschi, “Next Generation

Sequencing: From Basic Research to Diagnostics,” Clinical Chemistry,
vol. 55, no. 4, 2009.

[11] H. Li and N. Homer, “A Survey of Sequence Alignment Algorithms
for Next Generation Sequencing,” Briefings in Bioinformatics, vol. 11,
no. 5, 2010.

[12] F. S. Collins, M. Guyer, and A. Chakravarti, “Variations on a Theme:
Cataloging Human DNA Sequence Variation,” Science, vol. 278, no.
5343, 1997.

[13] M. C. Schatz, “CloudBurst: Highly Sensitive Read Mapping with
MapReduce,” Bioinformatics, vol. 25, no. 11, 2009.

[14] “FASTQ Format Specification,” http://maq.sourceforge.net/fastq.shtml.
[15] “The Hadoop Distributed File System: Architecture and Design,” http:

//hadoop.apache.org/common/docs/r0.18.3/hdfs design.pdf.
[16] J.-H. Boese, A. Andrzejak, and M. Hoegqvist, “Beyond Online Aggrega-

tion: Parallel and Incremental Data Mining with Online Map-Reduce,” in
WWW Workshop on Massive Data Analytics over the Cloud (MDAC’10),
April 2010.

[17] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, J. Gerth, J. Talbot,
K. Elmeleegy, and R. Sears, “Online Aggregation and Continuous Query
Support in MapReduce,” in ACM SIGMOD Conference, June 2010.

[18] J. Dittrich, J. A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a Yellow Elephant Run Like a Cheetah
(Without It Even Noticing),” PVLDB, vol. 3, no. 1, 2010.

[19] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce: Optimizing Re-
source Usages of Data-parallel Applications on Multicore with Tiling,”
in International Conference on Parallel Architectures and Compilation
Techniques (PACT’10), September 2010.

[20] A. Verma, N. Zea, B. Cho, I. Gupta, and R. Campbell, “Breaking the
MapReduce Stage Barrier,” in IEEE International Conference on Cluster
Computing (CLUSTER’10), October 2010.

[21] M. Elteir, H. Lin, and W. chun Feng, “Enhancing MapReduce via
Asynchronous Data Processing,” in IEEE International Conference on
Parallel and Distributed Systems (ICPADS’10), December 2010.

[22] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “iMapReduce: A Distributed
Computing Framework for Iterative Computation,” in IPDPS DataCloud
Workshop, May 2011.

[23] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neu-
mann, V. Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell,
and X. Wang, “Nova: Continuous Pig/Hadoop Workflows,” in ACM
SIGMOD Conference, June 2011.

[24] N. Pansare, V. Borkar, C. Jermaine, and T. Condie, “Online Aggregation
for Large MapReduce Jobs,” PVLDB, vol. 4, no. 11, 2011.

[25] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy, “A Platform
for Scalable One-pass Analytics using MapReduce,” in ACM SIGMOD
Conference, June 2011.

[26] R. Lammel and D. Saile, “MapReduce with Deltas,” in International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’11), July 2011.

[27] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini, “In-
coop: MapReduce for Incremental Computations,” in ACM Symposium
on Cloud Computing (SOCC’11), October 2011.

[28] N. Backman, K. Pattabiraman, and U. Cetintemel, “C-MR: A Continu-
ous MapReduce Processing Model for Low-Latency Stream Processing
on Multi-Core Architectures,” Brown University, Tech. Rep. CS-10-01,
2010.

[29] D. Logothetis, C. Trezzo, K. Webb, and K. Yocum, “In-situ MapReduce
for Log Processing,” in USENIX Annual Technical Conference, June
2011.

[30] “Zebedee Secure Tunnel,” http://sourceforge.net/projects/zebedee.
[31] “Whole Genome Sequencing,”

http://en.wikipedia.org/wiki/Full genome sequencing.
[32] “Whole Exome Sequencing,”

http://en.wikipedia.org/wiki/Exome sequencing.
[33] “RNA-Seq,” http://en.wikipedia.org/wiki/RNA-Seq.
[34] “Red-Black Trees,” http://en.wikipedia.org/wiki/Red-blacktree.
[35] “Crossbow,” http://bowtie-bio.sourceforge.net/crossbow/.
[36] “Hadoop Streaming,” http://hadoop.apache.org/common/docs/r0.15.2/

streaming.html.


