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Abstract. In typical applications of homomorphic encryption, the first step consists
for Alice of encrypting some plaintext m under Bob’s public key pk and of sending the
ciphertext c = HEpk(m) to some third-party evaluator Charlie. This paper specifically
considers that first step, i.e., the problem of transmitting c as efficiently as possible from
Alice to Charlie. As others suggested before, a form of compression is achieved using
hybrid encryption. Given a symmetric encryption schemeE, Alice picks a random key k
and sends amuch smaller ciphertext c′ = (HEpk(k),Ek (m)) that Charlie decompresses
homomorphically into the original c using a decryption circuit CE−1 . In this paper, we
revisit that paradigm in light of its concrete implementation constraints, in particular
E is chosen to be an additive IV-based stream cipher. We investigate the performances
offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we
also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose
security has been firmly established for over a decade, and the new variant Kreyvium has
excellent performance.We also describe a second construction, based on exponentiation
in binary fields, which is impractical but sets the lowest depth record to 8 for 128-bit
security.

Keywords. Stream ciphers, Homomorphic cryptography, Trivium.

1. Introduction

Since the breakthrough result of Gentry [39] achieving fully homomorphic encryp-
tion (FHE), many works have been published on simpler and more efficient schemes
implementing homomorphic encryption. Because they allow arbitrary computations on
encrypted data, FHE schemes suddenly opened the way to exciting new applications, in
particular cloud-based services in several areas (see e.g. [43,56,62]).

Compressed Encryption. In these cloud applications, it is often assumed that some data
are sent encrypted under a homomorphic encryption (HE) scheme1 to the cloud to be
processed in a way or another. It is thus typical to consider, in the first step of these
applications, that a user (Alice) encrypts some data m under some other user’s public
key pk (Bob) and sends some homomorphic ciphertext c = HEpk(m) to a third-party
evaluator in the cloud (Charlie). The roles of Alice and Bob are clearly distinct, even
though they might be played by the same entity in some applications.
However, all HE schemes proposed so far suffer from a very large ciphertext expan-

sion; the transmission of c between Alice and Charlie is therefore a very significant
bottleneck in practice. The problem of reducing the size of c as efficiently as possible

1This terminology includes both FHE schemes and somewhat homomorphic encryption.
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has first been considered in [62] wherein m is encrypted with a symmetric encryption
scheme E under some key k randomly chosen by Alice, who then sends a much smaller
ciphertext c′ = (HEpk(k),Ek(m)) to Charlie. Given c′, Charlie then exploits the homo-
morphic property of HE and recovers

c = HEpk(m) = CE−1
(
HEpk(k),Ek(m)

)

by homomorphically evaluating the decryption circuit CE−1 . This can be assimilated to
a compression method for homomorphic ciphertexts, c′ being the result of applying a
compressed encryption scheme to the plaintext m and c being recovered from c′ using a
ciphertext decompression procedure. In that approach obviously, the new encryption rate
|c′|/|m| becomes asymptotically close to 1 for longmessages,which leaves no significant
margin for improvement.However, the paradigmof ciphertext compression leaves totally
open the question of how to choose E in a way that minimizes the decompression
overhead, while preserving the same security level as originally intended.

Prior Art. The cost of a homomorphic evaluation of several symmetric primitives has
been investigated, including optimized implementations of AES [20,30,40], and of
the lightweight block ciphers Simon [57] and Prince [31]. Usually lightweight block
ciphers seem natural candidates for efficient evaluations in the encrypted domain. How-
ever, they may also lead to much worse performances than a homomorphic evalua-
tion of, say, AES. Indeed, contemporary HE schemes use noisy ciphertexts, where
a fresh ciphertext includes a noise component which grows along with homomor-
phic operations. Usually a homomorphic multiplication increases the noise by much
larger proportions than a homomorphic addition. The maximum allowable level of
noise (determined by the system parameters) then depends mostly on the multiplica-
tive depth of the circuit. Many lightweight block ciphers balance out their simplic-
ity by a large number of rounds, e.g., KATAN and KTANTAN [25], with the effect
of considerably increasing their multiplicative depth. This type of design is there-
fore prohibitive in an HE context. Still Prince appears to be a much more suit-
able block cipher for homomorphic evaluation than AES (and than Simon), because
it specifically targets applications that require a low latency; it is designed to mini-
mize the cost of an unrolled implementation [12] rather than to optimize, e.g., silicon
area.
At Eurocrypt 2015, Albrecht, Rechberger, Schneider, Tiessen and Zohner observed

that the usual criteria that rule the design of lightweight block ciphers are not appro-
priate when designing a symmetric encryption scheme with a low-cost homomorphic
evaluation [2]. Indeed, both the number of rounds and the number of binary multipli-
cations required to evaluate an Sbox have to be taken into account. Minimizing the
number of rounds is a crucial issue for low-latency ciphers like Prince, while mini-
mizing the number of multiplications is a requirement for efficient masked implemen-
tations.
These two criteria have been considered together for the first time by Albrecht et al.

in the recent design of a family of block ciphers called LowMC [2] with very small
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multiplicative size and depth.2 However, the originally proposed instances of LowMC,
namely LowMC-80 and LowMC-128, have some security issues [28], inherent in their
low multiplicative complexity. Indeed, the algebraic normal forms (i.e., the multivariate
polynomials) describing the encryption and decryption functions are sparse and have a
low degree. This type of features is usually exploited in algebraic attacks, cube attacks
and their variants, e.g., [5,23,29]. While these attacks are rather general, the improved
variant used for breaking the original LowMC [28], named interpolation attack [50],
specifically applies to block ciphers. Indeed, it exploits the sparse algebraic normal
form of some intermediate bit within the cipher using that this bit can be evaluated
both from the plaintext in the forward direction and from the ciphertext in the backward
direction. This technique yields several attacks including a key-recovery attack against
LowMC-128 with time complexity 2118 and data complexity 273, leading the designers
to propose a tweaked version [66].

OurContributions.We emphasize that beyond the task of designing anHE-friendly block
cipher, revisiting the whole compressed encryption scheme (in particular its internal
mode of operation) is what is really needed in order to take these concrete HE-related
implementation constraints into account.
First, we identify that homomorphic decompression is subject to an offline phase and

an online phase. The offline phase is plaintext-independent and therefore can be per-
formed in advance, whereas the online phase completes decompression upon reception
of the plaintext-dependent part of the compressed ciphertext. Making the online phase
as quick as technically doable leads us to choose an additive IV-based stream cipher
to implement E. However, we note that the use of a lightweight block cipher as the
building-block of that stream cipher usually provides a security level limited to 2n/2

where n is the block size [67], thus limiting the number of blocks encrypted under the
same key to significantly less than 232 (i.e., 32 GB for 64-bit blocks).

As a result, we propose our own candidate forE: the keystreamgenerator Trivium [27],
which belongs to the eSTREAM portfolio of recommended stream ciphers, and a new
proposal called Kreyvium, which shares the same internal structure but allows for bigger
keys of 128 bits. The main advantage of Kreyvium over Trivium is that it provides
128-bit security (instead of 80-bit) with the same multiplicative depth, and inherits the
same security arguments. It is worth noticing that the design of a variant of Trivium
which guarantees a 128-bit security level has been raised as an open problem for the last
10 years [3, p. 30]. Beside a higher security level, it also accommodates longer IVs, so that
it can encrypt up to 46 · 2128 plaintext bits under the same key, with multiplicative depth
only 12. Moreover, both Trivium and Kreyvium are resistant against the interpolation
attacks used for breaking the original LowMC since these ciphers do not rely on a
permutation which would enable the attacker to compute backwards. We implemented
our construction and instantiated it with Trivium, Kreyvium and LowMC in CTRmode.
Our results show that the promising performances attained by the HE-dedicated block
cipher LowMC can be achieved with well-known primitives whose security has been
firmly established for over a decade.

2It is worth noting that in an HE context, reducing the multiplicative size of a symmetric primitive might
not be the first concern (while it is critical in a multiparty computation context, which also motivated the work
of Albrecht et al. [2]), whereas minimizing the multiplicative depth is of prime importance.
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Our second candidate for E relies on a completely different technique based on the
observation thatmultiplication in binary fields isF2-bilinear,making it possible to homo-
morphically exponentiate field elementswith a log–log-depth circuit.We show, however,
that this second approach remains disappointingly impractical.

Organization of the Paper. We introduce a general model and a generic construction
to compress homomorphic ciphertexts in Sect. 2. Our construction using Trivium and
Kreyvium is described in Sect. 3. Subsequent experimental results are presented in
Sect. 4. Section 5 presents and discusses our second construction based on discrete logs
on binary fields.

2. A Generic Design for Efficient Decompression

In this section, we describe our model and generic construction to transmit compressed
homomorphic ciphertexts between Alice and Charlie. We use the same notation as in
the introduction: Alice wants to send some plaintext m, encrypted under Bob’s public
key pk (of an homomorphic encryption scheme HE) to a third-party evaluator Charlie.

2.1. Homomorphic Encryption

As mentioned in the introduction, in all existing HE schemes a ciphertext c contains a
noise r which grows with homomorphic operations. Given the system parameters, the
correctness of the decryption is ensured as long as r does not exceed a given bound.
When the function to be homomorphically evaluated is known in advance, the system
parameters can be chosen accordingly so that the noise remains smaller than its max-
imum bound (and we obtain a so-called somewhat homomorphic encryption scheme).
Otherwise, the only known method of obtaining fully homomorphic encryption (FHE)
where the system parameters do not depend on the complexity of the evaluated functions
is Gentry’s bootstrapping procedure [39]. This procedure consists in homomorphically
evaluating the decryption circuit of the FHE scheme on the ciphertext, and allows to
shrink a noise close to its maximum bound to a state after which subsequent homomor-
phic operations are possible. Unfortunately, this procedure remains significantly more
costly than usual homomorphic operations [46], even if recent progresses have signifi-
cantly reduced its cost [21,32,64]. For example, a recent result by Ducas andMicciancio
improved by several orders ofmagnitude the latency of the bootstrapping procedure [32].
But, in this new scheme, bootstrapping is required after each (NAND) gate evaluated
homomorphically. The limits of this solution have been recently pushed forward: for
instance, [64] provides a way to optimize the bootstrapping management (for any FHE),
and [21] proposes an efficient way to execute bootstrapping (especially for FHE based
on [41]). But, the cost of bootstrapping still remains very high.
Therefore, an efficient implementation will aim at minimizing the number of call

thereof, while ensuring correctness after decryption. Significant improvements over
naive evaluations are illustrated, e.g., in [20,58]. However, loads of use-cases using
homomorphic encryption evaluate functions of a priori bounded complexity. For exam-
ple statistical tests,machine learning algorithms [43] or private computationon encrypted
genomic data [56] can be performed using somewhat homomorphic encryption (SWHE)
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schemes, among which the most recent, secure and efficient ones are [15,35,53]. The
system parameters are, therefore, chosen as small as possible for efficiency. More gener-
ally, within the context of real-life applications, SWHE schemes are believed to already
offer a number of compelling advantages.
In the following, we adopt the usual simplified setting as in, e.g., [2,58] which fits cur-

rent most efficient HE schemes. This approximation is often considered in the literature
and remains valid as long as the proportion of additions does not become overwhelming
in the circuit. Clearly, our simplified model would become invalid outside of this context
(see, e.g., [2]).We refer to the HE schemes based on lattices [13–15,35,53] implemented
in numerous works [31,40,43,45,46,56,57,62] and on the integers [22]. Namely, each
ciphertext ci is associated with a discretized noise level �i = 1, 2, . . . where 1 is the
noise level in a fresh ciphertext. Let c1 (resp. c2) be a ciphertext with noise level �1
(resp. �2). Homomorphic additions c3 = c1 + c2 (resp. homomorphic multiplications
c3 = c1 × c2) yield noise level �3 = max(�2, �1) (resp. �3 = max(�1, �2) + 1). Note
that our definition of noise levels neglects the logarithmic increase of the noise size after
a homomorphic addition. The maximal value of the �i ’s represents the multiplicative
depth of the circuit and is what we want to minimize to set the parameters as small as
possible.
Throughout the rest of the paper, we assume the HE scheme HEpk(·) encrypts sep-

arately each plaintext bit (possibly in an SIMD fashion [68]). We say that the latency
of a homomorphic evaluation is the time required to perform the entire homomorphic
evaluation, while its throughput is the number of blocks processed per unit of time [57].

2.2. Offline/Online Phases in Ciphertext Decompression

Most practical scenarios would likely find it important to distinguish between three
distinct phases within the homomorphic evaluation of CE−1 :

1. An offline key-setup phase which only depends on Bob’s public key and can be
performed once and for all before Charlie starts receiving compressed ciphertexts
encrypted under Bob’s key;

2. An offline decompression phase which can be performed only based on some
plaintext-independent material found in the compressed ciphertext;

3. An online decompression phase which aggregates the result of the offline phase
with the plaintext-dependent part of the compressed ciphertext and (possibly very
quickly) recovers the decompressed ciphertext c.

As such, our general-purpose formulation c′ = (HEpk(k),Ek(m)) does not allow to
make a clear distinction between these three phases. In our context, it is much more
relevant to reformulate the encryption scheme as an IV-based encryption scheme where
the encryption process and decryption process are both deterministic but depend on an
IV:

Ek(m)
def= (

IV,E′
k,IV(m)

)
.

Since the IV has a limited length, it can be either transmitted during an offline prepro-
cessing phase, or may alternately correspond to a state which is maintained by the server.
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Now, to minimize the latency of homomorphic decompression for Charlie, the online
phase should be reduced to a minimum. The most appropriate choice in this respect
consists in using an additive IV-based stream cipher Z so that

E′
k,IV(m) = Z(k, IV) ⊕ m.

In this reformulation, the decompression process is clearly divided into a offline pre-
computation stage which only depends on pk, k and IV, and an online phase which
is plaintext-dependent. The online phase is thus reduced to a mere XOR between the
plaintext-dependent part of the ciphertext E′

k,IV(m) and the HE-encrypted keystream
HE(Z(k, IV)), which comes essentially for free in terms of noise growth in HE cipher-
texts. All expensive operations (i.e., homomorphicmultiplications) are performed during
the offline decompression phase where HE(Z(k, IV)) is computed from HE(k) and IV.

2.3. Our Generic Construction

We devise the generic construction depicted in Fig. 1. It is based on a homomorphic
encryption scheme HE with plaintext space {0, 1}, an expansion function G mapping
�IV-bit strings to strings of arbitrary size, and a fixed-size parametrized function F with
input size �x , parameter size �k and output size N .

k

IV

HEpk(·)

Z

G

x1 xt

F F F · · · F

z1 z2 z3 · · · ztkeystream =

offline

online

Alice Charlie

m ⊕ m ⊕ keystream

HEpk(k)

IV

G

x1 xt

CF CF CF · · · CF

HEpk(keystream)

C⊕ HEpk(m)

Fig. 1. Our generic construction. The multiplicative depth of the circuit is equal to the depth of CF . This will
be the bottleneck in our protocol and we want the multiplicative depth of F to be as small as possible. With
current HE schemes, the circuit C⊕ is usually very fast (addition of ciphertexts) and has a negligible impact
on the noise in the ciphertext.
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Compressed Encryption. Given an �m-bit plaintext m, Bob’s public key pk and IV ∈
{0, 1}�IV , the compressed ciphertext c′ is computed as follows:

1. Set t = ��m/N�,
2. Set (x1, . . . , xt ) = G(IV; t�x ),
3. Randomly pick k ← {0, 1}�k ,
4. For 1 ≤ i ≤ t , compute zi = Fk(xi ),
5. Set keystream to the �m leftmost bits of z1‖ · · · ‖zt ,
6. Output c′ = (HEpk(k),m ⊕ keystream).

Ciphertext Decompression. Given c′ as above, Bob’s public key pk and IV ∈ {0, 1}�IV ,
the ciphertext decompression is performed as follows:

1. Set t = ��m/N�,
2. Set (x1, . . . , xt ) = G(IV; t�x ),
3. For 1 ≤ i ≤ t , compute HEpk(zi ) = CF

(
HEpk(k), xi

)
with some circuit CF ,

4. Deduce HEpk(keystream) from HEpk(z1), . . . ,HEpk(zt ),
5. Compute c = HEpk(m) = C⊕

(
HEpk(keystream),m ⊕ keystream

)
.

The circuit C⊕ computes HE(a ⊕ b) given HE(a) and b where a and b are bit strings
of the same size. In our construction, the cost of decompression per plaintext block is
fixed and roughly equals one single evaluation of the circuit CF ; most importantly, the
multiplicative depth of the decompression circuit is also fixed, and set to the depth of
CF .
How Secure are Compressed Ciphertexts? From a high-level perspective, compressed
homomorphic encryption is just hybrid encryption and relates to the generic KEM-
DEM framework. This formalization introduced by Cramer and Shoup [24] refers to
hybrid encryption schemes consisting of a key encapsulation mechanism (KEM), i.e.,
an asymmetric part to encrypt a random key, plus a data encapsulation mechanism
(DEM) corresponding to the encryption of the data with a symmetric cipher. A com-
plete characterization of the security results attached to the KEM–DEM framework
is presented in [47]. In particular, when both the KEM and the DEM are IND-CPA,
the resulting hybrid PKE scheme is at least IND-CPA. This result applies directly
here: assuming the semantic security of our homomorphic KEM,3 and a general-
purpose IND-CPA secure DEM, our compressed encryption scheme is IND-CPA
secure.

Instantiating the Paradigm. The rest of the paper focuses on how to choose the expansion
function G and function F so that the homomorphic evaluation of CF is as fast (and its
multiplicative depth as low) as possible. In our approach, the value of IV is assumed
to be shared between Alice and Charlie and needs not be transmitted along with the
compressed ciphertext. For instance, IV is chosen to be an absolute constant such as
IV = 0� where � = �IV = �x . Another example is to take for IV ∈ {0, 1}� a synchronized
state that is updated between transmissions. The expansion function G is chosen to

3Note that it is usual that HE schemes succeed in achieving CPA security, but often grossly fail to realize
any form of CCA1 security, to the point of admitting simple key-recovery attacks [19].
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implement a counter in the sense of the NIST description of the CTR mode [63], for
instance

G(IV; t�) = (IV, IV � 1, . . . , IV � (t − 1)) where a � b = (a + b) mod 2�.

The resulting keystream z1‖ · · · ‖zt then corresponds to the sequence formed by the
successive images under Fk of a counter initialized by the IV. Therefore, F must be
chosen to ensure both an appropriate security level and a low multiplicative depth. It is
well known that the output of an iterated PRF used in CTR mode is computationally
indistinguishable from random [8, Th. 13]. Hence, under the assumption that F is a PRF,
the keystream z1‖ · · · ‖zt produced by our construction is indistinguishable. It follows
directly from [47] that the compressed encryption scheme is IND-CPA.
In Sect. 3, we focus on the special case where Fk : IV �→ Fk(IV) is an IV-dependent

stream cipher. As concrete proposals, it will be instantiated by Trivium, or by a new
variant, called Kreyvium. In this case, F is PRF if and only if the generator instantiated
with a randomkey andmapping the IV’s to the keystream is secure [9, Sec. 3.2].Although
the security of Trivium and Kreyvium is empiric, Sect. 3 provides a strong rationale for
their designs and makes them the solutions with the smallest homomorphic evaluation
latency known so far.

Why Not Use a Block Cipher for F? Although not specifically in these terms, the use of
lightweight block ciphers like Prince and Simon has been proposed in the context of
compressed homomorphic ciphertexts, e.g., [31,57]. However, a complete encryption
scheme based on the ciphers has not been defined. This is a major issue since the security
provided by all classical modes of operation (including all variants of CBC, CTR, CFB,
OFB, OCB…) is inherently limited to 2n/2 where n is the block size [67] (see also,
e.g., [52, p. 95]). Only very few modes providing beyond-birthday security have been
proposed, e.g., [49,70], but they induce a higher implementation cost and their security
is usually upper-bounded by 22n/3.

In other words, the use of a block cipher operating on 64-bit blocks like Prince or
Simon-32/64 implies that the number of blocks encrypted under the same key should be
significantly less than 232 (i.e., 32GB for 64-bit blocks). Therefore, only block ciphers
with a large enough block size, like the LowMC instantiation with a 256-bit block
proposed in [2], are suitable in applications which may require the encryption of more
than 232 bits under the same key.

3. Trivium and Kreyvium, Two Low-Depth Stream Ciphers

An additive stream cipher is the natural choice to ensure good performance and an appro-
priate security level. Most notably, since an implementation with a low multiplicative
depth is needed, stream ciphers seem to be more promising than other constructions for
PRFs. We now focus on keystream generation, and on its homomorphic evaluation. An
IV-based keystream generator is decomposed into:

– A resynchronization function,Sync, which takes as input the IV and the key (possi-
bly expanded by some precomputation phase), and outputs some n-bit initial state;



894 A. Canteaut et al.

– A transition function � which computes the next state of the generator;
– A filtering function f which computes a keystream segment from the internal state.

internal state

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

k IV

keystream

Φ

f

Sync

3.1. Keystream Generators with a Low Multiplicative Depth

The multiplicative depth of the circuit implementing the keystream generator highly
depends on the multiplicative depth of the transition function. If only the encrypted
(possibly expanded) key is transmitted, the homomorphic evaluation of Sync must be
performed. Then, generating N keystream bits requires a circuit of depth up to

(depth(Sync) + N depth(�) + depth( f )) .

The best design strategy for minimizing this value then consists in choosing a transition
function with a small depth. The extreme option is to choose for � a linear function as
in the CTR mode where the counter is implemented by an LFSR. Following our work,
this option has also been chosen in a recent stream cipher proposal named FLIP [60],
but some cryptanalytic results [16,33] show that its parameters must be selected very
carefully. An alternative strategy consists in choosing a nonlinear transition whose depth
does not increase too fast when it is iterated.

Which Quantity Must be Encrypted Under the HE? In order to limit the multiplicative
depth of the decryption circuit, we may prefer to transmit a longer secret k̃, from which
more calculations can be done at a small multiplicative depth. Typically, for a block
cipher, the sequence formed by all round-keys can be transmitted to the server. In this
case, the key scheduling does not have to be taken into account in the homomorphic
evaluation of the decryption function. Similarly, stream ciphers offer several such trade-
offs between the encryption rate and the encryption throughput. The encryption rate,
i.e., the ratio between the size of c′ = (HEpk(k),Ek(m)) and the plaintext size �m , is
defined as

ρ = |c′|
�m

= |Ek(m)|
�m

+ |k̃| × (HE expansion rate)

�m
.
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The extremal situation obviously corresponds to the case where the message encrypted
under the homomorphic scheme is sent directly, i.e., c′ = HEpk(m). The multiplicative
depth here is 0, as no decryption needs to be performed. In this case, ρ corresponds to
the HE expansion rate.
The following alternative scenarios can then be compared.

1. Only the secret key is encrypted under the homomorphic scheme, i.e., k̃ = k. Then,
since we focus on symmetric encryption schemes with rate 1, we get

ρ = 1 + �k × (HE expansion rate)

�m

which is the smallest encryption rate we can achieve for �k-bit security. In a
nonce-based stream cipher, �m is limited by the IV size �IV and by the max-
imal keystream length N (d) which can be produced for a fixed multiplicative
depth d ≥ depth(Sync)+depth( f ). Then, theminimal encryption rate is achieved
for messages of any length �m ≤ 2�IVN (d).

2. An intermediate case consists in transmitting the initial state of the generator, i.e.,
the output of Sync. Then, the number of bits to be encrypted by the HE increases
to the size n of the internal state, while the number of keystream bits which can
be generated from a given initial state with a circuit of depth d corresponds to
N (d + depth(Sync)). Then, we get

ρ = 1 + n × (HE expansion rate)

N (d + depth(Sync))
,

for any message length. The size of the internal state is at least twice the
size of the key. Therefore, this scenario is not interesting, unless the number
of plaintext bits �m to be encrypted under the same key is smaller than twice
N (d + depth(Sync)).

Size of the Internal State. Amajor specificity of our context is that a large internal state can
be easily handled. Indeed, in most classical stream ciphers, the internal state size usually
appears as a bottleneck because the overall size of the quantities to be stored highly
influences the number of gates in the implementation. This is not the case in our context.
Itmight seem, a priori, that increasing the size of the internal state automatically increases
the number of nonlinear operations (because the number of inputs of � increases). But,
this is not the case if a part of this larger internal state is used, for instance, for storing
the secret key. This strategy can be used for increasing the security at no implementation
cost. Indeed, the complexity of all generic attacks aiming at recovering the internal state
of the generator is O(2n/2) where n is the size of the secret part of the internal state
even if some part is not updated during the keystream generation. For instance, the time–
memory–data-trade-off attacks in [6,10,42] aim at inverting the functionwhichmaps the
internal state of the generator to the first keystream bits. But precomputing some values
of this function must be feasible by the attacker, which is not the case if the filtering or
transition function depends on some secret material. On the other hand, the size n′ of the
non-constant secret part of the internal state determines the data complexity for finding
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a collision on the internal state: the length of the keystream produced from the same
key is limited to 2n

′/2. But, if the transition function or the filtering function depends on
the IV, this limitation corresponds to the maximal keystream length produced from the
same key/IV pair. It is worth noticing that many attacks require a very long keystream
generated from the same key/IV pair and do not apply in our context since the keystream
length is strictly limited by the multiplicative depth of the circuit.

3.2. Trivium in the HE Setting

Trivium [27] is one of the seven stream ciphers recommended by the eSTREAM project
after a 5-year international competition [34]. Due to the small number of nonlinear
operations in its transition function, it appears as a natural candidate in our context.

Description. Trivium is a synchronous stream cipher with a key and an IV of 80 bits each.
Its internal state is composed of 3 registers of sizes 93, 84 and 111 bits, corresponding to
a size of 288 bits in total. We use the notation introduced by the designers: the leftmost
bit of the 93-bit register is s1, and its rightmost one is s93; the leftmost bit of the register
of size 84 is s94 and the rightmost s177; the leftmost bit of register of size 111 is s178
and the rightmost s288. The initialization and the generation of an N -bit keystream are
described below, and depicted in Fig. 2.

(s1, s2, . . . , s93) ← (K0, . . . , K79, 0, . . . , 0)
(s94, s95, . . . , s177) ← (I V0, . . . , I V79, 0, . . . , 0)
(s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1)
for i = 1 to 1152 + N do

t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)

end for

No attack better than an exhaustive key search is known so far on full Trivium. It can
then be considered as secure. The family of attacks that seems to provide the best result
on round-reduced versions is the cube attack and its variants [5,29,37,59,69]. They
recover some key bits (resp. provide a distinguisher on the keystream) if the number
of initialization rounds is reduced to 799 (resp. 885) rounds out of 1152. The highest
number of initialization rounds that can be attacked is 961: in this case, a distinguisher
exists for a class of weak keys [55].
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Fig. 2. Trivium.

Multiplicative Depth. It is easy to see that the multiplicative depth grows quite slowly
with the number of iterations. An important observation is that, in the internal state,
only the first 80 bits in Register 1 (the key bits) are initially encrypted under the HE
and that, as a consequence, performing hybrid clear and encrypted data calculations is
possible (this is done by means of the following simple rules: 0 · [x] = 0, 1 · [x] = [x],
0 + [x] = [x] and 1 + [x] = [1] + [x], where the square brackets denote encrypted
bits and where in all but the latter case, a homomorphic operation is avoided which is
specially desirable for multiplications). This optimization allows for instance to increase
the number of bits which can be generated (after the 1152 blank rounds) at depth 12
from 42 to 57 (i.e., a 35% increase). Then, the relevant quantity in our context is the
multiplicative depth of the circuit which computes N keystream bits from the 80-bit key.

Proposition 1. In Trivium, the keystream length N (d)which can be produced from the
80-bit key after 1152 initialization rounds with a circuit of multiplicative depth d, d ≥ 4,
is given by

N (d) = − 1152 + 282 ×
⌊d
3

⌋
+

⎧
⎨

⎩

81 if d ≡ 0 mod 3
160 if d ≡ 1 mod 3
269 if d ≡ 2 mod 3

.

Proof. We first observe that, within any register in Trivium, the degree of the leftmost
bit is greater than or equal to the degrees of the other bits in the register. It is then sufficient
to study the evolution of the leftmost bits in the three registers. Let ti (d) denote the first
time instant (starting from t = 1) where the leftmost bit in Register i is computed by
a circuit of depth d. The depth of the feedback bit in Register i can increase from d
to (d + 1) if either a bit of depth (d + 1) reaches an XOR gate in the feedback function,
or a bit of depth d reaches one of the inputs of the AND gate. From the distance between
the leftmost bit and the first bit involved in the feedback (resp. and the first entry of the
AND gate) in each register, we derive that

t1(d + 1) = min(t3(d + 1) + 66, t3(d) + 109)

t2(d + 1) = min(t1(d + 1) + 66, t1(d) + 91)
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t3(d + 1) = min(t2(d + 1) + 69, t2(d) + 82)

The first key bits K78 and K79 enter the AND gate in Register 1 at time t = 13 (starting
from t = 1), implying t2(1) = 14. Then, t3(1) = 83 and t1(1) = 149. This leads to

t1(4) = 401, t2(4) = 296 and t3(4) = 335.

From d = 3, the differences ti (d + 1) − ti (d) are large enough so that the minimum in
the three recurrence relation corresponds to the right-hand term. We then deduce that,
for d ≥ 4,

– if d ≡ 1 mod 3,

t1(d) = 282 × (d − 1)

3
+ 119, t2(d) = 282 × (d − 1)

3
+ 14,

t3(d) = 282 × (d − 1)

3
+ 53.

– if d ≡ 2 mod 3,

t1(d) = 282 × (d − 2)

3
+ 162, t2(d) = 282 × (d − 2)

3
+ 210,

t3(d) = 282 × (d − 2)

3
+ 96.

– if d ≡ 0 mod 3,

t1(d) = 282 × (d − 3)

3
+ 205, t2(d) = 282 × (d − 3)

3
+ 253,

t3(d) = 282 × (d − 3)

3
+ 292.

The degree of the keystream produced at time t corresponds to the maximum between
the degrees of the bit at position 66 in Register 1, the bit at position 69 in Register 2 and
the bit at position 66 in Register 3. Then, for d > 3,

N (d) = min(t1(d + 1) + 64, t2(d + 1) + 67, t3(d + 1) + 64).

This leads to, for any d ≥ 4,

N (d) = 282 ×
⌊
d

3

⌋
+

⎧
⎨

⎩

81 if d ≡ 0 mod 3
160 if d ≡ 1 mod 3
269 if d ≡ 2 mod 3

.

�
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3.3. Kreyvium

Our first aim is to offer a variant of Trivium with 128-bit key and IV, without increasing
the multiplicative depth of the corresponding circuit. Besides a higher security level,
another advantage of this variant is that the number of possible IVs, and then themaximal
length of data which can be encrypted under the same key, increases from 280Ntrivium(d)

to 2128Nkreyvium(d). Increasing the key and IV size in Trivium is a challenging task,
mentioned as an open problem in [3, p. 30] for instance. In particular, Maximov and
Biryukov [61] pointed out that increasing the key-size in Trivium without any additional
modification cannot be secure due to some attack with complexity less than 2128. A first
attempt in this direction has been made in [61], but the resulting cipher accommodates
80-bit IV only, and its multiplicative complexity is higher than in Trivium since the
number of AND gates is multiplied by 2. Also, independently from our results, another
variant of Trivium named Trivi-A has been proposed [18]. It handles larger keys but uses
longer registers and then needs more rounds for mixing the internal state. This means
that it is much less adapted to our setting than Kreyvium.

Description. Our proposal, Kreyvium, accommodates a key and an IV of 128 bits each.
The only difference with the original Trivium is that we have added to the 288-bit
internal state a 256-bit part corresponding to the secret key and the IV. This part of the
state aims at making both the filtering and transition functions key- and IV-dependent.
More precisely, these two functions f and� depend on the key bits and IV bits, through
the successive outputs of two shift-registers K ∗ and IV∗ initialized by the key and by
the IV, respectively. The internal state is then composed of five registers of sizes 93, 84,
111, 128 and 128 bits, having an internal state size of 544 bits in total, among which
416 become unknown to the attacker after initialization.

Fig. 3. Kreyvium. The three registers in the middle correspond to Trivium. The modifications defining
Kreyvium correspond to the two registers at the top and at the bottom.
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We will use the same notation as the description of Trivium, and for the additional
registers we use the usual shift-register notation: the leftmost bit is denoted by K ∗

127 (or
IV∗

127), and the rightmost bit (i.e., the output) is denoted by K ∗
0 (or IV∗

0). Each one of
these two registers is rotated independently from the rest of the cipher. The generator is
described below and is depicted in Fig. 3.

(s1, s2, . . . , s93) ← (K0, . . . , K92)

(s94, s95, . . . , s177) ← (I V0, . . . , I V83)
(s178, s179, . . . , s288) ← (I V84, . . . , I V127, 1, . . . , 1, 0)
(K ∗

127, K
∗
126, . . . , K

∗
0 ) ← (K0, . . . , K127)

(I V ∗
127, I V

∗
126, . . . , I V

∗
0 ) ← (I V0, . . . , I V127)

for i = 1 to 1152 + N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288 + K∗

0
if i > 1152 do

output zi−1152 ← t1 + t2 + t3
end if

t1 ← t1 + s91 · s92 + s171 + IV∗
0

t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
t4 ← K ∗

0
t5 ← I V ∗

0
(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)
(K ∗

127, K
∗
126, . . . , K

∗
0 ) ← (t4, K ∗

127, . . . , K
∗
1 )

(I V ∗
127, I V

∗
126, . . . , I V

∗
0 ) ← (t5, I V ∗

127, . . . , I V
∗
1 )

end for

Related Ciphers. KATAN [25] is a lightweight block cipher with a lot in common with
Trivium. It is composed of two registers, whose feedback functions are very sparse, and
have a single nonlinear term. The key, instead of being used for initializing the state, is
introduced byXORing two key bits per round to the feedback bits. The recently proposed
stream cipher Sprout [4], inspired by Grain but with much smaller registers, also inserts
the key in a similar way: instead of using the key for initializing the state, one key bit is
XORed at each clock to the feedback function.We can see the parallelism between these
two ciphers and our newly proposed variant. In particular, the previous security analysis
on KATAN shows that this type of design does not introduce any clear weakness. Indeed,
the best attacks on round-reduced versions of KATAN so far [38] are meet-in-the-middle
attacks, that exploit the knowledge of the values of the first and the last internal states
(due to the block cipher setting). As this is not the case here, such attacks, as well
as the interpolation attacks against the original LowMC [28], do not apply. The best
attacks against KATAN, when excluding MitM techniques, are conditional differential
attacks [54,55].
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Design Rationale. We have decided to XOR the key bit K ∗
0 to the feedback function of

the register that interacts with the content of (s1, . . . , s63) the later, since (s1, . . . , s63)
is initialized with some key bits. The same goes for the IVn∗ register. Moreover, as the
key bits that start entering the state are the ones that were not in the initial state, all the
key bits affect the state at the earliest.
We also decided to initialize the state with some key bits and with all the IV bits, and

not with a constant value, as this way the mixing will be performed quicker. Then, we
can expect that the internal state bits after initialization are expressed as more complex
and less sparse functions in the key and IV bits.
Our change of constant is motivated by the conditional differential attacks from [55]:

the conditions needed for a successful attack are that 106 bits from the IV or the key are
equal to “0” and a single one needs to be “1.”This suggests that values set to zero “encour-
age” non-random behaviors, leading to our new constant. In other words, in Trivium, an
all-zero internal state is always updated in an all-zero state, while an all-one state will
change through time. The 0 at the end of the constant is added for preventing slide attacks.

Multiplicative Depth. Exactly as for Trivium, we can compute the number of keystream
bits which can be generated from the key at a given depth. The only difference with
Trivium is that the first register now contains 93 key bits instead of 80. For this reason,
the optimization using hybrid plaintext/ciphertext calculations is a bit less interesting:
for any fixed depth d ≥ 4, we can generate 11 bits less than with Trivium.

Proposition 2. In Kreyvium, the keystream length N (d) which can be produced from
the 128-bit key after 1152 initialization rounds with a circuit of multiplicative depth d,
d ≥ 4, is given by

N (d) = − 1152 + 282 ×
⌊
d

3

⌋
+

⎧
⎨

⎩

70 if d ≡ 0 mod 3
149 if d ≡ 1 mod 3
258 if d ≡ 2 mod 3

.

Proof. In Kreyvium, the recurrence relations defining the ti (d) are the same as in
Trivium. The only difference is that the first key bits now enter theANDgate inRegister 1
at time t = 1, implying t2(1) = 2. Then, t3(1) = 71, t1(1) = 137 and t3(2) = 85. The
situation is then similar to Trivium, except that we start from

t1(4) = 390, t2(4) = 285 and t3(4) = 324.

These three values are equal to the values obtained with Trivium minus 11. This fixed
difference then propagates, leading to, for any d ≥ 4,

– if d ≡ 1 mod 3,

t1(d) = 282 × (d − 1)

3
+ 108,

t2(d) = 282 × (d − 1)

3
+ 3,

t3(d) = 282 × (d − 1)

3
+ 42.
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– if d ≡ 2 mod 3,

t1(d) = 282 × (d − 2)

3
+ 151,

t2(d) = 282 × (d − 2)

3
+ 199,

t3(d) = 282 × (d − 2)

3
+ 85.

– if d ≡ 0 mod 3,

t1(d) = 282 × (d − 3)

3
+ 194,

t2(d) = 282 × (d − 3)

3
+ 242,

t3(d) = 282 × (d − 3)

3
+ 281.

We eventually derive that, for Kreyvium, for any d ≥ 4,

N (d) = 282 ×
⌊
d

3

⌋
+

⎧
⎨

⎩

70 if d ≡ 0 mod 3
149 if d ≡ 1 mod 3
258 if d ≡ 2 mod 3

.

�

Security Analysis. We investigate how all the known attacks on Trivium can apply to
Kreyvium.

TMDTO. Time–Memory–Data-Trade-Off (TMDTO) attacks aiming at recovering the
initial state of the cipher do not apply since the size of the secret part of the internal state
(416 bits) is much larger than twice the key-size: the size of the whole secret internal
state has to be taken into account, even if the additional 128-bit part corresponding to
K ∗ is independent from the rest of the state. On the other hand, TMDTO attacks aiming
at recovering the key have complexities larger than exhaustive key search since the key
and the IV have the same size [26,48].

Internal State Collision. A distinguisher may be built if the attacker is able to find two
colliding internal states, since the two keystreams produced from colliding states are
identical. Finding such a collision requires around 2144 keystream bits generated from
the same key/IV pair, which is much longer than the maximal keystream length allowed
by themultiplicative depth of the circuit. But, for a given key, two internal states colliding
on all bits except on IV∗ lead to two keystreams which have the same first 69 bits since
IV∗ affects the keystream only 69 clocks later. Moreover, if the difference between the
two values of IV∗ when the rest of the state collides lies in the leftmost bit, then this
difference will affect the keystream bits (69 + 128) = 197 clocks later. This implies
that, within around 2144 keystream bits generated from the same key, we can find two
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identical runs of 197 consecutive bits which are equal. However, this property does not
provide a valid distinguisher because a random sequence of 2144 blocks is expected to
contain muchmore collisions on 197-bit runs. Therefore, the birthday-bound of 2144 bits
provides a limit on the number of bits produced from the same key/IV pair, not on the
bits produced from the same key.

Cube Attacks [29,37] and Cube Testers [5]. They provide the best attacks for round-
reduced Trivium. In our case, as we keep the same main function, but we have two
additional XORs per round, thus a better mixing of the variables, we can expect the
relations to get more involved and hamper the application of previously defined round-
reduced distinguishers. One might wonder if the fact that more variables are involved
could ease the attacker’s task, but we point out here that the limitation in the previous
attacks was not the IV size, but the size of the cubes themselves. Therefore, having more
variables available is of no help with respect to this point. We can conclude that the
resistance of Kreyvium to these types of attacks is at least the resistance of Trivium, and
even better.

Conditional Differential Cryptanalysis. Because of its applicability to Trivium and
KATAN, the attack from [55] is definitely of interest in our case. In particular, the highest
number of blank rounds is reached if some conditions on two registers are satisfied at
the same time (and not only conditions on the register controlled by the IV bits in the
original Trivium). In our case, as we have IV bits in two registers, it is important to elu-
cidate whether an attacker can take advantage of introducing differences in two registers
simultaneously. First, let us recall that we have changed the constant to one containing
mostly 1. We previously saw that the conditions that favor the attacks are values set to
zero in the initial state. In Trivium, we have (108+ 4+ 13) = 125 bits already fixed to
zero in the initial state, 3 are fixed to one and the others can be controlled by the attacker
in the weak-key setting (and the attacker will force them to be zero most of the time).
Now, instead, we have 64 bits forced to be 1, 1 equal to zero, and (128+ 93) = 221 bits
of the initial state controlled by the attacker in the weak-key setting, plus potentially 21
additional bits from the key still not used, that will be inserted during the first rounds.We
can conclude that, while in Trivium it is possible in the weak-key setting, to introduce
zeros in the whole initial state but in 3 bits, in Kreyvium, we will never be able to set to
zero 64 bits, implying that applying the techniques from [55] becomes much harder.

Algebraic Attacks. Several algebraic attacks have been proposed against Trivium, aiming
at recovering the 288-bit internal state at the beginning of the keystream generation (i.e.,
at time t = 1153) from the knowledge of the keystream bits. The most efficient attack of
this type is due to Maximov and Biryukov [61]. It exploits the fact that the 22 keystream
bits at time 3t ′, 0 ≤ t ′ < 22, are determined by all bits of the initial state at indexes
divisible by 3 (starting from the leftmost bit in each register). Moreover, once all bits
at positions 3i are known, then guessing that the outputs of the three AND gates at
time 3t ′ are zero provides 3 linear relations between the bits of the internal state and the
keystream bits. The attack then consists of an exhaustive search for some bits at indexes
divisible by 3. The other bits in such positions are then deduced by solving the linear
system derived from the keystream bits at positions 3t ′. Once all these bits have been
determined, the other 192 bits of the initial state are deduced from the other keystream
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equations. This process must be iterated until the guess for the outputs of the AND
gates is correct. In the case of Trivium, the outputs of at least 125 AND gates must be
guessed in order to get 192 linear relations involving the 192 bits at indexes 3i + 1 and
3i + 2. This implies that the attack has to be repeated (4/3)125 = 252 times. From these
guesses, we get many linear relations involving the bits at positions 3i only, implying
that only an exhaustive search with complexity 232 for the other bits at positions 3i
is needed. Therefore, the overall complexity of the attack is around 232 × 252 = 284.
A similar algorithm can be applied to Kreyvium, but the main difference is that every
linear equation corresponding to a keystream bit also involves one key bit. Moreover, the
key bits involved in the generation of any 128 consecutive output bits are independent.
It follows that each of the first 128 linear equations introduces a new unknown in the
system to solve. For this reason, it is not possible to determine all bits at positions 3i
by an exhaustive search on less than 96 bits like for Trivium. Moreover, the outputs
of more than 135 AND gates must be guessed for obtaining enough equations on the
remaining bits of the initial state. Therefore, the overall complexity of the attack exceeds
296 × 252 = 2148 and is much higher that the cost of the exhaustive key search. It is
worth noticing that the attack would have been more efficient if only the feedback bits,
and not the keystream bits, would have been dependent on the key. In this case, 22 linear
relations independent from the key would have been available to the attacker.

4. Experimental Results

We now discuss and compare the practicality of our generic construction when instan-
tiated with Trivium, Kreyvium and LowMC. The expansion function G implements a
mere counter, and the aforementioned algorithms are used to instantiate the function
F that produces N bits of keystream per iteration as defined by Propositions 1 and 2.
Note that these propositions only hold when hybrid clear and encrypted data calculations
are possible between IV and HE ciphertexts. This explains the slight differences in the
number of keystream bits per iteration (column “N”) between Tables 1 and 2.
We would like to recall that for the original LowMC-128 a key-recovery attack with

time complexity 2118 and data complexity 273 was proposed in [28]. In order to thwart
this attack, the designers of LowMC proposed to increase the number of rounds to 12
for the LowMC-80 version and to 14 for the LowMC-128 version [66].

HE Framework. In our experiments, we considered two HE schemes: the BGV
scheme [15] and the FV scheme [35] (a scale-invariant version of BGV). The BGV
scheme is implemented in the library HElib [45] and has become de facto a standard
benchmarking library for HE applications. Similarly, the FV scheme was previously
used in several HE benchmarkings [17,36,57], is conceptually simpler than the BGV
scheme, and is one of the most efficient HE schemes. We used the Armadillo compiler
implementation of FV [17]. This source-to-source compiler turns a C++ algorithm into
a Boolean circuit, optimizes it, and generates an OpenMP parallel code which can then
be combined with an HE scheme.
Additionally, for the BGV scheme, batching was used [68], i.e., the HE schemes were

set up to encrypt vectors in an SIMD fashion (componentwise operations, and rota-
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tions via the Frobenius endomorphism). The number of elements that can be encrypted
depends on the number of terms in the factorization modulo 2 of the cyclotomic poly-
nomial used in the implementation. This batching allowed us to perform several Triv-
ium/Kreyvium/LowMC in parallel in order to increase the throughput.

Parameter Selection for Subsequent Homomorphic Processing. In most previous works
on the homomorphic evaluation of symmetric encryption schemes, the parameters of
the underlying HE scheme were selected for the exact multiplicative depth required and
not beyond [2,22,31,40,57]. This means that once the ciphertext is decompressed, no
further homomorphic computation can actually be performed by Charlie—this makes
the claimed timings considerably less meaningful in a real-world context.
We benchmarked both parameters for the exact multiplicative depth and parameters

able to handle circuits of the minimal multiplicative depth plus 6 to allow further homo-
morphic processing by Charlie (which is obviously what is expected in applications of
homomorphic encryption). We chose this number of additional levels because, in prac-
tice and from our experience, numerous applications use algorithms of multiplicative
depth smaller than 7 (see e.g., [43,56]). In what followswe compare the results we obtain
using Trivium, Kreyvium and also the two versions of LowMC cipher. For the original
LowMC, we benchmarked not only our own implementation but also theLowMC imple-
mentation of [2] available at https://bitbucket.org/malb/lowmc-helib. Minor changes to
this implementationweremade in order to obtain an equivalent parametrization ofHElib.
The main difference is that the implementation from [2] uses an optimized method for
multiplying a Boolean vector and a Boolean matrix, namely the “Method of Four Rus-
sians.” This explainswhy our implementation is approximately 6% slower, as it performs
2–3 times more ciphertext additions.

Experimental Results Using HElib. For sake of comparison with [2], we ran our imple-
mentations and their implementation of LowMC on a single core using HElib. The
results are provided in Table 1. We recall that the latency refers to the time required to
perform the entire homomorphic evaluation, whereas the throughput is the number of
blocks processed per time unit.
We shall note that HElib has two possible specializations: either the multiplicative

depths can be set to consecutive values or only to even values. We have observed that
the second specialization (supporting even multiplicative depths) is more efficient in
terms of computation times. In our experiments we have used this implementation of
HElib. This implies that, in some cases for LowMC, the multiplicative depths we used
in Table 1 are slightly higher than the needed multiplicative depths.

It should be emphasized that, in most cases, the values of N reported in Table 1 are
slightly smaller than the theoretical values provided byPropositions 1 and2. For instance,
with a circuit of depth 12, Trivium (resp. Kreyvium) is expected to generate 57 keystream
bits (resp. 46). Instead, our experiments using HElib allow us to generate 45 (resp. 42)
bits only. The reason for this is thatHElib is used in batchedmode. The batchmode allows
to encrypt several plaintexts in a single ciphertext (roughly speaking factorization of the
cyclotomic polynomial modulo the plaintext space is used). Homomorphic operations
are then performed independently on all the slots (a slot corresponds to a cyclotomic
polynomial factor in which a plaintext is encoded). The IVs, in the case of HElib, are
plaintext polynomials encoding in each slot the bits of the multiple IV values evaluated

https://bitbucket.org/malb/lowmc-helib
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Table 1. Latency and throughput using HElib on a single core of a mid-end 48-core server (4×AMDOpteron
6172 processors with 64 GB of RAM).

Algorithm Security level κ N Used × depth #Slots Latency (s) Throughput (bits/min)

Trivium-12 80 45 12 600 1414.9 1145.0
18 720 4328.0 449.2

Trivium-14 80 245 14 504 1985.2 3732.0
20 720 5276.5 2005.9

LowMC-80 80 256 14 504 1483.9 5217.0
20 720 3690.9 2996.4

LowMC-80 [2] 80 256 14 504 1366.9 5663.5
20 720 3332.6 3318.5

Kreyvium-12 128 42 12 504 1547.0 821.0
18 756 4805.1 396.5

Kreyvium-16 128 406 16 720 5464.6 3209.6
22 518 6667.7 1892.5

LowMC-128 128 256 16 720 4508.7 2452.9
22 518 6024.7 1320.6

LowMC-128 [2] 128 256 16 720 4316.0 2562.4
22 518 5632.6 1412.6

Table 2. Latency and throughput of our construction when using the FV scheme on a mid-end 48-core server
(4× AMD Opteron 6172 processors with 64 GB of RAM).

Algorithm Security
level κ

N Used × depth Latency (s) Speed gain Throughput (bits/min)

1 core 48 cores 48 cores

Trivium-12 80 57 12 681.5 26.8 × 25.4 127.6
18 1910.3 63.0 × 30.3 54.3

Trivium-14 80 245 14 1153.6 42.2 × 27.3 348.3
20 2635.5 83.6 × 31.5 175.8

LowMC-80 80 256 14 898.0 106.5 × 8. 144.2
20 1787.4 179.7 × 10.0 85.5

Kreyvium-12 128 46 12 904.4 35.3 × 25.6 78.2
18 2531.4 80.1 × 31.6 34.5

Kreyvium-16 128 407 16 2630.8 84.4 × 31.2 289.3
22 5231.6 139.6 × 37.5 174.9

LowMC-128 128 256 16 2196.0 218.0 × 10.0 70.5
22 4275.1 324.3 × 13.2 47.4
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Table 3. Number of AND and XOR gates to homomorphically evaluate in Trivium, Kreyvium and LowMC
for FV and BGV schemes. For LowMC the number of gates obtained using implementation [2] is shown.

Algorithm Security level κ FV BGV

#ANDs #XORs N #ANDs #XORs N

Trivium-12 80 3237 15019 57 3183 14728 45
Trivium-14 80 3801 18356 245 3801 18356 245
LowMC-80 80 1764 254364 256 1764 238016 256
Kreyvium-12 128 3311 18081 46 3288 17934 42
Kreyvium-16 128 4410 25207 407 4407 25193 406
LowMC-128 128 2646 311573 256 2646 308228 256

in parallel, while in the case of FV the (single) IV bits belong to F2. Then, with HElib
a homomorphic multiplication between a clear and an encrypted data corresponds to a
multiplication with a plaintext polynomial, while with FV, no homomorphic operation
needs to be executed (since ct · 0 = 0 and ct · 1 = ct). This explains why the values
of N obtained with FV and reported in Table 2 coincide with the theoretical values and
are slightly larger than the values obtained with HElib.
Another reason why the effective value of N (d)may differ from the theoretical value,

especially in the LowMC case, is that the multiplication depth is only an approximation
of the homomorphic depth required to absorb the noise generated by the execution of an
algorithm. It neglects the noise induced by additions or homomorphic operations with
a plaintext input. A difference may then appear for addition-intensive algorithms like
LowMC. For instance, the theoretical multiplicative depth is 12 for LowMC-80, but
valid ciphertexts could be obtained for an equivalent multiplicative depth 14 only for
the FV scheme and 13 for the BGV scheme.

Experimental Results Using FV. In Table 2, we present the benchmarks when using the
FV scheme. The experiments were performed using either a single core (in order to
compare with BGV) or on all the cores of the machine the tests were performed on. The
execution time acceleration factor between 48-core parallel and sequential executions
is given in the column “Speed gain.” While good accelerations (at least 25 times) were
obtained for Trivium and Kreyvium algorithms, the acceleration when using LowMC
is significantly smaller (∼ 10 times). This is due to the huge number of operations in
LowMC that created memory contention and huge slowdown in memory allocation.

Number of AND and XOR Gates in Trivium and Kreyvium. A more thorough analysis of
the number of AND and XOR gates in the different circuits is provided in Table 3. The
keystream length is the maximum possible for a given multiplicative depth. It is lower
for the BGV scheme (batched) because the IV is no more a Boolean string so less circuit
optimization is possible. For the FV scheme (non-batched) the table gives the number
of executed gates in the worst case. The actual number of executed gates can be lower
as it depends on the employed IV.

Interpretation. Our results using the BGV scheme show that, for 128 bits of security,
Kreyvium and LowMC-128 have comparable performance in terms of latency although
Kreyvium achieves a higher throughput. The latter fact is explained by a larger number
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of keystream bits generated per iteration (406 compared to 256) and a small cost in terms
of multiplicative gates per keystream bit in Kreyvium (only 3 AND gates). In case of FV
scheme Kreyvium has better performance in terms of latency, throughput and speed gain
from the use of multiple computational cores. We have observed that the HE scheme
parameters in HElib are difficult to tune and are less fine grained than in the Armadillo
implementation. We suppose that the observed performance bias between the BGV and
the FV experiments we have performed are due to this.
Also Trivium and Kreyvium are more parallelizable than LowMC is. Therefore, our

work shows that the promising performances obtained by the recently proposed HE-
dedicated cipher LowMC can also be achieved with Trivium, a well-analyzed stream
cipher, and a variant aiming at achieving 128 bits of security. Last but not least, we recall
that our construction was aiming at compressing the size of transmissions between Alice
and Charlie. We support an encryption rate |c′|/|m| that becomes asymptotically close
to 1 for longmessages, e.g., for �m = 1GBmessage length, our construction instantiated
with Trivium (resp. Kreyvium), yields an expansion rate of 1.08 (resp. 1.16).

5. Another Approach: Using Discrete Logs on Binary Fields

5.1. Overview

We now introduce a second, discrete-log based instantiation of the generic compressed
encryption scheme of Sect. 2.3 that relies on exponentiation over binary fields. This
approach aims at answering the following question:

How many multiplicative levels are strictly necessary to achieve a secure
compressed encryption scheme, irrespective of any performance metric such
as the number of homomorphic bit multiplications to perform in the decom-
pression circuit?

In this section, we propose a construction that achieves a multiplicative depth of
�log κ�+1 for κ-bit security. Recent research shows that our construction is only secure
against quasi-polynomial-time adversaries [7] and, as a consequence, is disappointedly
impractical when setting concrete parameters. However, we believe this other approach
to be of particular interest due to the fact that it admits a formal security proof.
We recall that the homomorphic encryption scheme HEpk(·) is assumed to encrypt

separately each plaintext bit. For h ∈ F2n , we identify h with the vector of its coefficients
and therefore by HEpk(h), we mean the vector composed of the encrypted coefficients
of h. Our construction has provable security while ensuring a low-depth circuit CF . To
achieve this, what we require is essentially that G be a PRNG and IV be chosen at
random at encryption time and transmitted within c′. This allows us to prove that c′ is
semantically secure under a well-defined complexity assumption. Simultaneously, we
use exponentiation in a binary field to instantiate F , which yields a circuit CF of minimal
depth �log �k�.
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5.2. Description of the Compressed Encryption Scheme

For a parametern,we consider a prime-order subgroupG ⊆ F2n andpose f = (2n−1)/q
where q is the order of G. Also, we set

�x = N = n.

The encryption operation picks a fresh IV ← {0, 1}�IV for each compressed cipher-
text. The expansion function G(IV) makes use of some PRNG to generate n-bit blocks
x1, . . . , xt as follows:

1. Initialize the PRNG with IV as seed.
2. For i = 1 to t : (a) Run the PRNG to generate an n-bit vector u ∈ F2n . (b)

Compute v = u f (so that v ∈ G). (c) If v = 1 goto 5.2. (d) Set xi = v.

Overall, G generates pseudorandom sequences of elements of G∗ = G \ {1} (and is
treated as a random oracle overG∗ in the security proof). Finally, F maps n-bit inputs to
n-bit outputs under �k-bit parameters as follows. Given k ∈ {0, 1}�k and x ∈ F2n , Fk(x)
returns z = xk ∈ F2n . Obviously, if x ∈ G

∗ then Fk(x) ∈ G
∗ as well. This completes

the description of the compressed encryption scheme.

5.3. A Log–Log-Depth Exponentiation Circuit over F2n

We now describe a circuit Cexp which, given a field element h ∈ F2n and an encrypted
exponent HEpk(k) with k ∈ {0, 1}�k , computes HEpk(hk) and has multiplicative depth
at most �log �k�. Stricto sensu, Cexp is not just a Boolean circuit evaluated homomorphi-
cally, as it combines computations in the clear, homomorphicF2-arithmetic on encrypted
bits, and F2-arithmetic on mixed cleartext/encrypted bits.
Cexp uses implicitly some irreducible polynomial p to represent F2n , and we denote by

⊕ and ⊗p the field operators. The basic idea here is that for any a, b ∈ F2n , computing
HE(a⊗p b) fromHE(a),HE(b) requires only 1multiplicative level, simply because⊗p

is F2-bilinear. Therefore, knowing p and the characteristics of HE, we can efficiently
implement a bilinear operator on encrypted binary vectors to compute

HE(a ⊗p b) = HE(a) ⊗HE
p HE(b).

A second useful observation is that for any a ∈ F2n and β ∈ {0, 1}, there is a
multiplication-free way to deduce HE(aβ) from a and HE(β). When β = 1, aβ

is just a and aβ = 1F2n = (1, 0, . . . , 0) otherwise. Therefore to construct a vector
v = (v0, . . . , vn−1) = HE(aβ), it is enough to set

vi :=
{
HE(0) if ai = 0
HE(β) if ai = 1

for i = 1, . . . , n − 1 and

v0 :=
{
HE(β ⊕ 1) if a0 = 0
HE(1) if a0 = 1
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where it does not matter that the same encryption of 0 be used multiple times. Let us
denote this procedure as

HE(aβ) = La (HE(β)) .

Now, given as input h ∈ F2n , Cexp first computes in the clear hi = h2
i
for i = 0, . . . , �k−

1. Since

hk = hk00 ⊗p h
k1
1 ⊗p · · · ⊗p h

k�k−1

�k−1 ,

one gets

HE(hk) = HE
(
hk00

)
⊗HE

p HE
(
hk11

)
⊗HE

p · · · ⊗HE
p HE

(
h
k�k−1

�k−1

)

= Lh0 (HE (k0)) ⊗HE
p Lh1 (HE (k1)) ⊗HE

p · · · ⊗HE
p Lh�k−1

(
HE

(
k�k−1

))
.

Viewing the �k variables as the leaves of a binary tree, Cexp therefore requires at most
�log �k� levels of homomorphic multiplications to compute and return HEpk(hk).

5.4. Security Results

Given some homomorphic encryption scheme HE and security parameters κ, n, �k , we
define a family of decision problems {DPt }t>0 as follows.

Definition 1. (DecisionProblemDPt ) Letpk ← HE.KeyGen(1κ) be a randompublic
key, k ← {0, 1}�k a random �k-bit integer and g1, . . . , gt , g′

1, . . . , g
′
t ← G

∗. Distinguish
the distributions

Dt,1 =
(
pk,HEpk(k), g1, . . . , gt , g

k
1, . . . , g

k
t

)
and

Dt,0 = (
pk,HEpk(k), g1, . . . , gt , g

′
1, . . . , g

′
t

)
.

Theorem 1. Viewing G as a random oracle over G
∗, the compressed encryption

scheme described above is semantically secure (IND-CPA), unless breaking DPt is
efficient, for messages of bit-size �m with (t − 1)n < �m ≤ tn.

Proof. A random oracle version of function G is an oracle that takes as input a pair
(IV, �) where IV ∈ {0, 1}�IV and � ∈ N

∗, and returns an �-bit random string. It is also
imposed to the oracle that G(IV; �1) be a prefix of G(IV; �2) for any IV and �1 ≤ �2.

We rely on the real-or-random flavor of the IND-CPA security game and build a
reduction algorithm R that uses an adversary AG against the scheme to break DPt as
follows. R is given as input some

(
pk,HEpk(k), g1, . . . , gt , g̃1, . . . , g̃t

)
sampled from

Dt,b and has to guess the bit b. R runs AG(pk) and behaves as follows.

– Queries to G. At any moment,R responds toA’s queries to G using fresh random
strings for each new query or to extend a past query to a larger size.
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– Answer to challenge. When R receives some challenge plaintext m� ∈ {0, 1}�m
where (t − 1)n < �m ≤ tn fromA, it builds a compressed ciphertext c′ as follows:
1. Set keystream to the �m leftmost bits of g̃1‖ · · · ‖g̃t ,
2. Pick a random IV� ← {0, 1}�IV ,
3. Abort if G(IV�; �′) is already defined for some �′ (when A queried G),
4. Set G(IV�; tn) to g1‖ · · · ‖gt .
5. Set c′ = (

HEpk(k), IV�,m� ⊕ keystream
)
,

R then returns c′ toA. WhenR eventually receivesA’s guess b̂, it forwards it to its own
challenger.
All the statistical distributions comply with their specifications. Consequently, c′ is

an encryption of m� if the input instance comes from Dt,1 and is an encryption of some
perfectly uniform plaintext if the instance follows Dt,0. The reduction is tight as long as
the abortion probability q2−�IV remains negligible, q being the number of oracle queries
(to G) made by A. �

Interestingly, we note the following fact about our family of decision problems.

Theorem 2. For any t ≥ 2, DPt is equivalent to DP2.

Proof. A problem instance
(
pk,HEpk(k), g1, . . . , gt , g̃1, . . . , g̃t

)
sampled from Dt,b

can be converted into an instance of D2,b for the same b, by just removing g3, . . . , gt and
g̃3, . . . , g̃t . This operation preserves the distributions of all inner variables. Therefore
DPt can be reduced to DP2. Now, we describe a reduction R which, given an instance(
pk,HEpk(k), g1, g2, g̃1, g̃2

)
sampled from D2,b, makes use of an adversary A against

DPt to successfully guess b. R converts its instance of D2,b into an instance of Dt,b as
follows:

1. For i = 3 to t :

a. Randomly select αi , βi ← Zq .

b. Set gi = gαi
1 gβi

2 and g̃i = g̃αi
1 g̃βi

2 .
c. If gi = 1 or g̃i = 1 goto 1.a.

It is easily seen that, if g̃1 = gk1 and g̃2 = gk2 then g̃i = gki for every i , meaning that
the resulting distribution is DPt,1. If, however, g̃1, g̃2 are uniformly and independently
distributed overG∗, then so are g̃3, . . . , g̃t and the resulting distribution is exactlyDPt,0.
Our reduction runsA over the resulting instance and outputs the guess b̂ returned byA.
Obviously R is tight.

Overall, the security of our compressed encryption scheme relies on breakingDP1 for
messages of bit-size at most n and on breakingDP2 for larger messages. Beyond the fact
that DP2 reduces to DP1, we note that these two problems are unlikely to be equivalent
since DP2 is easily broken using a DDH oracle over G∗ (when considering the tuple
(g := g1, ga := gk1, g

b := g2, gab := gk2)), while DP1 seems to remain unaffected by
it.
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5.5. Performance Issues

Concrete Security Parameters. Note that our decisional security assumptions DPexp
t

for all t ≥ 1 reduce to the discrete logarithm problem in the finite field F2n (or a
subgroup thereof). Solving discrete logarithms in finite fields of small characteristics is
currently a very active research area, marked notably by the quasi-polynomial algorithm
of Barbulescu et al. [7]. In particular, the expected security one can hope for has been
recently completely redefined [1,44]. In our setting, we will select a prime n so that
computing discrete logarithms in F2n has complexity 2κ for κ-bit security. The first step
of Barbulescu et al. algorithm runs in polynomial time. This step has been extensively
studied and its complexity has been brought down toO((2log2 n)6) using a very complex
and tight analysis by Joux and Pierrot [51]. As for the quasi-polynomial step of the
algorithm, its complexity can be upper-bounded, but in practice numerous trade-offs
can be used and it is difficult to lower bound it [1,7]. To remain conservative in our
choice of parameters, we will base our security on the first step. To ensure a 80-bit (resp.
128-bit) security level, one should therefore choose a prime n of log2 n ≈ 14 bits (resp.
23 bits), i.e., work in a finite field F2n where n is about 16, 000 (resp. 4 million).

How Impractical is this Approach?We now briefly see why our discrete-log based con-
struction on binary fields is impractical.We focusmore specifically on the exponentiation
circuit Cexp whosemost critical subroutine is a general-purpose fieldmultiplication in the
encrypted domain. Taking homomorphic bit multiplication as the complexity unit and
neglecting everything else, how fast can we expect to multiply encrypted field elements
in F2n?
When working in the cleartext domain, several families of techniques exist with

attractive asymptotic complexities for large n, such as algorithms derived from Toom-
Cook [11] or Schönhage-Strassen [65]. It is unclear how these different strategies can be
adapted to our case and with what complexities.4 However, let us optimistically assume
that they could be adapted somehow and that one of these adaptations would just take n
homomorphic bit multiplications.
A straightforward implementation of Cexp consists in viewing all circuit inputs

Lhi (HE(ki )) as generic encrypted field elements and in performing generic fieldmultipli-
cations along the binary tree,whichwould require �k ·n homomorphic bitmultiplications.
Taking �k = 160, n = 16000 and 0.5 s for each bit multiplication (as a rough estimate
of the timings of Sect. 4), this accounts for more than 14 days of computation.
This can be improved because the circuit inputs are precisely not generic encrypted

field elements; each one of the n ciphertexts in Lhi (HE(ki )) is known to equal
either HE(ki ), HE(ki ⊕ 1), HE(0) or HE(1). Similarly, a circuit variable of depth 1,
i.e.,

Lhi (HE(ki )) ⊗HE
p Lhi+1(HE(ki+1)),

contains n ciphertexts that are all an encryption of one of the 16 quadratic polynomials
aki ki+1 + bki + cki+1 + d for a, b, c, d ∈ {0, 1}. This leads us to a strategy where one

4One could expect these techniques to become the most efficient ones here since their prohibitive overhead
would disappear in the context of homomorphic circuits.
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simulates the τ first levels of field multiplications at once, by computing the 2�log �k�−τ

dictionaries of the form
{
HE

(
kb0i kb1i+1 · · · kb2τ −1

i+2τ −1

)}

b0,...,b2τ −1∈{0,1}

and computing the binary coefficients (in clear) to be used to reconstruct each bit of
the 2�log �k�−τ intermediate variables of depth τ from the dictionaries through linear
(homomorphic) combinations. By assumption, this accounts for nothing in the total
computation time. The rest of the binary tree is then performed using generic encrypted
field multiplications as before, until the circuit output is fully aggregated. This approach
is always more efficient than the straightforward implementation and optimal when the
total number

(
22

τ − 2τ − 1
)

· 2�log �k�−τ +
(
2�log �k�−τ−1 − 1

)
· n

of required homomorphic bit multiplications is minimal. With �k = 160 and n = 16000
again, the best choice is for τ = 4. Assuming 0.5 s for each bit multiplication, this still
gives a prohibitive 6.71 days of computation for a single evaluation of Cexp.

6. Conclusion

Our work shows that the promising performances obtained by the recent HE-dedicated
cipher LowMC can also be achieved with Trivium, a well-known primitive whose secu-
rity has been thoroughly analyzed, e.g., [5,29,37,55,61]. The 10-year analysis effort
from the community, initiated by the eSTREAM competition, enables us to gain con-
fidence in its security. Also our variant Kreyvium benefits from this analysis since the
core of the cipher is essentially the same.
From a more fundamental perspective, one may wonder howmany multiplicative lev-

els are strictly necessary to achieve a secure compressed encryption scheme, irrespective
of any performance metric such as the number of homomorphic bit multiplications to
perform in the decompression circuit. We have shown in Sect. 5 that a multiplicative
depth of �log κ� + 1 is achievable for κ-bit security. However, this second approach
remains disappointingly impractical. Can one do better or prove that this is a lower
bound?
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