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Abstract. Real-time surveillance systems, telecommunication systems, and other dynamic environments often

generate tremendous (potentially infinite) volume of stream data: the volume is too huge to be scanned multiple

times. Much of such data resides at rather low level of abstraction, whereas most analysts are interested in relatively

high-level dynamic changes (such as trends and outliers). To discover such high-level characteristics, one may need

to perform on-line multi-level, multi-dimensional analytical processing of stream data. In this paper, we propose

an architecture, called stream cube, to facilitate on-line, multi-dimensional, multi-level analysis of stream data.

For fast online multi-dimensional analysis of stream data, three important techniques are proposed for efficient

and effective computation of stream cubes. First, a tilted time frame model is proposed as a multi-resolution model

to register time-related data: the more recent data are registered at finer resolution, whereas the more distant data

are registered at coarser resolution. This design reduces the overall storage of time-related data and adapts nicely

to the data analysis tasks commonly encountered in practice. Second, instead of materializing cuboids at all levels,

we propose to maintain a small number of critical layers. Flexible analysis can be efficiently performed based on

the concept of observation layer and minimal interesting layer. Third, an efficient stream data cubing algorithm

is developed which computes only the layers (cuboids) along a popular path and leaves the other cuboids for

query-driven, on-line computation. Based on this design methodology, stream data cube can be constructed and

maintained incrementally with a reasonable amount of memory, computation cost, and query response time. This

is verified by our substantial performance study.
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Stream data cube architecture facilitates online analytical processing of stream data. It also forms a preliminary

data structure for online stream data mining. The impact of the design and implementation of stream data cube in

the context of stream data mining is also discussed in the paper.

1. Introduction

With years of research and development of data warehousing and OLAP technology [9,

15], a large number of data warehouses and data cubes have been successfully constructed

and deployed in applications, and data cube has become an essential component in most

data warehouse systems and in some extended relational database systems and has been

playing an increasingly important role in data analysis and intelligent decision support.

The data warehouse and OLAP technology is based on the integration and consolidation

of data in multi-dimensional space to facilitate powerful and fast on-line data analysis.

Data are aggregated either completely or partially in multiple dimensions and multiple

levels, and are stored in the form of either relations or multi-dimensional arrays [1, 29]. The

dimensions in a data cube are of categorical data, such as products, region, time, etc., and

the measures are numerical data, representing various kinds of aggregates, such as sum,

average, variance of sales or profits, etc.

The success of OLAP technology naturally leads to its possible extension from the

analysis of static, pre-integrated, historical data to that of current, dynamically changing

data, including time-series data, scientific and engineering data, and data produced in other

dynamic environments, such as power supply, network traffic, stock exchange, telecommu-

nication data flow, Web click streams, weather or environment monitoring, etc.

A fundamental difference in the analysis of stream data from that of relational and

warehouse data is that the stream data is generated in huge volume, flowing in-and-out

dynamically, and changing rapidly. Due to limited memory or disk space and processing

power available in today’s computers, most data streams may only be examined in a

single pass. These characteristics of stream data have been emphasized and investigated by

many researchers, such as [6, 7, 12, 14, 16], and efficient stream data querying, clustering

and classification algorithms have been proposed recently (such as [12, 14, 16, 17, 20]).

However, there is another important characteristic of stream data that has not drawn enough

attention: Most of stream data resides at rather low level of abstraction, whereas an analyst

is often more interested in higher and multiple levels of abstraction. Similar to OLAP

analysis of static data, multi-level, multi-dimensional on-line analysis should be performed

on stream data as well.

The requirement for multi-level, multi-dimensional on-line analysis of stream data,

though desirable, raises a challenging research issue: “Is it feasible to perform OLAP

analysis on huge volumes of stream data since a data cube is usually much bigger than the

original data set, and its construction may take multiple database scans?”

In this paper, we examine this issue and present an interesting architecture for on-

line analytical analysis of stream data. Stream data is generated continuously in a dynamic

environment, with huge volume, infinite flow, and fast changing behavior. As collected, such

data is almost always at rather low level, consisting of various kinds of detailed temporal

and other features. To find interesting or unusual patterns, it is essential to perform analysis

on some useful measures, such as sum, average, or even more sophisticated measures, such
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as regression, at certain meaningful abstraction level, discover critical changes of data, and

drill down to some more detailed levels for in-depth analysis, when needed.

To illustrate our motivation, let’s examine the following examples.

Example 1. A power supply station can watch infinite streams of power usage data, with

the lowest granularity as individual user, location, and second. Given a large number of

users, it is only realistic to analyze the fluctuation of power usage at certain high levels,

such as by city or street district and by quarter (of an hour), making timely power supply

adjustments and handling unusual situations.

Conceptually, for multi-dimensional analysis, one can view such stream data as a virtual

data cube, consisting of one or a few measures and a set of dimensions, including one time

dimension, and a few other dimensions, such as location, user-category, etc. However, in

practice, it is impossible to materialize such a data cube, since the materialization requires a

huge amount of data to be computed and stored. Some efficient methods must be developed

for systematic analysis of such data.

Example 2. Suppose that a Web server, such as Yahoo.com, receives a huge volume of

Web click streams requesting various kinds of services and information. Usually, such

stream data resides at rather low level, consisting of time (down to subseconds), Web page

address (down to concrete URL), user ip address (down to detailed machine IP address),

etc. However, an analyst may often be interested in changes, trends, and unusual patterns,

happening in the data streams, at certain high levels of abstraction. For example, it is

interesting to find that the Web clicking traffic in North America on sports in the last

15 minutes is 40% higher than the last 24 hours’ average.

From the point of view of a Web analysis provider, given a large volume of fast changing

Web click streams, and with limited resource and computational power, it is only realistic

to analyze the changes of Web usage at certain high levels, discover unusual situations,

and drill down to some more detailed levels for in-depth analysis, when needed, in order to

make timely responses.

Interestingly, both the analyst and analysis provider share a similar view on such stream

data analysis: instead of bogging down to every detail of data stream, a demanding request is

to provide on-line analysis of changes, trends and other patterns at high levels of abstraction,

with low cost and fast response time.

In this study, we take Example 2 as a typical scenario and study how to perform efficient

and effective multi-dimensional analysis of stream data, with the following contributions.

1. For on-line stream data analysis, both space and time are critical. In order to avoid im-

posing unrealistic demand on space and time, instead of computing a fully materialized

cube, we suggest to compute a partially materialized data cube, with a tilted time frame

as its time dimension model. In the tilted time frame, time is registered at different levels

of granularity. The most recent time is registered at the finest granularity; the more

distant time is registered at coarser granularity; the level of coarseness depends on the

application requirements and on how old the time point is. This model is sufficient for

most analysis tasks, and at the same time it also ensures that the total amount of data to

retain in memory or to be stored on disk is small.
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2. Due to limited memory space in stream data analysis, it is often too costly to store

a precomputed cube, even with the tilted time frame, which substantially compresses

the storage space. We propose to compute and store only two critical layers (which

are essentially cuboids) in the cube: (1) an observation layer, called o-layer, which is

the layer that an analyst would like to check and make decisions for either signaling

the exceptions or drilling on the exception cells down to lower layers to find their

corresponding lower level exceptions; and (2) the minimal interesting layer, called

m-layer, which is the minimal layer that an analyst would like to examine, since it is

often neither cost-effective nor practically interesting to examine the minute detail of

stream data. For example, in Example 1, we assume that the o-layer is user-region,

theme, and quarter, while the m-layer is user, sub-theme, and minute.

3. Storing a cube at only two critical layers leaves a lot of room at what to compute and

how to compute for the cuboids between the two layers. We propose one method, called

popular-path cubing, which rolls up the cuboids from the m-layer to the o-layer, by

following one popular drilling path, materializes only the layers along the path, and

leave other layers to be computed only when needed. Our performance study shows

that this method achieves a reasonable trade-off between space, computation time, and

flexibility, and has both quick aggregation time and exception detection time.

The rest of the paper is organized as follows. In Section 2, we define the basic concepts

and introduce the research problem. In Section 3, we present an architectural design for

online analysis of stream data by defining the problem and introducing the concepts of tilted

time frame and critical layers. In Section 4, we present the popular-path cubing method,

an efficient algorithm for stream data cube computation that supports on-line analytical

processing of stream data. Our experiments and performance study of the proposed methods

are presented in Section 5. The related work and possible extensions of the model are

discussed in Section 6, and our study is concluded in Section 7.

2. Problem definition

In this section, we introduce the basic concepts related to data cubes, multi-dimensional

analysis of stream data, and stream data cubes, and define the problem of research.

The concept of data cube [15] was introduced to facilitate multi-dimensional, multi-level

analysis of large data sets.

Let D be a relational table, called the base table, of a given cube. The set of all attributes

A in D are partitioned into two subsets, the dimensional attributes DIM and the measure

attributes M (so DIM ∪ M = A and DIM ∩ M = φ). The measure attributes functionally

depend on the dimensional attributes inDB and are defined in the context of data cube using

some typical aggregate functions, such as COUNT, SUM, AVG, or some more sophisticated

computational functions, such as standard deviation, regression, etc.

A tuple with schema A in a multi-dimensional space (i.e., in the context of data cube)

is called a cell. Given three distinct cells c1, c2 and c3, c1 is an ancestor of c2, and c2 a

descendant of c1 iff on every dimensional attribute, either c1 and c2 share the same value,

or c1’s value is a generalized value of c2’s in the dimension’s concept hierarchy. c2 is a
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sibling of c3 iff c2 and c3 have identical values in all dimensions except one dimension A

where c2[A] and c3[A] have the same parent in the dimension’s domain hierarchy. A cell

which has k non-∗ values is called a k-d cell. (We use “∗” to indicate “all”, i.e., the highest

level on any dimension.)

A tuple c ∈ D is called a base cell. A base cell does not have any descendant. A cell c

is an aggregated cell iff it is an ancestor of some base cell. For each aggregated cell c, its

values on the measure attributes are derived from the complete set of descendant base cells

of c. An aggregated cell c is an iceberg cell iff its measure value satisfies a specified iceberg

condition, such as measure ≥val1. The data cube that consists of all and only the iceberg

cells satisfying a specified iceberg condition I is called the iceberg cube of a database D
under condition I.

Notice that in stream data analysis, besides the popularly used SQL aggregate-based

measures, such as COUNT, SUM, MAX, MIN, and AVG, regression is a useful measure.

A stream data cell compression technique LCR (linearly compressed representation) is

developed in [10] to support efficient on-line regression analysis of stream data in data

cubes. The study [10] shows that for linear and multiple linear regression analysis, only a

small number of regression measures rather than the complete stream of data need to be

registered. This holds for regression on both the time dimension and the other dimensions.

Since it takes a much smaller amount of space and time to handle regression measures in

a multi-dimensional space than handling the stream data itself, it is preferable to construct

regression (-measured) cubes by computing such regression measures.

A data stream is considered as a huge volume, infinite flow of data records, such as Web

click streams, telephone call logs, and on-line transactions. The data is collected at the

most detailed level in a multi-dimensional space, which may represent time, location, user,

theme, and other semantic information. Due to the huge amount of data and the transient

behavior of data streams, most of the computations will scan a data stream only once.

Moreover, the direct computation of measures at the most detailed level may generate a

huge number of results but may not be able to disclose the general characteristics and

trends of data streams. Thus data stream analysis will require to consider aggregations and

analysis at multi-dimensional and multi-level space.

Our task is to support efficient, high-level, on-line, multi-dimensional analysis of such

data streams in order to find unusual (exceptional) changes of trends, according to users’

interest, based on multi-dimensional numerical measures. This may involve construction

of a data cube, if feasible, to facilitate on-line, flexible analysis.

3. Architecture for on-line analysis of data streams

To facilitate on-line, multi-dimensional analysis of data streams, we propose a stream cube

architecture with the following features: (1) tilted time frame, (2) two critical layers: a

minimal interesting layer and an observation layer, and (3) partial computation of data

cubes by popular-path cubing. The stream data cubes so constructed are much smaller than

those constructed from the raw stream data but will still be effective for multi-dimensional

stream data analysis tasks.
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Figure 1. Three models for tilted time windows.

3.1. Tilted time frame

In stream data analysis, people are usually interested in recent changes at a fine scale, but

long term changes at a coarse scale. Naturally, one can register time at different levels of

granularity. The most recent time is registered at the finest granularity; the more distant time

is registered at coarser granularity; and the level of coarseness depends on the application

requirements and on how old the time point is (from the current time).

There are many possible ways to design a titled time frame. We adopt three kinds of

models: (1) natural tilted time window model (figure 1(a)), (2) logarithmic scale tilted

time window model (figure 1(b)), and (3) progressive logarithmic tilted time window model

(figure 1(c)).

A natural tilted time window model is shown in figure 1(a), where the time frame is

structured in multiple granularity based on natural time scale: the most recent 4 quarters

(15 minutes), then the last 24 hours, 31 days, and 12 months (the concrete scale will be

determined by applications). Based on this model, one can compute frequent itemsets in

the last hour with the precision of quarter of an hour, the last day with the precision of hour,

and so on, until the whole year, with the precision of month.1 This model registers only 4 +

24 + 31 + 12 = 71 units of time for a year instead of 366 × 24 × 4 = 35,136 units, a saving

of about 495 times, with an acceptable trade-off of the grain of granularity at a distant time.

The second choice is logarithmic tilted time model as shown in figure l(b), where the time

frame is structured in multiple granularity according to a logarithmic scale. Suppose the

current window holds the transactions in the current quarter. Then the remaining slots are

for the last quarter, the next two quarters, 4 quarters, 8 quarters, 16 quarters, etc., growing at

an exponential rate. According to this model, with one year of data and the finest precision

at quarter, we will need ⌈ log2(365 × 24 × 4) + 1⌉ = 17 units of time instead of 366 ×

24 × 4 = 35,136 units. That is, we will just need 17 time frames to store the compressed

information.

The third choice is a progressive logarithmic tilted time frame, where snapshots are stored

at differing levels of granularity depending upon the recency. Snapshots are classified into

different frame number which can vary from 1 to max frame, where log2(T) − max-capacity

≤ max frame ≤ log2(T), max-capacity is the maximal number of snapshots held in each

frame, and T is the clock time elapsed since the beginning of the stream.
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Each snapshot is represented by its timestamp. The rules for insertion of a snapshot t

(at time t) into the snapshot frame table are defined as follows: (1) if (t mod 2i) = 0 but

(t mod 2i+1) 
= 0, t is inserted into frame number i if i ≤ max frame; otherwise (i.e., i >

max frame), t is inserted into max frame; and (2) each slot has a max capacity (which is 3

in our example of figure l(c)). At the insertion of t into frame number i, if the slot already

reaches its max capacity, the oldest snapshot in this frame is removed and the new snapshot

inserted. For example, at time 70, since (70 mod 21) = 0 but (70 mod 22) 
= 0, 70 is inserted

into frame-number 1 which knocks out the oldest snapshot 58 if the slot capacity is 3. Also,

at time 64, since (64 mod 26) = 0 but max frame = 5, so 64 has to be inserted into frame 5.

Following this rule, when slot capacity is 3, the following snapshots are stored in the tilted

time window table: 16, 24, 32, 40, 48, 52, 56, 60, 62, 64, 65, 66, 67, 68, 69, 70, as shown

in figure l(c). From the table, one can see that the closer to the current time, the denser are

the snapshots stored.

In the logarithmic and progressive logarithmic models discussed above, we have

assumed that the base is 2. Similar rules can be applied to any base α, where α is an

integer and α > 1. The tilted time models shown above are sufficient for usual time-related

queries, and at the same time it ensures that the total amount of data to retain in memory

and/or to be computed is small.

Both the natural tilted window model and the progressive logarithmic tilted time window

model provide a natural and systematic way for incremental insertion of data in new

windows and gradually fading out the old ones. To simplify our discussion, we will only

use the natural titled time window model in the following discussions. The methods derived

from this time window can be extended either directly or with minor modifications to other

time windows.

In our data cube design, we assume that each cell in the base cuboid and in an aggregate

cuboid contains a tilted time frame, for storing and propagating measures in the computation.

This tilted time window model is sufficient to handle usual time-related queries and mining,

and at the same time it ensures that the total amount of data to retain in memory and/or to

be computed is small.

3.2. Critical layers

Even with the tilted time frame model, it could still be too costly to dynamically compute

and store a full cube since such a cube may have quite a few dimensions, each containing

multiple levels with many distinct values. Since stream data analysis has only limited

memory space but requires fast response time, a realistic arrangement is to compute and

store only some mission-critical cuboids in the cube.

In our design, two critical cuboids are identified due to their conceptual and computational

importance in stream data analysis. We call these cuboids layers and suggest to compute

and store them dynamically. The first layer, called m-layer, is the minimally interesting

layer that an analyst would like to study. It is necessary to have such a layer since it

is often neither cost-effective nor practically interesting to examine the minute detail of

stream data. The second layer, called o-layer, is the observation layer at which an analyst

(or an automated system) would like to check and make decisions of either signaling the
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Figure 2. Two critical layers in the stream cube.

exceptions, or drilling on the exception cells down to lower layers to find their lower-level

exceptional descendants.

Example 3. Assume that “(individual-user, URL, second)” forms the primitive layer of the

input stream data in Example 1. With the tilted time frame as shown in figure 1, the two

critical layers for power supply analysis are: (1) the m-layer: (user group, URL group,

minute), and (2) the o-layer: (∗, theme, quarter), as shown in figure 2.

Based on this design, the cuboids lower than the m-layer will not need to be computed

since they are out of the minimal interest of users. Thus the minimal interesting cells that

our base cuboid needs to compute and store will be the aggregate cells computed with

grouping by user group, URL group, and minute. This can be done by aggregations (1) on

two dimensions, user and URL, by rolling up from individual user to user group and from

URL to URL group, respectively, and (2) on time dimension by rolling up from second to

minute.

Similarly, the cuboids at the o-layer should be computed dynamically according to the

tilted time frame model as well. This is the layer that an analyst takes as an observation

deck, watching the changes of the current stream data by examining the slope of changes

at this layer to make decisions. The layer can be obtained by rolling up the cube (1) along

two dimensions to ∗ (which means all user category) and theme, respectively, and (2) along

time dimension to quarter. If something unusual is observed, the analyst can drill down to

examine the details and the exceptional cells at low levels.

3.3. Partial materialization of stream cube

Materializing a cube at only two critical layers leaves much room for how to compute the

cuboids in between. These cuboids can be precomputed fully, partially, not at all (i.e., leave

everything computed on-the-fly), or precomputing exception cells only. Let us first examine

the feasibility of each possible choice in the environment of stream data. Since there may
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be a large number of cuboids between these two layers and each may contain many cells,

it is often too costly in both space and time to fully materialize these cuboids, especially

for stream data. Moreover, for the choice of computing exception cells only, the problem

becomes how to set up an exception threshold. A too low threshold may lead to computing

almost the whole cube, whereas a too high threshold may leave a lot of cells uncomputed

and thus not being able to answer many interesting queries efficiently. On the other hand,

materializing nothing forces all the aggregate cells to be computed on-the-fly, which may

slow down the response time substantially. Thus, it seems that the only viable choice is to

perform partial materialization of a stream cube.

According to the above discussion, we propose the following framework in our compu-

tation.

Framework 3.1 (Partial materialization of stream data). The task of computing a stream

data cube is to (1) compute two critical layers (cuboids): (i) m-layer (the minimal interest

layer), and (ii) o-layer (the observation layer), and (2) materialize only a reasonable fraction

of the cuboids between the two layers which can allow efficient on-line computation of

other cuboids.

Partial materialization of data cubes has been studied in previous works [9, 19]. With

the concern of both space and on-line computation time, the partial computation of stream

data cube poses more challenging issues than its static counterpart: partial computation of

nonstream data cubes, since we have to ensure not only the limited size of the precomputed

cube and limited precomputation time, but also efficient online incremental updating upon

the arrival of new stream data, as well as fast online drilling to find interesting aggregates

and patterns. Obviously, such partial computation should lead to the computation of a rather

small number of cuboids, fast updating, and fast online drilling. We will examine how to

design such a stream data cube in the next section.

4. Stream data cube computation

From the above analysis, one can see that in order to design an efficient and scalable stream

data cube, it is essential to lay out clear design requirements so that we can ensure that the

cube can be computed and maintained efficiently in the stream data environment and can

provide fast online multidimensional stream data analysis. We have the following design

requirements.

1. A stream data cube should be relatively stable in size with respect to infinite data strea-

ms. Since a stream data cube takes a set of potentially infinite data streams as inputs,

if the size of the base-cuboid grows indefinitely with the size of data streams, the size

of stream data cube will grow indefinitely. It is impossible to realize such a stream data

cube. Fortunately, with tilted time frame, the distant time is compressed substantially

and the very distant data beyond the specified time frame are faded out (i.e., removed)

according to the design. Thus the bounded time frames transform infinite data streams

into finite, compressed representation, and if the data in the other dimensions of the base

cuboid are relatively stable with time, the entire base-cuboid (with the time dimensions

included) should be relatively stable in size.
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2. A stream data cube should be incrementally updateable with respect to infinite data str-

eams. Since a stream data cube takes potentially infinite data streams as inputs, it is

impossible to construct the cube from scratch and the cube must be incrementally

updatable. Any cube design that is not incrementally updatable cannot be used as the

architecture of a stream cube.

3. The time taken for incremental computation of a stream data cube should be proportio-

nal to the size of the incremental portion of the base cuboid of the cube. To incremen-

tally update a stream data cube, one must start from the incremental portion of the

base cuboid and use an efficient algorithm to compute it. The time to compute such an

incremental portion of the cube should be proportional (desirably, linear) to the size of

the incremental portion of the base cuboid of the cube.

4. The stream data cube should facilitate the fast online drilling along any single dimension

or along the combination of a small number of dimensions. Although it is impossible

to materialize all the cells of a stream cube, it is expected that the drilling along a

single dimension or along the combination of a small number of dimensions be fast.

Materialization of some portion of the cube will facilitate such fast online presentation.

Based on the above design requirements, we examine the methods for the efficient

computation of stream cubes.

4.1. Design of stream cube architecture: A popular path architecture

According to our discussion in Section 3, there are three essential components in a stream

data cube: (1) tilted time frame, (2) two critical layers: a minimal interesting layer and an

observation layer, and (3) partial computation of data cubes.

In data cube computation, iceberg cube [8] which stores only the aggregate cells that

satisfy an iceberg condition has been used popularly as a data cube architecture since it may

substantially reduce the size of a data cube when data is sparse. In stream data analysis,

people may often be interested in only the substantially important or exceptional cube

cells, and such important or exceptional conditions can be formulated as typical iceberg

conditions. Thus it seems that iceberg cube could be an interesting model for stream cube

architecture. Unfortunately, iceberg cube cannot accommodate the incremental update with

the constant arrival of new data and thus cannot be used as the architecture of stream data

cube. We have the following observation.

Framework 4.1 (No iceberg cubing for stream data). The iceberg cube model does not fit

the stream data cube architecture. Nor does the exceptional cube model.

Rationale. With the incremental and gradual arrival of new stream data, as well as the

incremental fading of the obsolete data from the time scope of a data cube, it is required

that incremental update be performed on such a stream data cube. It is unrealistic to

constantly recompute the data cube from scratch upon incremental updates due to the

tremendous cost of recomputing the cube on the fly. Unfortunately, such an incremental

model does not fit the iceberg cube computation model due to the following observation:

Let a cell “〈di,. . ., dk〉: mik” represent a k − i + 1 dimension cell with di, . . . , dk as its

corresponding dimension values and mik as its measure value. If SAT(mik, iceberg cond) is
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false, i.e., mik does not satisfy the iceberg condition, the cell is dropped from the iceberg

cube. However, at a later time slot t′, the corresponding cube cell may get a new measure

m′
ik related to t′. Since mik has been dropped at a previous instance of time due to its

inability to satisfy the iceberg condition, the new measure for this cell cannot be calculated

correctly without such information. Thus one cannot use the iceberg architecture to model a

stream data cube unless recomputing the measure from the based cuboid upon each update.

Similar reasoning can be applied to the case of exceptional cell cubes since the exceptional

condition can be viewed as a special iceberg condition.

Since iceberg cube cannot be used as a stream cube model, but materializing the full

cube is too costly both in computation time and storage space, we propose to compute only

a popular path of the cube as our partial computation of stream data cube, as described

below.

Based on the notions of the minimal interesting layer (the m-layer) and the tilted time

frame, stream data can be directly aggregated to this layer according to the tilted time

scale. Then the data can be further aggregated following one popular drilling path to

reach the observation layer. That is, the popular path approach computes and maintains a

single popular aggregation path from m-layer to o-layer so that queries directly on those

(layers) along the popular path can be answered without further computation, whereas

those deviating from the path can be answered with minimal online computation from

those reachable from the computed layers. Such cost reduction makes possible the OLAP-

styled exploration of cubes in stream data analysis.

To facilitate efficient computation and storage of the popular path of the stream cube,

a compact data structure needs to be introduced so that the space taken in the compu-

tation of aggregations is minimized. A data structure, called H-tree, a hyper-linked tree

structure introduced in [18], is revised and adopted here to ensure that a compact structure

is maintained in memory for efficient computation of multi-dimensional and multi-level

aggregations.

We present these ideas using an example.

Example 4. Suppose the stream data to be analyzed contains 3 dimensions, A, B and C, each

with 3 levels of abstraction (excluding the highest level of abstraction “∗”), as (A1, A2, A3),

(B1, B2, B3), (C1, C2, C3), where the ordering of “∗ > Al > A2 > A3” forms a high-to-low

hierarchy, and so on. The minimal interesting layer (the m-layer) is (A2, B2, C2), and the

o-layer is (A1, ∗, C1). From the m-layer (the bottom cuboid) to the o-layer (the top-cuboid

to be computed), there are in total 2 × 3 × 2 = 12 cuboids, as shown in figure 3.

Suppose that the popular drilling path is given (which can usually be derived based on

domain expert knowledge, query history, and statistical analysis of the sizes of intermediate

cuboids). Assume that the given popular path is 〈(A1, ∗, C1) → (A1, ∗, C2) → (A2, ∗, C2)

→ (A2, B1, C2) → (A2, B2, C2)〉, shown as the darkened path in figure 3. Then each path of

an H-tree from root to leaf is ordered the same as the popular path.

This ordering generates a compact tree because the set of low level nodes that share the

same set of high level ancestors will share the same prefix path using the tree structure.

Each tuple, which represents the currently in-flow stream data, after being generalized to

the m-layer, is inserted into the corresponding path of the H-tree. An example H-tree is

shown in figure 4. In the leaf node of each path, we store relevant measure information of
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Figure 3. Cube structure from the m-layer to the o-layer.

Figure 4. H-tree structure for cube computation.

the cells of the m-layer. The measures of the cells at the upper layers are computed using

the H-tree and its associated links.

An obvious advantage of the popular path approach is that the nonleaf nodes represent

the cells of those layers (cuboids) along the popular path. Thus these nonleaf nodes naturally

serve as the cells of the cuboids along the path. That is, it serves as a data structure for

intermediate computation as well as the storage area for the computed measures of the

layers (i.e., cuboids) along the path.

Furthermore, the H-tree structure facilitates the computation of other cuboids or cells in

those cuboids. When a query or a drill-down clicking requests to compute cells outside the

popular path, one can find the closest lower level computed cells and use such intermediate

computation results to compute the measures requested, because the corresponding cells

can be found via a linked list of all the corresponding nodes contributing to the cells.

4.2. Algorithms for cube measure computation

With popular path stream data cube design and the H-tree data structure, the popular-path-

based stream data cubing can be partitioned into three stages: (1) the initial computation of

(partially materialized) stream data cube by popular-path approach, (2) incremental update
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of stream data cube, and (3) online query answering with the popular-path-based stream

data cube.

Here we present the three corresponding algorithms, one for each stage of the popular-

path-based stream data cubing.

First, we present an algorithm for computation of initial (partially materialized) stream

data cube by popular-path approach.

Algorithm 1 (Popular-path-based stream cube computation). Computing initial stream

cube, i.e., the cuboids along the popular-path between the m-layer and the o-layer, based

on the currently collected set of input stream data.

Input. (1) multi-dimensional multi-level stream data (which consists of a set of tuples, each

carrying the corresponding time stamps), (2) the m and o-layer specifications, and (3) a

given popular drilling path.

Output. All the aggregated cells of the cuboids along the popular path between the m- and

o- layers.

Method.

1. Each tuple, which represents a minimal addressing unit of multi-dimensional multilevel

stream data, is scanned once and generalized to the m-layer. The generalized tuple is then

inserted into the corresponding path of the H-tree, increasing the count and aggregating

the measure values of the corresponding leaf node in the corresponding slot of the tilted

time frame.

2. Since each branch of the H-tree is organized in the same order as the specified popular

path, aggregation for each corresponding slot in the tilted time frame is performed from

the m-layer all the way up to the o-layer by aggregating along the popular path. The

step-by-step aggregation is performed while inserting the new generalized tuples in the

corresponding time slot.

3. The aggregated cells are stored in the nonleaf nodes in the H-tree, forming the computed

cuboids along the popular path.

Analysis. The H-tree ordering is based on the popular drilling path given by users or

experts. This ordering facilitates the computation and storage of the cuboids along the path.

The aggregations along the drilling path from the m-layer to the o-layer are performed

during the generalizing of the stream data to the m-layer, which takes only one scan of

stream data. Since all the cells to be computed are the cuboids along the popular path, and

the cuboids to be computed are the nonleaf nodes associated with the H-tree, both space

and computation overheads are minimized.

Second, we discuss how to perform incremental update of the stream data cube in the

popular-path cubing approach. Here we deal with the “always-grow” nature of time-series

stream data in an “on-line,” continuously growing manner.

The process is essentially an incremental computation method illustrated below, using the

tilted time frame of figure 1. Assuming that the memory contains the previously computed

m and o-layers, plus the cuboids along the popular path, and stream data arrive every second.

The new stream data are accumulated (by generalization) in the corresponding H-tree leaf

nodes. If the time granularity of the m-layer is minute, at the end of every minute, the data
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will be aggregated and be rolled up from leaf to the higher level cuboids. When reaching

a cuboid whose time granularity is quarter, the rolled measure information remains in the

corresponding minute slot until it reaches the full quarter (i.e., 15 minutes) and then it rolls

up to even higher levels, and so on.

Notice in this process, the measure in the time interval of each cuboid will be accumulated

and promoted to the corresponding coarser time granularity, when the accumulated data

reaches the corresponding time boundary. For example, the measure information of every

four quarters will be aggregated to one hour and be promoted to the hour slot, and in the

mean time, the quarter slots will still retain sufficient information for quarter-based analysis.

This design ensures that although the stream data flows in-and-out, measure always keeps

up to the most recent granularity time unit at each layer.

We outline the incremental algorithm of the method as follows.

Algorithm 2 (Incremental update of popular-path stream cube with incoming stream

data). Incremental computing stream cube, i.e., the cuboids along the popular-path between

the m-layer and the o-layer, based on the previously computed cube and the newly input

stream data.

Input. (1) a popular path-based stream data cube, which also includes (i) the m and o-layer

specifications, and (ii) a given popular drilling path, and (2) a set of input multi-dimensional

multi-level stream data (which consists of a set of tuples, each carrying the corresponding

time stamps).

Output An updated stream data cube (i.e., the updated popular-path cuboids (between the

m- and o-layers).

Method.

1. Each newly coming tuple, which represents a minimal addressing unit of multi-

dimensional multi-level stream data, is scanned once and generalized to the m-layer. The

generalized tuple is then inserted into the corresponding path of the H-tree. If there exists

a corresponding leaf node in the tree, increase the count and aggregating the measure

values of the corresponding leaf node in the corresponding slot of the tilted time frame.

If there exists no corresponding leaf node in the tree, a new leaf node is created in the

corresponding path of the H-tree.

2. Since each branch of the H-tree is organized in the same order as the specified popular

path, aggregation for each corresponding slot in the tilted time frame is performed

from the m-layer all the way up to the o-layer by aggregating along the popular path.

The step-by-step aggregation is performed while inserting the new generalized tuples

finishes.

3. If it reaches the time when a sequence of data in the lower-level time slots should be

aggregated to a new slot in the corresponding higher level titled time window, such

aggregation will be performed at each level of the popular path. If it reaches the time

when the data in the most distant time slot should be dropped from the valid time scope,

the slot in the corresponding time window will be cleared.

4. The so computed aggregated cells are stored in the nonleaf nodes in the H-tree, forming

the computed cuboids along the popular path.
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Analysis. Based on our design of the tilted time window, such incremental computation can

be performed along the popular path of the H-tree. Moreover, the aggregations along the

drilling path from the m-layer to the o-layer are performed when the input stream data come

to the m-layer, which takes only one scan of stream data. Since all the cells in the titled

time windows in the cuboids along the popular path are incrementally updated, the cuboids

so computed are correctly updated stream cube, with minimal space and computation

over-heads.

Finally, we examine how fast online computation can be performed with such a partially

materialized popular-path data cube. Since the query inquiring the information completely

contained in the popular-path cuboids can be answered by directly retrieving the informa-

tion stored in the popular-path cuboids, our discussion here will focus on retrieving the

information involving the aggregate cells not contained in the popular-path cuboids.

A multi-dimensional multi-level stream query usually provides a few instantiated con-

stants and inquires information related to one or a small number of dimensions. Thus one

can consider a query involving a set of instantiated dimensions, {Dci, . . . , Dcj}, and a set

of inquired dimensions, {Dql, . . . , Dqk}. The set of relevant dimensions, Dr, is the union

of the sets of instantiated dimensions and the inquired dimensions. For maximal use of

the precom-puted information available in the popular path cuboids, one needs to find the

highest-level popular path cuboids that contains Dr. If one cannot find such a cuboid in the

path, one will use the base cuboid at the m-layer to compute it. Then the computation can be

performed by fetching the relevant data set from the so found cuboid and then computing

the cuboid consisting of the inquired dimensions.

The online OLAP stream query processing algorithm is presented as follows.

Algorithm 3 (Online processing of stream OLAP query). Online processing of stream

OLAP query given the precomputed stream data cube, i.e., the cuboids along the popular-

path between the m-layer and the o-layer.

Input. (1) a popular path-based stream data cube, which includes (i) the m and o-layer

specifications, and (ii) a given popular drilling path, and (2) a given query whose relevant

dimension set is Dr, which in turn consists of a set of instantiated dimensions, {Dci, . . . ,

Dcj}, and a set of inquired dimensions, {Dqi, . . . , Dqk}.

Output. A computed cuboid related to the stream OLAP query.

Method.

1. Find the highest-level popular path cuboids that contains Dr. If one cannot find such a

cuboid in the path, one will use the base cuboid at the m-layer to compute it. Let the

found cuboid be S.

2. Perform selection on S using the set of instantiated dimensions as set of constants,

and using the set of inquired dimensions as projected attributed. Let Sc be the set of

multidimensional data so selected.

3. Perform on line cubing on Sc and return the result.

Analysis. Based on our design of the stream data cube, the highest-level popular path

cuboid that contains Dr should contain the answers we want. Using the set of instantiated

dimensions as set of constants, and using the set of inquired dimensions as projected
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attributed, the so-obtained Sc is the minimal set of aggregated data set for answering the

query. Thus online cubing on this set of data will derive the correct result. Obviously, such

a computation process makes good use of the precomputed cuboids and will involve small

space and computation overheads.

5. Performance study

To evaluate the effectiveness and efficiency of our proposed stream cube and OLAP com-

putation methods, we performed an extensive performance study on synthetic datasets. Our

result shows that the total memory and computation time taken by the proposed algorithms

are small, in comparison with several other alternatives, and it is realistic to compute such

a partially aggregated cube, incrementally update them, and perform fast OLAP analysis

of stream data using such precomputed cube.

Here we report our performance studies with synthetic data streams of various charac-

teristics.2 The data stream is generated by a data generator similar in spirit to the IBM data

generator [5] designed for testing data mining algorithms. The convention for the data sets

is as follows: D3L3C10T 400K means there are 3 dimensions, each dimension contains 3

levels (from the m-layer to the o-layer, inclusive), the node fan-out factor (cardinality) is

10 (i.e., 10 children per node), and there are in total 400 K merged m-layer tuples.

Notice that all the experiments are conducted in a static environment as a simulation of

the online stream processing. This is because the cube computation, especially for full cube

and top-k cube, may take much more time than the stream flow allows. If this is performed

in the online streaming environment, substantial amount of stream data could have been

lost due to the slow computation of such data cubes. This simulation serves our purpose

since it clearly demonstrates the cost and the possible delays of stream cubing and indicates

what could be the realistic choice if they were put in a dynamic streaming environment.

All experiments were conducted on a 2 GHz Pentium PC with 1 GB main memory,

running Microsoft Windows-XP Server. All the methods were implemented using Sun

Microsystems’ Java 2 Platform, Standard Edition, version 1.4.2.

Our design framework has some obvious performance advantages over some alternatives

in a few aspects, including (1) tilted time frame vs. full non-tilted time frame, (2) using

minimal interesting layer vs. examining stream data at the raw data layer, and (3) computing

the cube up to the apex layer vs. computing it up to the observation layer. Consequently,

our feasibility study will not compare the design that does not have such advantages since

they will be obvious losers.

Since a data analyst needs fast on-line response, and both space and time are critical in

processing, we examine both time and space consumption. In our study, besides presenting

the total time and memory taken to compute and store such a stream cube, we compare the

two measures (time and space) of the popular path approach against two alternatives: (1)

the full-cubing approach, i.e., materializing all the cuboids between the m- and o-layers,

and (2) the top-k cubing approach, i.e., materializing only the top-k measured cells of the

cuboids between the m- and o-layers, and we set top-k threshold to be 10%, i.e., only top

10% (in measure) cells will be stored at each layer (cuboid). Notice that top-k cubing cannot

be used for incremental stream cubing. However, since people may like to pay attention
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Figure 5. Cube computation: time and memory usage vs. no. tuples at the m-layer for the data set D5L3C10.

Figure 6. Cube computation: Time and space vs. no. of dimensions for the data set L3C10I 100K .

only to top-k cubes, we still put it into our performance study (as initial cube computation).

From the performance results, one can see that if top-k cubing cannot compete with the

popular path approach, with its difficulty at handling incremental updating, it will not likely

be a choice for stream cubing architecture.

The performance results of stream data cubing (cube computation) are reported from

figures 5 to 7.

Figure 5 shows the processing time and memory usage for the three approaches, with

increasing size of the data set, where the size is measured as the number of tuples at the

m-layer for the data set D5L3C10. Since full-cubing and top-k cubing compute all the cells

from the m-layer all the way up to the o-layer, their total processing time is much higher

than popular-path. Also, since full-cubing saves all the cube cells, its space consumption is

much higher than popular-path. The memory usage of top-k cubing falls in between of the

two approaches, and the concrete amount will depend on the k value.
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Figure 7. Cube computation: Time and space vs. no. of levels for the data set D5C10T 50K . (a)Time vs. no.

levels. (b) Space vs. no. levels.

Figure 6 shows the processing time and memory usage for the three approaches, with

an increasing number of dimensions, for the data set L3C10T 100K . figure 7 shows the

processing time and memory usage for the three approaches, with an increasing number

of levels, for the data set D5C10T 50K . The performance results show that popular-path

is more efficient than both full-cubing and top-k cubing in computation time and memory

usage. Moreover, one can see that increment of dimensions has a much stronger impact on

the computation cost (both time and space) in comparison with the increment of levels.

Since incremental update of stream data cube carries the similar comparative costs

for both popular-path and full-cubing approaches, and moreover, top-k cubing is in-

appropriate for incremental updating, we will not present this part of performance

comparison. Notice that for incrementally computing the newly generated stream data,

the computation time should be shorter than that shown here due to less number of cells

involved in computation although the total memory usage may not reduce due to the need

to store data in the layers along the popular path between two critical layers in the main

memory.

Here we proceed to the performance study of stream query processing with four different

approaches: (1) full-cubing, (2) top-k cubing, (3) popular-path, and (4) no precomputation,

which computes the query and answer it on the fly. The reason that we added the fourth one

is because one can compute query results without using any precomputed cube but using

only the base cuboid: the set of merged tuples at the m-layer.

Figure 8 shows the processing time and memory usage vs. the size of the base cuboid,

i.e., the number of merged tuples at the m-layer, for the data set D5L3C10, with the data

set grows from 50 to 200 K tuples. There are 5 dimensions in the cube, and the query

contains two instantiated columns and one inquired column. The performance results show

that popular-path costs the least amount of time and space although top-k cubing could

be a close rival. Moreover, no precomputation, though more costly then the previous two,

still costs less in both time and space than the fully materialized stream cube at query

processing.
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Figure 8. Stream query processing: Time and space vs. no. of tuples at the m-layer.

Figure 9. Stream query processing: Time and space vs. no. of levels.

Figure 9 shows the processing time and memory usage vs. the number of levels from

the m to o layers, for the data set D5C10T50K, with the number of levels grows from 3

to 6. There are 5 dimensions in the cube, and the query contains two instantiated columns

and one inquired column. The performance results show that popular-path costs the least

amount of time and space and its query processing cost is almost irrelevant to the number

of levels (but mainly relevant to the size of the tuples) with slightly increased memory

usages. Moreover, top-k cubing and no precomputation takes more time and space when

the number of levels increases. However, full-cubing takes the longest time to respond to a

similar query although its response time is still in the order of 200 millisecond.

Finally, figure 10 shows the processing time and memory usage vs. the number of

instantiated dimensions where the number of inquired dimensions maintains at one (i.e.,

single dimension) for the data set D5L3C10T 100K . Notice that with more instantiated

dimensions, the query processing cost for popular-path and no precomputation is actually
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Figure 10. Stream query processing: Time and space vs. no. of instantiated dimension.

dropping because it will search less space in the H-tree or in the base cuboid with more

instantiated constants. Initially (when the number of instantiated dimensions is only one, the

full-cubing and top-k cubing are slightly faster than popular-path since the latter (popular-

path) still needs some online computation while the former can fetch from the precomuted

cubes.

From this study, one can see that popular-path is an efficient and feasible method for

computing multi-dimensional, multi-level stream cubes, whereas no precomputation which

computes only the base cuboid at the m-layer, could be the second choice. The full-cubing

is too costly in both space and time, whereas top-k cubing is not a good candidate because

it cannot handle incremental updating of a stream data cube.

6. Discussion

In this section, we compare our study with the related work and discuss some possible

extensions.

6.1. Related work

Our work is related to: (1) on-line analytical processing and mining in data cubes, and (2)

research into management and mining of stream data. We briefly review previous research

in these areas and point out the differences from our work.

In data warehousing and OLAP, much progress has been made on the efficient support

of standard and advanced OLAP queries in data cubes, including selective cube materi-

alization [19], iceberg cubing [8, 18, 26, 28], cube gradient analysis [11, 21], exception

[24], intelligent roll-up [25], and high-dimensional OLAP analysis [22]. However, previous

studies do not consider the support for stream data, which needs to handle huge amount

of fast changing stream data and restricts that the a data stream can be scanned only once.

In contrast, our work considers complex measures in the form of stream data and studies

OLAP and mining over partially materialized stream data cubes. Our data structure, to
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certain extent, extend the previous work on H-tree and H-cubing [18]. However, instead

of computing a materialized data cube as in H-cubing, we only use the H-tree structure

to store a small number of cuboids along the popular path. This will save a substantial

amount of computation time and storage space and lead to high performance in both cube

computation and query processing. We have also studied whether it is appropriate to use

other cube structures, such as star-trees in StarCubing [28], dense-sparse partitioning in

MM-cubing [26] and shell-fragments in high-dimensional OLAP [22]. Our conclusion is

that H-tree is still the most appropriate structure since most other structures need to either

scan data sets more than once or know the sparse or dense parts beforehand, which does

not fit the single-scan and dynamic nature of data streams.

Recently, there have been intensive studies on the management and querying of stream

data [7, 12, 14, 16], and data mining (classification and clustering) on stream data [2–4,

13, 17, 20, 23, 27]. Although such studies lead to deep insight and interesting results

on stream query processing and stream data mining, they do not address the issues of

multidimensional, online analytical processing of stream data. Multidimensional stream

data analysis is an essential step to understand the general statistics, trends and outliers as

well as other data characteristics of online stream data and will play an essential role in

stream data analysis. This study sets a framework and outlines an interesting approach to

stream cubing and stream OLAP, and distinguishes itself from the previous work on stream

query processing and stream data mining.

In general, we believe that this study sets a new direction: extending data cube technology

for multi-dimensional analysis of data streams. This is a promising direction with many

applications.

6.2. Possible extensions

There are many potential extensions of this work towards comprehensive, high performance

analysis of data streams. Here we outline a few.

First, parallel and distributed processing can be used to extend the proposed algorithms

in this promising direction to further enhance the processing power and the performance of

the system. All of the three algorithms proposed in this study: initial computation of stream

data cubes, incremental update of stream data cube, and online multidimensional analysis

of stream data, can be handled by different processors and processed in a parallel and/or

distributed manner. In the fast data streaming environment, it is desirable or sometimes

required to have at least one processor dedicated to stream query processing (on the

computed data cube) and at least another one dedicated to incremental update of data

streams. Moreover, both incremental update and query processing can be processed by

parallel processors as well since the algorithms can be easily transformed into parallel

and/or distributed algorithms.

Second, although a stream cube usually retains in main memory for fast computa-

tion, updating, and accessing, it is important to have its important or substantial portion

stored or mirrored on disk, which may enhance data reliability and system performance.

There are several ways to do it. Based on the design of the tilted time frame, the distant

time portion in the data cube can be stored on the disk. This may help reduce the total main
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memory requirement and the update overhead. The incremental propagation of data in such

distant portion can be done by other processors using other memory space. Alternatively,

to ensure the data is not lost in case of system error or power failure, it is important to keep

a mirror copy of the stream data cube on disk. Such a mirroring process can be processed in

parallel by other processors. In addition, it is possible that a stream cube may miss a period

of data due to software error, equipment malfunction, system failure, or other unexpected

reasons. Thus a robust stream data cube should build the functionality to run despite the

missing of a short period of data in the tilted time frame. The data so missed can be treated

by special routines, like data smoothing, data cleaning, or other special handling so that the

overall stream data can be interpreted correctly without interruption.

Third, although we did not discuss the computation of complex measures

in the data cube environment, it is obvious that complex measures, such as

sum, avg, min, max, last, standard deviation, linear regression and many other measures

can be handled for the stream data cube in the same manner as discussed in this study.

However, it is not clear how to handle holistic measures [15] in the stream data cubing en-

vironment. For example, it is still not clear how some holistic measures, such as quantiles,

rank, median, and so on, can be computed efficiently in this framework. This issue is left

for future research.

Fourth, the stream data that we discussed here are of simple numerical and categorical data

types. In many applications, stream data may contain spatiotemporal and multimedia data.

For example, monitoring moving vehicles and the flow of people in the airport may need

to handle spatiotemporal and multimedia data. It is an open problem how to perform

online analytical processing of multidimensional spatiotemporal and multimedia data in the

context of data streams. We believe that spatiotemporal and multimedia analysis techniques

should be integrated with our framework in order to make good progress in this direction.

Fifth, this study has been focused on multiple dimensional analysis of stream data.

However, the framework so constructed, including tilted time dimension, monitoring the

change of patterns in a large data cube using an m-layer and an o-layer, and paying special

attentions on exception cells, is applicable to the analysis of non-stream time-series data

as well.

Finally, this study is on multidimensional OLAP stream data analysis. Many data mining

tasks require deeper analysis than simple OLAP analysis, such as classification, clustering

and frequent pattern analysis. In principle, the general framework worked out in this study,

including tilted time frame, minimal generalized layer and observation layers, as well as

partial precomputation for powerful online analysis, will be useful for in-depth data mining

methods. It is an interesting research theme on how to extend this framework towards online

stream data mining.

7. Conclusions

In this paper, we have promoted on-line analytical processing of stream data, and proposed a

feasible framework for on-line computation of multi-dimensional, multi-level stream cube.

We have proposed a general stream cube architecture and a stream data cubing method

for on-line analysis of stream data. Our method uses a tilted time frame, explores minimal
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interesting and observation layers, and adopts a popular path approach for efficient

computation and storage of stream cube to facilitate OLAP analysis of stream data. Our

performance study shows that the method is cost-efficient and is a realistic approach

based on the current computer technology. Recently, this stream data cubing methodology

has been successfully implemented in the MAIDS (Mining Alarming Incidents in

Data Streams) project at NCSA (National Center for Supercomputing Applications) at

University of Illinois, and its effectiveness has been tested using online stream data sets.

Our proposed stream cube architecture shows a promising direction for realization of

on-line, multi-dimensional analysis of data streams. There are a lot of issues to be explored

further. For example, besides H-cubing [18], there are other data cubing methodologies,

such as multi-way array aggregation [29], BUC [8], and Star-cubing [28], it is interesting to

examine other alternative methods for efficient online analysis of stream data. Furthermore,

we believe that a very important direction is to further develop data mining methods to take

advantage of multi-dimensional, multi-level stream cubes for single-scan on-line mining to

discover knowledge in stream data.
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