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Abstract. Effective memory utilization is critical to reap the benefits of the

multi-core processors emerging on embedded systems. In this paper we explore

the use of a stream model to effectively utilize memory hierarchies. We target im-

age processing algorithms running on the Analog Devices Blackfin BF561 fixed-

point, dual-core DSP. Using optimized assembly to effectively use cores reduces

runtime, but also underscores the need to mitigate the memory bottleneck. Like

other embedded processors, the Blackfin BF561 has L2 SRAM available. Ap-

plying the stream model allows us to effectively make full use of both cores and

the L2 SRAM. We achieve almost a 10X speedup in execution time compared to

non-optimized C code.

1 Introduction

Convergent, embedded architectures combine multiple instruction sets and allow tra-

ditional digital-signal processing (DSP) platforms to also run micro-controller (MCU)

code. To develop applications for these platforms, developers should try to leverage

open source image and video processing libraries to drastically reduce development

time of embedded computer vision applications. By utilizing DSP and other special-

purpose hardware available on the processor, the performance of these applications can

be greatly improved. But with highly compute-optimized code, the memory bottleneck

becomes even more apparent.

The growing gap between processor and memory speeds has long been acknowl-

edged [1] and has been attacked using on-chip caches. But image and video applications

exhibit characteristics not well-suited for conventional caches. Images have 2D spatial

locality, while caches capture only one dimension [2,3]. Image processing shows little

temporal data reuse, causing cache pollution. Cache lines corresponding to processed

data are not reused and must be replaced often. This characteristic of image-based pro-

cessing need cache structures that can accomodate both types of locality [4,5]. An alter-

native use of the on-chip memory is as scratch-pad memory, with data communication

controlled explicitly by the programmer [6].

The stream model of computation has recently been proposed to address memory

bottlenecks. In short, the stream paradigm decouples computation and memory accesses

to ensure parallelism and locality. We examine the use of the stream paradigm in con-

junction with assembly optimizations on a representative set of image processing algo-

rithms, running on the Blackfin embedded processor from Analog Devices, Inc. (ADI)

- a good example of a convergent architecture.
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Section 2 discusses the stream model in further detail. Section 3 discusses the con-

vergent architecture of the dual-core Blackfin BF561 processor. Section 4 describes the

main target application discussed in this paper, an edge detection program. We also

discuss our scheme to produce optimized execution on the convergent Blackfin DSP

architecture. Section 5 presents our results and section 6 concludes the paper.

2 Stream Computing Paradigm

The goal of the stream paradigm is to maximize data locality while exposing paral-

lelism. Stream applications decouple two aspects of computing: performing computa-

tions, and data communication required to feed the computations. Streams are sets of

data elements to be processed by compute kernels, which are sequences of instructions

applied to each element in a stream.

Locality can be maximized because during a kernel’s execution, all data accesses

can be served by local memory storage (maximizing kernel locality) and because re-

sults produced by one kernel are quickly consumed by the next (maximizing producer-

consumer locality).

Given the necessary computational resources, multiple kernels can operate simulta-

neously in a pipeline, exposing thread-level parallelism. For each thread and within a

kernel, independent instructions can operate at the same time, exposing instruction-level

parallelism. A particular instruction could be vectorized and applied to many elements

of the data stream using SIMD hardware, exposing data-level parallelism [7,8].

2.1 Stream Applications, Languages, and Compilers

To quickly process high definition images or video sequences, data should be locally

available to computational units. For large images, a common approach is to partition

the data, effectively maintain intermediate results in low-latency memory, and continu-

ously process the resulting subimages. This fundamental streaming nature is apparent

in a number of applications and modern graphics processing units (GPUs) are designed

around a stream model both in their hardware [9] and software [10] implementations.

A number of languages and compilers have been developed including StreamIT [11],

Stream-C and Kernel-C [12].

2.2 Stream Architectures

The rising demand for media processing has motivated the development of a number of

architectures and re-examination of existing architectures to work with a stream model.

Processors like Imagine [13,14], Merrimac [15], and Stream Processors Inc.’s Storm-

1 [16] have been developed to exploit the stream model. To support diverse, dynamic ap-

plications, architectures that can be reconfigured to execute efficiently for many classes

of applications have been introduced. Architectures such as TRIPS [17] and RAW [18]

can be described as polymorphous - that is, they can morph between a number of oper-

ating modes, each capturing some class of applications.
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Researchers have even explored using the stream paradigm on existing general-

purpose processors [19]. By using L2 cache as local storage, and multithreading for

parallelism, scientific applications can achieve moderate speedups (27%). But cache

overhead limits the effectiveness of this approach. For architectures which support L2

SRAM acting more like scratchpad memory (common in many embedded processors,

e.g., the ADI Blackfin), there is potential for higher performance.

3 Blackfin Processor

The Blackfin is an embedded architecture based on the MicroSignal Architecture devel-

oped jointly by ADI and Intel [20]. It supports 8, 16, and 32-bit arithmetic operations,

but is optimized for 16-bit operations. The Blackfin reduces power and part cost by

integrating RISC and DSP processor capabilities into a single chip. But rather than fus-

ing two cores together, the Blackfin ISA was designed from the beginning with this

duality in mind. The 32-bit RISC instruction set is variable-length and supports Single

Instruction, Multiple Data (SIMD) operations. As shown in Fig 1, the DSP instruction

set makes use of dual 16-bit multiply-accumulate (MAC) units. Additionally, a video

pixel instruction set supports four 8-bit video ALUs which can be utilized with vec-

tor instructions for addition, multiplication, averaging, and sum-of-absolute-differences

calculations [21].

The BF561 processor is a Blackfin derivative with two cores, clocked at up to 600

MHz. The BF561 has 128 KB on-chip L2 SRAM, clocked at 300 MHz, and 100 KB

in-core L1 SRAM, which is split between instruction, data, and scratch-pad memories.

Fig. 1. The ADI Blackfin processor core
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L1 can be configured as either SRAM or cache. The BF561’s L2 memory can not be

configured as cache [22], but the programmer is able to map data into regions in L2.

Without the turn-key solution of using L2 as cache and given the limitations of cache

for image and video processing discussed in the introduction, we examine the use of L2

as a local store in the stream paradigm.

4 Implementation

Many image processing algorithms are made up of a sequence of convolutions, which

transform images using a set of kernel matrices. To avoid confusion with the compu-

tational kernels used in the stream model, we refer to kernel matrices as “masks.” For

example, an image represented by the 2D matrix F := ( fx,y)m×n can be transformed into

another image represented by the matrix G by convolving F with a mask, denoted H,

by the 2D convolution equation:

gx,y =
1

∑
i=−1

1

∑
j=−1

h j+2,i+2 × fx− j,y−i

Such convolutions are frequently used to update pixel values based on neighborhood

operations. For example, for images which contain noise, averaging a pixel based on

its neighborhood can reduce the intensity of the noise, thus smoothing or blurring the

image. In order to determine edges in an image, approximations of the first and second

derivative can be used as masks to determine if the intensity level for a pixel neighbor-

hood is uniform or changes (implying an edge). A Gaussian mask implements noise

reduction; two Sobel masks implement horizontal and vertical edge detection:

Gauss = 1
16
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In general such image convolution algorithms can be described as follows, where

memi and memo are data sets in memory for input data and processed output data, re-

spectively:

IMAGEPROCKERNEL (memi,m,n,mask,memo)

1 for y ← 0 to m− 1

2 do for x ← 0 to n − 1

3 do p = GETPIXEL(x,y,memi)

4 2D CONVOLVE( p,mask )

5 SETPIXEL(p,y,x,memo)

The control flow of an image processing program can be described as a sequence

of kernels (such as the IMAGEPROCKERNEL algorithm). To process an image, each

kerneli would execute, convolving every pixel p in the m×n source image src with the

convolution mask(s), and setting appropriate pixel values in the destination image dst.

Performance can be increased by ensuring calls to GETPIXEL and SETPIXEL access

low-latency memory.
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PROCESSIMAGE

1 foreach kerneli in Control Flow

2 RUN(kerneli (src,m,n,mask,dst))

We examine an edge detection program using a Gaussian blur convolution to reduce

noise and a Sobel gradient-operator convolution to highlight both horizontal and verti-

cal edges in a high-definition image. The resolution used is 1920x1080 (WxH) which

requires 2,073,600 pixels to be convolved. For a 3x3 mask, this requires 9 multiplica-

tions and 8 additions per pixel. Therefore, a single convolution would require about 18.7

MMACs. Our program uses three such convolutions, and therefore the ideal is about 56

MMACs.

The actual benchmark code used is taken from existing codebases [23] and from

the ADI Blackfin SDK [24]. We examine the assembly-level optimizations given in the

SDK code to reduce the execution time on each core, and then attempt to optimize the

use of both cores to reduce overall execution time. The computational optimizations

underscore the need for efficient memory usage.

4.1 Assembly Optimizations

As discussed in section 3, the Blackfin has a dual-MAC architecture: to carry out con-

volutions, two pixels can be convolved at once. By pushing the unique values of a mask

onto the stack and popping them when needed, the program can quickly fetch hx,y mask

values. Using parallel-issue instructions, the Blackfin can execute two MAC operations

to set two gx,y pixel values while fetching the next fx,y pixel and hx,y mask values in

the same clock cycle. This technique allows the 56 MMACS to require only 28 Mcy-

cles, which running on a 600 MHz core clock is less than 0.05 sec. This runtime is the

theoretical lower limit for the convolutions alone, and the delay added due to memory

latency is substantial - emphasizing the need for efficient memory use.

4.2 Dual-Core Utilization

A natural approach to utilize symmetric cores is to divide the image into partitions,

giving each core its own portion of the data. This can be described as partitioning the

data-flow of the program and has also ben called the “homogenous model” [25]. An-

other approach is to partition the compute kernels and give each core some set of kernels

to perform; the resulting data would flow from one core into the next. This approach

can be described as partitioning the control-flow of the program, and embodies some of

the characteristics of the stream model.

In order to add more kernels to the stream, we utilize C data structures represent-

ing kernels, which include pointers to the input/output records and a callback for the

kernel’s function, and the three routines discussed below:

– ADDKERNEL - adds a kernel to a linked list representing the program’s control flow

– NEWSTREAMREC - allocates memory for input/output records of a kernel

– MAPSTREAM - maps existing records for a kernel
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At initialization, we use the above routines to set up the control flow of a program.

Following initialization, we call each kernel as specified. To implement other image

processing programs using our method, the addition of new kernels or stream mappings

only requires a new initialization for each core, and does not require a specialized stream

compiler.

To use the two symmetric cores on the BF561, we examined both approaches dis-

cussed above. For data-flow partitioning, each core processes half the image. For control-

flow partitioning, each core processes half of the computational kernels. This approach

is viable for our two convolution kernels, but for programs that lack a balanced set of

computational kernels, a heuristic approach may be needed.

4.3 Memory Hierarchy Utilization

In order to make use of the BF561’s L2 SRAM as local storage memory, we exam-

ined two approaches. The first uses regions of L2 SRAM on a per-kernel basis. It

copies subimages into input records associated with a computational kernel (denoted

kerneli.in), runs the kernel, saves results into output records (denoted kerneli.out), and

saves these records back to SDRAM after computation completes; this process is then

repeated for the next kernel in the control flow of the program. A side-effect of this

approach is that the results of each kernel can be saved, but at the cost of increased

memory access for each kernel. This approach is summarized in the following pseu-

docode:

PER-KERNEL CONVOLUTION

1 foreach kerneli in Control Flow

2 do foreach SUBIMAGE in IMAGE

3 do COPY(SUBIMAGE,kerneli.in)

4 RUN (kerneli(kerneli.in,m,n,kerneli.out))
5 COPY(kerneli.out,SUBIMAGE)

The second approach uses the stream processing paradigm. Under this model,

SDRAM is only accessed for compulsory reads or completion writes (i.e., only after

all k kernels in the control flow have been processed). This approach is summarized in

the following pseudocode:

STREAM CONVOLUTION

1 foreach SUBIMAGE in IMAGE

2 do COPY(SUBIMAGE,kernel1.in)

3 foreach kerneli in Control Flow

4 do RUN(kerneli(kerneli.in,m,n,kerneli+1.in))
5 COPY(kernelk.out,SUBIMAGE)

Unlike the previous approach, the results of each kernel are not saved - only the final

results after every kernel has been run is saved to SDRAM. But for programs where the

intermediate results are not important, reducing the number of main memory accesses

provides higher performance.
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5 Results

We produce the following results on a live Analog Devices BF561 system. Figures 2

and 3 show the results using hardware counters.

Figure 2 shows how the different methods reduce the cycle count. For the single-

core (SC) case, the use of L2 in the partitioned data-flow method reduces the runtime

by nearly half. The use of a second core is effective only when the cores are not waiting

for data (i.e., when data is stored in on-chip memory). Ideally, using the second core

would half the runtime, but when SDRAM is used the additional core only provides

a 27% increase in performance. Only when the latency penalty of SDRAM access is

minimized by using L2 do we achieve a 2X speedup due to the second core.
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Fig. 2. C implementations for single-core (SC) and dual-core (DC) approaches
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Fig. 3. Assembly implementation of the 3x3 convolution program
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Table 1. Runtimes using single and dual-core, using different memory management approaches,

and comparing C and ASM implementations

C ASM

Runtime (Speedup) Runtime (Speedup)

in secs. in secs.

Single-core baseline approach 3.99 (1.0) 3.64 (1.10)

Dual-core split data 3.15 (1.27) 2.45 (1.63)

Single-core with L2 1.80 (2.22) 1.08 (3.69)

Dual-core split data with L2 0.92 (4.34) 0.44 (9.07)

Dual-core streamed approach 0.80 (4.99) 0.42 (9.50)

Figure 3 shows that even though optimized assembly is being used instead of C, the

performance increase is only 10% for a single-core and 63% for a dual-core. Our image

processing application is truly limited by the SDRAM’s memory latency.

Using L2 to alleviate this bottleneck exposes the benefits of using assembly. The

performance speedup is 1.7X when using assembly for the case of a single-core with

L2 - nearly double, as is expected due to the effective use of both MAC units. The same

is true for both dual-core cases as well.

Results from hardware cycle counters are converted to runtimes and given in Table 1,

along with the speedup compared to the single-core baseline. Due to the limiting effects

of memory latency, the streaming paradigm performs better in both C and assembly

cases. The stream approach only accesses SDRAM on compulsory accesses and upon

completion of the convolutions. We see that we are far from the ideal runtime of 0.05

sec because L2 operates at 300 MHz and the operations to manage dataflow dominate

performance.

6 Conclusion

The Blackfin BF561 is a dual-core DSP/MCU convergent architecture with a 128 KB L2

SRAM. For image and video processing applications, we demonstrate that the stream

computing paradigm provides an effective model for making use of the computational

resources and L2 memory of the BF561. Using assembly code that utilizes dual-MAC

hardware doubles the performance but only when most of the memory accesses are

to L2 SRAM. Utilizing the stream model to limit SRAM accesses provides the best

performance.
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