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Abstract

According to the acoustic adaptation hypothesis, communication signals are evolutionary shaped in a way that minimizes
its degradation and maximizes its contrast against the background noise. To compare the importance for call divergence of
acoustic adaptation and hybridization, an evolutionary force allegedly promoting phenotypic variation, we compared the
mate recognition signal of two species of poison frogs (Oophaga histrionica and O. lehmanni) at five localities: two (one per
species) alongside noisy streams, two away from streams, and one interspecific hybrid. We recorded the calls of 47 males
and characterized the microgeographic variation in their spectral and temporal features, measuring ambient noise level,
body size, and body temperature as covariates. As predicted, frogs living in noisy habitats uttered high frequency calls and,
in one species, were much smaller in size. These results support a previously unconsidered role of noise on streams as a
selective force promoting an increase in call frequency and pleiotropic effects in body size. Regarding hybrid frogs, their
calls overlapped in the signal space with the calls of one of the parental lineages. Our data support acoustic adaptation
following two evolutionary routes but do not support the presumed role of hybridization in promoting phenotypic
diversity.
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Introduction

Species exhibiting intraspecific geographic or microgeographic

variation in habitat use offer excellent opportunities to understand

the very initial steps of evolutionary divergence in auditory signals

[1,2]. After all, microgeographic variation is probably the

minimum amount of evolution that can be detected in nature.

Sensory drive is widely recognized as the selective pressure of

habitat characteristics on the evolution of communication systems

[3,4]. Since habitats do vary geographically, local adaptations in

mate recognition signals may promote reproductive isolation

among populations and thereby speciation [5]. For instance,

habitat color background is thought to promote the evolution of

contrasting colors in dewlaps of visually displaying lizards Anolis [6]

and in body parts of birds and cichlid fish [7,8]. A form of sensory

drive known as acoustic adaptation hypothesis (also termed signal

structure hypothesis) implies that habitat characteristics such as

background noise may evolutionarily shape auditory signals in a

way that maximizes their contrast against the background noise

[9–11]. The empirical evidence supporting adaptation in acoustic

mating signals is surprisingly sparse compared to visual signals

[6,12–16].

Cross-breeding between taxa (hybridization) also can favor the

evolution of communication signal diversity because hybrids often

exhibit distinctive phenotypes [17,18]. Distinctive communication

traits in the ‘‘hybrid’’ offspring may help to maintain the integrity

of hybrid lineages by reducing the chances of back crossbreeding

with any parental species [18,19] which may result in hybrid

speciation [20]. Indeed, recent evidence suggests that hybridiza-

tion can play an unsuspected important role in animal diversifi-

cation [21–24]. However, hybridization events can also be costly if

hybrid offspring is less adapted than parental individuals, thus

promoting the evolution of strong premating isolation mechanisms

(i.e. reinforcement [17,25,26]. Last but not least, hybridization has

been also considered as a homogenizing force reversing initial

divergence between lineages [21,27]. Summing up, hybridization

has been recognized as a widespread phenomenon in nature for

decades [23,28], but the variety of hybridization effects preclude

strong generalizations about its role in the evolution of commu-

nication signals diversity.

The role of natural selection on the divergence of auditory

communication signals has been compared to the role of other

evolutionary forces such as sexual selection and genetic drift [29–

32]. However, we are not aware of any attempt to simultaneously

contrast the role of natural selection and hybridization in the

evolution of an auditory signal. Whereas natural selection is

expected to promote gradual divergence in communication

signals, hybridization is considered an evolutionary mechanism
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capable of generating large phenotypic variation in short time

intervals compared to natural selection [33,34]. Thus, where both

processes have recently occurred, one should expect either (1) a

signal phenotype representing a tradeoff between adaptation and

hybridization or (2) uncoupled evolution of signal characteristics,

i.e. some signal traits will reflect the effect of natural selection

whereas others will just represent the genetic consequences of

hybridization.

Among vertebrates, poison frogs (Dendrobatidae) represent an

increasingly important model in which to study the evolutionary

biology of complex signals and its implications in speciation. They

use multimodal (e.g. visual and acoustic) and multicomponent (e.g.

color and pattern) communication signals [32,35,36] that are

heritable ([37,38], Amézquita, unpublished data) and often exhibit

intraspecific geographic variation [32,39]. Among the mechanisms

allegedly promoting geographic variation in their complex signals

are divergent female choice preferences, adaptation to local

predators, mimetic processes, and genetic drift [32,39–41]. We

expect here to add to this knowledge by testing the simultaneous

effect of natural selection represented by stream noise and

hybridization in the evolution of an auditory signal.

The frogs Oophaga histrionica and O. lehmanni inhabit tropical wet

forests where males usually establish territories, call, and mate near

forest gaps and forest edges [42,43]. At some localities, however,

territorial males are heard from riparian forests, where the acoustic

environment is strongly dominated by the noise produced by fast

flowing streams. Streams produce a continuous broadband low-

frequency noise, which should favor the evolution of high

frequency calls in frogs as an adaptation that reduces masking

interference by abiotic noise [44–46]. Hence, individuals of O.

histrionica and O. lehmanni living alongside noisy streams should

exhibit higher call frequencies than individuals living away from

streams, where the broadband low-frequency noise is significantly

lower in intensity. On the other hand, cross-breeding experiments

and microsatellite analyses have shown that at least one population

currently assigned to O. histrionica resulted from hybridization

between O. histrionica and O. lehmanni [47]. Therefore, the hybrid

population of O. histrionica could exhibit either intermediate or

novel call traits relative to the parental lineages, perhaps distinctive

enough to increase the probability of incipient speciation. Our aim

here was to estimate the effect of stream noise and hybridization

on microgeographic divergence of an acoustic mating signal. To

reach this goal, we 1) characterized geographic variation on

spectral and temporal traits of the advertisement calls of O.

histrionica and O. lehmanni, and then used multivariate analyses to 2)

compare each species’ calls between individuals occurring at

streams and away from them, and 3) compare the calls of a hybrid

population against the call of the parental lineages.

Materials and Methods

Ethics statement
Procedures for recordings, capture and handling of live animals

in the field were approved by the Colombian Ministry of

Environment under the research permit 004 of July 27–2007.

The Unidad Administrativa Especial de Parques Nacionales

Naturales de Colombia and the Corporación Autónoma Regional

del Valle del Cauca CVC gave us permission and logistic support

for working in all study localities.

Study species
The poison frogs Oophaga histrionica and O. lehmanni (Dendroba-

tidae) inhabit tropical wet forests, on the pacific slope of the

western Colombian Andes. Whereas O. histrionica is widely

distributed between sea level and 1000 m elevation, O. lehmanni

is scattered within less than 400 km2, between 550–1010 m

elevation [43,48]. Here we studied three populations currently

assigned to O. histrionica and two populations to O. lehmanni, all of

them in the Departamento del Valle del Cauca. We publish here

the approximate position rather than the precise coordinates of the

study sites because both species are heavily trafficked for the

international pet market and O. lehmanni (Critically Endangered

according to [49]) is almost extinct throughout its formerly known

distribution range [50]. One population of each species occurs in

riparian habitats (hereafter Oh-Stream, Ol-Stream) where the

acoustic environment is highly influenced by high-intensity and

low-frequency noise produced by rocky streams. Another popu-

lation of each species occurs away from fast flowing streams

(hereafter Oh-Away, Ol-Away), in less noisy habitats (Fig. 1). The

third population of O. histrionica (hereafter Oh-Hybrid) has arisen

from natural cross-breeding between the latter two populations of

O. histrionica and O. lehmanni [47] and has been found predomi-

nantly away from noisy streams (Fig. 1).

Recording and analysis of advertisement calls
Most individuals (40/47) were recorded in the field during ten

field trips between April 2009 and September 2012; seven were

recorded under lab conditions due to significant security concerns

in the study area, which has been historically occupied by

guerrillas. Calling males were generally found during daytime

hours in elevated positions on the forest floor upon fallen trunks,

leaves, and abundant leaflitter; in Oh-Stream, males called from

the ground and from crevices in rocky areas along the streams.

Once a calling male was located, we recorded its advertisement

calls by positioning a unidirectional microphone (Sennheiser K6/

ME66), connected to a digital recorder (Marantz PMD660), 30–

150 cm from a calling male. Immediately after recording we

measured male body temperature to the nearest 0.1uC with an

infrared thermometer (Oakton model 35629) and captured him to

measure body size (snout-vent length, SVL) to the nearest 0.1 mm

Figure 1. Study sampling scheme. Calls were recorded from two
populations of Oophaga histrionica, two of O. lehmanni and a hybrid
population between both species [47], which is currently assigned to O.
histrionica (Oh-Hybrid). One population of each species (Oh-Stream, Ol-
Stream) occurs along streams where environmental noise (median and
range expressed in dB, re 20 mPa) is higher than for three other
populations occurring away from streams (Oh-Away, Oh-Hybrid, Ol-
Away). Tree topology from [47].
doi:10.1371/journal.pone.0077545.g001
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with a digital caliper. At the end of each recording session, we

measured ambient noise level (maximum value during 10 s) at the

calling position to the nearest dB (re 20 mPa) with a sound level

meter Roline RO-1350.

Digital recordings were analyzed with Raven 1.4 sound analysis

software [51]. The terminology and procedures for measuring call

traits were based on [52]. From oscillographic representations of

the call, we measured pulse cycle duration (pulse duration +
interpulse interval duration), call duration, number of pulses per

call and then calculated pulse repetition rate; from spectrograms

we measured peak frequency as the call frequency with the highest

energy content. Because call traits such as peak frequency and

pulse cycle duration can vary within a single call in O. histrionica

and O. lehmanni, we repeated these measurements in three pulses

located at the initial, middle and final portions of a single call and

then used the corresponding average values for further analyses.

From power spectra (Window: Blackman, DFT: 2048 samples), we

measured peak frequency. For each call parameter, the average of

measurements taken on three calls per male was used as the

smallest unit of statistical analysis.

Statistical analyses
Since sound pressure levels were measured in dB, which

represent a logarithmic scale, the calculation of the average values

and further statistical analyses were conducted after converting dB

values to a linear scale (pressure, Pa). Differences in ambient noise

level among populations were tested with an Analysis of Variance

ANOVA using significant level of a,0.05. Since the other

measured acoustic traits are usually intercorrelated, we reduced

redundancy by conducting a principal component analysis (PCA)

with Varimax-rotation. Because body temperature may affect

calling performance and thereby acoustic trait values, we removed

its effect by conducting linear regression on PCAs, and then used

the regression residuals as new temperature-independent acoustic

traits in subsequent statistical analyses. To estimate the degree of

acoustic divergence among the five studied populations we ran a

canonical discriminant analysis. To test whether abiotic noise

originated from streams was correlated with high call frequency in

Oh-Stream and Ol-Stream, we ran an ANOVA. Because part of

the call divergence could be merely explained by co-variation in

body size, we repeated the ANOVA after removing concomitant

variation in male body size [37,53]. To test for intra-locality

relationships between ambient noise level and call characteristics

(PCAs after statistically controlling effect of temperature) we used

an analysis of covariance (ANCOVA).

Results

As expected, we detected significant non-overlapping differenc-

es in environmental noise between the habitats of streamside frogs

(Oh-Stream and Ol-Stream) and frogs living away from streams

(Oh-Away, Ol-Away, and Oh-Hybrid) (F = 20.546, DF = 4,

P,0.001; Fig. 1). Variation in the measured call traits (Table

S1) was successfully summarized by three principal components

(Table 1) mainly correlated with call frequency (PC1), call

duration (PC2), and pulse number (PC3). After removing the

effect of temperature, we detected significant microgeographic

divergence in spectral (ANOVA, resPC1-Frequency: F = 7.995,

P,0.001) and one of the temporal call features (resPC2-Duration:

F = 5.786, P = 0.001; PC3: F = 0.799, P = 0.533) (Fig. 2). Raw data

of call features for every frog are available on request to authors.

The first discriminant function (Table 2), mostly related to

resPC1-Frequency, explained 58.8% of call variation. It separated

very well two populations with high frequency calls (Oh-Stream

and Ol-Stream) from three populations with low frequency calls

(Oh-Away, Ol-Away and Oh-Hybrid) (Fig. 3A). The second

discriminant function, mostly related to resPC2-Duration, ex-

plained an additional 37.1% of the variation. Along the

corresponding axis, it tended to separate two populations with

relatively long calls (Oh-Stream and Oh-Away) from three

populations with shorter calls (Ol-Stream, Ol-Away, and Oh-

Hybrid). Considering both functions, the calls of hybrid frogs, Oh-

Hybrid, overlapped almost completely with the calls of Ol-Away.

Since populations differed in average body size (F = 91.52, DF = 4,

P,0.001; Fig. 4), we repeated the discriminant analysis after

controlling for both temperature and body size effects (Multiple

regression, PC1: R2 = 0.431, F = 16,673, P,0.001; PC2:

R2 = 0.278, F = 8.453, P = 0.001). As a result (Table 2), one of

the riparian populations (Oh-Stream) moved towards the signal

spaces of Ol-Away and Oh-Hybrid and overlapped completely

within them (Fig. 3B). The other riparian population (Ol-Stream)

remained statistically distinguishable from any other population,

because of its high frequency calls. There was no intrapopulation

relationship between ambient noise level and any of the call

characteristics (resPC1-Frequency: Ancova F = 0.572, DF = 1,

P = 0.455, N = 40; resPC2-Duration: F = 0.682, DF = 1,

P = 0.415; PC3-Pulse number: F = 0.214, DF = 1, P = 0.647).

Discussion

Our results demonstrate uncoupled divergence in call traits

among the studied populations. Concerning the spectral call traits,

populations were grouped independently of their phylogenetic

relationship, but according to similarities on their habitat acoustic

environment. In contrast, concerning temporal call traits, popu-

lations were grouped according to their phylogenetic affinity

rather than their acoustic environment. Hybridization did not

appear to promote call diversity in our study system.

Supporting our first prediction and the acoustic adaptation

hypothesis, males from the two populations occurring along noisy

streams (one per species, Oh-Stream and Ol-Stream) produced calls

with higher frequency than males living away from streams. The

pattern suggests parallel adaptation in both species. Since stream

noise contains most of its energy at low frequencies ([44,45,54]; see

Fig. 5), calling at higher frequencies should increase the signal-to-

noise ratio and thereby the probability of being detected and

recognized by conespecific receivers [55]. Vegetation complexity is

also thought to affect the evolution of auditory signals, e.g. in birds

[26,56]. However, the empirical evidence supporting this effect in

anurans is still weak and most comparisons have been made

between populations inhabiting strikingly different habitats, such

as open and forested areas [57–59]. Although we did not measure

habitat complexity, variability between frogs in the microhabitat

around calling perches appeared to be much higher than the

corresponding differences between populations. In contrast, noise

is obviously a more continuous and predictable environmental

pressure, especially where frogs are restricted to narrow forest

bands along the streams.

An upward shift in call frequency may have been evolutionary

attained in two ways. First, call frequency is largely determined by

vocal cord mass, which, in turn, is often correlated with male body

size [53,60]. Thus, stream noise in riparian habitats may actually

confer a selective advantage to small males. Males of Oh-Stream

are smaller than any other studied male (Fig. 4) and, once we

statistically removed the negative effect of body size on call

frequency, their calls are not longer distinguishable from the calls

of males living away from streams (Fig. 3). Of course, the

pleiotropical link between call frequency and body size can

Evolution of Auditory Signals in Poison Frogs
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confound the effect of selection on either trait [37]. Numerous

selective pressures are thought to act mainly on body size and

pleiotropically affect call frequency [61–63]. Conversely, selective

pressures on detection and recognition of mate recognition signals

could be strong enough to promote concomitant changes in body

size, given their tremendous importance for fitness [64,65].

Interestingly, the latter possibility has been very rarely explored

[31,37].

The upward shift in call frequency may also have arisen from

morphological variation in the vocal apparatus that is not

pleiotropically linked to body size. A shift in call frequency

without concomitant variation in body size was observed in O.

lehmanni (Ol-Stream). Their calls remained distinguishable in

Figure 2. Geographic variation in advertisement calls among populations of Oophaga histrionica (Oh-Stream, Oh-Away), O. lehmanni
(Ol-Away, Ol-Stream), and a hybrid population between both species. Boxplots represent principal component scores (see Table 1) that
summarize co-variation in original call traits after controlling for temperature (left column), or temperature and body size (right column), except for
PC3-Pulse number which was not correlated with either variable. Sample size: Oh-Stream = 9 males, Oh-Away = 8, Oh-Hybrid = 8, Ol-Away = 12, and
Ol-Stream = 10.
doi:10.1371/journal.pone.0077545.g002
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frequency from the calls of any other population even after

statistically removing the negative effect of body size (Fig. 3B). A

morphological analysis of the frogs’ vocal apparatus is beyond the

scope of this study; however, previous studies indicate that novel

fibrous masses adhered to the vocal cords may effectively increase

their mass and thereby lead to the evolution of low frequency calls

[64]. Another possibility, much less explored, is the modification of

vocal chords’ tension without concomitant effects on their mass.

Increasing call frequency implies that the acoustic signal is more

locatable by receivers, but it propagates at a shorter distances [37].

It is assumed that signals covering larger distances can increase

mating chances to the emissary because it can be detected by a

higher number of females. However, it is possible that calls of

many frog species are adapted for ease of localization at short

distances instead that for long range propagation [65]. In fact,

several streamside breeding anurans are characterized by weak

calls and/or lack of auditory signals [66,67]. Increasing signal’s

call frequency also can imply higher scattering and excess

attenuation compared with lower call frequency signals [37].

However, recent evidence indicates that vegetation density affects

the temporal rather than the spectral features of anuran calls [68],

and studies on anuran assemblages have generally failed to find

evidence supporting a role of habitat structure in the evolution of

call traits [57,59,61,69].

Our data failed to support the second prediction: hybrid calls

were not intermediate between the parental lineages’ calls nor

Table 1. Principal component analysis summarizing variation
in advertisement calls of Oophaga histrionica (Oh-Stream, Oh-
Away, Oh-Hybrid) and O. lehmanni (Ol-Away, Ol-Stream).

Principal component

Call variables PC1 PC2 PC3

Median peak frequency (Hz) 0.954 20.188 0.072

Final peak frequency (Hz) 0.922 20.062 0.036

Initial peak frequency (Hz) 0.888 20.182 0.175

Call duration (ms) 20.107 0.941 20.267

Median cycle duration (ms) 20.043 0.784 0.125

Final cycle duration (ms) 20.353 0.778 20.079

Pulse number 20.029 0.348 20.883

Initial cycle duration (ms) 0.178 0.170 0.876

Eigenvalue 3.556 1.717 1.452

% of variance explained 34.010 29.094 20.962

The highest loadings for each principal component are Value .0.7.
doi:10.1371/journal.pone.0077545.t001

Figure 3. Variation in advertisement call among populations. Discriminant plots of microgeographic differences in advertisement calls of two
populations of Oophaga histrionica (Oh-Stream, Oh-Away), two of O. lehmanni (Ol-Away, Ol-Stream), and a hybrid population between both species
(Oh-Hybrid). The first discriminant function mainly represents call frequency whereas the second represents call duration (see also Table 2 for values).
A: After controlling for covariation in body temperature. B. After controlling for covariation in body temperature and body size. Dots represent
recorded males, squares represent the bivariate centroids for each population, and the shadowed ellipses encompass the 95% confidence limit for
each centroid. Populations that are significantly different should have non-intersecting ellipses.
doi:10.1371/journal.pone.0077545.g003

Figure 4. Geographic variation in body size. Difference in body
size (Snout-vent length, SVL) among populations of Oophaga histrionica
(Oh-Stream, Oh-Away), O. lehmanni (Ol-Away, Ol-Stream), and a hybrid
population between both species (Oh-Hybrid). Sample size: Oh-Stream
= 9 males, Oh-Away = 8, Oh-Hybrid = 8, Ol-Away = 12, Ol-Stream = 10.
doi:10.1371/journal.pone.0077545.g004
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were they distinctive enough to increase the probability of

incipient speciation. Although both species’ calls could be

differentiated on the basis of their temporal parameters (call

duration, pulses per call), Oh-Hybrid calls overlapped almost

completely with Ol-Away calls (Fig. 3). Studies in other taxa have

also found that hybrid calls are very similar to those produced by

one of the parental species [65,70]. The absence of distinctive call

traits in the hybrid population implies that the hybrid population

may well continue back-crossing with one of its parental species

[47]. Alternatively, mate recognition might depend upon a

combination of auditory signals and visual cues (color pattern) as

has been suggested for Oophaga pumilio, a phylogenetically close

taxon [40,71]. This possibility, however, remains to be tested.

Summing up, our data support the hypothesis that stream noise

has favored the evolution of high frequency calls in the poison

frogs O. histrionica and O. lehmanni on a microgeographic scale. The

evolutionary route, however, apparently differed between the

species: it implied pleiotropical differences in body size in O.

histrionica but not in O. lehmanni. Stream noise appears to be a

selective force strong enough to promote microgeographic

divergence in calls despite the counteracting effect of genetic flow

at the microgeographic scale [47]. The potential for speciation of

this environmentally driven signal diversification deserves further

study.

Supporting Information

Table S1 Statistical summary of advertisement call traits, made

for the studied populations of poison frogs: Oophaga histrionica (Oh-

Stream, Oh-Away), O. lehmanni (Ol-Away, Ol-Stream), and a hybrid

population between both species (Oh-Hybrid). Values are Mean 6

standard deviation.
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