
Stream Programming for Image and Video

Compression

by

Matthew Henry Drake

Submitted to the Department of Electrical Engineering and
Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer
Science

at the Massachusetts Institute of Technology

May 26, 2006

c© Matthew Henry Drake, MMVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2006

Certified by. .

Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by .

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

2

Stream Programming for Image and Video Compression

by

Matthew Henry Drake

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2006, in partial fulfillment of the

requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Video playback devices rely on compression algorithms to minimize storage, trans-
mission bandwidth, and overall cost. Compression techniques have high realtime
and sustained throughput requirements, and the end of CPU clock scaling means
that parallel implementations for novel system architectures are needed. Parallel
implementations increase the complexity of application design. Current languages
force the programmer to trade off productivity for performance; the performance
demands dictate that the parallel programmer choose a low-level language in which
he can explicitly control the degree of parallelism and tune his code for performance.
This methodology is not cost effective because this architecture-specific code is nei-
ther malleable nor portable. Reimplementations must be written from scratch for
each of the existing parallel and reconfigurable architectures.

This thesis shows that multimedia compression algorithms, composed of many
independent processing stages, are a good match for the streaming model of com-
putation. Stream programming models afford certain advantages in terms of pro-
grammability, robustness, and achieving high performance.

This thesis intends to influence language design towards the inclusion of features
that lend to the efficient implementation and parallel execution of streaming ap-
plications like image and video compression algorithms. Towards this I contribute
i) a clean, malleable, and portable implementation of an MPEG-2 encoder and de-
coder expressed in a streaming fashion, ii) an analysis of how a streaming language
improves programmer productivity, iii) an analysis of how a streaming language
enables scalable parallel execution, iv) an enumeration of the language features that
are needed to cleanly express compression algorithms, v) an enumeration of the lan-
guage features that support large scale application development and promote soft-
ware engineering principles such as portability and reusability. This thesis presents
a case study of MPEG-2 encoding and decoding to explicate points about language
expressiveness. The work is in the context of the StreamIt programming language.

3

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

4

Acknowledgments

Though we are not now that strength which in old days

Moved earth and heaven; that which we are, we are;

One equal temper of heroic hearts,

Made weak by time and fate, but strong in will

To strive, to seek, to find, and not to yield.

Tennyson, Ulysses (1842)

My thanks go first to Rodric Rabbah and William Thies for their direction,

advice, and innumerable hours of help; I could not have asked for better role models

and guides to the world of computer science research. I thank my advisor Saman

Amarasinghe for supporting and guiding this thesis and demanding the highest of

standards.

I am grateful to everyone in the StreamIt group, including William Thies, Rodric

Rabbah, Michael Gordon, Allyn Dimock, and Janis Sermulins, for their extensive

work on the StreamIt language and compiler. Without their help this thesis would

not have been possible.

I want to thank my parents for twenty two years spent instilling in me the impor-

tance of education and hard work - particularly, my father’s early encouragement of

my programming interests and my mother’s demand for impeccable writing. I owe

a huge debt of gratitude to my grandfather, Benjamin Turner, and Meng Mao, for

their encouragement and interest in my work.

This thesis extends from a paper[19] by the author, Rodric Rabbah, and Saman

Amarasinghe that appeared in the proceedings of the IEEE 2006 International Par-

allel and Distributed Processing Symposium. The StreamIt project is supported by

DARPA grants PCA-F29601-03-2-0065 and HPCA/PERCS-W0133890, and NSF

awards CNS-0305453 and EIA-0071841.

5

6

Contents

1 Introduction 15

2 The MPEG-2 Motion Picture Compression Standard 19

2.1 Compression Techniques . 20

2.2 Picture Organization . 22

2.3 Temporal Compression . 23

2.4 Spatial Compression . 24

2.5 Required Block Decoding Components 27

2.6 Video Organization . 28

2.7 Additional MPEG-2 Features . 28

3 Background and Related Work 31

3.1 Modeling Environments . 33

3.2 Stream Languages . 34

3.3 Parallelization Frameworks . 34

3.4 Implementation Studies . 35

4 The StreamIt Programming Language 37

4.1 Filters as Programmable Units . 38

4.2 Hierarchical Streams . 40

4.2.1 Pipeline . 40

4.2.2 Splitjoin . 41

4.3 Execution Model . 42

7

4.4 Teleport Messaging . 43

4.5 Prework Declarations . 46

4.6 Dynamic Rates . 46

4.7 Functions . 48

5 MPEG-2 Codec Implementation 49

5.1 Decoder Structure . 49

5.2 Encoder Structure . 51

5.3 Motion Estimation . 53

5.4 Implementation Statistics . 54

6 Programmability and Productivity 57

6.1 Buffer Management . 58

6.2 Pipelines Preserve Block Structure 60

6.3 Natural Exposure of Data Distribution 61

6.4 Code Malleability . 63

6.5 Hierarchical Construction vs Functional Calls 66

6.6 Usefulness of Teleport Messaging . 67

7 Expressing Parallelism 71

7.1 Splitjoins Express Data Parallelism 71

7.2 Hierarchical Streams Expose High Degrees of Parallelism 72

7.3 Parallelizing Motion Prediction . 73

7.4 Improving Decoder Parallelization . 76

7.5 Performance Results . 78

8 StreamIt Limitations and Proposed Extensions 83

8.1 Bitstream Parsing . 83

8.2 Functions with Tape Access . 86

8.3 Messaging Interfaces . 87

8.4 Programmable Splitjoins . 88

8.5 Named Work Functions . 91

8

8.6 Stream Graph Reinitialization . 93

8.7 Stream Graph Draining . 93

9 Conclusions 95

9.1 Future Research . 96

9

10

List of Figures

2-1 High level view of MPEG-2 decoding and encoding. 19

2-2 MPEG-2 picture subcomposition. 22

2-3 Commonly used chroma formats. 23

2-4 Eliminating temporal redundancy through forward motion estimation. 23

2-5 Eliminating temporal redundancy through backward motion estimation. 24

2-6 Sample input and output for a discrete cosine transform. 25

2-7 Example block quantization. 26

2-8 Zigzag ordering of frequency coefficients from low to high. 27

3-1 Sample block diagram for an MPEG-2 decoder. 32

4-1 Simple division filter. 38

4-2 Zigzag descrambling filter. 39

4-3 Hierarchical streams in StreamIt. 40

4-4 Example pipeline. 41

4-5 Example splitjoin. 42

4-6 Sample steady state execution schedule for a pipeline. 43

4-7 Messaging example. 44

4-8 Pseudocode for picture reordering in the decoder. 46

4-9 Sample filter with prework declaration. 47

4-10 Sample filter with dynamic rate declaration. 47

5-1 MPEG-2 decoder block diagram with associated StreamIt code. . . . 50

5-2 MPEG-2 encoder block diagram with associated StreamIt code. . . . 51

11

5-3 Motion estimation stream subgraph. 53

5-4 StreamIt line counts for decoder-only, encoder-only, and shared li-

brary code. 54

5-5 StreamIt declaration counts for decoder-only, encoder-only, and shared

library stream components. 54

6-1 Combining the spatially and temporally decoded data in C. 59

6-2 Combining the spatially and temporally decoded data in StreamIt. . . 59

6-3 Block diagram for spatial decoding (from MPEG-2 specification). . . 60

6-4 StreamIt pipeline for spatial decoding. 61

6-5 2D upsampling decomposed into 1D upsampling 62

6-6 Splitjoins for channel upsampling. 62

6-7 C code excerpt for handling 4:2:0 and 4:2:2 chroma formats. 63

6-8 Original StreamIt code excerpt for handling 4:2:0 chroma format only. 64

6-9 StreamIt code excerpt for handling 4:2:0 and 4:2:2 chroma formats. . 64

6-10 Modified subgraph for handling 4:2:0 and 4:2:2 chroma formats. . . . 65

6-11 Simplified call-trace diagram for C decoder. 66

6-12 Important control parameters sent through the decoder using teleport

messaging. 67

6-13 Important control parameters sent through the encoder using teleport

messaging. 67

6-14 Communication dependencies between functional units in the C code. 68

7-1 Subgraph for a fine grained 2D inverse DCT. 72

7-2 StreamIt code for the fine grained 2D inverse DCT subgraph. 73

7-3 C code for 2D inverse DCT calculation using two 1D transforms. . . . 74

7-4 Stream topology for motion compensation of a single color channel. . 75

7-5 Exposing parallelism between spatial and temporal decoding in an

MPEG-2 decoder. 77

7-6 Three versions of the spatial decoding stream graph and their granu-

larities. 79

12

7-7 Partitioning the spatial decoding stream graph for 16 tiles of Raw. . . 80

7-8 Layout of the fine grained spatial decoding stream graph on the Raw

chip. 80

7-9 Scalability of StreamIt spatial decoding pipeline against single tile C

baseline. 81

8-1 Code fragment from parser with (left) and without (right) tape ac-

cessing external functions. 86

8-2 Inverse quantization subgraph with a duplicate splitter and roundrobin

joiner. 89

8-3 Inverse quantization subgraph with switch splitters and joiners. . . . 89

8-4 Motion estimation stream subgraph with a programmable splitter and

joiner. 90

8-5 Subgraph for decoding reference pictures and sending them upstream. 91

13

14

Chapter 1

Introduction

Image and video compression algorithms are at the heart of a digital media ex-

plosion, playing an important role in Internet and multimedia applications, digital

appliances, and handheld devices. Multimedia appliances are ubiquitous in every-

day life, encompassed by standards such as DVD [59], HDTV [21], and satellite

broadcasting [13]. With even budget cell phones capable of playing and recording

videos, these appliances continue to increase in pervasiveness. Virtually all video

playback devices rely on compression techniques to minimize storage, transmission

bandwidth, and overall cost. Compression techniques often contain complex math-

ematics and demand realtime performance or high sustained throughput. The end

of traditional CPU clock scaling means that Von Neumann architectures can no

longer meet these performance requirements and parallel implementations for novel

system architectures are needed. Parallel implementations increase the complexity

of applications.

The parallel programmer picking a language for a compression algorithm im-

plementation faces a dilemma, forced to trade off productivity for performance.

Functional languages provide a high degree of malleability but poor performance.

Imperative languages with compiler directed parallelism introduce implementation

details and the code loses malleability. High performance imperative languages tie

implementations to specific architectures or families of architectures. Assembly code

provides the greatest performance but is neither malleable nor portable and mini-

15

mizes programmer productivity.

Current programming practices and performance demands dictate that the par-

allel programmer choose a low-level language in which he can explicitly control the

degree of parallelism and arduously tune his code for performance. This methodol-

ogy is not cost effective because architecture-specific code is not portable. Reimple-

mentations must be written from scratch for each of the parallel and reconfigurable

architectures that exist, such as clusters, multicores, tiled architectures, ASICs and

FPGAs. The process is made more challenging by the continuous evolution of com-

pression standards, which are driven by new innovations in a rapidly growing digital

multimedia market.

This thesis shows that stream programming is an ideal model of computation for

expressing image and video compression algorithms. The three types of operations

in a typical compression algorithm — data representation, lossy compression, and

lossless compression — are semi-autonomous, exhibit data and pipeline parallelism,

and easily fit into a sequence of distinct processing stages. Operations with these

properties fit the streaming model of computation, which treats a computation as

a series of data transformations performed by actors arranged in well organized

topologies. Stream programming models afford certain advantages in terms of pro-

grammability, robustness, and achieving high performance. The goal of my thesis

is to influence the design of languages towards the inclusion of features that lend to

the efficient implementation and parallel execution of streaming applications, such

as image and video compression codecs. Towards this goal I make the following

contributions:

1. A clean, malleable, and portable implementation of an MPEG-2 encoder and

decoder expressed in a streaming fashion.

2. An analysis of how a streaming language improves programmer productivity.

3. An analysis of how a streaming language enables scalable parallel execution.

4. An enumeration of the language features that are needed to cleanly express

compression algorithms.

16

5. An enumeration of the language features that support large scale application

development and promote software engineering principles such as portability

and reusability.

This work is in the context of the StreamIt programming language. StreamIt

reflects a compiler-aware language design. The language constructs allow for the

natural expression of computation and the flow of data through a streaming appli-

cation. This boosts productivity and allows rapid development because functionality

maps directly to code. At the same time, the language exposes both coarse-grained

and fine-grained parallelism and makes scheduling and communication requirements

explicit. The exposed parallelism and communication requirements allow the com-

piler to perform domain-specific optimizations and enable parallel execution on a

variety of architectures, including scalable multicores.

This thesis presents a case study of MPEG-2 encoding and decoding to expli-

cate points about language expressiveness. MPEG-2 codecs are interesting because

they are widely used streaming applications with high realtime frame throughput re-

quirements. The author has also implemented JPEG [30] codecs, and found them to

express the same types of computations and demand the same language features as

MPEG-2 codecs. In the interests of narrowly tailoring the subject and not forcing the

reader to learn two compression schemes, the paper limits its discussion to MPEG-2

coding. I mention JPEG only to intimate that the points I make are broader than

the MPEG-2 context and apply to the domain of multimedia compression schemes1.

This thesis is organized as follows. Chapter 2 provides a detailed description of

MPEG-2 video compression. This background is necessary to understand the rest

of the thesis. Chapter 3 describes related stream programming research. Chapter 4

includes an in-depth introduction to the StreamIt language. Chapter 5 details the

implementation of an MPEG-2 decoder and encoder in a stream based language.

Chapter 6 illustrates how a stream programming language improves programmer

1The MPEG-4 standard is now replacing the MPEG-2 standard; however, the MPEG-4 standard
is extremely complicated and a streaming implementation without new language features discussed
in this thesis would be infeasible. In the discussion of future work I mention where the new language
features are needed.

17

productivity for video compression codecs. Chapter 7 describes how a streaming

codec implementation can expose parallelism to the compiler and gives performance

results showing a parallel scalable implementation on a multicore wire-exposed ar-

chitecture. Chapter 8 emphasizes parts of MPEG-2 which demand new language

features for their clean expression. Chapter 9 concludes and discusses future work

extensions.

18

Chapter 2

The MPEG-2 Motion Picture

Compression Standard

MPEG-2 [28] is a popular coding standard for digital video. The scheme is a subset

of both the DVD-Video [59] standard for storing movies, and the Digital Video

Broadcasting specifications for transmitting HDTV and SDTV [21]. The scheme is

used by a wide variety of multimedia applications and appliances such as the Tivo

Digital Video Recorder [64], and the DirecTV satellite broadcast service [13].

The amount of compression possible depends on the video data. Common com-

pression ratios range from 10:1 to 100:1. For example, HDTV, with a resolution of

1280x720 pixels and a streaming rate of 59.94 frames per second, has an uncom-

pressed data rate of 1.33 gigabits per second. It is compressed at an average rate of

66:1, reducing the required streaming rate to 20 megabits per second [66].

original video

reconstructed

video

MPEG-2

bitstream

motion

compensation

spatial

decoding

motion

estimation

spatial

encoding

011100101100...

variable

length

encoding

variable

length

decoding

Figure 2-1: High level view of MPEG-2 decoding and encoding.

19

The MPEG-2 specification contains three types of compression: variable length

coding, spatial coding, and motion prediction. Figure 2-1 shows a high level overview

of the decoding and encoding process. For a complete description of the MPEG-2

data format and coding scheme one should refer to the official MPEG-2 standard [28].

However, this chapter contains an abbreviated explanation of the standard targeted

to a reader lacking prior knowledge of image or video compression algorithms. The

explanation focusses on the variable length coding in the parser, the functionality

needed for spatial coding and decoding, and the motion prediction components.

Iwata et al. estimate that each of these three components constitutes a roughly

equal portion of the work needed for decoding [31]. Encoding is similar, although

motion estimation constitutes a larger computational effort than the decoder’s mo-

tion compensation.

This chapter begins with an enumeration of the compression types found in

MPEG-2. It then describes picture organization and the temporal and spatial trans-

formations that provide compression. This is followed by a description of video

organization and finally a list of optional MPEG-2 format extensions.

2.1 Compression Techniques

MPEG-2 uses both lossy and lossless compression. Lossless compression eliminates

redundant information from a signal while allowing for an exact reconstruction.

Lossy compression permanently eliminates information from a picture based on a

human perception model. Lossy compression removes details that a casual observer

is likely to miss. A lossy compression is irreversible, and a lossy decompression pro-

cess only approximately reconstructs the original signal. MPEG-2 uses the following

compression techniques:

• Huffman Compression (lossless) Huffman compression [27] is a form of

entropy coding. It compresses a signal using variable length codes to efficiently

represent commonly occurring subpatterns in the signal.

20

• Color Channel Downsampling (lossy) Humans are much better at dis-

cerning changes in luminance, than changes in chrominance. Luminance, or

brightness, is a measure of color intensity. Chrominance is a measure of color

hue. Pictures are separated into one luminance and two chrominance chan-

nels, called the YCbCr color space. The chrominance channels are typically

downsampled horizontally and vertically.

• Frequency Quantization (lossy) An image can be expressed as a linear

combination of horizontal and vertical frequencies. Humans are much more

sensitive to low frequency image components, such as a blue sky, than to high

frequency image components, such as a plaid shirt. Unless a high frequency

component has a strong presence in an image, it can be discarded. Frequencies

which must be coded are stored approximately (by rounding) rather than

encoded precisely. This approximation process is called quantization. How

the different horizontal and vertical frequencies are quantized is determined

by empirical data on human perception.

• Motion Prediction (lossless) Frames of a video contain a great deal of tem-

poral redundancy because much of a scene is duplicated between sequential

frames. Motion estimation is used to produce motion predictions with respect

to one or more reference frames. Predictions indicate what any given frame

should look like. For similar frames, only the motion estimate and any error

between the predicted values and the actual values must be encoded.

• Difference Coding (lossless) Over any given region in an image the average

color value is likely to be similar or identical to the average color in surrounding

regions. Thus the average colors of regions are coded differentially with respect

to their neighbors. Motion information at neighboring regions is also likely to

be similar or identical and is therefore coded differentially with respect to

motion at neighboring regions.

21

picture slice

macroblock block

Figure 2-2: MPEG-2 picture subcomposition.

2.2 Picture Organization

Figure 2-2 shows how the MPEG-2 standard organizes pictures. Each picture breaks

into 16x16 groups of pixels called macroblocks. Adjacent sequences of macroblocks

are contained in a structure called a slice. Pictures and macroblocks are defined in

the YCbCr color space, and the first step of encoding is converting the picture into

this color representation.

A macroblock is itself composed of 8x8 subpixel blocks. There are always exactly

4 luminance blocks that form a 2x2 array to cover the macroblock. Because of human

insensitivity to chrominance information, each of the two chrominance channels may

be downsampled.

The type of downsampling in an MPEG-2 stream is called its chroma format.

The two most common chroma formats are shown in Figure 2-3. The more common

of the two is the 4:2:0 format. This format specifies that each chrominance channel

in a macroblock be represented by a single block, horizontally and vertically down-

sampling a macroblock from 16x16 to 8x8 subpixels. A 4:2:0 macroblock therefore

contains a total of 6 blocks. An alternate format is 4:2:2. The 4:2:2 format uses two

blocks for each chrominance channel, horizontally downsampling each macroblock

from 16x16 to 8x16 subpixels. A 4:2:2 macroblock therefore contains a total of 8

blocks. A 4:4:4 chroma format also exists but is not commonly used, and specifies

no color channel downsampling, and uses 4 blocks to represent each color channel

in a macroblock.

22

4:2:0

Vertical and Horizontal Downsampling

4:2:2

Horizontal Downsampling

1

43

2

Y

65

Cb Cr

1

43

2

Y

65

Cb Cr

87

Figure 2-3: Commonly used chroma formats.

2.3 Temporal Compression

Temporal compression in MPEG-2 is achieved via motion prediction, which detects

and eliminates similarities between macroblocks across pictures. For any given mac-

roblock M , a motion estimator forms a prediction: a motion vector that contains

the horizontal and vertical displacement of that macroblock from the most similar

macroblock-sized area in one or more reference pictures. The matching macroblock

is removed (subtracted) from M on a pixel by pixel basis. The result is a residual

predictive coded (P) macroblock. The residual macroblock contains the difference

between the motion predicted values for the macroblock and the macroblock’s actual

values. A P macroblock always uses forward motion prediction, meaning that the

reference frame precedes it temporally. (See Section 2.6 for more details on picture

referencing and organization.) Figure 2-4 illustrates forward motion estimation.

Figure 2-4: Eliminating temporal redundancy through forward motion estimation.

23

Macroblocks encoded without the use of motion prediction are intra coded (I)

macroblocks. In addition to the forward motion prediction used by P macroblocks,

it is possible to encode new macroblocks using motion estimation from both tem-

porally previous and subsequent pictures. Such macroblocks are bidirectionally

predictive coded (B) macroblocks, and they exploit a greater amount of temporal

locality. A B macroblock may contain two motion vectors, referencing both previ-

ous and subsequent pictures; in this case, the motion prediction is an unweighted

average of the forward and backward predictions. Figure 2-5 illustrates backward

motion estimation.

Figure 2-5: Eliminating temporal redundancy through backward motion estimation.

All blocks in macroblocks, whether intra coded or residually encoded, undergo

spatial compression. Except for the first macroblock in a slice, motion vectors are

compressed by coding them differentially with respect to the motion vectors in the

previously decoded macroblock1.

2.4 Spatial Compression

Each block undergoes a two-dimensional Discrete Cosine Transform (DCT),

which is a frequency transform that separates the block into components with vary-

ing visual importance. As shown in Figure 2-6, the DCT takes one 8x8 block as input

1A second exception is for the first set of motion vectors following an intra coded macroblock.
These vectors must always be fully coded because intra coded macroblocks have no motion vectors.

24

507 -34 -3 3 0 1 0 0

41 2 -3 2 0 0 0 0

27 9 0 -2 0 -1 -1 -1

8 9 1 -1 0 0 0 0

-1 5 2 2 0 -1 0 1

-2 0 2 1 0 0 0 -1

-1 0 1 1 0 0 0 0

-2 0 1 0 0 0

DCT

74 75 75 76 76 76 76 76

63 66 70 73 74 75 76 76

54 55 58 63 67 71 72 72

53 52 55 57 62 65 66 66

53 52 54 56 61 63 65 63

54 54 56 58 60 63 64 64

54 54 55 59 60 63 65 65

55 55 55 58 61 63 64 64 -1 -1

x axis horizontal frequency

y a
xis

ve
rtica

l fre
q

u
e

n
cy

Figure 2-6: Sample input and output for a discrete cosine transform.

and produces a transformed 8x8 block of frequency coefficients as output. Horizontal

frequency increases towards the right of the block and vertical frequency increases

towards the bottom of the block. The upper left corner of the block contains the

lowest frequencies and the lower right corner contains the highest frequencies.

The DCT by itself is lossless2 but enables the quantization of blocks according to

a quantization table of quantization values, also in the frequency domain. The

quantization table reflects a human’s relative abilities to discern different frequency

components of an image. The quantization table itself may contain any values

and can be specified in the MPEG-2 bitstream, although usually one of several

standard tables is used. Each value in a frequency-transformed block is divided

by the corresponding quantization value, with any remainder thrown away. An

example block quantization appears in Figure 2-73. A small error may be introduced

to individual frequency components and most low energy frequency components are

simply reduced to 0. This stage introduces much of the lossy compression in MPEG-

2 coding.

MPEG-2 uses two quantization tables. One table is used for all intra coded

blocks and the other for residually coded blocks. At irregular intervals, an MPEG-2

bitstream indicates a quantization scale code which provides an additional scaling

2I ignore a possible loss of precision, an issue addressed by the MPEG-2 specification and
explained subsequently in Section 2.5

3The quantization process is technically more complicated than the math I have just described,
although the description is conceptually accurate. The output block in the figure is accurately
quantized, but cannot be arrived at by the division process I just described.

25

Quantization

507 -34 -3 3 0 1 0 0

41 2 -3 2 0 0 0 0

27 9 0 -2 0 -1 -1 -1

8 9 1 -1 0 0 0 0

-1 5 2 2 0 -1 0 1

-2 0 2 1 0 0 0 -1

-1 0 1 1 0 0 0 0

-1 -2 0 1 0 0 -1 0

63 -17 -1 1 0 0 0 0

20 1 -1 0 0 0 0 0

11 3 0 0 0 0 0 0

2 3 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

horizontal frequency horizontal frequency

ve
rtica

l fre
q

u
e

n
cy

ve
rtica

l fre
q

u
e

n
cy

input output
8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 35 38 46 56 69 83

quantization
table

quantization
scale code

1

Figure 2-7: Example block quantization.

factor that affects all frequencies in a block. One can adjust the desired compression

level and control the video bitrate (bits per second) by tuning the quantization scale

code between macroblocks. In an encoder this control is typically realized using

feedback about the final entropy coded output bitrate earlier in the quantization

stage.

The upper left value in the frequency transformed block contains the DC co-

efficient, which is the coefficient corresponding to the zero frequency in both the

horizontal and vertical dimensions. Less formally, this is the average color of the

block. MPEG-2 differentially encodes the DC block value for intra coded blocks.

The first DC coefficient in the first block in a slice is fully encoded and all subse-

quent DC coefficients in a slice are differentially coded. Note that the differential

coding semantics for DC coefficients and motion vectors guarantee that macroblocks

in different slices are coded independently from each other.

After quantization a block is zigzag ordered. Zigzag ordering sorts a block’s

values from lowest to highest frequency. Since low-frequency components are more

likely to have non-zero values following quantization, zigzag ordering consolidates

non-zero block coefficients together at the beginning of the block. The zigzag order

commonly used by MPEG-2 is shown in Figure 2-8

26

63 -17 -1 1 0 0 0 0

20 1 -1 0 0 0 0 0

11 3 0 0 0 0 0 0

2 3 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

horizontal frequency

ve
rtica

l fre
q

u
e

n
cy

Figure 2-8: Zigzag ordering of frequency coefficients from low to high.

The zigzag ordered data is then Huffman compressed using a set of predefined

Huffman tables defined in the MPEG-2 specification. Picture metadata, such as the

picture type, changes to the quantization scale code, and motion vectors, are also

Huffman encoded and interleaved in the bitstream.

2.5 Required Block Decoding Components

Data transformation pairs such as a DCT and an inverse DCT (IDCT), may acciden-

tally introduce loss of data precision, due to hardware architecture and algorithm

differences in a decoder and encoder. While such imprecisions are tiny, the use

of temporal compression means that small imprecisions accumulate and magnify

over the course of several motion predicted pictures and quickly become noticeable.

For this reason the MPEG-2 specification places specific functional constraints on

mathematical operations in MPEG-2 codecs:

• The frequency coefficients emitted from the inverse quantization stage must

be saturated within predefined levels.

• The low-order bit of the highest frequency value in a block is used as a parity

bit on the value of the block. In the encoder this bit is set between the DCT

and quantization. In the decoder the bit is checked between the saturated

inverse quantization and the IDCT. This setting and checking of the bit is

called mismatch control.

27

• The output of the IDCT is saturated within predefined levels.

2.6 Video Organization

Just as macroblocks have an associated I, P, or B type, pictures also have an associ-

ated type, used to limit the kinds of macroblocks that they may contain. I pictures

contain only I macroblocks, P pictures contain I or P macroblocks, and B pictures

may contain I, P, or B macroblocks. Only I and P pictures are used as references for

motion prediction and all I and P pictures are automatically considered references.

B pictures are never used as references.

The highest level of organization in an MPEG-2 data stream is the Group

of Pictures (GOP), which contains all the information needed to reconstruct a

temporally continuous sequence of video. GOPs consist of I, P, and B pictures.

A typical I:P:B picture ratio in a GOP is 1:3:8, and a typical picture pattern is a

repetition of the following logical sequence, where the subscripts denote the temporal

ordering of the pictures in the video:

I1 B2 B3 P4 B5 B6 P7 B8 B9 P10 B11 B12 I13 · · ·

Any backwards motion vector in a picture refers to the immediately preceding

reference picture. Likewise, any forward motion vector refers to the subsequent

reference picture. To simplify the decoding process, pictures are not ordered tempo-

rally in the data stream, but rather in the order that they are needed for decoding:

P pictures are always coded with respect to the previous reference picture and B

pictures are always coded with respect to the previous two reference pictures. Thus,

the picture pattern previously described is ordered in the MPEG-2 data stream as:

I1 P4 B2 B3 P7 B5 B6 P10 B8 B9 I13 B11 B12 · · ·

2.7 Additional MPEG-2 Features

Because MPEG-2 targets a wide range of devices, the specification is complicated by

additional features that make decoding any given video possible on a range of archi-

28

tectures. The following features are mentioned for the sake of completeness, but are

excluded from the StreamIt MPEG-2 codec implementations. These features consti-

tute alternative data formats, rather than compression or algorithmic enhancements,

and are suitable for exclusion in research-oriented MPEG-2 implementations.

• Interlacing is a legacy television format needed to support many analog out-

put devices. An interlaced frame contains only half of the original picture data,

leaving out alternating horizontal lines. Sequential frames alternate between

encoding even and odd scan lines. The alternative to interlacing, which fully

encodes each picture, is called progressive scan.

• The MPEG-2 bitstream can contain layers which contain alternate encodings

of the same picture. A motivating example for this feature is the DVD format,

which typically encodes an interlaced version of a movie in the primary layer,

and an interlaced version containing the alternate scan lines in a secondary

layer. Devices that output interlaced pictures can ignore the secondary layer

and devices that output progressive pictures can combine the two layers to

produce the complete video.

• Concealment motion vectors indicate motion estimates for intra-coded

macroblocks. These concealment motion vectors are only used to form a mac-

roblock prediction if bitstream errors prevent correct recovery of blocks con-

tained in the macroblock. This plays an important role in the decoding of

broadcast MPEG-2 streams such as satellite or HDTV, where transport errors

are likely to occur.

29

30

Chapter 3

Background and Related Work

Image and video compression codecs belong to the family of streaming applications.

These are applications that consume an input stream, perform a set of transforma-

tions on the data, and produce an output stream. Streaming applications operate

on potentially infinite streams of data, exhibit strong producer-consumer locality,

and often have sustained throughput or realtime output requirements.

Previous research includes work in modeling environments, stream languages,

parallel computing frameworks, and implementation studies. Modeling environ-

ments focus on the expression of stream programs as block topologies and are ori-

ented towards rapid prototyping and programmer efficiency. Stream languages have

tried to expose parallelism and communication requirements to the compiler and im-

prove programmer productivity by hiding implementation details. Parallel comput-

ing frameworks and implementation studies have tried to produce high performance

parallel implementations of video codecs for specific architectures.

My work is in the context of the StreamIt programming language, which tries to

provide the best of all worlds: it allows the easy expression of streaming applications,

naturally exposes fine-grained and coarse-grained parallelism, and enables a compiler

to produce scalable parallel implementations. The summary of related work in

modeling environments, languages, and parallel frameworks mentions the differences

that set StreamIt apart. StreamIt itself is discussed in the following chapter, with a

description of the key features that embody the language’s design goals.

31

Relevant to all stream programming efforts is the notion of a structured block

diagram. A block diagram illustrates the computations and flow of data through

an application. The block diagram’s purpose is to provide a clean, conceptual under-

standing of the application’s behavior, cleanly abstracting functionality and ignor-

ing implementation, architecture, and performance oriented details. Boxes represent

transformations on the data in the data stream and arrows indicate the flow of data

between functional blocks. A sample block diagram for MPEG-2 decoding is shown

in Figure 3-11.

Motion Vector Decode

Repeat

split

split

join

join

IQuantization

IDCT

Saturation

Parser

Motion CompensationMotion Compensation

Channel Upsample Channel Upsample

Picture Reorder

Color Space Conversion

ZigZag

Motion Compensation
reference
picture

reference
picture

reference
picture<PT1> <PT1> <PT1>

<PT2>

<QC>

<QC>

<PT1, PT2>

picture type

quantization coefficients

macroblocks, motion vectors

frequency encoded
macroblocks

differentially coded
motion vectors

motion vectorsspatially encoded macroblocks

Y Cb Cr

recovered picture

output to player

MPEG-2 bit stream

Figure 3-1: Sample block diagram for an MPEG-2 decoder.

1There is no official block diagram for MPEG-2 decoding included with the specification, but
this is a block diagram I produced based on the specification.

32

3.1 Modeling Environments

There have been many efforts to develop expressive and efficient models of com-

putation. Ptolemy [42], GRAPE-II [39], COSSAP [37], and MATLAB all pro-

vide computing models targeted for rapid prototyping environments. Synchronous

Dataflow [41] (SDF) provides a model that affords benefits to efficient scheduling

and exposes parallelism and communication. SDF represents computation as a set

of independent actors that communicate at fixed rates [41]. Real applications, such

as MPEG-2 codecs, have data transforms that dictate sets of behavior changing

parameters to other transforms. These parameters occur at irregular intervals and

interrupt the regular flow of data. For example, an MPEG-2 bitstream updates

the quantization scale code at irregular intervals. Expressing real applications in

an SDF model requires extensions that provide dynamic communication and out-of-

band control messages.

Synchronous Piggybacked Dataflow (SPDF) supports control messages in the

form of a global state table with well-timed reads and writes [47, 48]. SPDF is

evaluated using MP3 decoding, and would also be effective for MPEG-2 decoding.

Ko and Bhattacharyya also extend SDF with the dynamism needed for MPEG-2

coding; they use “blocked dataflow” to reconfigure sub-graphs based on parame-

ters embedded in the data stream [36] and a “dynamic graph topology” to extend

compile-time scheduling optimizations to each runtime possibility [35].

Neuendorffer and Lee extend SDF to support hierarchical parameter reconfigu-

ration, subject to semantic constraints [46]. These models allow reconfiguration of

an actor’s I/O rates and require alternate or parameterized schedules.

MPEG-2 encoding has also been expressed in formalisms such as Petri nets [65]

and process algebras [50].

33

3.2 Stream Languages

There are a number of stream-oriented languages drawing from functional, dataflow,

CSP and synchronous programming styles [55]. StreamIt is one instance of a stream-

based language. Synchronous languages which target embedded applications include

Esterel [10], Lustre [26], Signal [23], Lucid [7], and Lucid Synchrone [14]. Other lan-

guages of recent interest are Cg [44], Brook [12], Spidle [15], StreamC/KernelC

[33], Occam[16], Parallel Haskell [4] and Sisal [22]. StreamIt distinguishes itself

from these languages because (i) StreamIt supports (but is no longer limited to)

the Synchronous Dataflow [41] model of computation, (ii) StreamIt offers a “peek”

construct that allows an actor to inspect an item on its input channel without con-

suming it, (iii) StreamIt imposes a single-input, single-output hierarchical structure

on the stream graph, and (iv) StreamIt provides the teleport messaging feature for

out-of-band communication, discussed in depth later in Section 4.4.

3.3 Parallelization Frameworks

Video codecs have been a longtime focus of the embedded and high-performance

computing communities. Many researchers have developed both hardware and soft-

ware schemes for parallel video compression; Ahmad et al. [3] and Shen et al. [53]

provide reviews. I focus on programming models used to implement image and video

codecs on general-purpose hardware.

Assayad et al. present a syntax of parallel tasks, forall loops, and dependence

annotations for exposing fine-grained parallelism in an MPEG-4 encoder [8, 9]. A

series of loop transformations (currently done by hand) lowers the representation

to an MPI program for an SMP target. The system allows parallel components

to communicate some values through shared memory, with execution constraints

specified by the programmer. In comparison, StreamIt adopts a pure dataflow model

while making the programming concepts as simple as possible.

Another programming model is the Y-Chart Applications Programmers Interface

34

(YAPI) [18], which is a C++ runtime library extending Kahn process networks with

flexible channel selection. Researchers have used YAPI to leverage programmer-

extracted parallelism in JPEG [17] and MPEG-2 [20].

Other high-performance programming models for MPEG-2 include manual con-

version of C/C++ to SystemC [49], manual conversion to POSIX threads [43], and

custom mappings to multiprocessors [2, 31]. StreamIt’s focus lies on the programma-

bility, providing an architecture-independent representation that is natural for the

programmer while exposing pipeline and data parallelism to the compiler.

3.4 Implementation Studies

A number of implementation studies have generated parallel MPEG-2 decoders and

encoders. Ahmad et al. have had success with MPEG-2 decoder implementations

for distributed memory architectures that expose parallelism at the picture level [5,

6]. They have also developed a multiprocessor MPEG-2 encoder which parallelizes

encoding across GOPs [2]. Because GOPs are spread out over a video, this approach

has high latency but is suitable for offline encoders or decoders.

Li et al. have produced ALPBench [43], a set of benchmarks that includes both an

MPEG-2 encoder and decoder. Both the encoder and decoder have been written to

expose parallelism at the slice level. Schneider uses a VHDL-based methodology for

modeling multimedia applications [51] and attempts to perform spatial decoding in

parallel with temporal decoding. Jacobs et al. have implemented a pipelined MPEG-

2 encoder which uses thread level parallelism and distributes sequential stages of the

MPEG-2 encoding process to different processors on a shared network [32].

These implementations are useful for describing the types of parallelization that

work well for certain architectures. They would be useful for benchmarking a stream

language compiler targeted to one of their architectures.

35

36

Chapter 4

The StreamIt Programming

Language

StreamIt [62] is an architecture independent language that is designed for stream

programming. StreamIt tries to preserve the block diagram structure in the program

definition, allowing the application developer to express functionality with a one-to-

one mapping to code.

StreamIt also makes the parallelism inherent in a computation explicit in the

program representation, exposing relevant scheduling and communication details to

the compiler. This follows from the preservation of the block diagram structure:

each block represents an independent computation kernel which can be executed in

parallel with all other blocks. The arrows expose all the communication require-

ments between the functional blocks and represent FIFO-ordered communication

of data over tapes. The programmer can focus on a clean and malleable imple-

mentation without worrying about the specific mapping of tasks to hardware. The

implementation is portable across a wide range of architectures because the compiler

is responsible for determining layout and task scheduling.

StreamIt leverages the SDF model of computation, but also supports dynamic

communication rates and out-of-band control messages. Previous StreamIt publica-

tions describe the language [62], compiling StreamIt programs for parallel architec-

tures [25, 63], and how StreamIt enables domain-specific [1, 38], cache-aware [52],

37

and scheduling [34] optimizations.

4.1 Filters as Programmable Units

The fundamental programmable unit in StreamIt is the filter. A filter represents

an independent actor with a single input and output data channel. Each filter

executes atomically in its own private address space. All communication with other

filters is via the input and output channels and occasionally via control messages

(see Section 4.4). The main filter method is the work function which represents

a steady-state execution step. The work function pops (i.e., reads) items from

the filter input tape and pushes (i.e., writes) items to the filter output tape. A

filter may also peek at a given index on its input tape without consuming the

item. Computations over a sliding window and permutations on input streams

are simplified by the peek construct. The push, pop, and peek rates are declared

(when known) as part of the work function, allowing the compiler to apply various

optimizations and construct efficient execution schedules.

int->int filter DivideBy(int divisor) {

work pop 1 push 1 {

push(pop()/divisor);

}

}

Figure 4-1: Simple division filter.

The simplest filter definition used in the MPEG-2 decoder is given as an example

in Figure 4-1. This filter consumes a stream whose elements are of type int and

produces a stream of the same type. This filter’s output is simply its input divided

by the divisor parameter given at instantiation time. (The current version of the

StreamIt compiler resolves all such parameters at compile time, allowing additional

optimizations.)

The parameterization of filters allows for multiple instantiation with different

configurations, facilitating malleability and code reuse. Shown in Figure 4-2 is a

38

int->int filter ZigZag(int N,

int[N] Order) {

work pop N push N {

for (int i = 0; i < N; i++)

push(peek(Order[i]));

for (int i = 0; i < N; i++)

pop();

}

}

int[64] Order =

{00, 01, 05, 06, 14, 15, 27, 28,

02, 04, 07, 13, 16, 26, 29, 42,

03, 08, 12, 17, 25, 30, 41, 43,

09, 11, 18, 24, 31, 40, 44, 53,

10, 19, 23, 32, 39, 45, 52, 54,

20, 22, 33, 38, 46, 51, 55, 60,

21, 34, 37, 47, 50, 56, 59, 61,

35, 36, 48, 49, 57, 58, 62, 63};

Figure 4-2: Zigzag descrambling filter.

filter that performs an arbitrary reordering on a set of N elements according to an

ordering matrix. Each instantiation of the filter specifies the matrix dimensions,

as well as the desired ordering. The Order parameter defines the specific scan

pattern that a filter instance will use. In the example the filter performs the zigzag

descrambling necessary to reorder the input stream in the decoder (see Section 2.4).

The zigzag scrambling in the encoder reuses this filter with a different Order matrix.

In this example, the input matrix is represented as a unidimensional stream of

elements. The filter peeks the elements and copies them to the output stream in

the specified order. Once all the DCT coefficients are copied, the input stream is

deallocated from the tape with a series of pops. The input and output buffers are

represented implicitly. It has been shown that this program representation enables

the automatic generation of vector permutation instructions [45].

39

4.2 Hierarchical Streams

In StreamIt, the application developer focuses on the hierarchical assembly of the

stream graph and its communication topology, rather than the explicit management

of the data buffers between filters. StreamIt provides three hierarchical structures,

shown in Figure 4-3, for composing filters into larger stream graphs. A pipeline

places components in series, connecting the output from one filter to the input

of the subsequent filter. A splitjoin places filters in parallel and specifies both

a distribution of data and a gathering of data. There is also a feedback loop

hierarchy which is not needed for MPEG-2 decoding or encoding. All hierarchical

stream components are parameterizable. Because each hierarchical component itself

consists of a single input and output, hierarchical components may be treated like

filters and used inside of increasingly larger stream hierarchies.

stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream

(a) pipeline (b) splitjoin (c) feedback loop

Figure 4-3: Hierarchical streams in StreamIt.

4.2.1 Pipeline

A pipeline is a single input to single output parameterized stream. It composes

streams in sequence, with the output of each filter connected to the input of the sub-

sequent filter. An example pipeline from the MPEG-2 decoder appears in Figure 4-4.

This pipeline decodes blocks, compressed as described in Section 2.4. The first filter

zigzag reorders the input stream, preparing the data for the inverse quantization

and IDCT. The output of the filter is consumed by a stream named IQuantization

that performs the inverse quantization, and produces an output stream that is in

40

int->int pipeline BlockDecode() {

int[64] Order = {...};

add ZigZagUnordering(64, Order);

add InverseQuantization();

add Saturation(-2048, 2047);

add MismatchControl();

add 2D_iDCT(8); // 8x8 2D IDCT

add Saturation(-256, 255);

}

Figure 4-4: Example pipeline.

turn consumed by another stream that performs Saturation, which produces out-

put consumed by the MismatchControl filter, which in turn passes the data to the

2D iDCT and one final Saturation.

The add keyword in StreamIt instantiates a specified stream using any given

arguments. The add statement may only appear in non-filter streams. In essence,

filters are the leaves in the hierarchical construction, and composite nodes in the

stream graph define the encapsulating containers. This allows modular design and

development of large applications, thereby promoting collaboration, increasing code

reuse, and simplifying debugging.

4.2.2 Splitjoin

A splitjoin processes data in parallel, specifying both a data scattering and gathering.

In a splitjoin, the splitter distributes the data and the joiner gathers the data. A

splitter is a specialized filter with a single input and multiple output channels. On

every execution step, it can distribute its output to any one of its children in either

a duplicate or a roundrobin manner. A duplicate splitter (indicated by split

duplicate) replicates incoming data to each stream connected to the splitter. A

roundrobin splitter (indicated by split roundrobin(w1, . . . , wn
)) distributes the

first w1 items to the first child, the next w2 items to the second child, and so on.

The splitter counterpart is the joiner. It is a specialized filter with multiple input

channels but only one output channel. The joiner gathers data from its predecessors

41

int->int splitjoin SpatialDecoding {

split roundrobin(64, 16);

add BlockDecode();

add MotionVectorDecode();

join roundrobin(64, 8);

}

Figure 4-5: Example splitjoin.

in a roundrobin manner to produce a single output stream.

An example splitjoin is shown in Figure 4-5, which encapsulates the spatial de-

coding necessary in the MPEG-2 decoder. Its input consists of a stream of data

interleaving coded block coefficients and coded motion vectors. The roundrobin

splitter separates the data, passing block coefficients to the BlockDecode compo-

nent and motion vectors to the MotionVectorDecode component. Note that this

splitjoin treats the BlockDecode pipeline, previously defined in Figure 4-4, as a prim-

itive element. The roundrobin joiner remerges the data streams. In this case, the

MotionVectorDecode filter consumes two elements for every element it produces, so

the joiner has a different join rate than the splitter. Splitters and joiners may be

expressed at the natural granularity of the data and need not have matched rates.

4.3 Execution Model

A StreamIt program can be abstracted as a directed graph in which a node is either

a filter, splitter, or joiner, and an edge represents a data channel. When a node

executes, it removes data stored on incoming data channels and generates output on

outgoing data channels. A single node execution atomically transfers the smallest

amount of data across the node.

An execution schedule is an ordered list of executions of nodes in the graph.

StreamIt programs have two execution schedules: one for initialization and one

for steady state behavior. The initialization schedule primes the input channels,

allowing filters with peeking to execute the first instance of their work functions.

42

Filter A

pop 1
push 3

Filter B

pop 2
push 3

Filter C

pop 2
push 1

Filter D

pop 3
push 1

Execution Schedule:

A executes 4 times

B executes 6 times

C executes 9 times

D executes 3 times

Figure 4-6: Sample steady state execution schedule for a pipeline.

The steady state schedule leaves exactly the same number of data items on all

channels between executions of the schedule. Figure 4-6 shows an example of a

steady state execution schedule for a pipeline.

The StreamIt compiler can derive steady-state schedules at compile time for

portions of a stream graph with statically determined data rates. Nodes with dy-

namic rates require additional runtime semantics but the conceptual model is still

expressed in terms of static execution schedules. A more detailed explanation of the

execution model and program scheduling in StreamIt can be found in [34, 56].

4.4 Teleport Messaging

A notoriously difficult aspect of stream programming, from both a performance and

programmability standpoint, is reconciling regular streaming dataflow with irregular

control messages. While the high-bandwidth flow of data is very predictable, real-

istic applications such as MPEG also include unpredictable, low-bandwidth control

messages for adjusting system parameters (e.g., desired precision in quantization,

type of picture, resolution, etc.).

For example, the inverse quantization step in the decoder uses a lookup table that

provides the inverse quantization scaling factors. However, the particular scaling

factor is determined by the stream parser. Since the parsing and inverse quantization

tasks are logically decoupled, any pertinent information that the parser discovers

must be forwarded to the appropriate streams. It can not easily be intermingled with

the block coefficients that the parser outputs because control parameters occur at

irregular intervals. In StreamIt, such communication issues are resolved conveniently

43

01 void->void MPEGDecoder {

02 ...

03 portal<InverseDCQuantizer> p;

04 ...

05 add Parser(p);

06 ...

07 add InverseDCQuantizer() to p;

08 ...

09 }

10 int->int filter Parser(portal<InverseDCQuantizer> p) {

11 work push * {

12 int precision;

13 ...

14 if (...) {

15 precision = pop();

16 p.setPrecision(precision) [0:0];

17 }

18 ...

19 }

20 }

21 int->int filter InverseDCQuantizer() {

22 int[4] scalingFactor = {8, 4, 2, 1};

23 int precision = 0;

24 work pop 1 push 1 {

25 push(scalingFactor[precision] * pop());

26 }

27 handler setPrecision(int new_precision) {

28 precision = new_precision;

29 }

30 }

Figure 4-7: Messaging example.

using teleport messaging [63].

The idea behind teleport messaging is for the Parser to change the quantization

precision via an asynchronous method call, where method invocations in the target

are timed relative to the flow of data in the stream (i.e., macroblocks). As shown

in Figure 4-7, the InverseDCQuantizer declares a message handler that adjusts its

precision (lines 27-29). The Parser calls this handler through a portal (line 16),

which provides a clean interface for messaging. The handler invocation includes a

range of latencies [min:max] specifying when the message should be delivered with

44

respect to the data produced by the sender.

Intuitively, the message semantics can be understood as tags attached to data

items. If the Parser sends a message to a filter downstream (i.e., in the same

direction as dataflow) with a latency k, then conceptually, the filter tags the items

that it outputs in k iterations of its work function. If k = 0, the data produced in the

current execution of the work function is tagged. The tags propagate through the

stream graph; whenever a filter inputs an item that is tagged, all of its subsequent

outputs are also tagged. The message flows through the graph until the first tagged

data item reaches the intended receiver, at which time the message handler is invoked

immediately after1 the execution of the work function in the receiver. In this sense,

the message has the semantics of traveling “with the data” through the stream

graph, even though it need not be implemented this way.

The intuition for upstream messages is somewhat similar. Namely, imagine a

feedback loop connecting the downstream sender with the upstream message re-

ceiver. The downstream filter uses the loop to send tokens on every iteration, and

the upstream filter checks the values from the loop before each of its executions.

If the value is non-zero, it is treated as a message, otherwise the token is ignored.

In this scenario, the upstream message is processed immediately before it generates

data that the sender will consume in k of its own iterations.

Teleport messaging avoids the muddling of data streams with control-relevant

information. Teleport messaging thus separates the concerns of the programmer

from the system implementation, thereby allowing the compiler to deliver the mes-

sage in the most efficient way for a given architecture. In addition, by exposing

the exact data dependencies to the compiler, filter executions can be reordered so

long as they respect the message timing. Such reordering is generally impossible if

control information is passed via global variables.

Teleport messaging is similar to the SDF extensions described in Section 3.1.

However, control messages in StreamIt are more expressive because they allow up-

1This appeared as “immediately before” in the original version of the PPoPP 2005 paper, but
has since been updated.

45

stream messages, adjustable latencies, and more fine-grained delivery (i.e., allowing

multiple execution phases per actor and multiple messages per phase).

4.5 Prework Declarations

Many filters require initial data processing before entering a steady-state execution

pattern. For instance, an exponentially weighted average might generate its initial

value using many data items on its first execution, but only consume a single item

per subsequent execution. StreamIt supports this by allowing a prework keyword

to specify a work function that gets executed once before the regular work function.

The MPEG-2 decoder requires such a filter immediately before outputting a

decoded picture sequence. As explained in Section 2.6, the decoder must reorder

pictures from their coded order to their temporal order. The pseudocode shown in

Figure 4-8 explains conceptually how to reorder the pictures to their temporal order.

This pseudocode is easily implemented using a filter with a prework declaration as

written in Figure 4-9.

store the first (I) picture in a delayed picture buffer;
foreach picture do

if the picture is a B-picture then
output immediately

else
output the picture in the delayed picture buffer and store the current
picture into the buffer

end

end

Figure 4-8: Pseudocode for picture reordering in the decoder.

4.6 Dynamic Rates

Not all filters are amenable to static (initialization-time) work rate declarations.

For example, filters which implement entropy coding/decoding schemes, such as

Huffman coding, will have an input / output ratio that is data dependent. Support

46

int->int filter PictureReorder(int picture_size) {

int[picture_size] databuffer;

int next_picture_type;

prework pop datarate {

for (int i = 0; i < datarate; i++)

databuffer[i] = pop();

}

work pop datarate push datarate {

if (next_picture_type == B_PICTURE) {

// B-picture is next

for (int i = 0; i < datarate; i++)

push(pop());

} else {

// I or P picture is next

for (int i = 0; i < datarate; i++) {

push(databuffer[i]);

databuffer[i] = pop();

}

}

}

handler setPictureType(int _next_picture_type) {

next_picture_type = _next_picture_type;

}

}

Figure 4-9: Sample filter with prework declaration.

int->int filter RunLengthDecoder {

work pop 2 push * {

int itemQuantity = pop();

int itemValue = pop();

for (int i = 0; i < itemQuantity; i++)

push(itemValue);

}

}

Figure 4-10: Sample filter with dynamic rate declaration.

47

for these dynamic rate filters is provided by letting a wildcard * symbol indicate

an unknown rate. A simple example is a run length decoder, shown in Figure 4-

10. Note that for most dynamic rate filters, there are usually at least two equally

reasonable formulations, either a static input and dynamic output rate or a dynamic

input and static output rate.

4.7 Functions

StreamIt currently supports external functions and helper functions which facili-

tate modularity and code reuse. External functions typically come from a math li-

brary and examples used in the compression implementations are round, and floor.

Helper functions are limited in scope to the filter in which they are defined, and are

important for the same reasons as in procedural languages. They are particularly

useful as a means to breakup code within filters which represent particularly complex

computations that are not easily subdivided. Large filters responsible for compli-

cated actions such as motion prediction or estimation rely heavily on helper functions

to improve code readability by abstracting functionality.

48

Chapter 5

MPEG-2 Codec Implementation

This chapter describes the MPEG-2 decoder and encoder implementations written

in StreamIt. Sections 5.1 through 5.3 explain the actual code base and program

structure. Section 5.4 describes the specific functionality in the StreamIt imple-

mentations and highlights implementation statistics pertinent to the discussion of

programmability and parallelism.

5.1 Decoder Structure

Figure 5-1 shows the MPEG-2 decoder pipeline, correlated with the StreamIt code.

A few simplifications have been made to the code and the figure for purposes of

explanation1. The decoder accepts a compressed bit stream as input and produces

a decoded video stream as output. The parser (line 1) performs variable length

decoding (VLD) and interprets the bitstream. Because it interprets the bitstream,

it dictates decoding parameters which are propagated to the appropriate downstream

filters using teleport messaging. The parser outputs macroblocks sequentially, first

emitting the blocks contained within a macroblock and then the differentially coded

motion vectors associated with the macroblock.

1The code and figures throughout this paper are meant to highlight important implementation
details. Figures showing every detail of the MPEG decoder and encoder implementations are
available on the StreamIt MPEG-2 website [57] and are not reproduced in an appendix because
the high level of detail demands an extreme resolution that would be unreadable on regular paper
sizes.

49

01 add Parser(QC, PT1, PT2);

02 add splitjoin {

03 split roundrobin(N*B, V);

04 add pipeline {
05 add ZigZag(B);
06 add IQuantization(B) to QC;
07 add IDCT(B);
08 add Saturation(B);
09 }
10 add pipeline {
11 add MotionVectorDecode();
12 add Repeat(V, N);
13 }

14 join roundrobin(B, V);

15 }
16 add splitjoin {

17 split roundrobin(4*(B+V), B+V, B+V);

18 add MotionCompensation(4*(B+V)) to PT1;
19 for (int i = 0; i < 2; i++) {
20 add pipeline {
21 add MotionCompensation(B+V) to PT1;
22 add ChannelUpsample(B);
23 }
24 }

25 join roundrobin(1, 1, 1);

26 }

27 add PictureReorder(3*W*H) to PT2;

28 add ColorSpaceConversion(3*W*H);

Motion Vector Decode

Repeat

splitter

splitter

joiner

joiner

IQuantization

IDCT

Saturation

Parser

Motion CompensationMotion Compensation

Channel Upsample Channel Upsample

Picture Reorder

Color Space Conversion

ZigZag

Motion Compensation
reference
picture

reference
picture

reference
picture<PT1> <PT1> <PT1>

<PT2>

<QC>

<QC>

<PT1, PT2>

picture type

quantization coefficients

macroblocks, motion vectors

frequency encoded
macroblocks

differentially coded
motion vectors

motion vectorsspatially encoded macroblocks

Y Cb Cr

recovered picture

output to player

MPEG-2 bit stream

Figure 5-1: MPEG-2 decoder block diagram with associated StreamIt code.

The parser output is segregated into two homogeneous streams by a roundrobin

splitter (line 3). The first stream contains blocks, which are spatially decoded by

the block decoder (lines 4-9). The second stream is decoded to produce absolute

motion vectors (lines 10-13). The two streams are merged with a roundrobin joiner

(line 14), which alternates between a block from the left stream, and a set of motion

vectors from the right stream.

The next stage of the decoding pipeline performs the motion compensation (lines

16-26) to recover predictively coded macroblocks. Whereas the first half of the

pipeline made a split between block data and motion data, the second half of the

pipeline splits data according to color channel. The splitter (line 17) first segregates

the luminance data into the left stream, and the two sets of chrominance data into

50

the middle and right streams. The exact amount of data sent each way in this splitter

is dependent on the chroma format of the video. The motion compensation filters

each take in block data and motion vector data to find a corresponding macroblock

in a previously decoded reference picture. The reference macroblock is added to

the current macroblock to recover the original picture data. Reference pictures are

stored within the decoder for future use.

The two chrominance channels each require upsampling so that every pixel in a

video has a value. Finally, the color channels are merged by a joiner (line 25) which

merges one item at a time from each stream so that each pixel occurs sequentially.

The final two stages of decoding are picture reordering and color channel con-

version. Picture reordering (line 27) ensures that the data is emitted in temporal

order, and the color space conversion (line 28) ensures that the data is in the correct

output format.

5.2 Encoder Structure

01 add PicturePreprocessing(W, H, P);

02 add ReorderPictures(W, H, PN, PT1, PT2, PT3);

03 add splitjoin {

04 split duplicate;

05 add IntraMotionEstimation;
06 add MotionEstimation(W, H) to FM;
07 add MotionEstimation(W, H) to BM;

08 join roundrobin(W*H*3)

09 }

10 add MotionEstimationDecision to PT1

11 add splitjoin {

12 split roundrobin(B*N, V);

13 add MacroblockEncode(B*N);
14 add MotionVectorEncode(W / 16);

15 join roundrobin(B*N, V);

16 }

17 add ReferenceFrameHandler(W, H, N, FM, BM) to PT2;

18 add BitstreamGenerator(W, H, P) to PT3, PN;

Picture Preprocessing

Motion Estimation

Reorder Pictures

splitter

splitter

joiner

Motion Estimation Decision<PT1>

Reference Frame Handler<PT2>

<FM>

Bitstream Generator<PT> <PN>

Motion Estimation<BM>Intra Motion Estimation

joiner

Motion Vector EncodeMacroblock Encode

<PT1, PT2, PT3>

<PN>

<FM> <BM>

forward reference picture

backward reference
picture

picture type

picture number

input picture stream

color channel downsampled pictures

intra (no estimate) forward backward

temporally compressed pictures

spatially and temporally compressed pictures

MPEG-2 bitstream

Figure 5-2: MPEG-2 encoder block diagram with associated StreamIt code.

51

Figure 5-2 shows the MPEG-2 encoder pipeline, correlated with the StreamIt

code. Because the MPEG-2 encoder is a larger application and many subcomponents

have been explained in the decoder, it is presented at a higher level of abstraction.

The encoder accepts a series of pictures as input and produces a coded bit stream

as output. A picture preprocessor (line 1) downsamples the color channels and

assigns an I, P, or B picture type to each picture. The output is reordered (line

2) so that all reference pictures precede pictures that use them as references. The

component responsible for reordering also sends this information via message to

downstream filters which have behavior dependent on the picture type. The output

of the picture reorder filter is a sequence of pictures, ordered by macroblock and

then block.

The reordered picture output is then motion estimated (lines 3-10) to determine

the relative motion of each picture with respect to reference pictures. This com-

ponent receives upstream messages which tell it what reference frames the decoder

will have available, and what they look like. Because the motion estimation has

some particularly interesting implementation issues, a more detailed explanation of

its behavior follows in Section 5.3.

The motion estimation outputs a series of interleaved blocks and motion vec-

tors. A splitter (line 12) separates these blocks and motion vectors. The blocks are

spatially coded (line 13) and the motion vectors differentially coded (line 14) in a

computation that is exactly opposite from the spatial and motion vector decoding

in the decoder. The data is reinterleaved by a joiner (line 15). The data is now

spatially and temporally coded and ready for Huffman compression. However, it is

first passed to a reference frame handler (line 17), which is responsible for sending

relevant reference frame data back to the motion estimation step. After the reference

information is sent upstream, the bitstream generator (line 18) performs Huffman

coding on the data and generates an MPEG-2 compliant bitstream as output.

52

5.3 Motion Estimation

Each macroblock in a picture can be intra coded, forward predicted, or backward

predicted. Because all valid forms of encoding must be tried to obtain the best

compression, this suggests a stream graph structure in which filters responsible for

each encoding type generate candidate blocks in parallel. This graph appears in

Figure 5-3. A duplicate splitjoin sends a copy of each picture to each of three

filters which produce candidates showing the effects of no prediction, forward pre-

diction, and backward prediction. The outputs of these filters are interleaved by a

roundrobin joiner. The interleaved results go to a filter that determines the best

encoding technique from the picture type and the compression provided by the dif-

ferent motion compensation strategies. For B pictures, it will try combining the

forward and backward estimates together to produce a bidirectional prediction.

Motion Estimation

split duplicate

join roundrobin(picture_size)

Motion EstimationIntra Motion Estimation

intra-coded
candidate macroblocks

forward candidate macroblocks backward
candidate macroblocks

Motion Estimation Decision

temporally compressed pictures

all candidates, interleaved

uncompressed pictures

<picture_type>

<reference pictures>

Figure 5-3: Motion estimation stream subgraph.

Each of the two motion estimation filters receives messages containing the pre-

vious reference frame to use for estimation. The reference frame is the reference

frame as the decoder would see it so the actual reference pictures are not determined

till near the end of the overall MPEG-2 pipeline. The MPEG-2 encoder thus relies

on upstream messages to carry the reference pictures back. Upstream messages are

defined with respect to the data being received by the sender, rather than the data

being pushed, but otherwise have the same semantics as ordinary messages [63].

53

Line Count
Decoder 1357
Encoder 1513
Shared 925

Figure 5-4: StreamIt line counts for decoder-only, encoder-only, and shared library
code.

Filters Pipelines Splitjoins
Decoder 6 9 9
Encoder 16 15 18
Shared 17 10 5

Figure 5-5: StreamIt declaration counts for decoder-only, encoder-only, and shared
library stream components.

5.4 Implementation Statistics

The MPEG-2 decoder and encoder implementations are fully functional. The codecs

support progressive streams which conform to the MPEG-2 Main Profile (See [28],

P.106). Video parameters such as chrominance format and video dimensions are

currently set in the source code and the application must be recompiled if they

change. Code organization and installation instructions can be found at the StreamIt

MPEG-2 website [57] and the code is available for download [58]. The decoder

implementation required approximately 8 weeks given no prior knowledge of any of

the MPEG-2 specifications. (I had prior experience with JPEG and the StreamIt

language.) The encoder implementation followed the decoder implementation and

required a similar length of time. Line counts2 for the decoder, encoder, and common

functionality between them, are shown in Table 5-4. (All code reused between

decoder and encoder appears in the shared library number, not in the decoder or

encoder numbers.) The short implementation time and the size of the code base

indicates in a rough fashion StreamIt’s ability to efficiently express the MPEG-2

computation.

Table 5-5 shows the number of static streams in the MPEG-2 codecs. By static

2Line counts were generated using the SLOCcount [54] tool. It strips whitespace and comments.

54

streams, I mean the number of components programmed by myself. At compile-

time, due to multiple instantiation and component reuse, the decoder and encoder

resolve to stream graphs containing between 600 and 6000 components. The range

is due to some parameterization of the parallelism in the stream graph.

55

56

Chapter 6

Programmability and Productivity

As previously mentioned, the StreamIt language aims to improve programmability

for streaming applications. This chapter expands on this topic by giving specific

instances from the MPEG-2 codec implementations where StreamIt improved pro-

grammer productivity.

Section 6.1 focusses on StreamIt’s implicit buffer management. Section 6.2 de-

scribes how pipelines preserve the block diagram structure in the program definition

and provide a one-to-one mapping with code. Sections 6.3 and 6.4 show StreamIt’s

ability to expose data distribution and how this leads to a high degree of malleabil-

ity. Section 6.5 describes the advantages of hierarchical stream graph construction

and Section 6.6 the advantages of teleport messaging.

Because I particularly want to contrast with traditional languages, a number of

C code comparisons appear in this and the subsequent section. These code exam-

ples come from the C reference decoder implementation [67] provided by the MPEG

Software Simulation Group and used in the MediaBench [40] benchmark suite. Be-

cause our StreamIt code does not support interlacing or certain optional bitstream

semantics, I have modified the C reference implementation to remove that additional

functionality, for the purposes of fair comparison. The comparison is between the

StreamIt decoder of 2282 lines, and the C reference code of 3477 lines1. I believe

this line count comparison is a fair quantization of StreamIt’s ability to concisely

1As before, line counts were generated using SLOCcount [54].

57

express the MPEG-2 decoder computations.

6.1 Buffer Management

Figure 6-1 shows the C code responsible for merging the spatially and temporally

decoded block data2. Prior to the execution of this function the IDCT function has

generated the motion prediction error and the motion compensation function has

generated the motion prediction. These two sets of data are summed to produce the

decoded blocks.

Lines 9 through 25 determine the appropriate memory addresses for the next

block to be processed. Lines 26 to 33 perform the summation. Note that line

29 is the only line actually performing the summation. The buffer management

details dominate every line of code and obscure its functional purpose. The buffer

management details are particularly complicated because the address of the data

is dependent on the block’s position in a picture, the size of the video, and the

chroma format. The complicated arithmetic used to adjust buffer indices will make it

challenging for a compiler to extract parallelism. Further complicating any compiler

analysis is the function’s reuse of an input buffer as an output buffer (as reflected

in line 29).

Reusing buffers is one of many buffer management strategies. The strategy

yielding the best performance depends on the target architecture and the size of the

buffer. However, the programmer has been forced to guess about the performance

and commit to a particular strategy. Also note that a programmer using this function

must manually determine an execution schedule and buffer sizes that avoid buffer

underflow or the premature overwriting of data.

Now consider the equivalent StreamIt code for adding the decoded block data,

shown in Figure 6-2. The code itself is almost trivial. The filter occurs after a

roundrobin(1) joiner merging the prediction error and the prediction itself. Fig-

2The original Add Block function performed some unrelated parts of the decoding process as
well and was almost 99 lines long. For comparison purposes the unrelated code is removed.

58

01 static void Add_Block(comp,bx,by)

02 int comp,bx,by;

03 {

04 int cc,i, j, iincr;

05 unsigned char *rfp;

06 short *bp;

08 cc = (comp<4) ? 0 : (comp&1)+1;

09 if (cc==0) {

10 rfp = current_frame[0] +

11 Coded_Picture_Width*(by+((comp&2)<<2)) +

12 bx +

13 ((comp&1)<<3);

14 iincr = Coded_Picture_Width - 8;

15 if (chroma_format!=CHROMA444)

16 bx >>= 1;

17 if (chroma_format==CHROMA420)

18 by >>= 1;

19 rfp = current_frame[cc] +

20 Chroma_Width*(by+((comp&2)<<2)) +

21 bx +

22 (comp&8);

23 iincr = Chroma_Width - 8;

25 }

26 bp = ld->block[comp];

27 for (i=0; i<8; i++) {

28 for (j=0; j<8; j++) {

29 *rfp = *bp++ + *rfp;

30 rfp++;

31 }

32 rfp+= iincr;

33 }

34 }

Figure 6-1: Combining the spatially and temporally decoded data in C.

01 int->int filter Add_Block {

02 work pop 2 push 1 {

03 push(pop()+pop());

04 }

05 }

Figure 6-2: Combining the spatially and temporally decoded data in StreamIt.

59

ure 7-4, explained in detail later in Chapter 7, shows this filter in the context of

the motion compensation stream graph. Note that the amount of data this filter

processes will be dependent on the same chrominance and picture size parameters

as the C code but the buffer management details are hidden from the programmer

- they will be reflected in the data rates of the splitters and joiners surrounding the

filter in the motion compensation graph. At compile time the compiler makes the

decisions about the best buffer management strategy [52].

6.2 Pipelines Preserve Block Structure

The pipeline construct preserves the structure implicit in a block diagram. Figure 6-

3 shows a block diagram for spatial decoding taken from Figures 7-1 and 7-4 of the

MPEG-2 specification [28]. Figure 6-4 shows the StreamIt code that implements

the pipeline. The obvious correspondence points to StreamIt’s ability to naturally

represent this computation. Note that the quantization parameters in the diagram

are realized as messages in the stream graph.

Inverse
Scan

Inverse
Quantisation

Arithmetic
Saturation

Mismatch
Control

Inverse
DCT

quantiser_scale_code

W[w][v][u]

QFS[n] QF[v][u] F '' [v][u] F ' [v][u] F[v][u] f [y][x]

}
}

Data

Flow

Teleport

Messages

Figure 6-3: Block diagram for spatial decoding (from MPEG-2 specification).

An important detail to note is that each of the filters used in a pipeline may have

different granularities. In this case the inverse scan, quantization, and IDCT all

operate on blocks of 64 data values at a time. The mismatch control and saturation

blocks are naturally expressed in terms of a single input and output token. Nowhere

must the programmer specify the number of executions or the execution sequence

needed to fully decode a picture or video. This granularity variance holds through

60

int->int pipeline BlockDecode(

portal<InverseQuantization> quantiserData,

portal<MacroblockType> macroblockType) {

int[64] Order = {...};

add ZigZag(64, Order);

add InverseQuantization() to quantiserData,

macroblockType;

add Saturation(-2048, 2047);

add MismatchControl();

add 2D_iDCT(8); // 8x8 2D IDCT

add Saturation(-256, 255);

}

Figure 6-4: StreamIt pipeline for spatial decoding.

the rest of MPEG-2 as well. Picture reordering can be expressed in terms of pictures

and motion compensation in terms of motion vectors. The programmer’s burden is

eased since he does not have to worry about the rate discrepancies between filters.

6.3 Natural Exposure of Data Distribution

The splitjoin construct is a robust mechanism for expressing parallelism and data

reordering operations. It can be used to specify coarse grained parallelism at the

highest levels of an application because it exposes the independence of computational

blocks. But it is also useful for describing how a computation should be performed,

exposing coarse grained and fine grained parallelism as a byproduct.

Channel upsampling illustrates this. One can easily think of 2D upsampling

in terms of 1D upsampling in the vertical and horizontal direction3. The natural

way to express upsampling a picture in either direction is as a parallel computation

on every row or column of the picture. The building block is a one-dimensional

upsampling filter that takes in a pair of weights used for interpolation between points.

3This is conceptually similar to the decomposition of a 2D DCT, discussed later in Section 7.2.
In this case the channel upsampling represents a smaller amount of work and the splitjoin is
more interesting for its ability to efficiently express the transformation than its ability to expose
parallelism.

61

split roundrobin(source_width)

. . . (repeated source_width times)

. . . (repeated source_height times)

ChannelUpsample_1D

ChannelUpsample_1D

join roundrobin(source_width*2)

Vertical Upsampling

Horizontal Upsampling

split roundrobin(1)

join roundrobin(1)

Figure 6-5: 2D upsampling decomposed into 1D upsampling

int->int splitjoin ChannelUpsample_Vertical(int sourcewidth,

int sourceheight) {

split roundrobin(1);

for (int i = 0; i < sourcewidth; i++) {

add ChannelUpsample_1D(sourceheight, 0.75, 0.25);

}

join roundrobin(1);

}

int->int splitjoin ChannelUpsample_Horizontal(int sourcewidth,

int sourceheight) {

split roundrobin(sourcewidth);

for (int i = 0; i < sourceheight; i++) {

add ChannelUpsample_1D(sourcewidth, 0.5, 0.5);

}

join roundrobin(sourcewidth*2);

}

Figure 6-6: Splitjoins for channel upsampling.

62

/* Y */

01 form_component_prediction(src[0]+(sfield?lx2>>1:0),

02 dst[0]+(dfield?lx2>>1:0),

03 lx,lx2,w,h,x,y,dx,dy,average_flag);

04 if (chroma_format!=CHROMA444) {

05 lx>>=1; lx2>>=1; w>>=1; x>>=1; dx/=2;

06 }

07 if (chroma_format==CHROMA420) {

08 h>>=1; y>>=1; dy/=2;

09 }

/* Cb */

10 form_component_prediction(src[1]+(sfield?lx2>>1:0),

11 dst[1]+(dfield?lx2>>1:0),

12 lx,lx2,w,h,x,y,dx,dy,average_flag);

/* Cr */

13 form_component_prediction(src[2]+(sfield?lx2>>1:0),

14 dst[2]+(dfield?lx2>>1:0),

15 lx,lx2,w,h,x,y,dx,dy,average_flag);

Figure 6-7: C code excerpt for handling 4:2:0 and 4:2:2 chroma formats.

The weights are different for horizontal and vertical upsampling because MPEG-2

downsamples horizontally by removing pixels, and vertically by displacing them. The

vertical upsampler splits the data by column and the horizontal upsampler splits the

data by row. Figure 6-5 illustrates the procedure and Figure 6-6 shows the StreamIt

code that implements the process. The C reference implementation implements

upsampling as a series of loops wrapped around a one dimensional upsampling kernel.

In this case the code looks similar to the StreamIt code. However, the StreamIt for

loops represent graph topology resolved at initialization time. The C compiler must

analyze the body of the loops to extract parallelism.

6.4 Code Malleability

A noteworthy aspect of the StreamIt implementation is its malleability. I illus-

trate this by outlining how the decoder implementation is modified to support both

4:2:0 and 4:2:2 chroma formats (see Section 2.2). The conceptual difference between

chroma formats is merely a change in downsampling ratio. The implementation

63

// B = amount of data per block

// V = amount of data per motion vector

add splitjoin {

split roundrobin(4*(B+V), B+V, B+V);

add MotionCompensation(4*(B+V)) to PT1;

for (int i = 0; i < 2; i++) {

add pipeline {

add MotionCompensation(B+V) to PT1;

add ChannelUpsample(B);

}

}

join roundrobin(1, 1, 1);

}

Figure 6-8: Original StreamIt code excerpt for handling 4:2:0 chroma format only.

// C = blocks per chroma channel

// per macroblock

// C = 1 for 4:2:0, C = 2 for 4:2:2

// B = amount of data per block

// V = amount of data per motion vector

add splitjoin {

split roundrobin(4*(B+V), 2*C*(B+V));

add MotionCompensation(4*(B+V)) to PT1;

add splitjoin {

split roundrobin(B+V, B+V);

for (int i = 0; i < 2; i++) {

add pipeline {

add MotionCompensation(B+V) to PT1;

add ChannelUpsample(C*B);

}

}

join roundrobin(1, 1);

}

join roundrobin(1, 1, 1);

}

Figure 6-9: StreamIt code excerpt for handling 4:2:0 and 4:2:2 chroma formats.

64

<picture_type>split roundrobin

Motion CompensationMotion Compensation

Channel Upsample Channel Upsample

split roundrobin

join roundrobin

join roundrobin

Motion Compensation

<picture_type>

<picture_type>

Figure 6-10: Modified subgraph for handling 4:2:0 and 4:2:2 chroma formats.

difference is that the 4:2:0 format represents a macroblock with six blocks, and the

4:2:2 with 8 blocks. This change affects the data rates, and the data splitting ratios

between color channels. In the C reference code, the change requires adjustments to

buffer sizes, array lengths, array indices, loop bounds, and various pointer offsets.

The reference implementation uses a chroma flag to dictate control flow and alter-

nate index/offset calculations in 43 locations in the code. As an example, Figure 6-7

shows a code fragment from the form prediction routine in recon.c. The function

calls a subroutine to perform the motion compensation on each of the three color

channels, passing in array offsets to a global array holding the data. Lines 4-6 adjust

values used for address calculations to handle the 4:2:2 and 4:2:0 chroma formats,

and lines 7-9 provide additional adjustments for the 4:2:0 format. While these offset

adjustments are necessary in C, they are difficult for programmers and make the

code hard to understand.

In StreamIt, I modified 31 lines and added 20 new lines to support the 4:2:2

format. Of the 31 modified lines, 23 were trivial changes to introduce the chroma

format as a stream parameter. The greatest substantial change was to the color

channel splitter, previously illustrated on line 17 of Figure 5-1. In the case of a 4:2:2

sampling rate, the chrominance data, as it appears on the input tape, alternates

between each of the two chrominance channels, as previously shown in Figure 2-3.

Thus, a nested splitjoin is used to properly recover the chrominance channels.

65

The code for the old splitjoin before the chroma format support modifications is

shown in Figure 6-8. The code for the new splitjoin is shown in Figure 6-9 and illus-

trated in Figure 6-10. In the StreamIt code, the chroma format explicitly dictates

control flow in only 9 locations. Of course, chroma format changes have effects on

scheduling and buffer management, but this is transparent to the programmer.

6.5 Hierarchical Construction vs Functional Calls

Preserving the block structure in the program definition is important for programmer

productivity and maintaining code malleability. Figure 6-11 shows what happens to

the block diagram in a traditional language. This figure represents a simplified call

trace for the MPEG-2 decoder in C. Note that each component must be wrapped

in loops determining the exact number of iterations the component must run to

fully decode a picture or video. Data is stored in global buffers and addresses to

these buffers are passed between functions, so the code structure fails to reflect the

actual movement of data. Finally, notice that the functions for parsing, motion

compensation, and spatial decoding are intermixed in the code for performance

reasons. The StreamIt compiler can interleave the phases of execution to provide

performance but this does not require the programmer to mix functional code.

Decode_Picture {
 for (;;) {

 parser()
 for (;;) {

 decode_macroblock();
 motion_compensation();
 if (condition)

 then break;

 }

 }

 frame_reorder();
}

Data Exchanged Through Global Buffers:

EXTERN unsigned char *backward_reference_frame[3];

EXTERN unsigned char *forward_reference_frame[3];

EXTERN unsigned char *current_frame[3];

...etc...

decode_macroblock() {
 parser();
 motion_vectors();
 for (comp=0;comp<block_count;comp++) {

 parser();
 Decode_MPEG2_Block();
 }

}

motion_compensation() {
 for (channel=0;channel<3;channel++)

 form_component_prediction();
 for (comp=0;comp<block_count;comp++) {

 Saturate();
 IDCT();
 Add_Block();
 }

}

motion_vectors() {
 parser();
 decode_motion_vector();
 parser();
}

Decode_MPEG2_Block() {
 for (int i = 0;; i++) {

 parsing();
 ZigZagUnordering();
 inverseQuantization();
 if (condition) then

 break;

 }

}

Figure 6-11: Simplified call-trace diagram for C decoder.

66

6.6 Usefulness of Teleport Messaging

Teleport messaging is a useful language construct, as demonstrated by its importance

in handling control messages in the decoder and encoder. Figures 6-12 and 6-13 show

the important control parameters that are sent by teleport messages in the MPEG-2

codecs. The number of subscribers for each message type highlights the usefulness

of messages.

Message Content Frequency Regular
Number of
Subscribers

Number of
Subscriber
Types

quantization scale code macroblock no 2 2
quantization tables video yes 2 2
macroblock type macroblock yes 4 2
picture type picture yes 4 2
motion vector resets macroblock no 1 1
reference pictures picture no many 4 1

4 One for every block in all color channels over a picture.

Figure 6-12: Important control parameters sent through the decoder using teleport
messaging.

Message Content Frequency Regular
Number of
Subscribers

Number of
Subscriber
Types

quantization scale code macroblock no 2 2
quantization tables video yes 1 1
macroblock type macroblock yes 4 2
picture type picture yes 4 4
reference pictures picture no many 5 2

5 Once for every macroblock in all color channels over a picture.

Figure 6-13: Important control parameters sent through the encoder using teleport
messaging.

Messaging’s impact on programmability is evident by considering how the C

code exposes control relevant information. The C code passes data and control

parameters through function parameters and a global address space. Figure 6-14

67

shows the functional units in the C decoder6, the input bitstream, output video, and

the shared address space. Arrows represent communication dependencies between

the blocks. While the C implementation is natural — for C code — it would be

difficult for a programmer or compiler to extract parallelism7.

File Parsing

Decode

Picture

Global

Variable

Space

Decode

Macroblock Decode

Block

ZigZagUnordering

Inverse Quantization

Decode

Motion

Vectors

Motion

Compensation

Saturate

IDCT

Single Channel

Motion Compensation

Frame Reordering

MPEG-2 Bitstream

Output Video

Figure 6-14: Communication dependencies between functional units in the C code.

Teleport messaging provides a point to point connection layer which a program-

mer can emulate in the dataflow layer by embedding control parameters in the data

channels. While StreamIt provides the feedback loop construct to send information

upstream, messaging is often more appropriate for altering upstream state.

Upstream reference frame passing in the encoder is used as an example. A feed-

back loop structure is impossible here, due to the fact that only some pictures should

be sent upstream as reference pictures, and the information about which pictures to

send upstream is not available at compile time. This would require the feedback loop

6A functional unit might contain multiple functions with similar or related behaviors.
7Because the analysis of data access patterns is complicated and correctness verification for

optimizations becomes impractical, a compiler will make a pessimistic decision.

68

to process messages regarding picture type and implement a dynamic rate splitter

and joiner. This is not intuitive to implement, nor would it be easy for the compiler

to analyze. Without B pictures the feedback loop structure needed to ensure that

each motion estimation filter received the right reference frame immediately before

the first block of a picture would still be non-trivial. Replacing the messaging scheme

with a feedback loop would also effectively require the motion estimation filters to

operate at a picture granularity, since each work execution would receive a reference

picture, and this would limit parallelism by preventing estimation to be expressed

at a block granularity.

This chapter has given specific instances of where StreamIt improved programmer

productivity. Personal qualitative observations on the entire implementation process

are also pertinent. I found programming in StreamIt to be very intuitive. MPEG-

2 decomposed naturally into concise independent filters. Filters make a program

more modular than equivalent C code, which made it easy to change the encoder

and decoder stream graphs as my understanding of MPEG-2 improved. For the

purposes of correctness verification and performance comparisons it was much easier

to extract functional units from the StreamIt code than the C code.

69

70

Chapter 7

Expressing Parallelism

Multimedia codecs such as MPEG-2 demand high performance because of through-

put requirements. An online encoder or decoder must be capable of realtime per-

formance, which can be as high as 60 fps. An offline encoder is less constrained

but minimizing total runtime is still a concern. Since traditional CPU clock scaling

has ended, meeting throughput demands requires parallel scalable implementations.

Critical to these implementations is the compiler’s ability to detect parallelism in a

program specification. This section examines how parallelism was successfully real-

ized in the MPEG-2 codecs and how the StreamIt language made this task easy. The

parallelism discussed in this section is exposed through the stream graph topology

rather than by changing any underlying algorithms. This section ignores paral-

lelizing MPEG-2 codecs across GOPs; since GOPs are coded independently, this is

embarrassingly parallel and trivial. I also include proof of concept results showing

that the StreamIt implementation scales on multicore architectures.

7.1 Splitjoins Express Data Parallelism

One particularly noteworthy aspect of splitjoins is the ability to define their internal

topology using the for-loop construct. The for-loop, unrolled at instantiation time,

makes the degree of parallelism and the stream topology itself parameterizable.

This feature makes it easy for the programmer to concisely express a data parallel

71

computation. The code responsible for channel upsampling, shown in Figure 6-6,

expresses a massively data parallel computation in this way.

7.2 Hierarchical Streams Expose High Degrees of

Parallelism

splitter

joiner

IDCTIDCT IDCTIDCTIDCTIDCTIDCTIDCT

splitter

joiner

IDCTIDCT IDCTIDCTIDCTIDCTIDCTIDCT

1D IDCTs on the rows of an 8x8 matrix

1D IDCTs on the columns of an 8x8 matrix

Figure 7-1: Subgraph for a fine grained 2D inverse DCT.

Hierarchical constructs provide a convenient and natural way to represent par-

allel computation. Figure 7-1 shows a parallel implementation of the 2D IDCT

using 1D IDCTs. This implementation is both data parallel (within the rows and

columns) and pipeline parallel (between the rows and columns). The StreamIt code

for this 2D IDCT appears in Figure 7-2. A straightforward C implementation of

a computationally equivalent IDCT is shown in Figure 7-3. Note that the code

structure is similar to the StreamIt version, although it does not explicitly expose

the parallelism; the compiler must perform loop and dependency analysis to en-

able parallelism. The C code also requires explicit array index management, such

as the expressions block[8*i+u] and tmp[8*i+j], which are notably absent in the

StreamIt code. The splitter and joiner in StreamIt free the programmer from tedious

indexing operations, which also enables the compiler to understand and optimize the

72

float->float pipeline IDCT_2D(int N) {

// perform N 1D-IDCTs in parallel in the X direction

add splitjoin {

split roundrobin(N);

for (int i = 0; i < N; i++)

add IDCT_1D(N);

join roundrobin(N);

}

// perform N 1D-IDCTs in parallel in the Y direction

add splitjoin {

split roundrobin(1);

for (int i = 0; i < N; i++)

add IDCT_1D(N);

join roundrobin(1);

}

}

float->float filter IDCT_1D(int N) {

float[N][N] coeff = { ... };

work pop N push N {

for (int x = 0; x < N; x++) {

float product = 0;

for (int u = 0; u < N; u++)

product += coeff[x][u] * peek(u);

push(product);

}

for (int x = 0; x < N; x++) pop();

}

}

Figure 7-2: StreamIt code for the fine grained 2D inverse DCT subgraph.

buffer management [52]. The StreamIt implementation is also parameterized such

that it is trivial to adjust the size of the IDCT.

7.3 Parallelizing Motion Prediction

Motion prediction, in both the decoder and encoder, represents a significant fraction

of the computational effort, and is amenable to data parallelism. Because each

block in a picture has an associated set of motion vectors, motion prediction filters

73

// global variable

float coeff[64] = { ... };

void IDCT_2D(float* block) {

int i, j, u;

float product;

float tmp[64];

// 1D DCT in X direction

for (i = 0; i < 8; i++)

for (j = 0; j < 8; j++) {

product = 0;

for (u = 0; u < 8; u++)

product += coeff[u][j] * block[8*i + u];

tmp[8*i + j] = product;

}

// 1D DCT in Y direction

for (j = 0; j < 8; j++)

for (i = 0; i < 8; i++) {

product = 0;

for (u = 0; u < 8; u++)

product += coeff[u][i] * tmp[8*u + j];

block[8*i + j] = product;

}

}

Figure 7-3: C code for 2D inverse DCT calculation using two 1D transforms.

express a block-level transformation, and predictions for blocks may be formed in

parallel. However, the act of forming the prediction requires a filter have access to full

reference pictures. A parallel implementation of motion prediction will either lead

to redundant copies of the reference pictures or the necessity for motion prediction

threads to share a global read only memory space where the reference pictures can

be stored. A parallel motion prediction algorithm is easy to express in StreamIt and

exposes the necessary information so that the compiler can provide a shared-memory

storage for the reference pictures.

Figure 7-4 shows the StreamIt pipeline responsible for motion compensation of

a single color channel in the decoder. All blocks in a given picture are motion

predicted in parallel, with a set of block prediction error values and motion vector

74

Motion Prediction

joiner

. . . repeat for each block in the picture . . .

splitter

Identity

splitter

Add(2)

joiner

data for one color channel

data for a single block

block prediction
error values

motion vectors

data for a single block

predicted block
values

decoded block

decoded color channel

SendBackReferenceFrame

decoded color channel

Figure 7-4: Stream topology for motion compensation of a single color channel.

information sent to each motion prediction filter. Each data set then has its block

coefficients (which need no processing) and the motion vectors splitup, sending the

motion vectors to the filter that actually does the work of computing the predicted

block using the motion vector offsets. The predicted block output is added to the

block prediction error to form the original block, and all blocks are interleaved in the

data streams. The final filter in the stream graph is responsible for communicating

this fully decoded picture back to the motion prediction filters. It does this by

sending upstream messages containing the reference picture data.

Note the cleanliness of this parallel implementation: a programmer could manu-

ally change the number of blocks decoded in parallel and similarly, the compiler can

automatically fuse filter instances to match the target hardware. Note also that the

reference pictures needed by the motion compensation filter and the picture type

data needed by both the motion compensation and reference frame sending filters

75

are naturally expressed using messaging. Finally, note that the motion compensa-

tion filters only need to form predictions using their available reference pictures and

a separate filter can make sure they access the correct references.

As mentioned previously, the one potential drawback of this scheme would be if

each instance of the motion prediction filter required its own instance of the reference

picture data. However, a simple optimization allows the compiler to detect that these

motion prediction filters only use these reference pictures in a read-only context and

they may be stored in a global address space. Suppose that a filter receives a message

containing a nugget of data X. If a compiler can detect that the filter never modifies

X, it can place a copy in a shared memory space and give the filter a reference to

X. Whenever a new message is received, it simply gives the filter a new reference

to the data in a different part of the shared memory space. If a filter modifies X

or the compiler cannot detect that the filter uses X immutably, it must give the

filter a copy of the message in its own address space. Some kind of reference count

or garbage collection mechanism must be associated with data stored in the global

space so that the memory can be freed or reused once no filters can access the data.

The read-only analysis and associated space saving optimization can be per-

formed by the compiler automatically. This enables program implementations to

use a global reference space, even though the language need not provide this fea-

ture. I have tested a prototype of this optimization in the StreamIt Java library,

where garbage collection is easily handled, and verified that it works.

7.4 Improving Decoder Parallelization

Most MPEG-2 decoder implementations make spatial decoding precede temporal

decoding, but nothing in the specification or decoding algorithms require this. To

achieve a higher degree of parallelization, one would want to generate the predictions

for a block in parallel with the spatial interpretation of the block coefficients. This

has been tried with success in a hardware based implementation [51]. Only near the

final output stage must the prediction and spatial data be summed and the output

76

Repeat

splitter

splitter

joiner

IDCT

Saturation

Parser

Motion CompensationMotion Compensation

Channel Upsample Channel Upsample

Picture Reorder

Color Space Conversion

Motion Compensation
reference
picture

reference
picture

reference
picture

<PT1>
<R1>

<PT2>

IQuantization<QC>

<QC>

<PT1, PT2>

picture type

quantization coefficients

output to player

MPEG-2 bit stream

Block Data Reorder

Motion Vector Downscale

Motion Vector Reorder

ZigZag Motion Vector Decode

joiner

splitter

Add

SendBackReferenceFrame SendBackReferenceFrameSendBackReferenceFrame

<PT1>
<R2>

<PT1>
<R3>

joiner

<R1> <R2> <R3>

Figure 7-5: Exposing parallelism between spatial and temporal decoding in an
MPEG-2 decoder.

generated.

I previously showed a block diagram for the MPEG-2 decoder in StreamIt (in

Figure 5-1). This diagram represents both a straightforward block specification and

a program definition derived from the specification. Figure 7-5 shows an alternative

block diagram for an MPEG-2 decoder. This alternative diagram shows a block

diagram that an MPEG-2 expert will decide upon1. These two block diagrams

1The original diagram represents the program structure I chose a month after originally famil-
iarizing myself with the MPEG-2 specification. The new diagram represents the program structure
I chose 8 months later after extensive familiarity with the specifications and implementations.

77

contain the same functional transformations. For an ideal language, a clean and

malleable implementation of the original block specification in Figure 5-1 could

easily be modified to expose the greater degree of parallelism present in the expert’s

block structure in Figure 7-5.

Because StreamIt preserves block structure in the program definition this trans-

formation is easily accomplished. I have implemented the alternate decoder, using

exactly the same filters as those used in the original decoder implementation. These

two implementations are functionally equivalent, generating the same output across

test cases. The only changes in the code are to the nested hierarchical container

topologies that dictate the decoder stream graph. The ease with which a program-

mer can expose greater parallelism by merely changing the stream topology points

to the usefulness of stream based languages for parallel program implementations.

7.5 Performance Results

This section provides performance results showing how StreamIt enables a compiler

to provide scalable performance on MPEG-2 codec implementations. A need for

new language features previously mentioned in this thesis prevents the compilation

of a full decoder or encoder2. Execution and evaluation of the complete MPEG-2

decoder and encoder stream graphs is a current focus of the StreamIt group. Here I

consider the spatial decoding subgraph, which represents up to a third of the total

computation in the decoder [31]. I have extracted the spatial decoding code from

the StreamIt and C decoder implementations so that it can be compiled and run on

a performance oriented target.

I use three versions of the StreamIt spatial decoding stream graph with differ-

ing granularities. The granularities are changed by altering the subgraph for the

8x8 IDCT. Figure 7-6 lists the number of nodes (filters, splitters, and joiners), con-

tained in the stream graph for each of the three versions. Each version contains

2An intermediate Java library output from the compiler allows me to verify correctness of
StreamIt code. This target is not performance oriented.

78

Granularity Nodes in IDCT Nodes in Graph
Coarse 2 8
Intermediate 11 17
Fine 20 26

Figure 7-6: Three versions of the spatial decoding stream graph and their granular-
ities.

Source, ZigZag, InverseQuantization, Saturation, MismatchControl, and Sink

filters. The coarse grained IDCT uses 2 filters for the IDCT: a Rows iDCT and a

Columns iDCT filter. The fine grained IDCT is expressed with 16 1D IDCTs and

two splitjoins as described in Section 7.2. The intermediate IDCT uses the coarse

Rows iDCT filter for the row transformation and the fine grained column transfor-

mation with 8 1D IDCTs.

The performance evaluation is carried out on the Raw architecture [60, 61]. The

Raw architecture is representative of the industry shift to multicore embedded ar-

chitectures, currently manifested in emerging architectures such as the Intel Duo,

AMD Opteron, and IBM Cell processors. Raw is a wire-exposed multicore archi-

tecture which contains a 2D array of identical, programmable tiles and supports

instruction, data, thread, and pipeline parallelism. Each tile has a compute proces-

sor and a switch processor that manages communication. The compute processor is

composed of an eight-stage in-order single-issue MIPS-style processor, a four-stage

pipelined floating point unit, a 32kB data cache, and a 32kB instruction cache. Tiles

are connected by a FIFO queue with a 3 cycle near neighbor latency. This inter-

connect network provides a mechanism for filters to communicate quickly with each

other. The current Raw prototype is a chip with 16 tiles running at 425Mhz. For

this thesis, results are gathered using a cycle-accurate simulator [61] that can model

tile configurations with size 1, 4 (2x2 grid), and 16 (4x4 grid).

The StreamIt code was compiled to Raw with the StreamIt space multiplexing

compiler 3 described in [25]. The code was compiled at an -O1 optimization level,

which performs loop unrolling by a factor of 16, scalar replacement, and aggressive

3This compiler will soon be deprecated in favor of a more advanced space-time multiplexing
compiler described in an upcoming paper [24] from the StreamIt group.

79

Inverse Quantization

Saturation

Mismatch Control

ZigZag

splitter

joiner

IDCTIDCT IDCTIDCTIDCTIDCTIDCTIDCT

splitter

joiner

IDCTIDCT IDCTIDCTIDCTIDCTIDCTIDCT

Source

Sink

Fused
Source
ZigZag

Fused
Saturation
Mismatch

Splitter

Fused
IDCTs

Fused
Joiner

Splitter

Figure 7-7: Partitioning the spatial decoding stream graph for 16 tiles of Raw.

Fused
Saturation
Mismatch

Splitter

Inverse
Quantization

Fused
IDCTs

Fused
IDCTs

Fused
IDCTs

Fused
IDCTs

Fused
Joiner

Splitter

Fused
IDCTs

Fused
IDCTsIDCT

IDCT

IDCT

IDCT

Joiner Sink

Fused
Source
ZigZag

Figure 7-8: Layout of the fine grained spatial decoding stream graph on the Raw
chip.

80

1 tile 4 tiles 16 tiles

0

2000

4000

6000

Serial C Implementation

cy
cl

e
s

p
e

r
b

lo
ck

coarse granularity

intermediate granularity

fine granularity

sp
e

e
d

u
p

 o
ve

r
b

a
se

lin
e

1

2

4

4714

4544 4586 5508 1625 3114 2508 1505 1505 1270

Figure 7-9: Scalability of StreamIt spatial decoding pipeline against single tile C
baseline.

constant propagation. The StreamIt compiler focusses on achieving performance

by enabling scalable execution on many tiles. Using the parallelism explicit in the

stream graph the compiler automatically performs task partitioning and layout. An

application should achieve significant speedups as the number of tiles increases.

A brief example illustrating scheduling and layout follows. Figure 7-7 shows how

the StreamIt compiler partitions the fine grained spatial decoding stream graph for a

Raw configuration with 16 tiles. The compiler adjusts the stream graph granularity

by combining nodes to eliminate buffering between nodes on the same tile. The

dotted lines in the figure show which nodes in the stream graph have been fused.

After fusion is complete there are the same number of nodes and tiles in the stream

graph. Figure 7-8 shows the compiler’s layout decision for these nodes on the Raw

hardware.

Figure 7-9 shows results for execution of the spatial decoding stream graph at

three granularities. The baseline is the C reference code running on a single tile. The

C code was compiled with a Raw port of the gcc compiler, which performs register

81

allocation and list scheduling. A compiler has a difficult time extracting parallelism

from single threaded C code (hence the need for new programming models); in

StreamIt the parallelism is explicit, so we show performance numbers for multi-tile

configurations as well.

Single tile StreamIt performance is roughly equivalent to the single tile C code.

Small variations are explained by compiler decisions about how to fuse all the filters

together. When the tile size increases to 4, all versions of the StreamIt code signif-

icantly outperform the C implementation. While the coarse grained version of the

StreamIt code outperforms the more fine grained implementations, an analysis of

the compiler’s layout decisions suggests that this result is somewhat anomalous: the

compiler is getting exceptionally lucky with load balancing. The intermediate and

fine grained versions are more prototypical. At 16 tiles performance of all stream

graphs again improves significantly. One sees the general trend that decreasing the

granularity of the program enables the compiler to make better layout decisions

and provide higher parallel performance. The best performance comes from a fine-

grained implementation operating on 16 tiles.

82

Chapter 8

StreamIt Limitations and

Proposed Extensions

During the implementation process I encountered situations where StreamIt forced a

poor expression of a computation or language features did not scale for large applica-

tion development. A language design oriented to small applications and benchmarks

could easily miss these pragmatic development issues. The StreamIt group has fo-

cussed on these issues; the next version of StreamIt will add a number of language

extensions that improve programmability, modularity, and expression of parallelism

and communication. This chapter provides concrete examples motivating the in-

troduction of these features and attempts to steer the direction of future streaming

languages.

8.1 Bitstream Parsing

In MPEG-2, the process of parsing the bitstream and performing Huffman and

run-length coding is estimated to constitute almost a third of the computational

effort [31]. Unfortunately, many layers of nested control flow make the parser un-

suitable for streaming computation. The parser must be implemented as a single

filter that contains approximately one thousand lines of code, almost half the code

lines in either the decoder or encoder. This filter expresses scheduling information

83

and parallelism poorly.

Filters with dynamic IO rates present particular difficulties for the StreamIt

compiler because of the lack of scheduling information. However, certain filters

are naturally expressed by the programmer with dynamic input and output rates,

although they theoretically could be realized with static rates. In the decoder, the

parser has a dynamic input rate, but always outputs full macroblocks, and ought

to be expressed with a static output rate. (The reverse is true for the parser in the

encoder.) However, due to the complexity of the MPEG-2 bitstream format, the

actual push statements are embedded in deeply nested control flow. The parser is

most naturally expressed in terms of a single work function execution that parses

the entire MPEG-2 bitstream.

This presents several difficulties. The fact that the parser processes all its data

in a single pass means that if the filter were to execute atomically with respect to

other filters, one would need a potentially infinite buffer between the parser and

the downstream graph. To avoid this difficulty the compiler would need to generate

multi-threaded code, even for a uniprocessor backend, that interleaves the parser exe-

cution with downstream execution. Messaging presents a second difficulty. A filter’s

messaging granularity is determined by its input and output rates, and messages are

timed with respect to the work execution boundaries; a work function that processed

an entire video in a single execution could only time messages with respect to the

beginning or end of the video, not with respect to individual macroblocks within the

video.

I present a workaround that allows for interleaved scheduling and message de-

livery. Given a filter with a large work function, such as the parser, one can move

control flow determining variables into filter instance variables that are maintained

between work function executions. Inside the work function invocation is a loop that

repeatedly branches to one of several helper functions determined by the control vari-

ables. The helper functions update the control variables, and the loop terminates

after executing any of the helper functions that generates output (for the parser,

pushing a macroblock). This workaround amounts to replacing nested control flow

84

with a flat control flow graph structure. The readability and malleability of the code

suffers.

Even with such a hack, parallelism is expressed poorly because the parser itself

cannot be parallelized easily. Two constructs in the MPEG-2 bitstream facilitate

parser parallelism. At the higher level, every GOP can be decoded in parallel, since

pictures can only reference other pictures in the same GOP. At a lower level slices

may be decoded in parallel since macroblocks contained inside different slices in a

picture are known to have no interdependencies. The codes for the start of a GOP

or slice are byte-aligned and never occur in any other context. A parser exploiting

thread-level parallelism could first scan through a bitstream and identify the GOP

and slice structures, and then subdivide portions of the bitstream to different bit-

stream parsers. Ahmad et al. show this technique to be effective for parallelizing

MPEG-2 [2]. This sort of parser parallelization is difficult to express in a stream

based language and achieving reasonable performance would require a Herculean

compiler effort.

The StreamIt group has considered language features to address these problems,

but our key insight is the realization that StreamIt targets streaming computations,

and if a filter cannot concisely express a computation then that computation is prob-

ably not streaming. For the MPEG-2 parser this is obvious because its expression

requires a thousand line functional block and leaves the compiler with an intractable

parallelism problem. MPEG-2 bitstream parsing has little in common with stream

computation and much in common with context-free grammars, and would be im-

plemented more easily in a language like C. Clean interfaces between StreamIt and

traditional languages, under development in the StreamIt language group, would

allow hybrid language compression scheme implementations that share the benefits

of both languages. MPEG-2 provides a strong motivation for such a hybrid; while

the majority of MPEG-2 coding is particularly well suited to a streaming approach,

bitstream parsing is an important exception that demands an alternate approach.

85

...

int horizontal_size_value =

popbits(12);

int vertical_size_value =

popbits(12);

int aspect_ratio_information =

popbits(4);

int frame_rate_code =

popbits(4);

...

...

int horizontal_size_value = 0;

for (int i = 0; i < 12; i++) {

horizontal_size_value <<= 1;

horizontal_size_value += pop();

}

int vertical_size_value = 0;

for (int i = 0; i < 12; i++) {

vertical_size_value <<= 1;

vertical_size_value += pop();

}

int aspect_ratio_information = 0;

for (int i = 0; i < 4; i++) {

aspect_ratio_information += pop();

aspect_ratio_information <<= 1;

}

int frame_rate_code = 0;

for (int i = 0; i < 4; i++) {

frame_rate_code <<= 1;

frame_rate_code += pop();

}

...

Figure 8-1: Code fragment from parser with (left) and without (right) tape accessing
external functions.

8.2 Functions with Tape Access

Functions provide an abstraction that improves programmability when a compu-

tation must be repeated within a single work execution of a filter. Support for

arbitrary tape accessing functions is a current focus of the StreamIt compiler group.

A scheduler can handle both external and helper functions with tape access; the

overall work rate of a filter should reflect any tape access caused by functions it

calls. This section gives examples showing this feature’s importance.

External Functions with Tape Access Data compression formats such as

JPEG and MPEG-2 pack data together as tightly as possible, ignoring word and

byte boundaries in a data stream except for certain byte-aligned escape codes used

to help a parser detect its position in a data stream. Even uncompressed formats,

such as BMP [11] pack some configuration data. Parsers need functions that allow

them to specify that a sequence of N bits appearing in the bitstream should be

consumed and stored as some data type, such as an integer. The left half of Fig-

86

ure 8-1 shows example code from an MPEG-2 parser with external functions. The

alternative approach without external functions appears in the right half1.

Helper Functions with Tape Access Helper functions with tape access allow

for cleaner code. They differ primarily from external functions with tape access in

that they would be private to the filter that contains them and could manipulate

internal state within that filter. The work function from the filter responsible for

motion prediction is 103 lines and is difficult to read or edit (the code is omitted due

to length). With tape-accessing helper functions it would decompose nicely into a

work function and three helper functions, each of 20 to 30 lines.

8.3 Messaging Interfaces

In the current version of StreamIt, a filter X declares the types of messages it receives,

and an associated portal<X> is implicitly declared. Only filters of the same type

may subscribe to the same portal, so redundant portals must be declared if different

parts of a computation need the same sets of messages. The StreamIt group has

recognized this limitation and the upcoming language revision will introduce mes-

saging interfaces, conceptually similar to Java’s interface declaration, that decouple

portal specifications from subscriber implementations. An interface declares a set

of valid messages, and any filter which implements the interface may subscribe to

portals of the interface’s type.

Separating portal and subscriber definitions removes the dependency that senders

broadcasting messages to a portal of type portal<X> have on subscribers that im-

plement X. This dependency limits the expression of large applications and I provide

empirical evidence that motivates implementation efforts for this feature. Con-

sider again Tables 6-12 and 6-13. The number of distinct message subscriber types

demonstrates the need for interfaces. Without interfaces, one must write each mes-

1The particular ability to pop, push, and peek multiple bits at a time from (or to) bitstreams,
as illustrated in this example, is needed so frequently that all of the implementations described in
this paper assume that these global functions exist and must be preprocessed before being sent to
the StreamIt compiler.

87

sage sender after implementing all of its message receivers. In the encoder, enough

components exchange information about picture and block metadata that message

passing without interfaces became unmanageable and many parameters were em-

bedded in the data stream. Interfaces enable one to write an MPEG-2 bitstream

parser before writing — or even determining — the many downstream components

that will need to receive control parameters from the parser.

8.4 Programmable Splitjoins

The current language semantics support roundrobin and duplicate splitters, and

roundrobin joiners. Roundrobin components need not send or receive identical

amounts on each of their substreams, but the rates must be statically determined.

Some applications require computations which dynamically switch between several

modes of computation based on data. Messaging can address the issue when the

modes of computation are very similar. However, in cases where the computations

differ significantly, it would be more natural to place independent filters in parallel

and have a splitter select one of the filters for each set of data to be processed. This

provides a need for programmable splitters and joiners which can receive messages

that determine the data streams to which they should output. I first give an example

where some kind of switch splitter that sends to one of its channels would suffice,

and then show a case where programmable splitters and joiners are needed.

Switch Splitjoins Figure 8-2 shows the inverse quantization subgraph as it is

realized in the MPEG-2 decoder. The inverse quantization process uses two different

transforms depending on whether a block is intra coded or residually coded. The

current implementation uses a splitjoin to duplicate each quantized block and process

it for both block types. The results are interleaved and a downstream filter takes in

both results and outputs one of them. Messages to the decision making filter from

the upstream parser control which result gets output.

This approach results in needless computation since only one of the two inter-

88

split duplicate

join roundrobin(64)

MacroblockTypeDecision

InverseQuantization_Intra InverseQuantization_NonIntra

<macroblock_type>

Figure 8-2: Inverse quantization subgraph with a duplicate splitter and roundrobin
joiner.

split switch

join switch

InverseQuantization_Intra InverseQuantization_NonIntra<macroblock_type>

Figure 8-3: Inverse quantization subgraph with switch splitters and joiners.

mediate filters needs to execute. Dataflow is also complicated by the interleaving

and filtering of data. In this case, a paired switch splitter and joiner are desirable.

The idea is that a switch splitter and joiner with coordinated behavior would receive

messages which cause them to change which channel processes the data. Figure 8-3

shows how the subgraph would appear with a switch splitter and joiner.

User Programmable Splitters Motion estimation in an MPEG-2 encoder, pre-

viously described in Section 5.3, illustrates the need for a programmable splitjoin.

As implemented in Figure 5-3, a duplicate splitter sends data to each of the com-

pression filters. A roundrobin joiner interleaves each of the compression results and

sends them to a downstream filter which determines the best encoding technique and

emits only one of the compression results. However, this results in extra work. For

I pictures one need not try motion estimation and for P pictures one need not try

backward motion prediction. With only duplicate splitters and roundrobin joiners

89

one is forced to send and receive data from the unneeded compression filters and

then discard the results.

In an ideal implementation, the splitter and joiner would be programmable and

messages about picture type would dictate which, and how many, internal streams

processed the data. Figure 8-4 illustrates a stream graph with this form. A switch

splitter will not suffice because multiple streams within the splitjoin must receive

the input in certain cases. The joiner is also the ideal place to make the decision

about which candidate blocks are used. For any given picture type, it must pop off

the candidates from the valid input lines and output the one that exhibits the best

compression. Note that the programmable splitter and joiners for this subgraph will

be dynamic rates. However, the motion estimation subgraph is still static rate with

respect to the rest of the stream graph and has a well-defined internal schedule. I

explain how this scheduling information can be exposed to the compiler in the next

section.

Motion Estimation

MotionEstimationSplitter

MotionEstimationJoiner

Motion EstimationIntra Motion Estimation

intra-coded
candidate macroblocks

forward candidate macroblocks backward
candidate macroblocks

temporally compressed pictures

uncompressed pictures

<picture_type>

<picture_type>

picture_type = I:

intra-coded forward-coded backward-coded

subgraphs that receive data from splitter and send data to joiner:

picture_type = P:

picture_type = B:

Figure 8-4: Motion estimation stream subgraph with a programmable splitter and
joiner.

Another part of the encoder that would benefit from programmable splitjoins is

the ReferenceFrameHandler responsible for decoding the recently encoded reference

90

pictures and sending them upstream to the motion estimation filters. The subgraph

for this component appears in Figure 8-5.

join roundrobin(picture_size, 0)

Decode

Identity

encoded pictures

<uncompressed_pictures>

Send Back Reference

split duplicate

encoded pictures

<picture_type>

Figure 8-5: Subgraph for decoding reference pictures and sending them upstream.

As currently realized, both reference pictures and non-reference pictures go to a

duplicate splitter. One duplicate of the encoded picture passes back to the joiner

unchanged, and the other goes to a subgraph that first decodes the picture and then

sends it as an upstream message to the motion estimation filters. The subgraph for

decoding the picture looks similar to the MPEG-2 decoder pipeline.

One problem with this behavior is that the filter responsible for messaging back

the reference frame must determine whether or not to send the picture or merely

discard it, based on the picture type. This is problematic because many pictures

are discarded, yet they are still properly decoded. A programmable splitter could

receive picture type messages and selectively send only the reference frames to the

decoding subgraph. This would avoid unnecessary computation.

8.5 Named Work Functions

Many filters whose work function behavior is dependent on stream parameters have

a similar implementation pattern: state variables are declared and are used as pa-

rameters or control flow indicators in the work function, and only ever modified in

message updates.

91

A more intuitive mechanism for the programmer would be to allow multiple

named work functions or a single named work function that declares parameters

(like a function or filter declaration). These named work functions would act as

message receivers, and other portals could directly call the work functions through

the teleport messaging mechanism.

From a sending filter’s standpoint, messaging is unaffected. Whether a receiver

implements a message handler as a named work function or a message handler is

irrelevant to the messaging semantics. When a filter with a named work function

receives a message, it would change the filter’s mode of execution to the named work

function, using the work function parameters if they exist.

Using named work functions simplifies the programming of the quantization,

motion estimation, and picture reordering filters in the encoder, and the inverse

quantization and motion prediction filters in the decoder. This feature also makes

filter behavior more transparent to the compiler by exposing scheduling information

about otherwise dynamic rate components. For instance, some dynamic rate filters

could be declared as static rate filters if the different named work functions had

different pop and push rates.

As an example, I consider the MPEG-2 encoder’s motion estimation subgraph re-

alized using programmable splitters and joiners, previously described in Section 8.4.

As Figure 5-3 points out, the splitter and joiner will need to have different IO rates

depending on the picture type, because different numbers of the splitjoins internal

streams may need to receive picture data. With dynamic splitter and joiner IO

rates, a compiler would be unable to intelligently schedule the subgraph’s execution.

Suppose the splitter and joiner could each be implemented using three named

work functions. Each work function would have a different but static rate declara-

tion. By sharing the same interface and subscribing to the same message portal,

this would expose the scheduling information to the compiler, which could realize

that the splitjoin viewed as a whole has a static IO rate with respect to the rest of

the graph.

92

8.6 Stream Graph Reinitialization

The biggest limitation of StreamIt 2.0 codec implementations is a requirement placed

on video and image parameters that determine stream graph topology. These pa-

rameters must be declared at compile-time. Image size and chroma format must be

hardcoded and changes to these values require that the source code be modified and

the program recompiled. This limitation can be removed by allowing portions of a

stream graph to reinitialize at runtime. Others have had success allowing actors to

reinitialize at runtime and change their internal state [46], and it should be possi-

ble to allow topology changes at runtime as well. I believe this language feature is

necessary and the StreamIt group is introducing the ability in StreamIt 3.0.

8.7 Stream Graph Draining

The streaming model of computation assumes that input and output streams are

infinite and actors will process continuously with a steady state behavior. However,

real world applications such as MPEG-2 have definite stream endings, and the end

of life behavior of a stream graph is poorly determined. The MPEG-2 decoder,

for instance, needs to be drained so that filters internally buffering data release

their buffers. An example of this is the filter responsible for picture reordering

(previously shown in Figure 4-9) which buffers one reference frame internally. For

this frame to get released, the current implementation requires that the first filter

in the pipeline, after detecting its final input, send dummy data items through the

pipeline to empty out the remaining buffers. However, this behavior is non-ideal

because spatial and temporal decoding are performed on data whose only purpose is

to cause the downstream filter to release buffered data items. Just as the prework

keyword helps a stream-graph reach a steady-state behavior at application startup, a

similar mechanism (e.g., postwork) is needed at the end of an application’s lifetime.

93

94

Chapter 9

Conclusions

Compression schemes play a key role in the proliferation of multimedia applica-

tions and the digital media explosion. At the same time, applications must be

written for a plethora of unique parallel architectures. This thesis has shown that

stream programming is an ideal model of computation for realizing image and video

compression schemes. For this domain, stream programming boosts programmer

productivity and enables scalable parallel execution of an application on a variety of

architecture targets. Streaming language features allow a programmer to efficiently

express a computation and expose parallelism, enabling a compiler to provide scal-

able performance.

This thesis shows these points through the following contributions: (i) clean, mal-

leable, and portable MPEG-2 encoder and decoder implementations expressed in a

streaming fashion, (ii) an analysis showing that a streaming language improves pro-

grammer productivity, (iii) an analysis showing that a streaming language enables

parallel execution, (iv) an enumeration of the language features that are needed to

cleanly express compression algorithms, (v) an enumeration of the language features

that support large scale application development and promote software engineering

principles such as portability and reusability.

This work was performed in the context of the StreamIt programming language,

for its ability to express streaming computations, and the MPEG-2 video compres-

sion scheme. However the work is relevant to the domain of multimedia codecs,

95

including JPEG and MPEG-4. Currently the H.264 compression scheme is poised

to supersede MPEG-2 video compression; assuming the language suggestions in this

paper make their way into streaming languages, the most interesting research direc-

tion would be scalable, portable, and malleable implementations of H.264 codecs,

expressed in a streaming fashion.

9.1 Future Research

Realtime processing is an important part of embedded systems and video codecs.

StreamIt specifies timing constraints through message delivery semantics but these

are logical scheduling constraints divorced from any absolute notion of time. No

constraints can be specified regarding the maximum latency from stream graph

input to output. One direction for future work would be to examine these realtime

performance issues.

MPEG-2 is interesting from a language and compiler research perspective, but

hardware advances have made MPEG-2 coding relatively easy. However, the new

H.264 standard presents serious challenges to modern architectures and is designed

to push performance well into the future. H.264 is the video coding scheme specified

in Part 10 of the MPEG-4 video specification [29]. H.264 reflects many advances in

video and image compression research. The major specification changes and their

consequences for a stream-based implementation are detailed.

Video Organization

• Macroblocks can occur in any order within a picture. This will require addi-

tional messages associated with each macroblock indicating its position within

an image.

• Macroblocks may be composed of blocks of many different sizes (8x8, 16x8,

16x16, 8x16), and block sizes may change from macroblock to macroblock.

This will make programmable splitjoins and dynamic filter reconfiguration

especially important as language features.

96

• Blocks are always composed of 4x4 subblocks, which have their own motion

vectors.

• I and P pictures are no longer automatically considered reference pictures; in-

stead, pictures are explicitly declared as reference pictures and may be used as

reference pictures for an indeterminate length of time. The picture reordering

filter will be substantially more complicated.

Spatial Coding

• The DCT is replaced by a wavelet transform. The wavelet transform incor-

porates the quantization scale factors. The transform is simple to implement

and simplifies the spatial decoding process from a programmer’s standpoint,

although little can be reused from MPEG-2.

• A block-aliasing mechanism removes edge-artifacts between macroblock bound-

aries. The spatial coding pipeline can be naturally extended to include an

additional filter or subgraph that handles this transformation.

Motion Prediction

• Motion vectors may now refer to data contained in other macroblocks in the

same frame. Instead of referring to the previous 2 decoded reference frames, P

and B pictures may now refer to any of the past 32 decoded reference frames.

The optimization to share read-only message sent data between filters will be

necessary.

• Because blocks have variable size and are composed of subblocks with their

own motion vectors, the motion prediction filters are substantially complicated

in both encoders and decoders. An encoder will only benefit from the huge

variety of prediction options if it can expose a high degree of coarse grained

parallelism in the motion estimation subgraph.

97

• Motion vectors include a scaling factor (for zooms) and an amplitude factor

(for image fades). Motion vectors are also accurate to a quarter pixel resolution

instead of half pixel resolution. This particular aspect of motion prediction

can be accommodated by small changes to the existing prediction formation

process.

Variable Length Coding

• The bit-stream syntax uses many new variable bit rate encoding algorithms

which have higher compression rates than Huffman coding. The bitstream

also makes a distinction about the importance of data and provides options

for variable rate error correction. Bitstream parsing is therefore dramatically

more complicated and good inter-language interfaces for this non-streaming

computation are critical.

StreamIt should be well suited for MPEG-4 decoding and encoding. Encoding, in

particular, should benefit from the extreme kinds of parallelization that StreamIt can

expose. MPEG-4 provides a huge variety of motion prediction options for encoding

any particular video and exploring the space of potential compression options will

require a scalable parallel encoder implementation.

98

Bibliography

[1] Sitij Agrawal, William Thies, and Saman Amarasinghe. Optimizing stream

programs using linear state space analysis. In CASES, 2005.

[2] Ishfaq Ahmad, Shahriar M. Akramullah, Ming L. Liou, and Muhammad Kafil.

A scalable off-line MPEG-2 video encoding scheme using a multiprocessor sys-

tem. Parallel Computing, 27(6), 2001.

[3] Ishfaq Ahmad, Yong He, and Ming L. Liou. Video compression with parallel

processing. Parallel Computing, 28, 2002.

[4] Shail Aidtya, Arvind, Lennart Augustsson, J. Maessen, and Rishiyur S. Nikhil.

Semantics of pH: A parallel dialect of Haskell. In Haskell Workshop, 1995.

[5] Shahriar M. Akramullah, Ishfaq Ahmad, and Ming L. Liou. A Data-Parallel

Approach for Real-Time MPEG-2 Video Encoding. Journal of Parallel and

Distributed Computing, 30(2), 1995.

[6] Shahriar M. Akramullah, Ishfaq Ahmad, and Ming L. Liou. Performance of

Software-Based MPEG-2 Video Encoder on Parallel and Distributed Systems.

IEEE Transactions on Circuits and Systems for Video Technology, 7(4), 1997.

[7] E.A. Ashcroft and W.W. Wadge. Lucid, a non procedural language with itera-

tion. C. ACM, 20(7), 1977.

[8] I. Assayad and S. Yovine. Parallel model analysis and implementation for

MPEG-4 encoder. In Proc. of Embedded Processors for Multimedia and Com-

munications II, 2005.

99

[9] Ismail Assayad, Philippe Gerner, Sergio Yovine, and Valerie Bertin. Modelling,

Analysis and Parallel Implementation of an On-line Video Encoder. In 1st Int.

Conf. on Distributed Frameworks for Multimedia Applications, 2005.

[10] Gerard Berry and Georges Gonthier. The Esterel Synchronous Programming

Language: Design, Semantics, Implementation. Sci. of Comp. Programming,

19(2), 1992.

[11] BMP File Format. http://www.digicamsoft.com/bmp/bmp.html.

[12] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, and Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics

Hardware. In SIGGRAPH, 2004.

[13] L. William Butterworth. Architecture of the first US direct broadcast satellite

system. In Proceedings of the IEEE National Telesystems Conference, 1994.

[14] P. Caspi and M. Pouzet. Lucid Synchrone distribution.

http://www-spi.lip6.fr/lucid-synchrone/.

[15] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu, H. Yu, and C. Pu. Spidle:

A DSL Approach to Specifying Streaming Applications. In 2nd Int. Conf. on

Generative Prog. and Component Engineering, 2003.

[16] Inmos Corporation. Occam 2 Reference Manual. Prentice Hall, 1988.

[17] E.A. de Kock. Multiprocessor Mapping of Process Networks: A JPEG Decoding

Case Study. In 15th Int. Symp. on System Synthesis, 2002.

[18] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.Y. Brunel, W.M.

Kruijtzer, P. Lieverse, and K.A. Vissers. YAPI: Application Modeling for Signal

Processing Systems. In Conf. on Design Automation, 2000.

[19] Matthew Drake, Henry Hoffman, Rodric Rabbah, and Saman Amarasinghe.

MPEG-2 Decoding in a Stream Programming Language. In International Par-

allel and Distributed Processing Symposium, Rhodes Island, Greece, April 2006.

100

[20] Basant K. Dwivedi, Jan Hoogerbrugge, Paul Stravers, and M. Balakrishnan.

Exploring design space of parallel realizations: MPEG-2 decoder case study. In

9th Int. Symp. on Hardware/Software Codesign, 2001.

[21] Implementation Guidelines for the use of MPEG-2 Systems, Video and Audio

in Satellite, Cable and Terrestrial Broadcasting Applications. ETSI ETR 154,

Revision 2, 2000.

[22] J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille. The Sisal Model of

Functional Programming and its Implementation. In 2nd Aizu Int. Symposium

on Parallel Algorithms/Architecture Synthesis, 1997.

[23] Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative

language for synchronous programming of real-time systems. Springer Verlag

LNCS, 274, 1987.

[24] Michael Gordon and Saman Amarasinghe. Space-Time Multiplexing of Stream

Programs. In ASPLOS, 2006.

[25] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Christopher Leger, Andrew A. Lamb, Jeremy Wong, Henry Hoffman, David Z.

Maze, and Saman Amarasinghe. A Stream Compiler for Communication-

Exposed Architectures. In ASPLOS, 2002.

[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data

flow language LUSTRE. Proc. of the IEEE, 79(1), 1991.

[27] David A. Huffman. A method for the construction of minimum-redundancy

codes. Proc. of the IRE, 40(9), September 1952.

[28] ISO/IEC 13818: Information technology — Coding of moving pictures and as-

sociated audio for digital storage media at up to about 1.5 Mbit/s. International

Organization for Standardization, 1999.

101

[29] ISO/IEC 14496-10: Information technology — Coding of audio-visual objects:

Advanced video coding. International Organization for Standardization, 2002.

[30] ITU T.81: Information Technology — Digital compression and coding of

continuous-tone still images — Requirements and guidelines. International

Telecommunication Union, 1992.

[31] Eiji Iwata and Kunle Olukotun. Exploiting coarse-grain parallelism in the

MPEG-2 algorithm. Technical Report CSL-TR-98-771, Stanford University,

1998.

[32] Tom Jacobs, Vassilios Chouliaras, and David Mulvaney. Investigation

of Thread-Level Parallelism in the Architectural Complexity Reduction of

MPEG2, XviD and H.264 Video Encoders. In 2nd ESC Division Mini Confer-

ence, 2005.

[33] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho

Ahn, Peter Mattson, and John D. Owens. Programmable Stream Processors.

IEEE Computer, 2003.

[34] Michal Karczmarek. Constrained and Phased Scheduling of Synchronous Data

Flow Graphs for StreamIt Language. S.m. thesis, Massachusetts Institute of

Technology, Cambridge, MA, December 2002.

[35] Dong-Ik Ko and Shuvra S. Bhattacharyya. Dynamic Configuration of Dataflow

Graph Topology for DSP System Design. In ICASSP, 2005.

[36] Dong-Ik Ko and Shuvra S. Bhattacharyya. Modeling of Block-Based DSP Sys-

tems. Journal of VLSI Signal Processing, 40(3), 2005.

[37] J. Kunkel. COSSAP: A stream driven simulator. In Int. Workshop on Micro-

electronics in Communications, 1991.

[38] Andrew A. Lamb, William Thies, and Saman Amarasinghe. Linear Analysis

and Optimization of Stream Programs. In PLDI, 2003.

102

[39] Rudy Lauwereins, Marc Engels, Marleen Adé, and J.A. Peperstraete. Grape-II:

A System-Level Prototyping Environment for DSP Applications. IEEE Com-

puter, 28(2), 1995.

[40] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-

Bench: A Tool for Evaluating and Synthesizing Multimedia and Communica-

tons Systems. In International Symposium on Microarchitecture, pages 330–335,

1997.

[41] E. Lee and D. Messershmitt. Static Scheduling of Synchronous Data Flow

Programs for Digital Signal Processing. IEEE Trans. on Computers, C-36(1),

1987.

[42] Edward A. Lee. Overview of the Ptolemy Project. Technical report, UCB/ERL

M03/25, UC Berkeley, 2003.

[43] Man-Lap Li, Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen, and Eric

Debes. The ALPBench Benchmark Suite for Complex Multimedia Applications.

In IEEE Int. Symp. on Workload Characterization, 2005.

[44] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.

Cg: A System for Programming Graphics Hardware in a C-like Language. In

SIGGRAPH, 2003.

[45] Manikandan Narayanan and Katherine A. Yelick. Generating permutation in-

structions from a high-level description. In Workshop on Media and Streaming

Processors, 2004.

[46] Stephen Neuendorffer and Edward Lee. Hierarchical Reconfiguration of

Dataflow Models. In Conference on Formal Methods and Models for Codesign,

2004.

[47] Chanik Park, Jaewoong Chung, and Soonhoi Ha. Efficient Dataflow Represen-

tation of MPEG-1 Audio (Layer III) Decoder Algorithm with Controlled Global

States. In IEEE Workshop on Signal Processing Systems, 1999.

103

[48] Chanik Park, Jaewoong Jung, and Soonhoi Ha. Extended Synchronous

Dataflow for Efficient DSP System Prototyping. Design Automation for Em-

bedded Systems, 6(3), 2002.

[49] Nuria Pazos, Paolo Ienne, Yusuf Leblebici, and Alexander Maxiaguine. Parallel

Modelling Paradigm in Multimedia Applications: Mapping and Scheduling onto

a Multi-Processor System-on-Chip Platform. In Int. Global Signal Processing

Conference, 2004.

[50] Fernando L. Pelayo, Fernando Cuartero, Valent́ın Valero, Diego Cazorla, and

Teresa Olivares. Specification and Performance of the MPEG-2 Video Encoder

by Using the Stochastic Process Algebra: ROSA. In 17th UK Performance

Evaluation Workshop, 2001.

[51] Claus Schneider. Executable Specification for Multimedia Supporting Refine-

ment and Architecture Exploration. In 25th Euromicro Conference, 1999.

[52] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe.

Cache Aware Optimization of Stream Programs. In LCTES, 2005.

[53] K. Shen, G.W. Cook, L.H. Jamieson, and E.J. Delp. Overview of parallel

processing approaches to image and video compression. In SPIE Conference on

Image and Video Compression, 1994.

[54] SLOCCount. http://www.dwheeler.com/sloccount/.

[55] Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34(7),

1997.

[56] StreamIt Language Specification, Version 2.0.

http://cag.lcs.mit.edu/streamit/papers/streamit-lang-spec.pdf.

[57] StreamIt MPEG-2 Documentation. http://cag.csail.mit.edu/streamit/mpeg/.

[58] MPEG-2 Encoder and Decoder (StreamIt Code).

http://cag.csail.mit.edu/streamit/mpeg/mpeg streamit codec.tar.gz.

104

[59] Jim Taylor. Standards: DVD-video: multimedia for the masses. IEEE Multi-

Media, 6(3), July–September 1999.

[60] Michael Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben-

jamin Greenwald, Henry Hoffman, Jae-Wook Lee, Paul Johnson, Walter Lee,

Albert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen,

Matthew Frank, Saman Amarasinghe, and Anant Agarwal. The Raw Micro-

processor: A Computational Fabric for Software Circuits and General Purpose

Programs. IEEE Micro, May 2002.

[61] Michael Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben-

jamin Greenwald, Henry Hoffman, Paul Johnson, Jason Kim, James Psota,

Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matthew Frank, Saman

Amarasinghe, and Anant Agarwal. Evaluation of the Raw Microprocessor: An

Exposed-Wire-Delay Architecture for ILP and Streams. In International Sym-

posium on Computer Architecture, Munich, Germany, June 2004.

[62] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A

Language for Streaming Applications. In Int. Conf. on Compiler Construction,

2002.

[63] William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah, and

Saman Amarasinghe. Teleport messaging for distributed stream programs. In

PPoPP, 2005.

[64] What Codecs Are Supported to Play TiVoToGo Files on My PC?

http://www.tivo.com/codec/.

[65] Valent́ın Valero, Fernando L. Pelayo, Fernando Cuartero, and Diego Cazorla.

Specification and Analysis of the MPEG-2 Video Encoder with Timed-Arc Petri

Nets. Electronic Notes in Theoretical Computer Science, 66(2), 2002.

[66] Bhaskaran Vasudev and Konstantinides Konstantinos. Image and Video Com-

pression Standards. Kluwer, 1997.

105

[67] VMPEG (Reference C Code).

ftp://ftp.mpegtv.com/pub/mpeg/mssg/mpeg2vidcodec v12.tar.gz.

106

