
����������
�������

Citation: Weierbach, H.; Lima, A.R.;

Willard, J.D.; Hendrix, V.C.;

Christianson, D.S.; Lubich, M.;

Varadharajan, C. Stream Temperature

Predictions for River Basin

Management in the Pacific

Northwest and Mid-Atlantic Regions

Using Machine Learning. Water 2022,

14, 1032. https://doi.org/

10.3390/w14071032

Academic Editor: Kaishan Song

Received: 18 February 2022

Accepted: 17 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Stream Temperature Predictions for River Basin Management in
the Pacific Northwest and Mid-Atlantic Regions Using
Machine Learning
Helen Weierbach 1 , Aranildo R. Lima 2 , Jared D. Willard 1,3 , Valerie C. Hendrix 4 ,
Danielle S. Christianson 4 , Michaelle Lubich 1,5 and Charuleka Varadharajan 1,*

1 Earth and Environmental Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA;
hweierbach@lbl.gov (H.W.); willa099@umn.edu (J.D.W.); mishalubich007@berkeley.edu (M.L.)

2 Aquatic Informatics, Vancouver, BC V6E 4M3, Canada; proj.brain@gmail.com or
aranildo.lima@aquaticinformatics.com

3 Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
4 Computing Sciences Area, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA;

vchendrix@lbl.gov (V.C.H.); dschristianson@lbl.gov (D.S.C.)
5 Berkeley Department of Electrical Engineering and Computer Sciences, University of California,

Berkeley, CA 94720, USA
* Correspondence: cvaradharajan@lbl.gov

Abstract: Stream temperature (Ts) is an important water quality parameter that affects ecosystem
health and human water use for beneficial purposes. Accurate Ts predictions at different spatial and
temporal scales can inform water management decisions that account for the effects of changing
climate and extreme events. In particular, widespread predictions of Ts in unmonitored stream
reaches can enable decision makers to be responsive to changes caused by unforeseen disturbances.
In this study, we demonstrate the use of classical machine learning (ML) models, support vector
regression and gradient boosted trees (XGBoost), for monthly Ts predictions in 78 pristine and human-
impacted catchments of the Mid-Atlantic and Pacific Northwest hydrologic regions spanning different
geologies, climate, and land use. The ML models were trained using long-term monitoring data from
1980–2020 for three scenarios: (1) temporal predictions at a single site, (2) temporal predictions for
multiple sites within a region, and (3) spatiotemporal predictions in unmonitored basins (PUB). In
the first two scenarios, the ML models predicted Ts with median root mean squared errors (RMSE)
of 0.69–0.84 °C and 0.92–1.02 °C across different model types for the temporal predictions at single
and multiple sites respectively. For the PUB scenario, we used a bootstrap aggregation approach
using models trained with different subsets of data, for which an ensemble XGBoost implementation
outperformed all other modeling configurations (median RMSE 0.62 °C).The ML models improved
median monthly Ts estimates compared to baseline statistical multi-linear regression models by
15–48% depending on the site and scenario. Air temperature was found to be the primary driver
of monthly Ts for all sites, with secondary influence of month of the year (seasonality) and solar
radiation, while discharge was a significant predictor at only 10 sites. The predictive performance of
the ML models was robust to configuration changes in model setup and inputs, but was influenced
by the distance to the nearest dam with RMSE <1 °C at sites situated greater than 16 and 44 km from
a dam for the temporal single site and regional scenarios, and over 1.4 km from a dam for the PUB
scenario. Our results show that classical ML models with solely meteorological inputs can be used
for spatial and temporal predictions of monthly Ts in pristine and managed basins with reasonable
(<1 °C) accuracy for most locations.

Keywords: stream water temperature; machine learning; catchments; modeling; predictions in
unmonitored basins (PUB)
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1. Introduction

The Earth’s rivers and streams are under increasing stress due to climactic and urban
changes including increased air temperatures, changing precipitation patterns, and more
frequent disturbance events [1,2]. In particular, stream water temperature (Ts) is a master
water quality variable that controls several physical, chemical, and biological processes,
and has economic importance for industries such as thermoelectric power production [3,4]
and fisheries [5]. Stream temperatures are projected to rise in the future due to expected
increases in air temperatures(Ta) [1,6], which could have negative impacts on stream ecosys-
tems such as degradation of fish habitats and increased likelihood of algal blooms [7–9].
Watershed management strategies and regulatory criteria often include maintenance of Ts
as a key objective [10,11].

Accurate Ts predictions across local (reach to catchment) to regional (multi-catchment
to basin) spatial scales and daily to decadal temporal scales can enable a scientific under-
standing of the processes affecting Ts and provide useful information for different types
of watershed management decisions [12,13], particularly in the face of increasing extreme
events and climate change [14–16]. While daily Ts forecasting is extremely useful for op-
erational purposes, monthly and seasonal hydrological predictions are also important for
long-term planning of catchment-scale water management solutions, and can be generated
at higher spatial resolution with lower computational expense compared to predictions
with higher temporal resolution [17]. Moreover, because the majority of the streams reaches
are not monitored for Ts, models that can be used broadly for predictions in unmonitored
basins (PUB) are especially useful [18]. Notably, models that predict Ts in both pristine and
managed catchments (e.g., catchments containing dams, diversions) can provide actionable
information for decision making.

Stream water temperatures can be affected by several factors that include climate
(e.g., air temperature, solar radiation, and wind velocity), hydrological processes (e.g.,
advection from upstream reaches, snowmelt and runoff, groundwater exchange), land
cover (e.g., riparian shading), and human activities (e.g., discharge from thermal power
plants, dam releases, diversions) [19–22]. Thus modeling water temperatures, particu-
larly for decision-relevant spatial and temporal scales using purely process-based models
based on physical equations can be complex and scale-dependent, and more importantly
lack adequate representation of human influences. For example, process models such as
PRMS-SNTEMP [23], and MOSART-heat coupled to a water management module [20,24]
incorporate thermodynamics and energy balance have made considerable advances in
regional-scale Ts predictions, but do not fully account for the range of possible anthro-
pogenic activities influencing Ts [24,25]. These models are also computationally expensive
to run and require extensive data as inputs, which limits their applicability to regions that
do not have the required datasets [26].

Several studies have alternatively used statistical approaches such as the popular
multi-linear regression (MLR) method, nonlinear regression, kriging regression, logistic
regression, and geographically weighted regression to predict Ts for both monitored and
unmonitored basins (PUB) [26–30]. Hybrid statistical models have also been developed
to improve upon existing statistical methods by solving analytical heat equations [31,32]
and have used model predictions to understand the effects of watershed management
and changing climate on stream temperature regimes [33–37]. Hybrid statistical estimates
for temporal Ts predictions have fewer input requirements than physically based models,
but are generally trained for specific catchments or regions [38] because they require river-
specific information and calibration, and are thus more difficult to generalize for large
spatial domains.

Machine learning (ML) methods, a subset of statistical methods that learn patterns
from large datasets, are being increasingly used for hydrological predictions of streamflow,
Ts and other water quality variables at a variety of temporal and spatial scales [18,26,39–42].
A few studies use classical ML regression approaches such as support vector regression [43],
random forests [44], and gradient boosted trees [45] for monthly and daily Ts predictions.
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These studies obtained relatively good performance for a variety of catchments (RMSE
0.5–1.5 °C) [42,46–49]. However, most prior implementations of classical ML methods
train the models using historical Ts data from a given location for future forecasts at the
same locations (hereafter referred to as the temporal single site predictions). A few studies
have trained a classical ML model with data from multiple stations for catchment-scale
Ts prediction [48]. To our knowledge no study has built a classical ML model for pristine
and dam-impacted sites for regional, multi-year Ts predictions (hereafter referred to as
temporal regional predictions).

More recently, deep learning (DL) models such as long short term memory networks
(LSTMs) [50] and its variants have been used for daily Ts predictions at regional to continen-
tal scales using data from multiple sites to train a single model. For example, Jia et al. [51]
developed a hybrid approach using graph-based LSTM pre-trained with a physics model
and trained using 24 years of observations for daily Ts predictions across the Delaware River
basin spanning pristine and human-impacted reaches, illustrating the value of combining
process-based and ML models for data-sparse spatial predictions [51]. Yet, generalization of
hybrid models to new regions can involve significant computation and data, because they
have to incorporate outputs from a process-based model implemented for the region of
interest. Rahmani et al. [40] used an LSTM model for daily Ts predictions in 118 pristine
catchments across the continental US using data on meteorology, discharge (Q), and spa-
tial catchment characteristics. A later study extended the LSTM model to make daily Ts
predictions for >400 catchments in the U.S. with different levels of Ts data availability
including human-impacted and unmonitored catchments [18]. When using Ts models for
prediction, one important use case is prediction of Ts at ungaged or unmonitored basins
(PUBs). When modeling PUB scenarios, models must be trained without monitoring data
such as Ts and Q measurements often used to train statistical and process-based models;
instead models must transfer information between catchments to new locations using
widely available data. Statistical models with limited inputs have been employed for such
predictions, but have limited prediction accuracy generally around 1.5 °C [32]. LSTM mod-
els trained with available catchment data have also been tested for PUB predictions [18,52],
with Rahmani et al. [18] achieving notably high accuracy (RMSE 1.13 °C). However, no
other studies have tested the use of classical ML for PUB predictions of Ts at large spatial
scales, particularly without using catchment metadata that are not broadly available for
all watersheds.

Here, we demonstrate the use of two classical ML models, an extreme gradient boosted
tree algorithm XGBoost (XGB) [53] and support vector regression (SVR) [43], for monthly
Ts predictions in 78 catchments within the Mid-Atlantic and Pacific Northwest hydrologic
regions of the United States. We build models for temporal predictions using historical Ts
records from single and multiple sites, and for spatiotemporal PUB predictions [18]. These
sites are located in pristine and managed catchments with diverse climatology, geology,
and land use. Our work adds unique contributions to existing Ts modeling research by (1)
showing that classical ML models trained using data from multiple pristine and managed
catchments can be used for regional Ts predictions with good performance (0.92–1.02 °C)
when validated using long-term records, (2) demonstrating the first use of an ensemble
XGBoost algorithm for spatiotemporal PUB, (3) exploring whether ML models that only
used inputs that are easily available for any spatial location, namely meteorological data
from high-resolution gridded products and simple catchment attributes (latitude, longitude,
and elevation), can estimate Ts with reasonable accuracy, and (4) conducting a robust ML
sensitivity analysis that examines the utility of different hyperparameter optimization
approaches, and changes in model inputs and training.

2. Data and Methods
2.1. Data Sources and Software

We obtained Ts and Q data from the U.S. Geological Survey (USGS) National Water
Information System (NWIS; [54]), and meteorological data from the Daymet data product
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version 4 [55] in the Mid-Atlantic and Pacific Northwest Hydrological regions, identified by
Hydrologic Unit Code (HUC 02, HUC 17, respectively). We used a custom data integration
tool BASIN-3D (Broker for Assimilation, Synthesis, and Integration of eNvironmental
Diverse, Distributed Datasets) to retrieve and harmonize data [56]. BASIN-3D retrieves
USGS data and metadata (e.g., latitude, longitude, elevation) by querying the NWIS daily
values service by the regional HUC code (‘02’ or ‘17’ for this study), and meteorological
data from a location’s Daymet grid cell by querying the Daymet Single Pixel Extraction
Tool [57]. The queries returned from NWIS and Daymet are harmonized into a uniform
format and exported as an HDF5 file [58].

We also used the GAGES-II dataset [59], which contains extensive metadata on wa-
tershed and site characteristics compiled from multiple data sources for catchments with
USGS stream gauges in the conterminous U.S. (CONUS) that have at least 20 years of
Q records since 1950. Specifically, the GAGES-II dataset was used to obtain drainage
area and information on major dams for available stations within our selected catchments
(73/78 stations have metadata in the GAGES-II dataset).

We developed all the model and analysis code in Python . We implemented the ML
models using primarily scikit-learn [60] for the MLR and SVR algorithms, package xgboost
for XGB [53] and hyperopt [61] for tuning hyperparameters during training. We primarily
used the package pandas [62,63] for data analysis. Version numbers of packages used are
specified in the corresponding data and code release [58].

2.2. Sites/Station Selection

We used BASIN-3D to obtain daily Ts and Q for water temperature monitoring stations
with >20 years of data records from 1 January 1980–1 December 2020. From the returned
results, we selected 78 out of 93 stations, which had >100 months (8.3 years) of co-located
Ts and Q observations to have sufficient training and testing data at the monthly scale.
Of the 78 selected stations, 24 were in the HUC 02 Mid-Atlantic region and 54 in the HUC
17 Pacific Northwest region (Figure 1). These stations are used to monitor Ts in catchments
with diverse attributes such as size, elevation, drainage area, and human disturbances
(Table S1). For this paper, we refer to a catchment as the area monitored by a stream gauge
station (identified using the 8-digit HUC code in the “STAID” column of GAGES-II or
NWIS site number) with its corresponding boundary as delineated by the GAGES dataset.
The minimum, median, and maximum drainage areas of these catchments are 5, 421,
and 29,952 km2 respectively, while catchment elevations vary from 0 to 1466 m, with a
median elevation of 293 m. Average monthly Ts at the stations vary from 6.1 to 14.1 °C with
a median of 10.8 °C. The stations also have varying levels of human activity; for example,
the number of major dams in the catchments ranges from 0 to 123, with 46 out of 78 stations
having at least one major dam in the station’s corresponding watershed. Catchments with
human activity are denoted as non-reference (NR) sites in GAGES-II (57 out of 78), while
pristine catchments are classified as reference (R) sites (16 out of 78).

Figure 1. Map of study area showing the hydrologic regions within the continental United States
(CONUS) and locations of water temperature monitoring stations within different watersheds of the
mid-Atlantic (HUC 02) and Pacific Northwest (HUC 17) regions. Inset map of the water resources
regions obtained from the USGS [64].
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2.3. Model Setup
2.3.1. Model Description

For this study, we selected two classical ML models: support vector regression (SVR)
and the extreme boosted regression tree algorithm XGBoost (XGB) which have been demon-
strated to achieve high performance across a range of applications [65]. Deep learning
models were not tested for this application, because they have been demonstrated to per-
form better for large datasets [66,67], and the size of the training dataset for monthly Ts
was small (26,976 records across all stations). We compared the ML model performance to
a baseline statistical multi-linear regression model (MLR), a common statistical technique
that has been used frequently in previous Ts studies (see references in [32]). A MLR is a
variation of linear regression for cases with more than one variable predictor which predicts
a target variable (Ŷ , in this case representing Ts) using a linear combination of variable
predictors at each time step (bmX). The equation for MLR is given below, where ŷ is solved
for by minimizing error in the model, epsilon (ε).

ŷ = βX + ε (1)

Model training consists of finding coefficients for each predictor, which is performed
by minimizing the loss function (error between observed and predicted target variable)
over the record of training data. The coefficients obtained from model training are then
used to make predictions at sample points in the test period. For more information on MLR,
see Olive [68].

The SVR, on the other hand, is a nonlinear regression model based upon the sup-
port vector machine (SVM) classification algorithm developed by Cortes and Vapnik [69].
The SVM algorithm performs binary classification by generating an n-dimensional hyper-
plane with a decision boundary determined by training data points or “support vectors”
to separate data into classes. To better separate high-dimensional, non-linear data with a
hyperplane, SVM uses a kernel function (e.g., polynomial, Gaussian, radial basis function,
etc.) to reduce the dimensions of data. The SVM algorithm then maximizes the boundary
between support vectors with a penalty for misclassification to obtain an optimal hyper-
plane equation for the separation of classes. The SVR is the regression counterpart of
SVM [43,70], and uses the same approach but instead maximizes the number of points
within the boundary to find a hyperplane equation of best fit. This hyperplane equation is
used to obtain a continuous value for new testing data points (rather than a discrete class
as for SVM). The equation for SVR using a kernel function φ is given below:

ŷ =
N

∑
i=1

wiφ(Xi, X) + b (2)

All SVR models here used a Gaussian kernel function, with hyperparameters of ε, C,
and γ tuned using hyperparameter optimization (HPO).

The XGB is an ensemble tree-based algorithm developed by Chen and Guestrin [53]
which makes use of gradient boosted trees as first introduced by Friedman et al. [45].
The XGB models train an ensemble of regression trees iteratively through a process called
“boosting”. Each regression tree is built to predict a given sample’s value by mapping a
sample’s input data to a leaf with a continuous score. Each successive tree is built to predict
the previous tree’s errors or residuals, rather than to predict a specific target variable, and is
then combined into the model ensemble to improve upon the model’s prediction. The
equation for forming an XGB model is given below [42], where the dependent variable Ŷ is
solved for using a series of M successive boosted trees.

ŷ = 0.5 +
M

∑
m=1

η fm(X) (3)
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When adding new models, XGB uses gradient descent to minimize loss. The XGB
is a popular choice for classical ML algorithms, and can also make predictions using
sparse data.

2.3.2. Modeling Scenarios

We tested the use of classical ML models for two objectives: temporal predictions
for unseen time periods and spatiotemporal predictions for unseen geographic locations.
To address these two objectives, we trained three model scenarios (Figure 2). The first
two scenarios involve temporal predictions: (1) single station models (hereafter referred
to as ‘single station’ or SS) trained and tested on an individual station’s data, which is
the most commonly used scenario in prior ML studies of Ts, and (2) multi-station models
for the individual and combined HUC 02 and HUC 17 regions (hereafter referred to
as ‘regional’). The third scenario is the PUB predictions, where we used an bootstrap-
aggregation ensemble approach (hereafter referred to as ‘ensemble PUB’ or ‘PUB’), trained
on a group of stations and tested on withheld stations for each HUC region. For each spatial
and temporal configuration, we evaluated model performance using different metrics
(Section 2.4.1), and tested model sensitivity to different architectures, hyperparameter
optimization (HPO) and input features using different modeling configurations (Table 1).
More information on model training for each configuration is provided in Section 2.3.5.

Figure 2. Graphical illustration of the three regional-scale modeling scenarios used in this study: (a)
temporal single station predictions (SS), (b) temporal regional predictions (regional), and (c) spa-
tiotemporal PUB predictions (PUB). Sites used for training data are shown on the left and for testing
data are shown on the right. Sites with training data seen by the model are colored in red, and sites
with no data seen by the model prior to testing are in blue.
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Table 1. Details for all modeling configurations tested across the three scenarios used in this study.
The ‘Configuration Name’ represents each configuration’s training subset (HUC codes), training
attributes (Att or noAtt), HPO (HPO or noHPO). ‘MR’ represents multi-region training while SR
represents single region training. The optimal configuration(s) for each scenario are highlighted in
bold and italics.

Configuration Name Training Subset 1 Training Attributes HPO

Temporal Single Station Scenario
SS_HPO HUC 02 + 17 NA HyperoptTPE

SS_noHPO HUC 02 + 17 NA None

Temporal Regional Scenario
02_17_MR_noAtt_noHPO HUC 02 + 17 lat/lon/elev None

02_17_MR_noAtt_HPO HUC 02 + 17 None HyperoptTPE
02_17_MR_Att_HPO HUC 02 + 17 None HyperoptTPE

02_17_MR_Att_noHPO HUC 02 + 17 lat/lon/elev None
02_17_MR_Att_Drain_noHPO HUC 02 + 17 GAGES lat/lon/elev/drain None
02_17_MR_Att_Drain_HPO HUC 02 + 17 GAGES lat/lon/elev/drain HyperoptTPE

02_17_SR_noAtt_noHPO HUC 02 + 17 lat/lon/elev None
02_17_SR_noAtt_HPO HUC 02 + 17 None HyperoptTPE

02_17_SR_Att_HPO HUC 02 + 17 None HyperoptTPE
02_17_SR_Att_noHPO HUC 02 + 17 lat/lon/elev None

02_17_SR_Att_Drain_noHPO HUC 02 + 17 GAGES lat/lon/elev/drain None

PUB Scenario
PUB_02_17_SR HUC 02 + HUC 17 lat/lon/elev None

1 The column ’Training Subset’ shows the set of stations that were used across either one or both regions.

2.3.3. Input Feature Selection and Preprocessing

We selected relevant input features from the list of all daily Daymet variables (min-
imum and maximum Ta averaged to mean Ta, precipitation (prcp), vapor pressure (vp),
shortwave solar radiation (srad), snow water equivalent (swe), day length(dayl), Q, and
month of the year (moy) (encoded as numeric values 1:12) through literature review and
exploratory data analysis (EDA). The final inputs selected were mean Ta (hereafter Ta), srad,
Q, prcp, and moy. The first lagged Ts showed significant (p-value > 0.7) autocorrelations
for 22 stations, but was not included as an input feature as observed Ts is not available for
PUB scenarios.

For the SS scenario, we tested the sensitivity of the moy feature engineering using
a fuzzy month approach [42] and found no considerable differences in RMSE between
using the two methods. We additionally tested the importance of drainage area as an input
feature in modeling configurations, as it is indicative of catchment size and can impact
the energy balance in the watershed (e.g., determining the amount of snowmelt runoff
into streams).

CVA summary of our preprocessing workflow is presented in Figure 3. We prepro-
cessed time series input features by first resampling each variable to the monthly frequency,
using a monthly mean for all variables except for prcp, where we used a cumulative sum.
To minimize edge effects, where models may be unable to capture a signal surrounded
by gaps in data, we dropped periods where there were less than 6 months of consecutive
Ts measurements. For Q measurements, we additionally scaled the variable to a log scale
using the transformation in Rahmani et al. [40] to obtain a more Gaussian distribution.
Finally, we standardized each station’s data using a standard scalar, which normalizes data
to a [0, 1] range before training.

2.3.4. Model Training

Both temporal prediction scenarios (SS and regional) were trained with a
70–30 train-test split where the first 70% of the data was used for training (Figure 3).
We trained all 78 SS models using only the corresponding meteorological variables, Q,
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and moy for the station. For regional models, we additionally ran models with and without
static station attributes (latitude, longitude, elevation, and drainage area of the correspond-
ing catchment), and tested different training configurations (Table 1, Section 2.3.5). Regional
scenarios with hyperparameter optimization (02_17_*_HPO) were run on the National
Energy Research Scientific Computing (NERSC) Center Perlmutter Graphical Processing
Unit (GPU) node.

Figure 3. Summary of modelling methodology and workflow. The testing/training data split are
shown for each of the three modelling scenarios. For the PUB scenario, an example of one iteration of
the algorithm (presented in Algorithm 1) is depicted. S1. . . SN represent stations in the training subset.

Algorithm 1 The ensemble algorithm used to train the models for the spatiotemporal
PUB scenario.

B = 100
frac_test = 0.8
for test_station in all_stations do

train_set = all_stations \ test_station
n_samples = ceil(len(train_set) * frac_train)
for i in range(B) do

train_stations = random.sample(train_set, n_samples)
models = train_models(train_stations)
predictions[i]= model.test(test_station)

end for
ensemble_mean[test_station] = predictions.mean()

end for

The algorithm used for training the PUB scenario follows an ensemble approach
with bootstrap aggregation (Algorithm 1). For each PUB configuration, we iteratively
withheld a test station (test_station) from the subset of stations chosen for the modeling
configuration (all_stations). We then sampled 80% (frac_test) of the remaining stations
for training without replacement (n_samples), and ran the model to obtain an ensemble
of test predictions for the test_station (Figure 3). This process is repeated to obtain a 100
member ensemble (B = 100) of predictions for each test_station. This process of resampling
and training models with varying training datasets is known as bootstrap aggregation or
“bagging” [71]. The individual ensemble predictions were averaged to obtain an ensemble
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mean, which is then used to quantify average prediction accuracy. The distribution of these
predictions also gives a measure of model sensitivity to input features.

2.3.5. Model Configurations

For each of the modelling scenarios (Figure 2), we tested model sensitivity to several
different training configurations (Table 1). The SS and regional model scenarios tested
configurations where training was performed with HPO (indicated as ‘_HPO’ in the con-
figuration name) and without HPO (‘_noHPO’). More information on hyperparameter
optimization is located in SI Section A.2. Hyperparameters for SVR and XGB were tuned
using the sequential model-based optimization Tree of Parzen Estimators [72] algorithm
with the hyperopt package [73] (HyperoptTPE), a method of sequential model-based opti-
mization. For the SS scenario, the Hyperopt TPE algorithm was compared with random
search and grid search and selected because of its computational efficiency and improved
model accuracy. All HPO results are calculated using 4-fold cross-validation on the training
datasets with 50 iterations of the hyperopt TPE algorithm [72].

Figure 3 summarizes training information and variation in configurations for the three
modelling scenarios.

Each configuration was trained with meteorology (mean air temperature (Ta), solar
radiation (srad)), river discharge (Q), and month of the year (moy). The regional model
configurations additionally tested the importance of training with input features of widely
available static station attributes (lat, lon, and elev indicated by ‘_Att’) to provide some
information on climactic influences and geographic proximity into the model. We also ran
configurations including drainage area of the corresponding catchments (‘_Att_Drain’) for
stations that had the metadata available in GAGES-II. To test the generalizability of the
models across hydrologic regions, we also trained the regional models using data from
stations within an individual region (single region or ‘SR’, i.e., separate models for stations
within HUC 02 and HUC 17) and stations from both regions (multi-region or ‘MR’, i.e., a
single model for stations within HUC 02 and HUC 17). The results from the regional
configurations were used to determine PUB configurations. For example, the PUB scenario
was run with static attributes (‘_Att’) and without HPO (‘_noHPO’) because the regional
models did not benefit from HPO (see Section 3.2.3), and for computational efficiency.

2.4. Model Evaluation
2.4.1. Evaluation Metrics

For all three model scenarios, 5 error metrics were calculated: Root Mean Squared Error
(RMSE, Equation (4)), Mean Absolute Error (MAE), Nash-Sutcliffe Error (NSE), and bias
as defined by [74]; Equations (S1)–(S3)). R2 values are not reported as it is comparable to
NSE [32]. The metrics were computed by comparing model predictions with observations
for the test period.

RMSE =
1
n

√
n

∑
i=1

(ŷi − yi)
2 (4)

where ŷi represents the ith modelled Ts prediction, yi represents the ith Ts observation,
and n is the number of observations in the test period.

To test the improvement in model performance under different model configurations,
we additionally used RMSE skill score to compare runs with and without hyperparameter
optimization and compare ML models in reference to MLR. The equation used to represent
RMSE -based skill score is:

Sscore = 1−
RMSEpred

RMSEre f
(5)

where RMSEre f is the reference RMSE (e.g., baseline MLR) and RMSEpred is the prediction
RMSE (e.g., SVR ML model).

Skill scores are interpreted as a fractional improvement over reference model con-
ditions. Skill score values are positive if a prediction (e.g., with HPO) has lower errors
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compared its reference prediction (e.g., no HPO), negative if vice versa, and zero if the
errors are equal. Lastly, for each model configuration, we also quantified performance at
extremes in Ts ( Ts < 0.05 and Ts > 0.95 quantiles) for a given station’s temperature record.

2.4.2. Feature Importance

Tree-based algorithms such as XGB make predictions based on a series of splitting
samples at ’nodes’ of a tree, each based on a single input feature. Analysis of these splits
provides additional information about how a trained model uses specific input features.
For XGB, we calculate a fractional input feature importance (FI) score for each model
configuration using the feature importance gain metric [53], a measure of the increase of
accuracy a given feature brings to the branch it is on.

3. Results

The results from each of the model runs across different scenarios, configurations
and model types (MLR, SVR, XGB) are summarized in Table 2. In this section and in the
discussion (Section 4), we present model performance for each of the three modeling sce-
narios based on the optimal configuration that typically had lowest median RMSE. For the
regional and PUB scenarios, all error metrics presented are averages across 78 stations (or
73 stations for the ‘_Drain’ configurations) regardless of whether the models were trained
for the single region (SR) or multi-region (MR) configurations. For each of the scenarios, we
also identify the features that were most important for the model predictions and present
model sensitivities to the different configurations.

3.1. Temporal Single Station (SS) Scenario
3.1.1. Model Performance

The optimal performance for the SS scenario was achieved using the SVR model with
hyperparameter optimization (SS_02_17_HPO configuration, median RMSE = 0.69 °C).
For the 78 SS_HPO models, both SVR and XGB consistently outperformed the standard
regression benchmark (MLR) model, with median skill scores of 0.25 and 0.15 for SVR and
XGB, respectively (Figure 4a). The ML models also outperformed MLR based on MAE
and NSE (Figure S1). All models, however, have some bias in predictions, ranging from
−0.02 to 0.02 °C.

Figure 4. Skill Score of ML Models (SVR, XGB) in reference to baseline MLR Model for (a) SS, (b)
Regional, and (c) PUB scenarios.

For the SS_HPO configuration, the majority of the stations (37, 60, and 54 out of
78 stations for MLR, SVR, and XGBoost, respectively) had RMSE <1 °C. A few stations (11,
6, and 4 for MLR, SVR, and XGB respectively) had RMSE > 1.5 °C, and all but one of these
stations had at least one major dam in the catchment. The one exception was a station for
which we did not have information on major dams as it was not included in GAGES-II.

The SVR and XGB also outperformed MLR at time periods with extremes in Ts. Median
RMSE at extremes for the SS_HPO configuration was 1.28, 0.72, and 0.90 °C for MLR, SVR,
and XGB respectively, showing a slight decline in accuracy in comparison to the full test
period (Table 2).
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Table 2. Root mean squared error (RMSE) metrics for each model configuration presented in Table 1. The metrics include Q1 (25th percentile), mean (µ), median or
the second quartile Q2 (50th percentile), third quartile Q3 (75th percentile), and median performance at extremes (Ext). The optimal configuration is presented in
bold and italicized font.

Configuration Name
MLR SVR XGB

Q1 µ/Q2 Q3 Ext 1 Q1 µ/Q2 Q3 Ext 1 Q1 µ/Q2 Q3 Ext 1

Temporal Predictions—SS

SS_02_17_HPO 0.72 1.07/1.03 1.23 1.28 0.53 0.81/0.69 0.93 0.72 0.62 0.89/0.84 1.04 0.72
SS_02_17_noHPO 0.72 1.07/1.03 1.23 1.28 0.59 0.89/0.80 1.06 1.09 0.68 0.94/0.92 1.06 1.09

Temporal Predictions—Regional

02_17_MR_noAtt_noHPO 0.93 1.35/1.32 1.67 1.58 0.79 1.15/1.11 1.35 1.10 0.76 1.10/1.13 1.37 1.10
02_17_MR_noAtt_HPO 0.93 1.35/1.32 1.67 1.58 0.80 1.18/1.18 1.42 1.21 0.90 1.23/1.20 1.44 1.21

02_17_MR_Att_HPO 0.93 1.35/1.32 1.67 1.58 0.78 1.12/0.96 1.25 1.10 0.89 1.24/1.25 1.44 1.10
02_17_MR_Att_noHPO 0.93 1.35/1.32 1.67 1.58 0.73 1.08/0.94 1.27 1.06 0.77 1.05/1.03 1.30 1.06

02_17_MR_Att_Drain_noHPO 2 0.91 1.31/1.25 1.62 1.57 0.70 0.99/0.86 1.19 1.02 0.73 1.02/1.02 1.22 1.02
02_17_MR_Att_Drain_HPO 2 0.91 1.31/1.25 1.62 1.57 0.81 1.16/1.08 1.26 1.34 0.91 1.23/1.22 1.41 1.34

02_17_SR_noAtt_noHPO 0.97 1.30/1.24 1.44 1.56 0.75 1.11/0.99 1.30 1.19 0.80 1.09/1.08 1.28 1.19
02_17_SR_noAtt_HPO 0.97 1.30/1.24 1.44 1.56 0.75 1.14/1.01 1.32 1.14 0.94 1.21/1.17 1.42 1.14

02_17_SR_Att_HPO 0.97 1.30/1.24 1.44 1.56 0.74 1.09/0.93 1.25 1.05 0.90 1.17/1.08 1.39 1.05
02_17_SR_Att_noHPO 0.97 1.30/1.24 1.44 1.56 0.69 1.03/0.92 1.21 1.14 0.77 1.03/1.02 1.25 1.14

02_17_SR_Att_Drain_noHPO 0.96 1.26/1.21 1.41 1.55 0.65 0.95/0.89 1.14 1.05 0.76 1.01/0.98 1.21 1.05

Spatial Predictions—PUB

PUB_02_17_SR 0.92 1.30/1.20 1.47 1.56 0.70 0.99/0.89 1.15 1.08 0.50 0.64/0.61 0.72 1.08
1 Extremes defined as Ts < 0.05 percentile or >0.95 percentile. 2 These configurations were calculated with 73 stations in GAGES-II dataset that had drainage area estimates.
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3.1.2. Feature Importance

Feature importance (FI) scores for the SS_HPO configuration showed that the XGB
model predicts primarily based upon Ta and to a lesser extent moy (Ta; mean FI = 0.82,
moy; mean FI = 0.1), with all other predictors having mean FI < 0.05 (Figure 5a). For
7 stations with Ta FI < 0.5, moy was used as a primary predictor of Ts (mean FI score of 0.55).
The models generally performed poorly for these stations (RMSE > 1 °C). For temporal
predictions, 10 catchments (6 of which had major dams) used Q as an important predictor
(FI > 0.05) but all other stations had no significant FI for Q (<0.05). Thus, Q was a slightly
more important predictor for Ts in a few stations located in a dammed catchment.

Figure 5. XGB FI scores for (a) SS scenario (SS_02_17_HPO configuration) (b) regional Models without
attributes (c) regional Models with attributes and (d) all PUB scenario configurations.

3.1.3. Model Sensitivity

The SS_HPO configuration outperformed the SS_02_17_noHPO configuration with
decreases in RMSE of 0.11 and 0.08 °C for the SVR and XGB models respectively. This
indicates a marginal improvement in performance due to HPO, corresponding to 6% and 5%
improvement in prediction accuracy on average for SVR and XGB respectively (Figure S2).
Notably, there were a few stations (13 and 23 stations for SVR, and XGB respectively)
that did not improve from HPO as indicated by a skill score < 0. The chosen optimal
hyperparameters from the hyperopt TPE algorithm varied substantially between stations;
for example, the optimal value of the hyperparameter ‘C’ which controls the penalty for
misclassified points varies from 2 to 980, spanned nearly the full predefined search space
(see supplemental dataset for details).

3.2. Temporal Regional Scenarios
3.2.1. Model Performance

The different regional runs had similar model performance with small variations in
RMSE depending on training configurations (Table 2, Section 3.2.3). We chose the optimal
regional model configuration as the one trained with single regions, static attributes and no
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hyperparameter optimization (’02_17_SR_Att_noHPO’) as it had one of the lowest median
RMSEs. For this configuration, SVR and XGB again outperformed MLR for MAE and NSE
error metrics. Although configurations with drainage area (‘_Drain’) had slightly lower
median RMSEs, they were not chosen as the optimal configuration for consistency because
drainage area values were not available for all 78 stations. Additional results for the SR
configurations are presented in Table S2.

All models again showed some bias in predictions with SVR and XGB having a slightly
positive mean bias (Figure S3). Median RMSE for the optimal regional configuration
(02_17_SR_Att_noHPO) increased by 0.23 °C for SVR and 0.18 °C for XGB compared to
the optimal SS configuration. The SVR slightly outperformed XGB with median RMSE
of 0.92 °C, whereas XGB achieved median RMSE of 1.02 °C (Table 2). Median RMSE at
extremes was higher than overall median RMSE with scores of 1.56 °C for MLR and 1.14 °C
for both SVR and XGB.

3.2.2. Feature Importance

The XGB FI scores for regional models were similar to the SS configuration. At the
regional scale, Ta emerged as the primary predictor based on the average XGB FI calculated
for all 6 regional configurations without and including static attributes (Figure 5b,c respec-
tively). For the optimal regional configuration (02_17_SR_Att_noHPO),Ta was the main
predictor with median FI of 0.92. For the optimal configuration moy also was a notable
predictor (average FI = 0.07). However, all other features did not contribute substantially to
the predictions with FI < 0.05. Although the static attributes improved overall model per-
formance, they did not contribute substantially to the predictions with FI < 0.05 (Figure 5d).
Median FI for Ta was slightly higher for runs with no static attributes (median FI score
0.89) than for runs with static attributes (median FI score 0.86). For the 73 stations for
which drainage area was available, its inclusion in the inputs lowered median RMSE by
0.03–0.09 °C depending on the model (Table 2), but the drainage area FI was still <0.05.

3.2.3. Model Sensitivity

Although there were slight differences in RMSE across different model runs, the per-
formance was robust to changes in training configuration including HPO and addition
of static attributes (Table 2). The static attributes did not improve model performance for
MLR, but on average slightly increased accuracy for SVR and XGB (median skill score rang-
ing 0–0.03 for the optimal configurations across different models). For runs with regions
trained separately (02_17_SR_Att_noHPO), 51 stations for SVR and 66 stations for XGB had
an increase in performance (positive skill score) using static attributes. For multi-region
training (02_17_MR_Att_noHPO) 43 stations for SVR and 33 stations for XGB had increased
performance (positive skill score). Thus, on average the accuracy of predicting Ta for each of
the stations improved by using attributes for single region runs than for multi-region runs.

The performance of models trained with individual and multiple regions was similar
with median RMSE with the SR configuration achieving slightly higher accuracy by 0.075 °C
for MLR, and 0.015 °C for both SVR and XGB compared to the MR configuration (Figure S4).
The performance varied between different regions for SR scenarios with the accuracy in
HUC 02 being slightly higher than in HUC 17. However, this could be biased due to
different sample sizes in the data since there were 24 stations from HUC and 54 from HUC
17 (Table S1). At the regional scale HPO showed no substantial improvement in prediction
accuracy (median skill score SVR = 0.0, XGB = −0.1, Figure S2).

3.3. PUB Scenario
3.3.1. Model Performance

For the ensemble models used in the PUB scenario, the SVR and XGB similarly
outperformed MLR with median skill scores of 0.23 and 0.48, respectively (Figure 4c).
However, the XGB achieved substantially higher accuracy compared to SVR (median RMSE
of 0.60 and 0.63 °C for HUC 02 and HUC 17, respectively, Table 2). Model performance
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showed reduction in bias compared to the temporal scenarios (Figure S5) and was robust
to differences in the length of the testing period (Figure S6).

3.3.2. Feature Importance

Although there was considerable variation in FI scores between ensemble runs, for all
runs at all stations, Ta was consistently the primary predictor (median FI score = 0.8),
with slight influence from moy (median FI score = 0.1). The static attributes again had low
FI < 0.05 (median FI scores of 0.03, 0.04, and 0.03 for lat, lon, and elevation
respectively) (Figure 5d).

3.3.3. Model Sensitivity

There was significant variation in RMSE between ensemble members that were tested
with one station’s data, but trained with different datasets. This indicates that the different
models used are individually sensitive to the choice of training data, but the ensemble
approach substantially reduces the variability of model performance. Both XGB and SVR
showed a relatively high range of differences in RMSE between ensemble members; SVR
had a median range in RMSE of 0.72 °C while XGB was more sensitive to the choice of
training datasets with median range in RMSE of 1.12 °C (Figure 6). However, the MLR
had little variation in RMSE between ensemble members (Figure 6), with median range in
RMSE of only 0.10 °C.

Figure 6. RMSE distributions PUB scenarios of (a) MLR, (b) XGB and (c) SVR models. HUC 02
stations are located to the left of the dashed vertical line, and HUC 17 stations are located to the right.

4. Discussion
4.1. Comparison of Machine Learning and Statistical Model Performance

Our results show that the classical ML models used in this study are 15–48% more ac-
curate than the statistical MLR model for monthly Ts predictions depending on the site and
scenario (Table 2). In general, for the temporal SS and regional scenarios, the SVR models
achieved the highest accuracy for sites across different catchments. For the spatiotemporal
PUB predictions, the ensemble XGB models achieved substantially higher accuracy, being
the only models to accurately predict Ts (<1° RMSE) across stations with varying catchment
sizes and number of dams (see examples in Figures 7 and S7). These results suggest that
the boosted tree models benefited from bootstrap aggregation where ensembles of models
were trained with different datasets (chosen with random sampling in this study). Such
ensembles have previously shown improvement in predictions both in methodological
theory [75] and in hydrological applications [52,76–78] such as operational models pre-
dicting Q [79,80]. Several of these studies build ensembles by changing random seeds or
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initial conditions in contrast to our use of bootstrap aggregation to train ensemble members
with different datasets. Classical ML models such as boosted trees are particularly useful
for such ensemble approaches as they are relatively simple and can run many ensemble
members efficiently.

Figure 7. Observed vs. predicted Ts for 5 stations in 3 pristine catchments and two dammed
catchments. The pristine catchments include: the North Fork of Bull Run River near Multnomah Falls
(14138900)—small (Drainage area: 21.7 km2), Beaver Kill at Cooks Falls NY (01420500)—mid size
(627 km2), and Clearwater River at Orofino ID (13340000)—large size (14269 km2). The two dammed
catchments include: the Middle Fork of Willamette River (14145500)—large size (1017 km2) and the
West Branch of the Delaware River (01425000)—large size (1181 km2).

While the performance of our monthly models cannot be directly benchmarked against
accuracy metrics of daily Ts predictions from prior studies, we provide a brief comparison
with other ML models that had similar training scenarios. Our models implemented for the
temporal SS scenario achieve comparable accuracy to prior studies that correspondingly
trained ML models for single sites using meteorology (and in some cases discharge) data,
which represent the vast majority of Ts predictions in published literature. For example,
Feigl et al. [42] achieved a median RMSE of 0.55 °C for 10 catchments in Austria that in-
cluded stations with human impacts and dams when comparing six different ML model
architectures. In this study, we did not use DL models for monthly Ts predictions, but note
that the performance of our temporal regional models are somewhat comparable to predic-
tions using LSTMs that achieved a median RMSE of 0.69 °C for 118 undammed, pristine
catchments across the CONUS [40]. Furthermore, our classical ML models had greater accu-
racy than the LSTM models used for CONUS-scale PUB predictions in Rahmani et al. [18]
when comparing predictions for five stations in the Northwest US, which had a monthly
aggregated mean RMSE of 1.07 °C in Rahmani et al. [18]. Three out of the five stations
used for this comparison met our data requirements (Section 2.2), for which our XGB
ensemble PUB achieved a mean RMSE of 0.55 °C. Although this comparison with [18] was
done on a small number of stations, it indicates that classical ML models can achieve an
aggregate monthly accuracy that is comparable to a DL approach, but with substantially
fewer parameters to adjust. Our models also out-performed other statistical methods for
the same stations as presented in Gallice et al. [32], where the RMSE was 1.3 °C.

The low computational cost of the ML models used here also allowed us to explore a
full range of uncertainties associated with input features and training through different
modeling configurations. These model configuration tests showed that our results were
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robust to HPO, single vs. multi-region training, and to using additional static attributes.
Contrary to studies where DL models improved performance by training with more data
across different regions, the classical statistical and ML models used here did not benefit
substantially from training with many stations that had different attributes. Furthermore,
while HPO can considerably improve model performance for DL models, we did not find
any meaningful improvement in performance using HPO for the classical ML models
(Figure S2). This is important to note given the substantial computational costs associ-
ated with HPO for training large datasets. In contrast, we find that model performance
was considerably affected by the choice of training datasets, which varied in the PUB
scenario (Figure 6). Both temporal and spatiotemporal predictions were also affected by
periods with discontinuous Ts data; these “edge effects” (or difficulty predicting a signal
surrounding gaps in data) suggest that more precise strategies for gap filling and quality
assurance/quality control could also improve model performance.

4.2. Factors Influencing Monthly Stream Temperature

We tested the influence of several factors known to influence Ts including climate,
streamflow, and dams. Overall, our results suggest that meteorological variables encode
most of the necessary information for monthly Ts predictions, based on the FI score of
Ta in both the temporal and spatiotemporal models. Surprisingly, we found that Q was
not a significant predictor for a majority of stations. This is counter to the findings of
Rahmani et al. [40], where Q was found to be an important input for daily predictions of
Ts. This difference may be because the effect of discharge is more apparent at daily time
scales, where flow from upstream reaches can significantly impact diurnal Ts variability.
However, at coarse monthly scales, our models indicate that the effects of Ta outweigh
all other influences. Similarly, the FI scores of static attribute inputs, including drainage
area were small, even though their inclusion marginally improved the performance of the
temporal regional models (Section 3.2.3) The low FI scores of the static attributes can be
partially attributed to information implicitly being encoded in other input features; for
example Ta is generally lower in mountainous areas with high elevation.

The spatial distribution and bias of station locations may have also impacted model
performance and FI scores, as the sites chosen for this study were not evenly distributed
across the HUC02 and HUC 17 regions (Figure 1). In some cases multiple sites were located
within the same catchment, while other catchments did not have Ts monitoring data that
met the requirements of this study (Section 2.2). Thus, the catchment characteristics of the
stations chosen for this study may be more similar than expected from a random sample,
potentially impacting model performance and primary predictors. The spatial distributions
of RMSE in the HUC 02 and HUC 17 regions for the PUB scenario XGB model are presented
in Figure S8.

Our results also showed that the SVR and XGB models can accurately predict monthly
Ts for most catchments with major dams across the temporal and spatiotemporal prediction
scenarios. However, we found that model performance was impacted by the distance
between a station and the nearest major dam. Notably, the models could only achieve
RMSE < 1 °C accuracy when the sites were located greater than 16.4, 44.2, and 1.4 km of
straight line distance from a major dam for the SS, regional, and PUB scenarios respectively
(Figure 8). While the straight line distance retrieved from the GAGES-II dataset does not
account for distances along the river, or indicate whether the dam is located upstream or
downstream of the gage, this finding suggests that meteorological predictors can adequately
capture monthly Ts dynamics for stations which are not proximal to a major dam.
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Figure 8. Distance to nearest major dam vs. best RMSE for each optimal model configuration of the
three modeling scenarios: (a) Temporal SS, (b) Temporal Regional, and (c) PUB. For each scenario,
the distance after which RMSE < 1 °C is achieved is marked with a vertical line.

4.3. Local and Regional Predictions

We implemented three modeling scenarios for Ts predictions from local to regional
spatial scales: (a) temporal (local) predictions at a single monitored site, (b) temporal
regional predictions across monitored sites, and (c) spatiotemporal PUB predictions for
unmonitored sites. The classical ML models used in this study, SVR and XGB, achieve
good performance (typically <1 °C RMSE) for all these scenarios. For example, Figure 7
presents predictions across the three modelling scenarios for five catchments of varying
drainage area and number of dams, demonstrating general trends in prediction accuracy
between scenarios.

The exact scenario that decision makers and other stakeholders can use for local to
regional predictions of monthly Ts for will depend on the water management objectives
and constraints. For example, if reliable long-term records for a specific site are available,
the temporal SS scenario may be most useful for short-term seasonal forecasting of Ts
and planning corresponding water management actions. This is because the prediction
accuracy decreased slightly for all models when applying the temporal regional scenario in
comparison to the temporal SS scenario. Thus, the same models when trained with multiple
stations of data, were able to generalize some but not all station-specific dynamics given the
simplistic attributes chosen in this study (latitude, longitude, elevation, and drainage area
when available). On the other hand, if there is a need to predict Ts at locations where there
is no historical data for river basin management purposes, the PUB scenario leveraging
historical data records from the same region to transfer to unmonitored locations will be
most useful, especially given the accuracy achieved using the ensemble modeling approach.

Overall, we find that classical ML models are relatively easy to implement, and are
able to predict monthly Ts with reasonable accuracy (<1 °C) for both local and regional
predictions. Given the results of the sensitivity tests to different input features, we find
that our models can be used with low data requirements (i.e., widely available gridded
meteorological data for inputs and prior Ts data for testing), which will considerably
increase the number of sites and regions for which suitable data are available. Prior
regional models in hydrology have used data-intensive approaches needing both Q and
substantial amounts of watershed metadata (for example, 33 CAMELS attributes used by
Kratzert et al. [81] and 55 GAGES attributes used by Rahmani et al. [40]). While adding
simplistic static attributes and Q minimally improve our model skill, we find that the
classical ML models can learn sufficient catchment-specific information to make reasonably
accurate predictions (<1 °C) without data-intensive attribute metadata that are unavailable
for the majority of locations, and for ungaged basins where no Q records are available.
In particular, we note the ability of the models to predict Ts in dammed catchments,
which is particularly useful because previous ML modeling studies (with the exception of
Rahmani et al. [18]) have largely focused on PUB predictions in regions with little to no
anthropogenic impacts. While the results presented in this study are from the mid-Atlantic
and Pacific Northwest hydrologic regions of the US, the models and methodology for
predicting monthly Ts are broadly applicable to other regions with different hydrological,
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geological, meteorological, and land use characteristics, including locations that have
human impacts.

5. Conclusions

Here we have shown how classical ML models can be used for monthly Ts temporal
and spatial predictions using three prediction scenarios: temporal SS and regional scenarios,
and a spatial ensemble PUB scenario. In total, we tested 17 different configuration scenarios
to understand the sensitivity of models to changes in training datasets, hyperparameter
optimization and input features. Across all scenarios, we have shown that ML models (XGB,
SVR) outperform traditional statistical approaches (MLR). Temporal predictions achieve
accuracy comparable to other studies with SS median RMSE 0.69–0.84 °C, and regional
median RMSE and 0.92–1.02 °C. Predictions for temporal models were also shown to be
robust to changes in model architecture and training.

Spatial predictions in the ensemble PUB scenario showed substantial improvement in
model performance particularly for XGB models, where model errors are reduced to median
RMSE of 0.63 °C. The ensemble PUB scenario with XGB models are able to predict not
only general Ts dynamics, but also dynamics impacted by dams, in large basins, and under
extremes in Ts where other models are generally less precise. Few studies have used
ensembles of models in a hydrological context [82,83], and to our knowledge, this is the
first study to use ensembles to make PUB predictions.

The simplistic inputs of this model (meteorology, Q, and simple static attributes) allow
for broad application for water management where extensive metadata and measurements
are not available. These models are not only accurate, but also advantageous for predicting
Ts in catchments with minimal measurements. While daily models are better for operational
forecasting, monthly models can play an important role in near-term seasonal forecasting to
plan for and understand future impacts on stream temperatures due to a changing climate
and extreme events.
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