

Edinburgh Research Explorer

StreamApprox: Approximate Computing for Stream Analytics

Citation for published version:
Quoc, DL, Chen, R, Bhatotia, P, Fetzer, C, Hilt, V & Strufe, T 2017, StreamApprox: Approximate Computing
for Stream Analytics. in ACM/IFIP/USENIX Middleware 2017. ACM, pp. 185-197, 18th ACM/IFIP/USENIX
Middleware Conference, Las Vegas, Nevada, United States, 11/12/17.
https://doi.org/10.1145/3135974.3135989

Digital Object Identifier (DOI):
10.1145/3135974.3135989

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM/IFIP/USENIX Middleware 2017

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2022

https://doi.org/10.1145/3135974.3135989
https://doi.org/10.1145/3135974.3135989
https://www.research.ed.ac.uk/en/publications/c531bcc9-c8d4-4089-84da-844039be2fd6

StreamApprox: Approximate Computing for Stream Analytics

Do Le Quoc
1
, Ruichuan Chen

2
, Pramod Bhatotia

3
,

Christof Fetzer
1
, Volker Hilt

2
, Thorsten Strufe

1

1
TU Dresden,

2
Nokia Bell Labs,

3
University of Edinburgh and Alan Turing Institute

Abstract

Approximate computing aims for efficient execution of workflows

where an approximate output is sufficient instead of the exact

output. The idea behind approximate computing is to compute

over a representative sample instead of the entire input dataset.

Thus, approximate computing — based on the chosen sample size —

can make a systematic trade-off between the output accuracy and

computation efficiency.

Unfortunately, the state-of-the-art systems for approximate com-

puting primarily target batch analytics, where the input data re-

mains unchanged during the course of computation. Thus, they are

not well-suited for stream analytics. This motivated the design of

StreamApprox— a stream analytics system for approximate com-

puting. To realize this idea, we designed an online stratified reser-

voir sampling algorithm to produce approximate output with rigor-

ous error bounds. Importantly, our proposed algorithm is generic

and can be applied to two prominent types of stream processing sys-

tems: (1) batched stream processing such as Apache Spark Stream-

ing, and (2) pipelined stream processing such as Apache Flink.

To showcase the effectiveness of our algorithm, we implemented

StreamApprox as a fully functional prototype based on Apache

Spark Streaming and Apache Flink. We evaluated StreamApprox

using a set of microbenchmarks and real-world case studies. Our

results show that Spark- and Flink-based StreamApprox systems

achieve a speedup of 1.15×—3× compared to the respective native

Spark Streaming and Flink executions, with varying sampling frac-

tion of 80% to 10%. Furthermore, we have also implemented an

improved baseline in addition to the native execution baseline — a

Spark-based approximate computing system leveraging the exist-

ing sampling modules in Apache Spark. Compared to the improved

baseline, our results show that StreamApprox achieves a speedup

of 1.1×—2.4× while maintaining the same accuracy level.

1 Introduction

Stream analytics systems are extensively used in the context of

modern online services to transform continuously arriving raw

data streams into useful insights [20, 34, 47]. These systems tar-

get low-latency execution environments with strict service-level

agreements (SLAs) for processing the input data streams.

In the current deployments, the low-latency requirement is usu-

ally achieved by employing more computing resources and par-

allelizing the application logic over the distributed infrastructure.

Since most stream processing systems adopt a data-parallel pro-

gramming model [17], almost linear scalability can be achieved

with increased computing resources.

However, this scalability comes at the cost of ineffective utiliza-

tion of computing resources and reduced throughput of the system.

Moreover, in some cases, processing the entire input data stream

would require more than the available computing resources to meet

the desired latency/throughput guarantees.

To strike a balance between the two desirable, but contradic-

tory design requirements — low latency and efficient utilization of

computing resources — there is a surge of approximate computing
paradigm that explores a novel design point to resolve this tension.

In particular, approximate computing is based on the observation

thatmany data analytics jobs are amenable to an approximate rather

than the exact output [18, 35]. For such workflows, it is possible to

trade the output accuracy by computing over a subset instead of the

entire data stream. Since computing over a subset of input requires

less time and computing resources, approximate computing can

achieve desirable latency and computing resource utilization.

To design an approximate computing system for stream analytics,

we need to address the following three important design challenges:

Firstly, we need an online sampling algorithm that can perform “on-

the-fly” sampling on the input data stream. Secondly, since the input

data stream usually consists of sub-streams carrying data itemswith

disparate population distributions, we need the online sampling

algorithm to have a “stratification” support to ensure that all sub-

streams (strata) are considered fairly, i.e., the final sample has a

representative sub-sample from each distinct sub-stream (stratum).

Finally, we need an error-estimation mechanism to interpret the

output (in)accuracy using an error bound or confidence interval.

Unfortunately, the advancements in approximate computing are

primarily geared towards batch analytics [1, 26, 39], where the input

data remains unchanged during the course of computation (see §8

for details). In particular, these systems rely on pre-computing a set

of samples on the static database, and take an appropriate sample

for the query execution based on the user’s requirements (i.e., query

execution budget). Therefore, the state-of-the-art systems cannot

be deployed in the context of stream processing, where the new

data continuously arrives as an unbounded stream.

As an alternative, we could in principle repurpose the available
sampling mechanisms in Apache Spark (primarily available for

machine learning in the MLib library [21]) to build an approximate

computing system for stream analytics. In fact, as a starting point,

we designed and implemented an approximate computing system

for stream processing in Apache Spark based on the available sam-

pling mechanisms. Unfortunately, as we will show later, Spark’s

stratified sampling algorithm suffers from three key limitations

for approximate computing, which we address in our work (see §4

for details). First, Spark’s stratified sampling algorithm operates in

a “batch” fashion, i.e., all data items are first collected in a batch

as Resilient Distributed Datasets (RDDs) [46], and thereafter, the

actual sampling is carried out on the RDDs. Second, it does not

handle the case where the arrival rate of sub-streams changes over

time because it requires a pre-defined sampling fraction for each

stratum. Lastly, the stratified sampling algorithm implemented in

Spark requires synchronization among workers for the expensive

join operation, which imposes a significant latency overhead.

To address these limitations, we designed an online stratified
reservoir sampling algorithm for stream analytics. Unlike existing

Spark-based systems, we perform the sampling process “on-the-fly”

StreamApprox
Data streamStream

aggregator

(E.g. Kafka)

Sub-streams

S1

S2

Sn

.

.

Query

output

Streaming

query

Query

budget

Figure 1. System overview

to reduce the latency as well as the overheads associated in the

process of forming RDDs. Importantly, our algorithm generalizes
to two prominent types of stream processing models: (1) batched

stream processing employed by Apache Spark Streaming [22], and

(2) pipelined stream processing employed by Apache Flink [20].

More specifically, our sampling algorithm makes use of two tech-

niques: reservoir sampling and stratified sampling. We perform

reservoir sampling for each sub-stream by creating a fixed-size

reservoir per stratum. Thereafter, we assign weights to all strata

respecting their respective arrival rates to preserve the statistical

quality of the original data stream. The proposed sampling algo-

rithm naturally adapts to varying arrival rates of sub-streams, and

requires no synchronization among workers (see §3).

Based on the proposed sampling algorithm,we designed StreamAp-

prox, an approximate computing system for stream analytics (see

Figure 1). StreamApprox provides an interface for users to specify

streaming queries and their execution budgets. The query execution

budget can be specified in the form of latency guarantees or avail-

able computing resources. Based on the query budget, StreamAp-

prox provides an adaptive execution mechanism to make a sys-

tematic trade-off between the output accuracy and computation

efficiency. In particular, StreamApprox employs the proposed sam-

pling algorithm to select a sample size based on the query budget,

and executes the streaming query on the selected sample. Finally,

StreamApprox provides a confidence metric on the output accu-

racy via rigorous error bounds. The error bound gives a measure

of accuracy trade-off on the result due to the approximation.

We implemented StreamApprox based on Apache Spark Stream-

ing [22] and Apache Flink [20], and evaluate its effectiveness via

various microbenchmarks. Furthermore, we also report our experi-

ences on applying StreamApprox to two real-world case studies.

Our evaluation shows that Spark- and Flink-based StreamApprox

achieves a significant speedup of 1.15× to 3× over the native Spark

Streaming and Flink executions, with varying sampling fraction of

80% to 10%, respectively.

In addition, for a fair comparison, we have also implemented an

approximate computing system leveraging the sampling modules

already available in Apache Spark’s MLib library (in addition to the

native execution comparison). Our evaluation shows that, for the

same accuracy level, the throughput of Spark-based StreamApprox

is roughly 1.1×—2.4× higher than the Spark-based approximate

computing system for stream analytics.

To summarize, we make the following main contributions.

• Wepropose the online adaptive stratified reservoir sampling

(OASRS) algorithm that preserves the statistical quality of

the input data stream, and is resistant to the fluctuation in

the arrival rates of strata. Our proposed algorithm is generic

and can be applied to the two prominent stream processing

models: batched and pipelined stream processing models.

• We extend our algorithm for distributed execution. The

OASRS algorithm can be parallelized naturally without re-

quiring any form of synchronization among distributed

workers.

• We provide a confidence metric on the output accuracy

using an error bound or confidence interval. This gives

a measure of accuracy trade-off on the result due to the

approximation.

• Finally, we have implemented the proposed algorithm and

mechanisms based on Apache Spark Streaming and Apache

Flink. We have extensively evaluated the system using a

series of microbenchmarks and real-world case studies.

StreamApprox’s codebase with the full experimental evalua-

tion setup is publicly available: https://streamapprox.github.io/. A

detailed version of this paper is available as a technical report [37].

2 Overview and Background

This section gives an overview of StreamApprox, its computa-

tional model, and the design assumptions. Lastly, we conclude this

section with a brief background on the technical building blocks.

2.1 System Overview

StreamApprox is designed for real-time stream analytics. Figure 1

presents the high-level architecture of StreamApprox. The input

data stream usually consists of data items arriving from diverse

sources. The data items from each source form a sub-stream. We

make use of a stream aggregator (e.g., Apache Kafka [24]) to com-

bine the incoming data items from disjoint sub-streams. StreamAp-

prox then takes this combined stream as the input for data analytics.

We facilitate data analytics on the input stream by providing

an interface for users to specify the streaming query and its cor-

responding query budget. The query budget can be in the form

of expected latency/throughput guarantees, available computing

resources, or the accuracy level of query results.

StreamApprox ensures that the input stream is processedwithin

the specified query budget. To achieve this goal, we make use

of approximate computing by processing only a subset of data

items from the input stream, and produce an approximate output

with rigorous error bounds. In particular, StreamApprox uses a

parallelizable online sampling technique to select and process a

subset of data items, where the sample size can be determined based

on the query budget.

2.2 Computational Model

The state-of-the-art distributed stream processing systems can be

classified in two prominent categories: (i) batched stream process-

ing model, and (ii) pipelined stream processing model. Our proposed
algorithm for approximate computing is generalizable to both stream
processing models, and preserves their advantages.

Batched stream processingmodel. In this computational model,

an input data stream is divided into small batches using a pre-

defined batch interval, and each such batch is processed via a dis-

tributed data-parallel job. Apache Spark Streaming [22] adopted

this model to process input data streams.

Pipelined stream processing model. In contrast to the batched

stream processing model, the pipelined model streams each data

2

https://streamapprox.github.io/

Algorithm 1 Reservoir sampling algorithm

Input: N ← sample size
begin

r eservoir ← ∅; // Set of items sampled from the input stream
foreach arriving item xi do

if |r eservoir | < N then

// Fill up the reservoir
r eservoir .append(xi);

end

else

p ←
N
i
;

// Flip a coin comes heads with probability p
head ← flipCoin(p);
if head then

// Get a random index in the reservoir
j ← getRandomIndex(0, |r eservoir | − 1);

// Replace old item in reservoir by xi
r eservoir [j]← xi

end

end

end

end

item to the next operator as soon as the item is ready to be processed

without forming the whole batch. Thus, this model achieves low

latency. Apache Flink [20] implements this model to provide a truly

native stream processing engine.

Note that both stream processing models support the time-based

sliding window computation [6]. The processing window slides

over the input stream, whereby the newly incoming data items are

added to the window and the old data items are removed from the

window. The number of data items within a sliding window may

vary in accordance to the arrival rate of data items.

2.3 Design Assumptions

StreamApprox is based on the following assumptions. We discuss

the possible means to address these assumptions in §7.

1. We assume there exists a virtual cost function which trans-

lates a given query budget (such as the expected latency

guarantees, or the required accuracy level of query results)

into the appropriate sample size.

2. We assume that the input stream is stratified based on the

source of data items, i.e., the data items from each sub-

stream follow the same distribution and are mutually inde-

pendent. Here, a stratum refers to one sub-stream. If multi-

ple sub-streams have the same distribution, they are com-

bined to form a stratum.

2.4 Background: Technical Building Blocks

Wenext describe the twomain technical building blocks of StreamAp-

prox: (a) reservoir sampling, and (b) stratified sampling.

Reservoir sampling. Suppose we have a stream of data items, and

want to randomly select a sample of N items from the stream. If

we know the total number of items in the stream, then the solution

is straightforward by applying the simple random sampling [30].

However, if a stream consists of an unknown number of items or

the stream contains a large number of items which could not fit into

the storage, then the simple random sampling does not work and a

sampling technique called reservoir sampling can be used [41].

Reservoir sampling receives data items from a stream, and main-

tains a sample in a buffer called reservoir. Specifically, the technique
populates the reservoir with the first N items received from the

stream. After the first N items, every time we receive the i-th item

(i > N), we replace each of the N existing items in the reservoir

with the probability of 1/i , respectively. In other words, we accept

the i-th item with the probability of N /i , and then randomly re-

place one existing item in the reservoir. In doing so, we do not need

to know the total number of items in the stream, and reservoir

sampling ensures that each item in the stream has an equal prob-

ability of being selected for the reservoir. Reservoir sampling is

resource-friendly, and its pseudo-code can be found in Algorithm 1.

Stratified sampling. Although reservoir sampling is widely used

in stream processing, it could potentially mutilate the statistical

quality of the sampled data in the case where the input data stream

contains multiple sub-streams with different distributions. This is

because reservoir sampling may overlook some sub-streams con-

sisting of only a few data items. In particular, reservoir sampling

does not guarantee that each sub-stream is considered fairly to

have its data items selected for the sample. Stratified sampling [2]

was proposed to cope with this problem. Stratified sampling first

clusters the input data stream into disjoint sub-streams, and then

performs the sampling (e.g., simple random sampling) over each

sub-stream independently. Stratified sampling guarantees that data

items from every sub-stream can be fairly selected and no sub-

stream will be overlooked. Stratified sampling, however, works

only in the scenario where it knows the statistics of all sub-streams

in advance (e.g., the length of each sub-stream).

3 Design

In this section, we first present the StreamApprox’s workflow

(§3.1). Then, we detail its sampling mechanism (§3.2), and its error

estimation mechanism (§3.3).

3.1 SystemWorkflow

Algorithm 2 presents the workflow of StreamApprox. The algo-

rithm takes the user-specified streaming query and the query budget
as the input. The algorithm executes the query on the input data

stream as a sliding window computation (see §2.2).

For each time interval, we first derive the sample size (sample-
Size) using a cost function based on the given query budget (see

§7). As described in §2.3, we currently assume that there exists a

cost function which translates a given query budget (such as the

expected latency/throughput guarantees, or the required accuracy

level of query results) into the appropriate sample size. We discuss

the possible means to implement such a cost function in §7.

We next propose a sampling algorithm (detailed in §3.2) to select

the appropriate sample in an online fashion. Our sampling algo-

rithm further ensures that data items from all sub-streams are fairly

selected for the sample, and no single sub-stream is overlooked.

Thereafter, we execute a data-parallel job to process the user-

defined query on the selected sample. As the last step, we run

an error estimation mechanism (as described in §3.3) to compute

the error bounds for the approximate query result in the form of

output ± error bound.
The whole process repeats for each time interval as the compu-

tation window slides [7]. Note that, the query budget can change

3

Algorithm 2 : StreamApprox’s algorithm overview

User input: streaming query and query budget
begin

// Computation in sliding window model (§2.2)
foreach time interval do

// Cost function gives the sample size based on the budget (§7)
sampleSize ← costFunction(budget);
forall arriving items in the time interval do

// Perform OASRS Sampling (§3.2)
//W denotes the weights of the sample
sample ,W ← OASRS(items , sampleSize);

end

// Run query as a data-parallel job to process the sample
output ← runJob(query , sample ,W);

// Estimate the error bounds of query result/output (§3.3)
output ± error ← estimateError(output);

end

end

across time intervals to adapt to user’s requirements for the budget.

3.2 Online Adaptive Stratified Reservoir Sampling

To realize the real-time stream analytics, we propose a novel sam-

pling technique called Online Adaptive Stratified Reservoir Sam-

pling (OASRS). It achieves both stratified and reservoir samplings

without their drawbacks. Specifically, OASRS does not overlook

any sub-streams regardless of their popularity, does not need to

know the statistics of sub-streams before the sampling process, and

runs efficiently in real time in a distributed manner.

The high-level idea of OASRS is simple, as described in Algo-

rithm 3. We stratify the input stream into sub-streams according to

their sources. We assume data items from each sub-stream follow

the same distribution and are mutually independent. (Here, a stra-
tum refers to one sub-stream. If multiple sub-streams have the same

distribution, they can be combined to form a stratum.) We then

sample each sub-stream independently, and perform the reservoir

sampling for each sub-stream individually. To do so, every time

we encounter a new sub-stream Si , we determine its sample size

Ni according to an adaptive cost function considering the speci-

fied query budget (see §7). For each sub-stream Si , we perform the

traditional reservoir sampling to select items at random from this

sub-stream, and ensure that the total number of selected items from

Si does not exceed its sample size Ni . In addition, we maintain a

counterCi to measure the number of items received from Si within
the concerned time interval (see Figure 2).

Applying reservoir sampling to each sub-stream Si ensures that
we can randomly select at most Ni items from each sub-stream.

The selected items from different sub-streams, however, should not
be treated equally. In particular, for a sub-stream Si , if Ci > Ni
(i.e., the sub-stream Si has more than Ni items in total during the

concerned time interval), then we randomly select Ni items from

this sub-stream and each selected item represents Ci/Ni original

items on average; otherwise, if Ci ≤ Ni , we select all the received

Ci items so that each selected item only represents itself. As a result,

in order to statistically recreate the original items from the selected

items, we assign a specific weightWi to the items selected from

each sub-stream Si :

Wi =



Ci/Ni if Ci > Ni

1 if Ci ≤ Ni
(1)

Sub-streams

S1

S2

S3

Reservoir

sampling

Reservoir

size (N = 3)
Weights

W1 = 6/3 (C1 = 6)

W2 = 4/3 (C2 = 4)

W3 = 1 (C3 = 2)

Figure 2. OASRS with the reservoirs of size three.

We support approximate linear queries which return an approxi-

mate weighted sum of all items received from all sub-streams. One

example of linear queries is to compute the sum of all received items.

Suppose there are in total X sub-streams {Si }
X
i=1

, and from each

sub-stream Si we randomly select at most Ni items. Specifically, we

select Yi items {Ii, j }
Yi
j=1

from each sub-stream Si , where Yi ≤ Ni .

In addition, each sub-stream associates with a weightWi generated

according to expression 1. Then, the approximate sum SUMi of all

items received from each sub-stream Si can be estimated as:

SUMi = (

Yi∑
j=1

Ii, j) ×Wi (2)

As a result, the approximate total sum of all items received from

all sub-streams is:

SUM =
X∑
i=1

SUMi (3)

A simple extension also enables us to compute the approximate

mean value of all received items:

MEAN =
SUM∑X
i=1

Ci
(4)

Here, Ci denotes a counter measuring the number of items re-

ceived from each sub-stream Si . Using a similar technique, our

OASRS sampling algorithm supports any types of approximate lin-

ear queries. This type of queries covers a range of common aggrega-

tion queries including, for instance, sum, average, count, histogram,

etc. Though linear queries are simple, they can be extended to sup-

port a large range of statistical learning algorithms [11, 12]. It is

also worth mentioning that, OASRS not only works for a concerned

time interval (e.g., a sliding time window), but also works with

unbounded data streams.

To summarize, our proposed sampling algorithm combines the

benefits of stratified and reservoir samplings via performing the

reservoir sampling for each sub-stream (i.e., stratum) individu-

ally. In addition, our algorithm is an online algorithm since it can

perform the “on-the-fly” sampling on the input stream without

knowing all data items in a window from its beginning [3].

Distributed execution. OASRS can run in a distributed fashion

naturally as it does not require synchronization. One straightfor-

ward approach is to make each sub-stream Si be handled by a set

ofw worker nodes. Each worker node samples an equal portion of

items from this sub-stream and generates a local reservoir of size

no larger than Ni/w . In addition, each worker node maintains a

local counter to measure the number of its received items within

a concerned time interval for weight calculation. The rest of the

design remains the same.

4

Algorithm 3 : Online adaptive stratified reservoir sampling

OASRS(items, sampleSize)
begin

sample ← ∅; // Set of items sampled within the time interval
S ← ∅; // Set of sub-streams seen so far within the time interval
W ← ∅; // Set of weights of sub-streams within the time interval
Update(S); // Update the set of sub-streams
// Determine the sample size for each sub-stream
N ← getSampleSize(sampleSize, S);
forall Si in S do

Ci ← 0; // Initial counter to measure #items in each sub-stream
forall arriving items in each time interval do

Update(Ci); // Update the counter
samplei ← RS(items , Ni); // Reservoir sampling
sample .add(samplei); // Update the global sample
// Compute the weight of samplei according to Equation 1
if Ci > Ni then

Wi ←
Ci
Ni

;

end

else

Wi ← 1;

end

W .add(Wi); // Update the set of weights

end

end

return sample ,W
end

3.3 Error Estimation

We described how we apply OASRS to randomly sample the input

data stream to generate the approximate results for linear queries.

We now describe a method to estimate the accuracy of our approxi-

mate results via rigorous error bounds.

Similar to §3.2, suppose the input data stream contains X sub-

streams {Si }
X
i=1

. We compute the approximate sum of all items

received from all sub-streams by randomly sampling only Yi items

from each sub-stream Si . As each sub-stream is sampled indepen-

dently, the variance of the approximate sum is:

Var (SUM) =
X∑
i=1

Var (SUMi) (5)

Further, as items are randomly selected for a sample within each

sub-stream, according to the random sampling theory [40], the

variance of the approximate sum can be estimated as:

V̂ ar (SUM) =
X∑
i=1

(
Ci × (Ci − Yi) ×

s2

i
Yi

)
(6)

Here, Ci denotes the total number of items from the sub-stream

Si , and si denotes the standard deviation of the sub-stream Si ’s
sampled items:

s2

i =
1

Yi − 1

×

Yi∑
j=1

(Ii, j − Īi)
2
, where Īi =

1

Yi
×

Yi∑
j=1

Ii, j (7)

Next, we show how we can also estimate the variance of the

approximate mean value of all items received from all the X sub-

streams. According to equation 4, this approximate mean value can

be computed as:

MEAN =
SUM∑X
i=1

Ci
=

∑X
i=1

(Ci ×MEANi)∑X
i=1

Ci

=

X∑
i=1

(ωi ×MEANi)

(8)

Here, ωi =
Ci∑X
i=1

Ci
. Then, as each sub-stream is sampled in-

dependently, according to the random sampling theory [40], the

variance of the approximate mean value can be estimated as:

V̂ ar (MEAN) =
X∑
i=1

Var (ωi ×MEANi)

=

X∑
i=1

(
ω2

i ×Var (MEANi)
)

=

X∑
i=1

(
ω2

i ×
s2

i
Yi
×
Ci − Yi
Ci

)
(9)

Above, we have shown how to estimate the variances of the

approximate sum and the approximate mean of the input data

stream. Similarly, by applying the random sampling theory, we

can estimate the variance of the approximate results of any linear

queries.

Error bound. According to the “68-95-99.7” rule [45], our approx-

imate result falls within one, two, and three standard deviations

away from the true result with probabilities of 68%, 95%, and 99.7%,

respectively, where the standard deviation is the square root of

the variance as computed above. This error estimation is critical

because it gives us a quantitative understanding of the accuracy of

our sampling technique.

4 Implementation

To showcase the effectiveness of our algorithm, we implemented

StreamApprox based on two stream processing systems (§2.2): (i)
Apache Spark Streaming [22], and (ii) Apache Flink [20].

Furthermore, we also built an improved baseline (in addition to

the native execution) for Apache Spark, which provides sampling

mechanisms for its machine learning libraryMLib [21]. In particular,

we repurposed the existing sampling modules available in Apache

Spark (primarily used formachine learning) to build an approximate

computing system for stream analytics. To have a fair comparison,

we evaluated our Spark-based StreamApprox with two baselines:

the Spark native execution and the improved Spark sampling based

approximate computing system. Meanwhile, Apache Flink does

not support sampling operations for stream analytics, therefore

we compare our Flink-based StreamApprox with only the Flink

native execution.

We next present the necessary background on Spark Streaming

(and its existing sampling mechanisms) and Flink (§4.1). Thereafter,

we provide the implementation details of our prototypes (§4.2).

4.1 Background

4.1.1 Apache Spark Streaming

Apache Spark Streaming splits the input data stream into micro-

batches, and for each micro-batch a distributed data-parallel job

(Spark job) is launched to process the micro-batch. Spark Streaming

makes use of RDD-based sampling functions supported by Apache

5

Batched

RDDs

Batch

generator

(Spark)

Query output

+ error bounds

Input data

stream

Sampled

data items

Computation

engine

(Flink or Spark)

Query

budget

Re!ned

sample size

Virtual cost

function

Initial

sample size

Error

estimation

module

Streaming

query

Sampling

module Apache Flink work"ow

Apache Spark Streaming

work"ow

Figure 3.Architecture of StreamApprox prototypes (shaded boxes

depict the implementedmodules).We have implemented our system

based on Apache Spark Streaming and Apache Flink.

Spark [46] to take a sample from each micro-batch. These functions

can be classified into the following two categories: 1) Simple Ran-

dom Sampling (SRS) using sample, and 2) Stratified Sampling (STS)

using sampleByKey and sampleByKeyExact.
Simple random sampling (SRS) is implemented using a random

sort mechanism [33] which selects a sample of size k from the input

data items in two steps. In the first step, Spark assigns a random

number in the range of [0, 1] to each input data item to produce

a key-value pair. Thereafter, in the next step, Spark sorts all key-

value pairs based on their assigned random numbers, and selects

k data items with the smallest assigned random numbers. Since

sorting “Big Data” is expensive, the second step quickly becomes a

bottleneck in this sampling algorithm. To mitigate this bottleneck,

Spark reduces the number of items before sorting by setting two

thresholds, p and q, for the assigned random numbers. In particular,

Spark discards the data items with the assigned random numbers

larger than q, and directly selects data items with the assigned

numbers smaller than p. For stratified sampling (STS), Spark first

clusters the input data items based on a given criterion (e.g., data

sources) to create strata using groupBy(strata). Thereafter, it
applies the aforementioned SRS to data items in each stratum.

4.1.2 Apache Flink

In contrast to the batched stream processing, Apache Flink adopts a

pipelined architecture: whenever an operator in the DAG dataflow

emits an item, this item is immediately forwarded to the next opera-

tor without waiting for a whole data batch. This mechanism makes

Apache Flink a true stream processing engine. In addition, Flink

considers batches as a special case of streaming. Unfortunately, the

vanilla Flink does not provide any operations to take a sample of

the input data stream. In this work, we provide Flink with an oper-

ator to sample input data streams by implementing our proposed

sampling algorithm (see §3.2).

4.2 StreamApprox Implementation Details

We next describe the implementation of StreamApprox. Figure 3

illustrates the architecture of our prototypes, where the shaded

boxes depict the implemented modules. We showcase workflows

for Apache Spark Streaming and Apache Flink in the same figure.

4.2.1 Spark-based StreamApprox

In the Spark-based implementation, the input data items are sam-

pled “on-the-fly” using our sampling module before items are trans-

formed into RDDs. The sampling parameters are determined based

on the query budget using a virtual cost function. In particular,

a user can specify the query budget in the form of desired la-

tency/throughput, available computational resources, or acceptable

accuracy loss. As noted in the design assumptions (§2.3), we have

not implemented the virtual cost function since it is beyond the

scope of this paper (see §7 for possible ways to implement such a

cost function). Based on the query budget, the virtual cost function

determines a sample size, which is then fed to the sampling module.

Thereafter, the sampled input stream is transformed into RDDs,

where the data items are split into batches at a pre-defined regular

batch interval. Next, the batches are processed as usual using the

Spark engine to produce the query output. Since the computed

output is an approximate query result, we make use of our error

estimation module to give rigorous error bounds. In cases where the

error bound is larger than the specified target, an adaptive feedback

mechanism is activated to increase the sample size in the sampling

module. This way, we achieve higher accuracy in the subsequent

epochs.

I: Sampling module. The sampling module implements the algo-

rithm described in §3.2 to select samples from the input data stream

in an online adaptive fashion. We modified the Apache Kafka con-

nector of Spark to support our sampling algorithm. In particular,

we created a new class ApproxKafkaRDD to handle the input data

items from Kafka, which takes required samples to define an RDD

for the data items before calling the compute function.

II: Error estimation module. The error estimation module com-

putes the error bounds of the approximate query result. The module

also activates a feedback mechanism to re-tune the sample size in

the sampling module to achieve the specified accuracy target. We

made use of the Apache Common Math library [32] to implement

the error estimation mechanism as described in §3.3.

4.2.2 Flink-based StreamApprox

Compared to the Spark-based implementation, a Flink-based StreamAp-

prox is straightforward to implement since Flink supports online

stream processing natively.

I: Sampling module. We created a sampling operator by imple-

menting the algorithm described in §3.2. This operator samples

input data items on-the-fly and in an adaptive manner. The sam-

pling parameters are identified based on the query budget as in

Spark-based StreamApprox.

II: Error estimation module. We reused the error estimation

module implemented in the Spark-based StreamApprox.

5 Evaluation

In this section, we present the evaluation results of our implemen-

tation. In the next section, we report our experiences on deploying

StreamApprox for real-world case studies (§6).

5.1 Experimental Setup

Synthetic data stream. To understand the effectiveness of our

proposed OASRS sampling algorithm, we first evaluated StreamAp-

prox using a synthetic input data streamwith Gaussian distribution

6

 0

 1

 2

 3

 4

 5

 6

 7

 8

10 20 40 60 80 Native

T
h

ro
u

g
h

p
u

t
(M

)
#

it
e

m
s
/s

Sampling fraction (%)

(a) Throughput vs Sampling fraction

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

Native Flink

Native Spark

 0

 1

 2

 3

 10 20 40 60 80 90

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Sampling fraction (%)

(b) Accuracy loss vs Sampling fraction

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

 0

 1

 2

 3

 4

 5

250 500 1000

T
h

ro
u

g
h

p
u

t
(M

)
#

it
e

m
s
/s

Batch interval (ms)

(c) Throughput vs Batch intervals

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

Figure 4. Comparison b/w StreamApprox, Spark-based SRS, Spark-based STS, as well as the native Spark and Flink systems. (a) Throughput

with varying sampling fractions. (b) Accuracy loss with varying sampling fractions. (c) Throughput with different batch intervals.

and Poisson distribution. For the Gaussian distribution, unless spec-

ified otherwise, we used three input sub-streams A, B, and C with

their data items following Gaussian distributions with parameters

(µ = 10, σ = 5), (µ = 1000, σ = 50), and (µ = 10000, σ = 500),

respectively. For the Poisson distribution, unless specified other-

wise, we used three input sub-streams A, B, and C with their data

items following Poisson distributions with parameters (λ = 10),

(λ = 1000), and (λ = 100000000), respectively.

Methodology for comparison with Apache Spark. For a fair

comparison with the sampling algorithms available in Apache

Spark, we also built an Apache Spark-based approximate comput-

ing system for stream analytics (as described in §4). In particular,

we used two sampling algorithms available in Spark, namely, Sim-

ple Random Sampling (SRS) via sample, and Stratified Sampling

(STS) via sampleByKey and sampleByKeyExact. We applied these

sampling operators to each small batch (i.e., RDD) in the input

data stream to generate samples. Note that Apache Flink does not

support sampling natively.

Evaluation questions. Our evaluation analyzes the performance

of StreamApprox, and compares it with the Spark-based approxi-

mate computing system across the following dimensions: (a) vary-

ing sample sizes in §5.2, (b) varying batch intervals in §5.3, (c)

varying arrival rates for sub-streams in §5.4, (d) varying window

sizes in §5.5, (e) scalability in §5.6, and (f) skew in the input data

stream in §5.7.

5.2 Varying Sample Sizes

Throughput. We first measure the throughput of StreamApprox

w.r.t. the Spark- and Flink-based systems with varying sample sizes

(sampling fractions). To measure the throughput of the evaluated

systems, we increase the arrival rate of the input stream until these

systems are saturated.

Figure 4 (a) first shows the throughput comparison of StreamAp-

prox and the two sampling algorithms in Spark. Spark-based strat-

ified sampling (STS) scales poorly because of its synchronization

among Spark workers and the expensive sorting during its sampling

process (as detailed in §4.1). Spark-based StreamApprox achieves

a throughput of 1.68× and 2.60× higher than Spark-based STS with

sampling fractions of 60% and 10%, respectively. In addition, Spark-

based simple random sampling (SRS) scales better than STS and

has a similar throughput as in StreamApprox, but SRS loses the

capability of considering each sub-stream fairly.

Meanwhile, Flink-based StreamApprox achieves a throughput

of 2.13× and 3× higher than Spark-based STS with sampling frac-

tions of 60% and 10%, respectively. This is mainly due to the fact

that Flink is a truly pipelined stream processing engine. Moreover,

Flink-based StreamApprox achieves a throughput of 1.3× com-

pared to Spark-based StreamApprox and Spark-based SRS with

the sampling fraction of 60%.

We also compare StreamApprox with native Spark and Flink

systems, i.e., without any sampling. With the sampling fraction of

60%, the throughput of Spark-based StreamApprox is 1.8× higher

than the native Spark execution, whereas the throughput of Flink-

based StreamApprox is 1.65× higher than the native Flink.

Accuracy. Next, we compare the accuracy of our proposed OASRS

sampling with that of the two sampling mechanisms with the vary-

ing sampling fractions. Figure 4 (b) first shows that StreamAp-

prox systems and Spark-based STS achieve a higher accuracy

than Spark-based SRS. For instance, with the sampling fraction

of 60%, Flink-based StreamApprox, Spark-based StreamApprox,

and Spark-based STS achieve the accuracy loss of 0.38%, 0.44%,

and 0.29%, respectively, which are higher than Spark-based SRS

that only achieves the accuracy loss of 0.61%. This higher accuracy

is due to the fact that both StreamApprox and Spark-based STS

integrate stratified sampling which ensures that data items from

each sub-stream are selected fairly. In addition, Spark-based STS

achieves even higher accuracy than StreamApprox, but recall that

Spark-based STS needs to maintain a sample size of each sub-stream

proportional to the size of the sub-stream (see §4.1). This leads to a

much lower throughput than StreamApprox which only maintains

a sample of a fixed size for each sub-stream.

5.3 Varying Batch Intervals

Spark-based systems adopt the batched stream processing model.

Next, we evaluate the impact of varying batch intervals on the

performance of Spark-based StreamApprox, Spark-based SRS, and

Spark-based STS system. We keep the sampling fraction as 60%

7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8K:2K:100 3K:3K:3K 100:2K:8K

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Arrival rate of substreams A:B:C

(a) Accuracy vs arrival rates

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

 0

 1

 2

 3

 4

 5

 6

10 20 30 40

T
h

ro
u

g
h

p
u

t
(M

)
#

it
e

m
s
/s

Window size (seconds)

(b) Throughput vs Window sizes

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 10 20 30 40

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Window size (seconds)

(c) Accuracy vs Window sizes

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

Figure 5. Comparison between StreamApprox, Spark-based SRS, and Spark-based STS. (a) Accuracy loss with varying arrival rates. (b)

Throughput with varying window sizes. (c) Accuracy loss with varying window sizes.

and measure the throughput of each system with different batch

intervals.

Figure 4 (c) shows that, as the batch interval becomes smaller,

the throughput ratio between Spark-based systems gets bigger.

For instance, with the 1000ms batch interval, the throughput of

Spark-based StreamApprox is 1.07× and 1.63× higher than the

throughput of Spark-based SRS and STS, respectively; with the

250ms batch interval, the throughput of StreamApprox is 1.36×

and 2.33× higher than the throughput of Spark-based SRS and STS,

respectively. This is because Spark-based StreamApprox samples

the data items without synchronization before forming RDDs and

significantly reduces costs in scheduling and processing the RDDs,

especially when the batch interval is small.

5.4 Varying Arrival Rates for Sub-Streams

In the following experiment, we evaluate the impact of varying

rates of sub-streams. We used an input data stream with Gaussian

distributions as described in §5.1. We maintain the sampling frac-

tion of 60% and measure the accuracy loss of the four Spark- and

Flink-based systems with different settings of arrival rates.

Figure 5 (a) shows the accuracy loss of these four systems. The

accuracy loss decreases proportionally to the increase of the arrival

rate of the sub-stream C which carries the most significant data

items compared to other sub-streams. When the arrival rate of the

sub-stream C is set to 100 items/second, Spark-based SRS system

achieves the worst accuracy since it may overlook sub-stream C
which contributes only a few data items but has significant values.

On the other hand, when the arrival rate of sub-stream C is set

to 8000 items/second, the four systems achieve almost the same

accuracy. This is mainly because all four systems do not overlook

sub-streamC which contains items with the most significant values.

5.5 Varying Window Sizes

Next, we evaluate the impact of varying window sizes on the

throughput and accuracy of the four systems. We used the same

input as described in §5.4 with its three sub-streams’ arrival rates

being 8000, 2000, and 100 items per second. Figure 5 (b) and Figure 5

(c) show that the window sizes of the computation do not affect

the throughput and accuracy of these systems significantly. This

is because the sampling operations are performed at every batch

interval in the Spark-based systems and at every slide window

interval in the Flink-based StreamApprox.

5.6 Scalability

To evaluate the scalability of StreamApprox, we keep the sampling

fraction as 40% and measure the throughput of StreamApprox

and the Spark-based systems with different numbers of CPU cores

(scale-up) and different numbers of nodes (scale-out).

Figure 6 (a) shows unsurprisingly that StreamApprox and Spark-

based SRS scale better than Spark-based STS. For instance, with one

node (8 cores), the throughput of Spark-based StreamApprox and

Spark-based SRS is roughly 1.8× higher than that of Spark-based

STS. With three nodes, Spark-based StreamApprox and Spark-

based SRS achieve a speedup of 2.3× over Spark-based STS. In

addition, Flink-based StreamApprox achieves a throughput even

1.9× and 1.4× higher compared to Spark-based StreamApprox

with one node and three nodes, respectively.

5.7 Skew in the Data Stream

Lastly, we study the effect of the non-uniformity in sub-stream sizes.

In this experiment, we construct an input data stream where one of

its sub-streams dominates the other sub-streams. In particular, we

evaluated the skew in the input stream using two data distributions:

(i) Gaussian distribution and (ii) Poisson distribution.

I: Gaussian distribution. First, we generated an input data stream

consisting of three sub-streams A, B, and C with the Gaussian

distribution of parameters (µ = 100, σ = 10), (µ = 1000, σ =
100), and (µ = 10000, σ = 1000), respectively. The sub-stream A
comprises 80% of the data items in the entire data stream, whereas

the sub-streams B and C comprise only 19% and 1% of data items,

respectively. We set the sliding window size tow = 10 seconds, and

each sliding step to δ = 5 seconds.

Figure 7 (a), (b), and (c) present the mean values of the received

data items produced by the three Spark-based systems every 5

seconds during a 10-minute observation. As expected, Spark-based

STS and StreamApprox provide more accurate results than Spark-

based SRS because Spark-based STS and StreamApprox ensure

8

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 4 6 8 1 2 3 4

T
h

ro
u

g
h

p
u

t
(K

)
#

it
e

m
s
/s

(a) Scalability

Cores # Nodes

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

 0

 1000

 2000

 3000

 4000

 5000

 6000

0.5 1
T

h
ro

u
g

h
p

u
t

(K
)

#
it
e

m
s
/s

Accuracy loss (%)

(b) Throughput vs Accuracy loss

Spark-based SRS

Spark-based STS

Spark-based StreamApprox

Flink-based StreamApprox

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 10 20 40 60 80 90

A
c
c
u

ra
c
y
 l
o

s
s
 (

%
)

Sampling fraction (%)

(c) Accuracy vs Sampling fractions

Flink-based StreamApprox

Spark-based StreamApprox

Spark-based SRS

Spark-based STS

Figure 6. Comparison between StreamApprox, Spark-based SRS, and Spark-based STS. (a) Throughput with different numbers of CPU

cores and nodes. (b) Throughput with accuracy loss. (c) Accuracy loss with varying sampling fractions.

300

350

400

450

500

 0 20 40 60 80 100 120

M
e

a
n

Time (5s)

(a) Simple Random Sampling (SRS)

Ground truth(w/o sampling)

Spark-based SRS

300

350

400

450

500

 0 20 40 60 80 100 120

M
e

a
n

Time (5s)

(b) Stratified Sampling (STS)

Ground truth(w/o sampling)

Spark-based STS

300

350

400

450

500

 0 20 40 60 80 100 120

M
e

a
n

Time (5s)

(c) StreamApprox

Ground truth(w/o sampling)

StreamApprox

Figure 7. The mean values of the received data items produced by different sampling techniques every 5 seconds during a 10-minute

observation. The sliding window size is 10 seconds, and each sliding step is 5 seconds.

that the data items from the minority (i.e., sub-stream C) are fairly
selected in the samples.

In addition, we keep the accuracy loss across all four systems

the same and then measure their respective throughputs. Figure 6

(b) shows that, with the same accuracy loss of 1%, the throughput

of Spark-based STS is 1.05× higher than Spark-based SRS, whereas

Spark-based StreamApprox achieves a throughput 1.25× higher

than Spark-based STS. In addition, Flink-based StreamApprox

achieves the highest throughput which is 1.68×, 1.6×, and 1.26×

higher than Spark-based SRS, Spark-based STS, and Spark-based

StreamApprox, respectively.

II: Poisson distribution. In the next experiment, we generated an

input data stream with the Poisson distribution as described in §5.1.

The sub-stream A accounts for 80% of the entire data stream items,

while the sub-stream B accounts for 19.99% and the sub-stream C
comprises only 0.01% of the data stream items, respectively. Figure 6

(c) shows that StreamApprox systems and Spark-based STS outper-

form Spark-based SRS in terms of accuracy. The reason for this is

StreamApprox systems and Spark-based STS do not overlook sub-

streamC which has items with significant values. Furthermore, this

result strongly demonstrates the superiority of our proposed sam-

pling algorithm OASRS over simple random sampling in processing

long-tail data which is very common in practice.

6 Case Studies

In this section, we report our experiences and results with the

following two real-world case studies: (a) network traffic analytics

(§6.2) and (b) New York taxi ride analytics (§6.3).

6.1 Experimental Setup

Cluster setup. We performed experiments using a cluster of 17

nodes. Each node in the cluster has 2 Intel Xeon E5405 CPUs (quad

core), 8GB of RAM, and a SATA-2 hard disk, running Ubuntu 14.04.5

LTS. We deployed our StreamApprox prototype on 5 nodes (1

driver node and 4 worker nodes), the traffic replay tool on 5 nodes,

the Apache Kafka-based stream aggregator on 4 nodes, and the

Apache Zookeeper [23] on the remaining 3 nodes.

9

 0

 500

 1000

 1500

 2000

 2500

 3000

10 20 40 60 80 Native

T
h
ro

u
g
h
p
u
t
(K

)
#
it
e
m

s
/s

Sampling fraction (%)

(a) Throughput vs Sampling fraction

Flink-based StreamApprox
Spark-based StreamApprox

Spark-based SRS
Spark-based STS

Native Flink
Native Spark

 0

 1

 2

 3

 10 20 40 60 80 90

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Sampling fraction (%)

(b) Accuracy loss vs Sampling fraction

Flink-based StreamApprox
Spark-based StreamApprox

Spark-based SRS
Spark-based STS

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2

T
h
ro

u
g
h
p
u
t
(K

)
#
it
e
m

s
/s

Accuracy loss (%)

(c) Throughput vs Accuracy loss

Flink-based StreamApprox
Spark-based StreamApprox

Spark-based SRS
Spark-based STS

Figure 8. Network traffic analytics case-study: (a) Throughput with varying sampling fractions. (b) Accuracy loss with varying sampling

fractions. (c) Throughput with different accuracy losses.

Measurements. We evaluated StreamApprox using the follow-

ing key metrics: (a) throughput: measured as the number of data

items processed per second; (b) latency: measured as the total time

required for processing the respective dataset; and lastly, (c) accu-

racy loss: measured as |approx − exact |/exact where approx and

exact denote the results from StreamApprox and a native system

without sampling, respectively.

Methodology. We built a tool to efficiently replay the case-study

dataset as the input data stream. In particular, for the throughput

measurement, we tuned the replay tool to first feed 2000 mes-

sages/second and continued to increase the throughput until the

system was saturated. Here, each message contained 200 data items.

For comparison, we report results from StreamApprox, Spark-

based SRS, Spark-based STS systems, as well as the native Spark

and Flink systems. For all experiments, we report measurements

based on the average over 10 runs. Lastly, the sliding window size

was set to 10 seconds, and each sliding step was set to 5 seconds.

6.2 Network Traffic Analytics

In the first case study, we deployed StreamApprox for a real-time

network traffic monitoring application to measure the TCP, UDP,

and ICMP network traffic over time.

Dataset. We used the publicly-available 670GB network traces

from CAIDA [13]. These were recorded on the high-speed Internet

backbone links in Chicago in 2015. We converted the raw network

traces into the NetFlow format [15], and then removed unused fields

(such as source and destination ports, duration, etc.) in eachNetFlow

record to build a dataset for our experiments. The dataset contains

115, 472, 322 TCP flows, 67, 098, 852 UDP flows, and 2, 801, 002 ICMP

flows. Each stream data item is a flow record in the dataset.

Query. We deployed the evaluated systems to measure the total

sizes of TCP, UDP, and ICMP network traffic in each sliding window.

Results. Figure 8 (a) presents the throughput comparison between

StreamApprox, Spark-based SRS, Spark-based STS systems, as

well as the native Spark and Flink systems. The result shows that

Spark-based StreamApprox achieves more than 2× throughput

than Spark-based STS, and achieves a similar throughput com-

pared with Spark-based SRS (which loses the capability of consid-

ering each sub-stream fairly). In addition, due to Flink’s pipelined

stream processing model, Flink-based StreamApprox achieves a

throughput even 1.6× higher than Spark-based StreamApprox

and Spark-based SRS. We also compare StreamApprox with the

native Spark and Flink systems. With the sampling fraction of 60%,

the throughput of Spark-based StreamApprox is 1.3× higher than

the native Spark execution, whereas the throughput of Flink-based

StreamApprox is 1.35× higher than the native Flink execution.

Surprisingly, the throughput of the native Spark execution is even

higher than the throughput of Spark-based STS. This is because

Spark-based STS requires the expensive extra steps (see §4.1).

Figure 8 (b) shows the accuracy loss with different sampling

fractions. As the sampling fraction increases, the accuracy loss of

StreamApprox, Spark-based SRS, and Spark-based STS decreases

(i.e., accuracy improves), but not linearly. StreamApprox systems

produce more accurate results than Spark-based SRS but less ac-

curate results than Spark-based STS. Note however that, although

both StreamApprox systems and Spark-based STS integrate strati-

fied sampling to ensure that every sub-stream is considered fairly,

StreamApprox systems are much more resource-friendly than

Spark-based STS. This is because Spark-based STS requires per-

forming the expensive дroupByKey operation as well as synchro-

nization among workers to take samples from the input data stream,

whereas StreamApprox performs the sampling operation with a

configurable sample size for sub-streams requiring no synchroniza-

tion between workers.

In addition, to show the benefit of StreamApprox, we fixed the

same accuracy loss for all four systems and then compared their

respective throughputs. Figure 8 (c) shows that, with the accuracy

loss of 1%, the throughput of Spark-based StreamApprox is 2.36×

higher than Spark-based STS, and 1.05× higher than Spark-based

SRS. Flink-based StreamApprox achieves a throughput even 1.46×

higher than Spark-based StreamApprox.

Finally, to make a comparison in terms of latency between these

systems, we created sampling function sampleOASRS() for Spark
RDD by implementing our proposed sampling algorithm OASRS,

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 20 40 60 80 Native

T
h
ro

u
g
h
p
u
t
(K

)
 #

it
e
m

s
/s

Sampling fraction (%)

(a) Throughput vs Sampling fraction

Flink-based StreamApprox
Spark-based StreamApprox

Spark-based SRS
Spark-based STS

Native Flink
Native Spark

 0

 0.2

 0.4

 0.6

 0.8

 10 20 40 60 80 90

A
c
c
u
ra

c
y
 l
o
s
s
 (

%
)

Sampling fraction (%)

(b) Accuracy loss vs Sampling fraction

Flink-based StreamApprox
Spark-based StreamApprox

Spark-based SRS
Spark-based STS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.1 0.4

T
h
ro

u
g
h
p
u
t
(K

)
 #

it
e
m

s
/s

Accuracy loss (%)

(c) Throughput vs Accuracy loss

Flink-based StreamApprox
Spark-based StreamApprox

Spark-based SRS
Spark-based STS

Figure 9. New York taxi ride analytics case-study: (a) Throughput with varying sampling fractions. (b) Accuracy loss with varying sampling

fractions. (c) Throughput with different accuracy losses.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

STS SRS StreamApprox

L
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Network traffic

NYC taxi

Figure 10. The latency comparison between StreamApprox,

Spark-based SRS, and Spark-based STS with the real-world datasets.

The sampling fraction is set to 60%.

and then measured the latency in processing the network traf-

fic dataset. Figure 10 indicates that the latency of Spark-based

StreamApprox is 1.39× and 1.69× lower than Spark-based SRS and

Spark-based STS in processing the network traffic dataset.

6.3 New York Taxi Ride Analytics

In the second case study, we evaluated StreamApprox with a taxi

ride dataset to measure the average distance of trips starting from

different boroughs in New York City.

Dataset.We used the NYC Taxi Ride dataset from the DEBS 2015

Grand Challenge [28]. The dataset consists of the itinerary infor-

mation of all rides across 10, 000 taxies in New York City in 2013.

In addition, we mapped the start coordinates of each trip in the

dataset into one of the six boroughs in New York.

Query. We deployed StreamApprox, Spark-based SRS, Spark-

based STS systems, as well as the native Spark and Flink systems

to measure the average distance of the trips starting from various

boroughs in each sliding window.

Results. Figure 9 (a) shows that Spark-based StreamApprox achieves

a similar throughput compared with Spark-based SRS (which, how-

ever, does not consider each sub-stream fairly), and a roughly 2×

higher throughput than Spark-based STS. In addition, due to Flink’s

pipelined streaming model, Flink-based StreamApprox achieves a

1.5× higher throughput compared to Spark-based StreamApprox

and Spark-based SRS. We again compared StreamApprox with

the native Spark and Flink systems. With the sampling fraction of

60%, the throughput of Spark-based StreamApprox is 1.2× higher

than the throughput of the native Spark execution, whereas the

throughput of Flink-based StreamApprox is 1.28× higher than the

throughput of the native Flink execution. Similar to the result in

the first case study, the throughput of the native Spark execution is

higher than the throughput of Spark-based STS.

Figure 9 (b) depicts the accuracy loss of these systems with

different sampling fractions. The results show that they all achieve

a very similar accuracy in this case study. In addition, we also

fixed the same accuracy loss of 1% for all four systems to measure

their respective throughputs. Figure 9 (c) shows that Flink-based

StreamApprox achieves the best throughput which is 1.6× higher

than Spark-based StreamApprox and Spark-based SRS, and 3×

higher than Spark-based STS. Figure 10 further indicates that Spark-

based StreamApprox provides the 1.52× and 2.18× lower latency

than Spark-based SRS and Spark-based STS.

7 Discussion

The design of StreamApprox is based on the assumptions men-

tioned in §2.3. In this section, we discuss some approaches that

could be used to meet our assumptions.

I: Virtual cost function. We currently assume that there exists

a virtual cost function to translate a user-specified query budget

into the sample size. The query budget could be specified as either

available computing resources, desired accuracy or latency.

For instance, with an accuracy budget, we can define the sample

size for each sub-stream based on a desired width of the confidence

interval using Equation 9 and the “68-95-99.7” rule. With a desired

latency budget, users can specify it by defining the window time

interval or the slide interval for the computations over the input

data stream. It becomes a bit more challenging to specify a budget

for resource utilization. Nevertheless, we discuss some existing

techniques that could be used to implement such a cost function to

achieve the desired resource target. In particular, we refer to the

two existing techniques: (a) virtual data center [4], and (b) resource

prediction model [44] for latency requirements.

11

Pulsar [4] proposes an abstraction of a virtual data center (VDC)

to provide performance guarantees to tenants in the cloud. In partic-

ular, Pulsar makes use of a virtual cost function to translate the cost

of a request processing into the required computational resources

using a multi-resource token algorithm. We could adapt the cost

function for our purpose as follows: we consider a data item in the

input stream as a request and the “amount of resources” required

to process it as the cost in tokens. Also, the given resource budget

is converted in the form of tokens, using the pre-advertised cost

model per resource. This allows us to compute the sample size that

can be processed within the given resource budget.

For any given latency requirement, we could employ a resource

prediction model [42–44]. In particular, we could build the predic-

tion model by analyzing the diurnal patterns in resource usage [14]

to predict the future resource requirement for the given latency bud-

get. This resource requirement can then be mapped to the desired

sample size based on the same approach as described above.

II: Stratified sampling. In our design in §3, we currently assume

that the input stream is already stratified based on the source of

data items, i.e., the data items within each stratum follow the same

distribution — it does not have to be a normal distribution. This

assumption ensures that our error estimation mechanism still holds

correct since we apply the Central Limit Theorem. For example,

consider an IoT use-case which analyzes data streams from sen-

sors to measure the temperature of a city. The data stream from

each individual sensor follows the same distribution since it mea-

sures the temperature at the same location in the city. Therefore, a

straightforward way to stratify the input data streams is to consider

each sensor’s data stream as a stratum (sub-stream). In more com-

plex cases where we cannot classify strata based on the sources,

we need a pre-processing step to stratify the input data stream.

This stratification problem is orthogonal to our work, nevertheless

for completeness, we discuss two proposals for the stratification of

evolving streams: bootstrap [19] and semi-supervised learning [31].

Bootstrap [19] is a well-studied non-parametric sampling tech-

nique in statistics for the estimation of distribution for a given

population. In particular, the bootstrap technique randomly selects

“bootstrap samples” with replacement to estimate the unknown

parameters of a population, for instance, by averaging the boot-

strap samples. We can employ a bootstrap-based estimator for the

stratification of incoming sub-streams. Alternatively, we could also

make use of a semi-supervised algorithm [31] to stratify a data

stream. The advantage of this algorithm is that it can work with

both labeled and unlabeled streams to train a classification model.

8 Related Work

Given the advantages of making a trade-off between accuracy

and efficiency, approximate computing is applied to various do-

mains [38]. Our work mainly builds on the advancements in the

databases community.

Over the last two decades, the databases community has pro-

posed various approximation techniques based on sampling [2, 25],

online aggregation [27], and sketches [16]. These techniques make

different trade-offs w.r.t. the output quality, supported queries, and

workload. However, the early work in approximate computing was

mainly geared towards the centralized database architecture.

Recently, sampling-based approaches have been successfully

adopted for distributed data analytics [1, 26, 29, 36, 39]. In particular,

BlinkDB [1] proposes an approximate distributed query processing

engine that uses stratified sampling [2] to support ad-hoc queries

with error and response time constraints. ApproxHadoop [26] uses

multi-stage sampling [30] for approximate MapReduce job execu-

tion. Both BlinkDB and ApproxHadoop show that it is possible to

make a trade-off between the output accuracy and the performance

gains (also the efficient resource utilization) by employing sampling-

based approaches to compute over a subset of data items. However,

these “big data” systems target batch processing and cannot provide

required low-latency guarantees for stream analytics.

Like BlinkDB, Quickr [39] also supports complex ad-hoc queries

in big-data clusters. Quickr deploys distributed sampling opera-

tors to reduce execution costs of parallelized queries. In particular,

Quickr first injects sampling operators into the query plan; there-

after, it searches for an optimal query plan among sampled query

plans to execute input queries. However, Quickr is also designed

for static databases, and it does not account for stream analytics.

IncApprox [29] is a data analytics system that combines two com-

puting paradigms together, namely, approximate and incremental

computations [9, 10] for stream analytics. The system is based

on an online “biased sampling” algorithm that uses self-adjusting

computation [5, 8] to produce incrementally updated approximate

output. Lastly, PrivApprox [36] supports privacy-preserving data

analytics using a combination of randomized response and approx-

imate computation. By contrast, in StreamApprox, we designed

an “online” sampling algorithm solely for approximate computing,

while avoiding the limitations of existing sampling algorithms.

9 Conclusion

In this paper, we presented StreamApprox, a stream analytics

system for approximate computing. StreamApprox allows users

to make a systematic trade-off between the output accuracy and

the computation efficiency. To achieve this goal, we designed an

online stratified reservoir sampling algorithm which ensures the

statistical quality of the sample selected from the input data stream.

Our proposed sampling algorithm is generalizable to two promi-

nent types of stream processing models: batched and pipelined

stream processing models. To showcase the effectiveness of our

proposed algorithm, we built StreamApprox based on Apache

Spark Streaming and Apache Flink.

We evaluated the effectiveness of our system using a series of

micro-benchmarks and real-world case studies. Our evaluation

shows that, with varying sampling fractions of 80% to 10%, Spark-

and Flink-based StreamApprox achieves a significantly higher

throughput of 1.15×—3× compared to the native Spark Streaming

and Flink executions, respectively. Furthermore, StreamApprox

achieves a speedup of 1.1×—2.4× compared to a Spark-based sam-

pling system for approximate computing, while maintaining the

same level of accuracy for the query output. Finally, the source code

of StreamApprox along with the experimental setup is publicly

available: https://streamapprox.github.io/.

Acknowledgments.We thank anonymous reviewers and our shep-

herd Jan S. Rellermeyer for their helpful comments. This work is

supported by the resilience path within CFAED at TU Dresden,

the European Unions Horizon 2020 research and innovation pro-

gramme under grant agreements 645011 (SERECA), Amazon Web

Services Education Grant, and Microsoft Azure Grant.

12

https://streamapprox.github.io/

References

[1] Sameer Agarwal, BarzanMozafari, Aurojit Panda, HenryMilner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB: Queries with Bounded Errors and Bounded Re-

sponse Times on Very Large Data. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys).

[2] Mohammed Al-Kateb and Byung Suk Lee. 2010. Stratified Reservoir Sampling

over Heterogeneous Data Streams. In Proceedings of the 22nd International Con-
ference on Scientific and Statistical Database Management (SSDBM).

[3] Susanne Albers. 2003. Online algorithms: a survey. Mathematical Programming
(2003).

[4] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno

Thereska. 2014. End-to-end Performance Isolation Through Virtual Datacen-

ters. In Proceedings of the USENIX Conference on Operating Systems Design and
Implementation (OSDI).

[5] Pramod Bhatotia. 2015. Incremental Parallel and Distributed Systems. Ph.D.

Dissertation. Max Planck Institute for Software Systems (MPI-SWS).

[6] Pramod Bhatotia, Umut A. Acar, Flavio P. Junqueira, and Rodrigo Rodrigues.

2014. Slider: Incremental Sliding Window Analytics. In Proceedings of the 15th
International Middleware Conference (Middleware).

[7] Pramod Bhatotia, Marcel Dischinger, Rodrigo Rodrigues, and Umut A. Acar. 2012.

Slider: Incremental Sliding-Window Computations for Large-Scale Data Analysis.
Technical Report MPI-SWS-2012-004. MPI-SWS. http://www.mpi-sws.org/tr/
2012-004.pdf.

[8] Pramod Bhatotia, Pedro Fonseca, Umut A. Acar, Bjoern Brandenburg, and Ro-

drigo Rodrigues. 2015. iThreads: A Threading Library for Parallel Incremental

Computation. In proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[9] Pramod Bhatotia, Alexander Wieder, Istemi Ekin Akkus, Rodrigo Rodrigues,

and Umut A. Acar. 2011. Large-scale incremental data processing with change

propagation. In Proceedings of the Conference on Hot Topics in Cloud Computing
(HotCloud).

[10] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and

Rafael Pasquini. 2011. Incoop: MapReduce for Incremental Computations. In

Proceedings of the ACM Symposium on Cloud Computing (SoCC).
[11] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. 2005. Practical

privacy: the SuLQ framework. In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems (PODS).

[12] Avrim Blum, Katrina Ligett, and Aaron Roth. 2008. A learning theory approach

to non-interactive database privacy. In Proceedings of the fortieth annual ACM
symposium on Theory of computing (STOC).

[13] CAIDA. 2017. The CAIDA UCSD Anonymized Internet Traces 2015 (equinix-

chicago-dirA). (2017). Retrieved Sep, 2017 from http://www.caida.org/data/
passive/passive_2015_dataset.xml

[14] Reiss Charles, Tumanov Alexey, Ganger Gregory, H. Katz Randy, and Kozuch

Michael. 2012. Towards understanding heterogeneous clouds at scale: Google trace
analysis. Techical Report.

[15] Benoit Claise. 2004. Cisco systems NetFlow services export version 9. (2004).

[16] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2012.

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Found.
Trends databases (2012).

[17] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Process-

ing on Large Clusters. In Proceedings of the USENIX Conference on Operating
Systems Design and Implementation (OSDI).

[18] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. 2000. On Sequential

Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing
(2000).

[19] Darius M. Dziuda. 2010. Data mining for genomics and proteomics: analysis of
gene and protein expression data. John Wiley & Sons.

[20] Apache Software Foundation. 2017. Apache Flink. (2017). Retrieved Sep, 2017

from https://flink.apache.org/
[21] Apache Software Foundation. 2017. Apache Spark MLib. (2017). Retrieved Sep,

2017 from http://spark.apache.org/mllib/
[22] Apache Software Foundation. 2017. Apache Spark Streaming. (2017). Retrieved

Sep, 2017 from http://spark.apache.org/streaming
[23] Apache Software Foundation. 2017. Apache ZooKeeper. (2017). Retrieved Sep,

2017 from https://zookeeper.apache.org/
[24] Apache Software Foundation. 2017. Kafka - A high-throughput distributed

messaging system. (2017). Retrieved Sep, 2017 from http://kafka.apache.org

[25] Minos N. Garofalakis and Phillip B. Gibbon. 2001. Approximate Query Processing:

Taming the TeraBytes. In Proceedings of the International Conference on Very
Large Data Bases (VLDB).

[26] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D. Nguyen. 2015.

ApproxHadoop: Bringing Approximations to MapReduce Frameworks. In Pro-
ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[27] JosephM. Hellerstein, Peter J. Haas, andHelen J.Wang. 1997. Online Aggregation.

In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD).

[28] Zbigniew Jerzak and Holger Ziekow. 2015. The DEBS 2015 Grand Challenge. In

Proceedings of the 9th ACM International Conference on Distributed Event-Based
Systems (DEBS).

[29] Dhanya R. Krishnan, Do Le Quoc, Pramod Bhatotia, Christof Fetzer, and Rodrigo

Rodrigues. 2016. IncApprox: A Data Analytics System for Incremental Approxi-

mate Computing. In Proceedings of the 25th International Conference on World
Wide Web (WWW).

[30] Sharon Lohr. 2009. Sampling: design and analysis, 2nd Edition. Cengage Learning.
[31] MohammadMMasud, ClayWoolam, Jing Gao, Latifur Khan, Jiawei Han, KevinW

Hamlen, and Nikunj C Oza. 2012. Facing the reality of data stream classification:

coping with scarcity of labeled data. Knowledge and information systems (2012).
[32] Commons Math. 2017. The Apache Commons Mathematics Library. (2017).

Retrieved Sep, 2017 from http://commons.apache.org/proper/commons-math
[33] Xiangrui Meng. 2013. Scalable Simple Random Sampling and Stratified Sampling.

In Proceedings of the 30th International Conference on Machine Learning (ICML).
[34] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP).

[35] Swaminathan Natarajan. 1995. Imprecise and Approximate Computation. Kluwer
Academic Publishers.

[36] Do Le Quoc, Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer,

and Thorsten Strufe. 2017. PrivApprox: Privacy-Preserving Stream Analytics. In

Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC).
[37] Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetze, Volker Hilt, and

Thorsten Strufe. 2017. Approximate Stream Analytics in Apache Flink and

Apache Spark Streaming. CoRR abs/1709.02946 (2017).

[38] Adrian Sampson. 2015. Hardware and Software for Approximate Computing. Ph.D.
Dissertation. University of Washington.

[39] Kandula Srikanth, Shanbhag Anil, Vitorovic Aleksandar, Olma Matthaios, Grandl

Robert, Chaudhuri Surajit, and Bolin Ding. 2016. Quickr: Lazily Approximat-

ing Complex Ad-Hoc Queries in Big Data Clusters. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD).

[40] Steven K. Thompson. 2012. Sampling. Wiley Series in Probability and Statistics.

[41] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) (1985).

[42] Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo Rodrigues. 2010.

Brief Announcement: Modelling MapReduce for Optimal Execution in the Cloud.

In proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of Dis-
tributed Computing (PODC).

[43] Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo Rodrigues. 2010.

Conductor: Orchestrating the Clouds. In proceedings of the 4th international
workshop on Large Scale Distributed Systems and Middleware (LADIS).

[44] Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo Rodrigues. 2012.

Orchestrating the Deployment of Computations in the Cloud with Conductor.

In proceedings of the 9th USENIX symposium on Networked Systems Design and
Implementation (NSDI).

[45] Wikipedia. 2017. 68-95-99.7 Rule. (2017). Retrieved Sep, 2017 from https:
//en.wikipedia.org/wiki/68-95-99.7_rule

[46] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012.

Resilient Distributed Datasets: A Fault Tolerant Abstraction for In-Memory

Cluster Computing. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI).

[47] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at

Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (SOSP).

13

http://www.mpi-sws.org/tr/2012-004.pdf
http://www.mpi-sws.org/tr/2012-004.pdf
http://www.caida.org/data/passive/passive_2015_dataset.xml
http://www.caida.org/data/passive/passive_2015_dataset.xml
https://flink.apache.org/
http://spark.apache.org/mllib/
http://spark.apache.org/streaming
https://zookeeper.apache.org/
http://kafka.apache.org
http://commons.apache.org/proper/commons-math
https://en.wikipedia.org/wiki/68-95-99.7_rule
https://en.wikipedia.org/wiki/68-95-99.7_rule

	Abstract
	1 Introduction
	2 Overview and Background
	2.1 System Overview
	2.2 Computational Model
	2.3 Design Assumptions
	2.4 Background: Technical Building Blocks

	3 Design
	3.1 System Workflow
	3.2 Online Adaptive Stratified Reservoir Sampling
	3.3 Error Estimation

	4 Implementation
	4.1 Background
	4.2 StreamApprox Implementation Details

	5 Evaluation
	5.1 Experimental Setup
	5.2 Varying Sample Sizes
	5.3 Varying Batch Intervals
	5.4 Varying Arrival Rates for Sub-Streams
	5.5 Varying Window Sizes
	5.6 Scalability
	5.7 Skew in the Data Stream

	6 Case Studies
	6.1 Experimental Setup
	6.2 Network Traffic Analytics
	6.3 New York Taxi Ride Analytics

	7 Discussion
	8 Related Work
	9 Conclusion
	References

