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Abstract. In this paper kernel estimates of the joint and conditional probability density
functions are used to generate synthetic streamflow sequences. Streamflow is assumed to
be a Markov process with time dependence characterized by a multivariate probability
density function. Kernel methods are used to estimate this multivariate density function.
Simulation proceeds by sequentially resampling from the conditional density function
derived from the kernel estimate of the underlying multivariate probability density
function. This is a nonparametric method for the synthesis of streamflow that is data-
driven and avoids prior assumptions as to the form of dependence (e.g., linear or
nonlinear) and the form of the probability density functions (e.g., Gaussian). We show,
using synthetic examples with known underlying models, that the nonparametric method
presented is more flexible than the conventional models used in stochastic hydrology and
is capable of reproducing both linear and nonlinear dependence. The effectiveness of this
model is illustrated through its application to simulation of monthly streamflow from the
Beaver River in Utah.

1. Introduction

A goal of stochastic hydrology is to generate synthetic
streamflow sequences that are statistically similar to observed
streamflow sequences. Statistical similarity implies sequences
that have statistics and dependence properties similar to those
of the historical record. These sequences represent plausible
future streamflow scenarios under the assumption that the
future will be similar to the past. In this paper we present a
nonparametric approach for the generation of synthetic
streamflow sequences. This approach is appropriate for the
simulation of stationary unregulated streamflow inputs that are
needed in simulation studies to analyze alternative designs,
operation policies, and rules for water resources systems. The
utility of this approach relative to conventional parametric
methods is demonstrated through applications to monthly
streamflow from the Beaver River, near Beaver, Utah, and to
samples generated from linear and nonlinear models with
known statistical attributes.
Consider a time series {X1, X2, z z z , Xt, z z z } where Xt

represents streamflow quantities at time t. In practice, the
dependence structure of streamflow sequences is often as-
sumed to be Markovian, that is, dependent on only a finite set
of prior values. With this assumption, Bras and Rodroguez-
Iturbe [1985] note that stochastic streamflow models are an
exercise in conditional probability. An order p model simulates
Xt on the basis of the previous values, that is, Xt21, Xt22, z z z ,
Xt2p. This requires that a d 5 p 1 1 dimensional joint
probability distribution be specified. Simulation can proceed
from the conditional density function, defined as

f~XtuXt21, Xt22, z z z , Xt2p!

5
f~Xt, Xt21, Xt22, z z z , Xt2p!

E f~Xt, Xt21, Xt22, z z z , Xt2p! dXt

(1)

Traditional parametric models specify (1) through assumed
distributions. Here, it is suggested that streamflow may instead
be directly modeled from empirical, data-driven estimates of
the joint and conditional density functions given in (1). Non-
parametric estimates of these density functions are developed
directly from the historical data. A method is considered non-
parametric if it can reproduce a broad class of possible under-
lying density functions [Scott, 1992, p. 44]. Nonparametric
methods for density estimation strive to approximate the un-
derlying density locally using data from a small neighborhood
of the point of estimate [Lall, 1995]. They impose only weak
assumptions, such as continuity of the target function, rather
than a priori specification or choice of a particular parametric
probability distribution (Gaussian, lognormal, etc.). A perusal
of the statistical literature shows that nonparametric statistical
estimation, using splines, kernel functions, nearest neighbor
methods and orthogonal series methods, is an active area, with
major developments still unfolding. Silverman [1986] and Scott
[1992] provide good introductory texts. Applications of non-
parametric methods in hydrology are reviewed by Lall [1995].
Our model is based on a nonparametric kernel density esti-

mate of the p 1 1 dimensional density function f(Xt ,
Xt21, z z z , Xt2p), which is then used in (1) to estimate the
conditional density function that forms the basis for generation
of synthetic streamflow series. This is called a nonparametric
order p , or NPp, model. It has the following advantages:
1. Statistical attributes of the data are automatically hon-

ored since one works with a smoothed empirical frequency
distribution based directly on the historical data. Such at-
tributes include nonlinear dependence and inhomogeneity
(i.e., statistical properties that vary by streamflow state).
2. The somewhat tenuous issue of choosing between dif-

ferent models for the probability distribution is sidestepped.
3. Considerations related to the above two points lead to a

procedure that is easy to use and is able to automatically model
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the distributional and dependence characteristics of the histor-
ical time series. Use of such a procedure should result in
improved decisions for reservoir operation and design.
We shall first review some of the traditional approaches,

noting their shortcomings and motivating the need for the
nonparametric approach. Kernel density estimation is re-
viewed next. We then describe the NPp model and illustrate its
use with synthetic data from a linear autoregressive (AR1)
model and a self-exciting threshold autoregressive (SETAR)
model [Tong, 1990, section 3.3.1.1]. These tests demonstrate
the effectiveness of the NPp approach in representing both
linear and nonlinear systems, without prior specification of the
model equations. An application of our model to simulate
monthly streamflow from the Beaver River, near Beaver, Utah,
is then presented and results are compared to those from an
AR1 model with marginal densities chosen from the best fitting
of four commonly used probability density functions.

2. Background
Annual and monthly streamflow has been modeled exten-

sively using autoregressive moving average (ARMA) type
models [Bras and Rodriguez-Iturbe, 1985; Salas et al., 1980;
Pegram et al., 1980; Loucks et al., 1981; Stedinger et al., 1985b;
Stedinger and Vogel, 1984; McLeod et al., 1977; Hipel et al.,
1977; Yevjevich, 1972]. The early Thomas-Fiering model
[Thomas and Fiering, 1962; Fiering, 1967; Beard, 1967], an au-
toregressive lag 1 model with seasonally varying coefficients, is
a good example of this approach.

~Xt, j 2 mj! 5 r j
s j

s j21
~Xt, j21 2 mj21! 1 s j~1 2 r j

2!1/ 2Wt, j (2)

where Xt, j is the seasonal streamflow at year t and season
(month) j, r j is the lag 1 correlation coefficient between sea-
sons j and j 2 1, mj is the mean streamflow in season j , s j is
the standard deviation of flow in season j, and Wt, j is an
independent random variable with mean 0 and variance 1. By
allowing the noise term Wt, j to be from a skewed distribution
[Lettenmaier and Burges, 1977; Todini, 1980], streamflow from
a skewed distribution can be approximated. Thus this model
reproduces the mean, variance, and correlations between
monthly streamflows and approximates the skewness. These
are the variables traditionally considered as most important by
stochastic hydrologists. As written, this model applies only to a
single site; however, it is illustrative of a very general class of
ARMAmodels for single sites and in a multivariate context for
multiple sites or seasons that have been developed and applied
extensively in hydrology over the years and described at length
in texts on the subject [e.g., Salas et al., 1980; Loucks et al.,
1981; Bras and Rodriguez-Iturbe, 1985].
Such models can be viewed as special cases of a general

multivariate ARMA( p, q) model:

Xt11 5 O
j50

p

AjXt2j 1 O
j50

q

BjWt2j 1 U (3)

where Xt is a vector of the variables of interest, including
annual and seasonal flows at all sites; Aj and Bj are coefficient
matrices; U is a vector of coefficients, and Wt is a vector of
independent random innovations. The first term represents an
autoregressive component, and the second term represents a
moving average component. In all but the simplest univariate

models it is impractical to assume anything but a Gaussian
distribution for theWt. This is equivalent to the assumption of
a multivariate Gaussian distribution for the time series depen-
dence structure. The ARMA model is then defined through
the estimation of the parameters Aj, Bj, U and the model
order ( p , q). To account for the fact that the real streamflows
are not Gaussian, the flows are often first transformed to a
Gaussian distribution and then the transformed variables are
used with (3) [Stedinger, 1981; Stedinger and Taylor, 1982; Ste-
dinger et al., 1985a]. Reproducing moments in the original
coordinates may then be difficult.
The general linear model depicted by (3) is a special case of

the conditional density function of (1). This multivariate Gaus-
sian structure with transformed marginal distributions (denot-
ed MGTM here) has with few exceptions [Yakowitz, 1985;
Smith, 1991, 1992; Lall and Sharma, 1996] underlain practically
all stochastic hydrology to date. The Lall and Sharma work is
very similar in spirit to this work, though its approach is that of
a nearest neighbor bootstrap rather than kernel density esti-
mation. We believe that both are good alternatives that need to
be considered for streamflow simulation.
The preceding discussion reveals the basic structure of cur-

rent time series estimation methods and hints at their re-
stricted view of the possibilities of variation in hydrological
time series. The main reasons for the prevalence of linear
ARMA models for hydrologic time series analysis may be the
following: (1) the framework has been well developed in the
statistical literature for stationary processes; (2) the techniques
are well understood and taught; and (3) software for multivar-
iate analysis has been developed by a number of people, is
readily available, and does not pose a severe computational
burden [Salas, 1993].
Some drawbacks of the MGTM approach are the following:
1. Only a limited degree of heterogeneity in the statistical

dependence structure is admitted through the normalizing
transform. The dependence of variance of streamflow on
streamflow magnitude is often noted. There is evidence in
some streamflow data that correlations are different depending
on whether flows are low or high. We give an example of this
in section 6 using state-dependent correlation statistics defined
in Appendix A. In an MGTM model the correlation structure
is fixed regardless of flow magnitude. Among others, Yevjevich
[1972] has argued for the systematic identification of nonsta-
tionarities in the mean of the time series (e.g., jumps, periodi-
cities) and their removal to yield a stationary time series that
can be analyzed by standard methods. However, such features
may be part of the underlying dynamics and important to
model behavior (e.g., to a drought regime) that may be related
to threshold dependent processes.
2. The MGTM models impose a time reversible structure.

The joint distributions of (Xt, Xt11, z z z , Xt1m) and of (Xt,
Xt21, z z z , Xt2m) are identical. Tong [1990, p. 9] shows an
example of daily streamflow that is not time reversible and
argues that the dynamics of physical processes is time irreversible.
3. The choice of a distribution for Wt or of an appropriate

transform can be problematic. For short series, statistical tests
are unable to distinguish between candidate distributions [see
Kite, 1977]. None of the common transformations may be ap-
plicable. Figure 1 illustrates this problem with July monthly
streamflow from the Beaver River, near Beaver, Utah, located
at 388169500N and 1128349250W at an elevation of 6200 feet
(1890 m) above mean sea level (U.S. Geological Survey station
10234500). Slack and Landwehr [1992] report this station as
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unregulated and free from other anthropogenic effects. The
figure shows the histogram of monthly flow, with four com-
monly used distributions fitted to the data. The histogram has
bimodality that cannot be reproduced by any of the distribu-
tions commonly used. This figure also shows a kernel density
estimate. Note that this is effectively a smoothing of the histo-
gram. The following Filliben correlation statistics [Grygier and
Stedinger, 1990] test the goodness of fit for each distribution in
Figure 1: kernel density estimate, 0.998; normal, 0.963; lognor-
mal, 0.979; three-parameter lognormal, 0.982; and gamma,
0.985. The Filliben correlation statistic is the correlation be-
tween empirical quantiles from a plotting position and fitted
distribution quantiles corresponding to the data values. For a
perfect fit the Filliben correlation statistic should be 1, and it is
by construction a value that lies close to 1. The relative depar-
ture from 1 provides a measure of the relative goodness of fit
between the different distributions. By this measure the non-
parametric density estimate fits better than any of these com-
monly used parametric choices. A x2 test [Benjamin and Cor-
nell, 1970, p. 460] rejected at the 95% level the hypothesis that
this histogram was from a normal distribution. However, the x2

test would not reject any of the other distributions, including
the nonparametric density estimate, which is typical of the
inability to distinguish between candidate distributions.
4. The synthetic traces generated by MGTM replicate the

first few (2 or 3) moments of the underlying dependence struc-
ture. Consequently, the generated series may bear little resem-
blance to the observed series in terms of persistence and
threshold crossings, factors that are of interest to hydrologists.
The ARMA models also are incapable of displaying sudden
bursts or jumps, a feature that may often be observed during an
otherwise prolonged drought.
5. Salas and Smith [1981] and Salas et al. [1980] discussed

physical justifications for ARMA models and showed that a
linear control system representation of basin processes can
lead to ARMA models of streamflow. However, other factors

emerge when one considers the relationship of streamflow to
some causative factors. For instance, in snow-fed basins the
streamflow response during snowmelt months is a threshold
response to temperature. The dynamics of soil moisture is
hysteretic and nonlinear. The dynamics of vegetative consump-
tive use and retention of water is also quite different during wet
and dry periods and as a function of temperature. Runoff
generation mechanisms during protracted wet or dry periods
will consequently be different. While these comments have
more direct bearing on streamflow at timescales shorter than a
month or a year, they are relevant for the longer timescales in
that they influence the variance of the streamflow at these
timescales.
6. Despite the fact that nearly 30 years have elapsed since

the classical time series (AR) models were introduced to prac-
ticing hydrologists, acceptance and application of these models
for drought analysis and reservoir operation by practitioners
has been limited. They often prefer to base their decisions on
the historical record (or a resampled proxy thereof). Kendall
and Dracup [1991] note that the index sequential method,
which is basically a sequential resampling of the historical
record, appears to be the procedure of choice in many water
management agencies, including the California Department of
Water Resources, U.S. Bureau of Reclamation, Los Angeles
Department of Water, and the Metropolitan Water District of
Southern California. This is practiced in spite of the recogni-
tion that history is unlikely to repeat itself and that the record
is perhaps woefully short.
In summary, while the MGTM ARMA framework is indeed

useful in certain contexts, a more flexible time series analysis
method capable of reproducing additional features of hydro-
logic data is needed. The success of linear ARMA models with
some hydrologic data sets may be fortuitous and a conse-
quence of short records. The technical issues are nonlinearity,
nonstationarity, and inhomogeneity in the underlying depen-
dence structure. Parametric nonlinear models [Bendat and

Figure 1. Histogram and probability density estimates of July monthly streamflow (in cubic feet per second;
1 foot3 s21 is equal to 28.317 L s21) in the Beaver River near Beaver, Utah. The dots on the x axis denote the
individual data points.
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Piersol, 1986; Tong, 1990] can be used in place of the linear
ARMAmodels to model nonlinear time series. The use of such
models, however, still requires specification of the form of
nonlinear dependence, something which may be difficult to do
in practice. From a practitioner’s perspective the key issues are
reproducibility of observed data characteristics, simplicity, and
dependability. The nonparametric techniques proposed here
avoid the difficult model specification issues associated with
parametric linear or nonlinear models. They amount to resa-
mpling from the original data, with perturbations, and repro-
duce directly the characteristics of the original data in a simple
and dependable way.

3. Kernel Density Estimation
Kernel density estimation entails a weighted moving average

of the empirical frequency distribution of the data. Most non-
parametric density estimators can be expressed as kernel den-
sity estimation methods [Scott, 1992, p. 125.]. In this paper we
use multivariate kernel density estimators with Gaussian ker-
nels and bandwidth selected using least squares cross-
validation (LSCV) [e.g., Scott, 1992, p. 160]. This bandwidth
selection method is one from among the many available meth-
ods. Our methodology is intended to be generic and should
work with any bandwidth and kernel density estimation
method. This section reviews kernel density estimation first in
a univariate and then in a multivariate setting and gives details
of the LSCV procedure for estimating bandwidth. For a review
of hydrologic applications of kernel density and distribution
function estimators, readers are referred to work by Lall
[1995]; Silverman [1986] and Scott [1992] provide good intro-
ductory texts.
A univariate kernel probability density estimator is written

f̂~ x! 5 O
i51

n 1
nh KS x 2 xi

h D (4)

where there are n sample data xi. K( ) is a kernel function
that must integrate to 1, and h is a parameter called the
bandwidth that defines the locale over which the empirical
frequency distribution is averaged. There are many possible
kernel functions given in texts such as those by Silverman
[1986] and Scott [1992]. The Gaussian kernel function, a pop-
ular and practical choice, is used here:

K~ x! 5
1

~2p!1/ 2
exp ~2x2/ 2! (5)

The density estimate in (4) is formed by summing kernels with
bandwidth h centered at each observation xi. This is similar to
the construction of a histogram where individual observations
contribute to the density by placing a rectangular box (analo-
gous to the kernel function) in the prespecified bin the obser-
vation lies in. The histogram is discrete and sensitive to the
position and size of each bin. By using smooth kernel functions,
the kernel density estimate in (4) is smooth and continuous.
A multivariate extension of (4) and (5) for a vector x in d

dimensions can be written as

f̂~x! 5
1
n O

i51

n 1
~2p!d/ 2 det ~H!1/ 2

z exp S2
~x 2 x i!TH21~x 2 x i!

2 D (6)

where n is the number of observed vectors xi and H is a
bandwidth matrix that must be from the class of symmetric
positive definite d 3 d matrices [Wand and Jones, 1994]. The
above density estimate is formed by summing Gaussian kernels
with a covariance matrix H, centered at each observation xi. A
useful specification of the bandwidth matrix H is

H 5 l2S (7)

Here, S is the sample covariance matrix of the data and l2

prescribes the bandwidth relative to this estimate of scale.
These are parameters of the model that are estimated from the
data. The procedure of scaling the bandwidth matrix propor-
tional to the covariance matrix (equation (7)) is called “spher-
ing” [Fukunaga, 1972] and ensures that all kernels are oriented
along the principal components of the covariance matrix.
Silverman [1986, pp. 70–72] cites results indicating that suf-

ficient conditions for convergence of the kernel density esti-
mate to an underlying density function under broad conditions
met by any kernel that is a usable probability density function,
are that as n 3 ` , h 3 0 and nh 3 ` . This also applies to
l in the multivariate context. However, the rate of convergence
depends on how h or l is chosen. Methods for choosing the
bandwidth are based on evaluation of factors such as bias,
E{ f(x) 2 f̂(x)}; variance, Var{ f̂(x)}; mean square error
(MSE); integrated square error (ISE); and mean integrated
square error (MISE) of the estimate:

MSE5 E$@ f~x! 2 f̂~x!#2%

5 $E@ f~x! 2 f̂~x!#%2 1 Var $ f̂~x!% (8)

ISE5 E
5d

~ f̂~x! 2 f~x!!2 dx (9)

MISE5 EE
5d

~ f̂~x! 2 f~x!!2 dx (10)

A small value of the bandwidth (h or l) can result in a density
estimate that appears “rough,” and has a high variance. On the
other hand, too high an h results in an “over smoothed” den-
sity estimate with modes and asymmetries smoothed out. Such
an estimate has low variance but is more biased with respect to
the underlying density. This bias-variance trade-off [Silverman,
1986, section 3.3.1] plays an important role in choice of h.
Taylor series expansion of the one-dimensional density es-

timate in (4) can be used to show that the asymptotic mean
integrated square error (AMISE) is [Silverman, 1986, p. 40;
Sain et al., 1994]

AMISE~h! <
R~K!

nh 1
1
4

sK
4 h4R~ f 0! (11)

where R[ g( x)] 5 *g( x)2 dx for any function g( x) (either
K( x) or f0( x)), f0 is the second derivative, and sK

2 5 *u2K(u)
du . This can be generalized to higher dimensions.
One choice for the bandwidth is one that directly minimizes

(11) if the true distribution were known. This value is known as
the AMISE optimal bandwidth for that distribution. For a
Gaussian distribution with Gaussian kernel functions (estima-
tor defined by (6) and (7)) Silverman [1986, pp. 86–87] gives
this bandwidth as

l 5 S 4
d 1 2D

1/~d14!

n21/~d14! (12)

In the univariate case (d 5 1) this reduces to h 5 1.06ŝn21/5
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where ŝ is an estimate of the standard deviation (Silverman ad-
vocates a robust estimate) of the data. An upper bound on band-
width can be obtained by minimizing R( f0) over a class of prob-
ability densities. This leads to the optimal bandwidth for the
smoothest possible density function. Scott [1992, p. 181] cites
results showing that this upper bound (1# d# 10) is 1.08 to 1.12
times the l in (12).
Data-driven methods have been developed to estimate the

bandwidth when the underlying distribution is not known.
They minimize estimates of ISE, MISE, or AMISE formed
only from the data. LSCV [Silverman, 1986, pp. 48–52] is one
such method, based on the fact that the integrated square error
(equation (9)) can be expanded as

ISE5 R@ f̂~x!# 2 2E f̂~x! f~x! dx 1 R@ f~x!# (13)

The first term may be directly evaluated. The second term may
be recognized as E[ f̂(X)] and estimated using leave one out
cross validation. The last term, R( f(x)), is independent of the
bandwidth and does not need to be considered. The LSCV
method in one dimension chooses the bandwidth, h, to mini-
mize the following LSCV score, comprising the first two terms
in (13):

LSCV~h! 5
1
n2h O

i51

n O
j51

n

K ~2!S xi 2 xj
h D

2
2
n O

i51

n O
j51
jÞ1

n 1
nh KS xi 2 xj

h D (14)

Here, K(2) denotes the convolution of the kernel function with
itself (for example, if K is the standard Gaussian kernel, then
K(2) will be the Gaussian density with variance 2).
On the basis of results by Sain et al. [1994] and Adamowski

and Feluch [1991] the generalization of the LSCV score to
higher dimensions with multivariate Gaussian kernel functions
and a symmetric positive definite bandwidth matrix H as spec-
ified by, for example, (7) is

LSCV(H)

5

1 1 ~1/n!O
i51

n O
jÞi

@exp ~2Lij/4! 2 2d/ 211 exp ~2Lij/ 2!#

~2p1/ 2!dn det ~H!1/ 2

(15)

where

Lij 5 ~x i 2 x j!TH21~x i 2 x j! (16)

We use numerical minimization of (15) over the single param-
eter l with bandwidth matrix from (7) to estimate all the
necessary probability density functions. We recognize that
LSCV bandwidth estimation is occasionally degenerate, so on
the basis of suggestions by Silverman [1986, p. 52] and the
upper bound given by Scott [1992, p. 181], we restrict our
search to the range l/4 to 1.1l.

4. Nonparametric Order p Markov Streamflow
Model, NPp
To keep the presentation simple, the equations will be pre-

sented for a lag 1 (order p 5 1) model. The formulae pre-

sented are readily extended to include higher-order lags. Con-
sideration of higher-order models raises the issue of
determination of the correct order p . This is deferred to future
work. Here results are presented for the simplest case (NP1)
analogous to the simple AR1 model. In the form presented
below, the model can be applied to simulate stationary se-
quences such as annual flows. Section 6 describes how appli-
cation of the model to pairs of sequential months is used to
simulate seasonally nonstationary (e.g., monthly) streamflow
sequences.
The joint distribution of Xt and its prior value Xt21 is esti-

mated using (6) on the basis of n observed data vectors xi. For
a time series x0, x1, x2, z z z , xn, the data vector xi has ele-
ments ( xi, xi21), where 1 # i # n . Hence x1 5 ( x1, x0),
x2 5 ( x2, x1), z z z , xn 5 ( xn, xn21). These are a series of
ordered pairs. There is one less ordered pair than the length of
the time series. The conditional density (equation (1)) is writ-
ten as

f~XtuXt21! 5
f~Xt, Xt21!

E f~Xt, Xt21! dXt

5
f~Xt, Xt21!
fm~Xt21!

(17)

where fm(Xt21) is the marginal density of Xt21. Now applying
the estimator in (6), the joint density estimate is obtained as

f̂~Xt, Xt21! 5
1
n O

i51

n 1
2pl2 det ~S!1/ 2

z exp S2H F Xt 2 xi
Xt21 2 xi21G

T

S21F Xt 2 xi
Xt21 2 xi21GY2l2J D (18)

Note that each observation contributes to this density estimate
depending on the distance of the observation ( xi, xi21) to the
point (Xt, Xt21), the bandwidth l, and the sample covariance
matrix S of (Xt, Xt21). The bandwidth l is obtained by min-
imizing the LSCV score function (equation (15)).
Denote the terms in the covariance matrix:

S 5 F S11S21 S12
S22G (19)

Then for a given Xt21, (18) substituted in (17) reduces to a
sum of Gaussian kernels dependent on a single variable Xt:

f̂~XtuXt21! 5 O
i51

n 1
~2pl2S9!1/ 2

wi exp S2
~Xt 2 bi!2

2l2S9 D (20)

where

wi 5 exp S2
~Xt21 2 xi21!2

2l2S22
DYO

j51

n

exp S2
~Xt21 2 xj21!2

2l2S22
D

(21a)

S9 5 S11 2
S12
2

S22
(21b)

bi 5 xi 1 ~Xt21 2 xi21!
S12
S22

(21c)

This is illustrated in Figure 2. The conditional density is a
slice through the bivariate density function, composed of a sum
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of slices through the individual kernels that form the bivariate
density estimate. Parameters bi and l2S9 give the center and
spread of each kernel slice, respectively. The area under each
kernel slice is the weight wi which controls the contribution of
xi21 to the conditional density estimate. Observations that lie
close to the conditioning plane (i.e., where (Xt21 2 xi21) is
small) receive greater weight. A time series realization is sim-
ulated by sampling Xt from (20), given a current value for
Xt21. The simulation then proceeds sequentially through time,
updating Xt21 as the last sampled value. A flowchart describ-
ing the steps needed to simulate a sample of size nr is provided
in Figure 3.
Note that in the simulation scheme one does not need to

explicitly estimate the conditional density in (20). Since the
conditional density function is the sum of n Gaussian kernel

slices that each contribute weight wi (the weights sum to 1,
equation (21a)) simulation can be achieved by first picking a
slice with probability wi and then selecting Xt as a random
variate from that kernel slice with mean bi and variance l2S9
using

Xt 5 bi 1 l~S9!1/ 2Wt (22)

where Wt is N(0, 1).
A complication can arise because Wt is unbounded and may

result in negative Xt. The Gaussian kernels used in the kernel
density estimate have infinite support and assign some (small)
probability to regions of the domain where the streamflow is
negative (i.e., invalid or out of bounds). This leakage of prob-
ability across boundaries is a problem when using kernel den-
sity estimates based on kernels with infinite support. It is also
present in the parametric context where a Gaussian distribu-
tion or any parametric distribution with support extending to
negative values or beyond a lower or upper bound on the
process is used. Here we address the leakage by checking at
each step whether the simulated flow values are positive.
Whenever a negative Xt is encountered, we generate another
sample from the same kernel slice, repeating this process until
a positive Xt is obtained. This is achieved by simply generating
a new Wt in (22). This is equivalent to cutting the portion of
each kernel that is out of bounds and renormalizing that kernel
to have the appropriate mass. We record how often this is
done, as frequent boundary normalization is symptomatic of a
substantial boundary leakage problem. Although the boundary
renormalization procedure results in some bias in the simu-
lated density in the neighborhood of the boundary, this was
required for less than 1% of total realizations for the stream-
flow data sets the model was evaluated on.

Figure 2. Illustration of conditional probability density
function.

Figure 3. Flowchart of NP1 model.
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There are two alternatives for initializing the nonparametric
simulation procedure. The first is to sample Xt at t 5 0 from
the appropriate marginal distribution, which is a univariate
kernel density function given by (4) with bandwidth h 5
l(S11)

1/ 2. Each prior data point contributes equal weight
(1/n) to this kernel estimate. Therefore the initial variate may
be obtained by picking one of the prior values xi21 at random
with probability 1/n and then using

Xt 5 xi21 1 l~S11!1/ 2Wt (23)

where Wt is N(0, 1).
The second initialization alternative is to specify Xt at t 5 0

arbitrarily (e.g., equal to the mean) and provide a suitably long
“warm-up” period, discarding the first several values simulated
to avoid any initialization bias.
The nonparametric simulation model has been presented

from the perspective of formally estimating the underlying
probability density function and then sampling from it. How-
ever, when viewed operationally one sees that it has close ties
to the bootstrap [Efron, 1979; Efron and Tibishirani, 1993]. In
fact, it is a smoothed bootstrap. Each kernel slice that contrib-
utes weight wi is centered over a prior data pair ( xi, xi21), so
picking a kernel slice amounts to picking a prior data pair with
probability wi. The bootstrap is a statistical method that in-
volves resampling the original data (with replacement) that has
applications in estimation of confidence intervals and quanti-
fication of parameter uncertainty [Hardle and Bowman, 1988;
Woo, 1989; Tasker, 1987; Zucchini and Adamson, 1989]. The
classic bootstrap assumes data are independent and identically
distributed and resamples from each prior data point with
equal probability. The nearest neighbor bootstrap method pre-
sented by Lall and Sharma [1996] was designed for bootstrap-
ping dependent data. It is similar to the approach here in that
a data pair nearby to the conditioning vector is picked, and its
successor is chosen as the simulated data value. However, it
uses a conditional probability density represented by a discrete
kernel which is based on the assumption of a local Poisson
distribution in the neighborhood of the conditioning vector.
The nearest neighbor bootstrap also differs in that there is no
perturbation of the selected point. Consequently, it only re-
produces streamflow values that have been observed. The ap-
proach presented here amounts to picking a prior data pair ( xi,
xi21) that is nearby, that is, xi21 near to the conditioning value
Xt21, according to weights based on Gaussian kernels, then
through (22), adding a perturbation. The perturbations in our
approach serve to smooth over the gaps between data points in
the density estimate and provide alternative streamflow real-
izations that are different but are stochastically similar to the
historical record.
Simulations from this nonparametric approach retain the

marginal and joint density structure of the historical time series
including nonlinearities and state dependence. One can also
analytically calculate the marginal distribution and the values
of the NP1 model mean, standard deviation, skewness, and lag
1 correlation from the kernel density estimate (equation (18)).
These are given in Appendix B and compared in the results
below to sample statistics from the historical data.

5. Testing With Synthetic Data
In order to evaluate the ability of our model to recover

structure from known linear and nonlinear parametric models,

we conducted tests using two synthetic models. The purpose of
these experiments was to verify the performance of the NP1
model where the true model is known. The first model used
was a linear autoregressive order 1 (AR1) model of the type
commonly used to model streamflow. The second was a self-
exciting threshold autoregressive (SETAR) model [Tong,
1990]. A two-level Monte Carlo experiment was used in both
cases: (1) generate 100 level 1 sample records of length 80 from
the true model (AR1 or SETAR); and (2) for each sample
record, generate 100 level 2 realizations, each of length 80,
from the NP1 model.
Note that we refer to the 100 samples first generated as level

1 samples. These are representative of the observed data. We
refer to the 10,000 realizations generated (100 NP1 realiza-
tions from each of the 100 level 1 sample records) as level 2
realizations. These are representative of what our model would
simulate given the level 1 sample records and were used to
evaluate how well the NP1 model reproduces statistics of the
samples it is based on as well as the underlying population
statistics. Since all realizations are the same length as the
record from which they are generated, the 100 realizations
from each record provide estimates of the natural sampling
variability associated with that record length. Statistics such as
the mean, standard deviation, lag 1 correlation, and skewness
were estimated, as well as marginal and joint kernel density
estimates from the sample records and realizations.
Box plots are used for the graphical comparisons. These

consist of a box that extends over the interquartile range of the
quantity being plotted, estimated from the 100 realizations.
The line in the center of this box is the median, and whiskers
extend to the 5% and 95% quantiles of the compared statistic.

5.1. Tests With AR1 Data

The AR1 model used was

Xt 5 0.5 Xt21 1 0.866 Wt (24)

where Wt was a Gaussian random variate with mean zero and
standard deviation one. For brevity comparisons for the stan-
dard statistics are not given. The mean, variance, lag 1 corre-
lation, and skewness of each AR1 sample were well repro-
duced in the simulations based on it. These values were also
close to the corresponding model statistic.
Figure 4 shows the marginal density estimates from one of

the sample records and its corresponding 100 NP1 simulations.
Shown are the true Gaussian density function, the NP1 model
marginal density function (from equation (B1)), and a univar-
iate kernel density estimate based on the sample records, with
the boxes giving the univariate kernel density estimates for the
100 NP1 simulations. To ensure that these univariate kernel
density estimates are comparable, we used the same bandwidth
for each of them, namely, the median bandwidth from the set
of bandwidths obtained by applying the LSCV procedure to
each simulation. Figure 4 shows that the marginal density of
the data is reproduced quite well by the simulations.
The mean integrated square error (MISE) of the joint den-

sity was estimated by averaging the integrated square error
(ISE; see (9)) between the kernel estimate on the basis of each
level 1 sample record and the true distribution. This provides
a measure of model error which was 0.0093. The correspond-
ing MISE from fitting an AR1 model joint density to each level
1 sample is 0.0046. This is lower than the MISE from kernel
density estimates because the assumed joint density (in this
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case a bivariate Gaussian) is the same as the underlying den-
sity.
The level 2 Monte Carlo experiment involved calculating

bivariate density estimates using the procedure given in section
3 for each of the 10,000 level 2 NP1 realizations. The ISE for
each of these was calculated, and the average is 0.0161, which
is greater than the 0.0093 given above. This reflects the addi-
tional error introduced by reestimating the density function
from simulated values. These experiments serve to illustrate
that although the nonparametric approach cannot match a
parametric approach when the true density is known, it is still
able to reasonably approximate the properties of the underly-
ing AR1 process.

5.2. Tests With SETAR Data

The SETAR [Tong, 1990, section 3.3.1.1] model used was

Xt 5 0.4 1 0.8Xt21 1 Wt Xt21 # 0.0
(25)

Xt 5 21.5 2 0.5Xt21 1 Wt Xt21 . 0.0

where Wt was N(0, 1). This is a state-dependent time series
model with parameters that depend on the system state as
determined by a threshold. This model may be representative
of the monthly streamflow time series one could get from
threshold-driven hydrologic processes such as snowmelt and
evapotranspiration.
As with the AR1 case, mean, variance, lag 1 correlation, and

skewness of each SETAR sample were well reproduced in the
simulations based on it. These values were also close to the
corresponding model statistic.
Figure 5 shows the underlying true joint density f(Xt, Xt21)

for the SETAR model in (25), the bivariate kernel density
estimate for one SETAR sample record, and the density esti-
mate of the NP1 simulations averaged over all 10,000 realiza-
tions. The line in Figure 5a shows the true conditional mean
from (25) with Wt set to 0. Figure 5b shows an estimate of the
conditional mean based on the sample record obtained using
LOESS [Cleveland and Devlin, 1988]. LOESS is a locally

weighted regression smoother that calculates a weighted least
squares fit (assigning weights using a tricubic weight function
centered at the point of estimation) at each data point on the
basis of a fixed number of nearest neighbors. The number of
nearest neighbors (expressed as a fraction of the total number
of data points, called “span”) used to compute the LOESS
smooth was chosen as the one that resulted in an optimal value
of Mallow’s Cp. The function “loess,” available in the software
package Splus [Chambers and Hastie, 1992], was used in our
calculations. The LOESS smooth is plotted to show that the
sample record and nonparametric density function based on it
reproduce the change in conditioning structure (with some
smoothing) as the threshold is crossed. The illustrated fit based
on an optimal Mallow’s Cp has a span of 0.75. The particular
kernel density estimate shown in Figure 5b has an integrated
square error (ISE; see (9)) of 0.0084 that was evaluated by
integrating the squared differences between Figures 5a and 5b.
By averaging across the 100 level 1 sample records, we obtain
an estimate of the NP1 model fitting MISE as 0.0082. The
corresponding MISE from fitting an AR1 joint density to each
level 1 sample is 0.0131.
As for the AR1 example, bivariate density estimates were

calculated using the procedure given in section 3 for each of
the 10,000 level 2 realizations. The ISE for each of these was
calculated, and the average is 0.010, which is greater than the
NP1 model MISE (0.0082), owing to the additional error
added by reestimating the density function from simulated
values. It is again representative of the difference between NP1
simulations and the underlying model. Figure 5c shows the

Figure 4. Marginal density estimates for NP1 simulations of an AR1 data set. The NP1 underlying density
is estimated using (B1).

Figure 5. (opposite) Bivariate joint density. (a) SETAR
model in (5). The straight lines denote the conditional mean of
the model. (b) An example SETAR level 1 sample. Dots rep-
resent individual observations and contours represent the NP1
kernel density estimate. The line is a LOESS smooth through
the data. (c) Average of the kernel density estimates from all
10,000 level 2 realizations from the NP1 model.
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average density function estimated from the 10,000 realiza-
tions. This captures the essential nonlinearity of the SETAR
model despite smoothing over the discontinuity. No model
from the MGTM class of models is able to reproduce samples
which exhibit such nonlinear structure. A bivariate normal
distribution with the true mean and covariance of the model in
(25), that is, without fitting errors, has an ISE relative to Figure
5a of 0.0119, larger than that obtained from the NP1 model fits
with 80 data points. Asymptotically, the NP1 kernel density
estimate will converge to the underlying SETAR model ex-
actly, that is, with no fitting errors. This reiterates the point
that model mis-specification, for example, by selection of the
bivariate normal distribution, precludes a model from conver-
gence to whatever the underlying distribution may be.
Table 1 shows the state dependent correlation statistics (de-

scribed in Appendix A) for NP1 model simulations based on
SETAR data. Note how well the NP1 model reproduces the
big difference between above median and forward correlations
and below median and forward correlations.
It is clear from the synthetic examples presented that the

NP1 model is able to (1) approximate the underlying joint
distribution of the data, (2) reproduce the nonlinear structure
suggested by the data in model simulations, and (3) approxi-
mate both linear and nonlinear dependence between the vari-
ables involved. No assumptions about marginal distributions or
normalizing transforms are required.

6. Application of NP1 to Simulation of Monthly
Streamflow
This section describes the application of the NP1 model to

simulate seasonal streamflow sequences. Assume that the year
is divided into s periods (seasons or months, in which case s 5
12) and there are n years of data (total n 3 s data values). The
model applied to seasonal sequences then consists of s (one for
each period) bivariate density functions estimated directly

from the historical data. For all periods except the first the
random vector (Xt, Xt21) is replaced by (Xt, j, Xt, j21), where
subscript t denotes the year and j denotes the period. For the
first period the conditioning flow is the flow in the last period
of the previous year and the vector is (Xt,1, Xt21,s). Simula-
tions proceed sequentially from density estimates for one pe-
riod pair to the next.
Results from an AR1 model representative of current hy-

drologic practice are also presented for comparison to NP1
simulations. SPIGOT, a synthetic streamflow generation soft-
ware package developed by Grygier and Stedinger [1990], uses
four choices for monthly marginal probability densities: (1)
Gaussian, (2) two-parameter lognormal, (3) three-parameter
lognormal, and (4) approximate three-parameter gamma dis-
tributions. The parameters for each distribution are estimated
by matching moments and the best fitting distribution chosen
by measuring the correlation of observations to the fitted dis-
tribution quantiles (Filliben’s correlation statistic [Grygier and
Stedinger, 1990]). Here we used the same procedure as
SPIGOT to fit a marginal probability distribution and to obtain
a normalizing transformation for each month. Then the AR1
model with seasonally varying coefficients given in (2) was
applied to the transformed monthly flows.
Both the NP1 and AR1 (with normalizing transformations)

models were applied to the 79-year (1914–1992) record of
monthly streamflow in the Beaver River, used earlier for Fig-
ure 1. This data set is one of many streamflow data sets that we
have tested the model with, all with satisfactory results. We
chose to present results from the Beaver River because it
illustrates well some of the points we want to emphasize.
Figure 6 shows the joint densities for the April-May and the

June-July month pairs, using the kernel estimator in section 3.
Also shown are the conditional expectations E(XtuXt21) esti-
mated using LOESS. The NP1 model simulates streamflow
from such joint density functions. A notable aspect of both

Table 1. State-Dependent Lag 1 Correlations for NP1 Simulations From a SETAR
Model

Statistic

Single Level 1
Sample
Record

Level 2 Simulation Statistics From NP1 Model Fit to
Single Level 1 Record

5% Quantile Median 95% Quantile

r 0.164 20.094 0.160 0.329
raf* 20.528 20.595 20.373 20.202
rbf† 0.504 0.167 0.425 0.620
rab‡ 0.172 20.056 0.161 0.380
rbb§ 0.310 20.215 0.239 0.490

Statistic

Average Over 100 Level 1 Sample Records and 10,000 Level 2 Realizations

100 Records

NP1 Simulation Statistics

5% Quantile Median 95% Quantile

r 0.074 20.105 0.041 0.226
raf* 20.555 20.557 20.396 20.164
rbf† 0.494 0.187 0.377 0.558
rab‡ 0.165 0.000 0.131 0.305
rbb§ 20.020 20.219 20.039 0.169

*Above and forward.
†Below and forward.
‡Above and back.
§Below and back.
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figures is that the LOESS fits exhibit a certain degree of non-
linearity. It is possible that both bivariate samples could have
originated from a threshold-driven process of the type illus-
trated in the synthetic example of section 5.2.
One hundred simulations, each with a length of 79 years

(initialized with the average flow of the first month and with a
warm-up period of 1 year), were made using both the NP1 and
AR1 models. Results comparing the simulations from NP1 and
AR1 are presented below.
Box plots of selected monthly statistics are shown in Figures

7–10. The mean flows of the AR1 and NP1 simulations (Figure
7) match well those of the streamflow record. The annual

means also match well. Figure 8 shows standard deviations of
flows for the AR1 and NP1 simulations. The standard devia-
tions of the NP1 simulations are slightly inflated with respect to
the historical record, as expected from (B5). Annual standard
deviations, though not modeled directly by either approach,
compare well with the historical value. Figure 9 shows box
plots of the correlation between sequential month pairs. The
NP1 model reproduces monthly lag 1 correlations without any
bias, as proved in (B7). The AR1 simulations approximate the
monthly lag 1 correlation well, although some bias is present
depending on which transformation (or which marginal distri-
bution) is used. Annual lag 1 correlations are relatively small

Figure 6. Underlying bivariate densities in NP1 model simulations for selected month pairs. The dots
represent observations. (a) April–May flows. The line represents a LOESS smooth with a span of 0.85
corresponding to an optimal Mallow’s Cp. (b) June–July flows. The line represents a LOESS smooth with a
span of 0.45 corresponding to an optimal Mallow’s Cp.
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but not reproduced by either model. This is a deficiency re-
quiring higher-order or multiscale (such as disaggregation)
models. Skewness is reproduced well in NP1 simulations (Fig-
ure 10), although a small downward bias (equation (B12)) is
evident. Some bias is apparent in AR1 simulations, too, which
is another indication of the difficulty in fitting marginal distri-
butions.
The marginal distributions for each month were also com-

pared. Selected marginal distributions are shown in Figure 11.
In these figures the model underlying density function (equa-
tion (B1) in the case of NP1 or one of the SPIGOT [Grygier
and Stedinger, 1990] densities in the AR1 case) is shown as a
dashed line. The solid line is a univariate kernel density esti-
mate applied to the original data, and the boxes represent the
range of univariate kernel density estimates applied to the 100
simulations. For these univariate kernel density estimates the
same bandwidth, chosen as the median of the set obtained by
minimizing LSCV over the 100 simulations, is used for all.
Here the univariate kernel density estimator is being used as a
plotting tool to compare observed and simulated data. The
dots on the axis represent the historical data. These figures
show that for some months, the best fitting SPIGOT marginal
distribution is inadequate. Note how the NP1 model is able to
reproduce the bimodality in the July marginal distribution
(also shown earlier in Figure 1), whereas the fitted three-

parameter gamma distribution does not. Overall, we find that
the common normalizing transformations are not able to cap-
ture all the structure, in particular bimodality, sometimes
present in data. This structure is captured by the kernel density
estimates.
Recall that the joint densities illustrated in Figure 6 indi-

cated nonlinear conditional expectations. For the April-May
month pair the slope of the conditional expectation for flows
less than 70 feet3 s21 (1982 L s21) appeared different to the
slope for flows greater than 70 feet3 s21. To quantify the
dependence of autocorrelation on the magnitude of flow, we
split each series into flows above and below the median and
then calculated the state-dependent correlation statistic de-
scribed in Appendix A. These results are illustrated in Figure
12. The historical data (solid line) have significant differences
(at the 95% level by a hypothesis test for equality of two
sample correlations; see Appendix A for details) between for-
ward above- and below-median correlations for the following
three month pairs: October-November, July-August, and Sep-
tember-October. These state-dependent correlations are mod-
eled effectively by the NP1 approach. Some bias is apparent in
AR1 simulations for month pairs exhibiting significant differ-
ences between the above- and below-median correlations.

Figure 8. Comparison of standard deviations of simulated
and historical flows. The continuous line represents monthly
standard deviations of the historical record. The dot in the
right panel is the observed annual standard deviation. The
dashed line in the NP1 figure shows the NP1 model standard
deviations (equation (B5)).

Figure 7. Comparison of means of simulated and historical
flows. The continuous line represents monthly means of the
historical record. The dot in the right panel is the observed
annual mean.
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The practical use of synthetic streamflow simulations is often
the evaluation of the storage capacity of reservoirs required to
support a certain yield. For a given streamflow sequence (ob-
served or simulated) the storage required to support a speci-
fied yield can be obtained using the sequent peak algorithm
[Loucks et al., 1981, p. 235]. Vogel and Stedinger [1988] com-
pared the root-mean-square error (RMSE) and bias of this
storage statistic computed directly from data and showed the
improvements in precision that result from using stochastic
streamflow models. Here reservoir storages required to sup-
port firm yields that are specified percentages of the mean
annual flow were estimated for the 100 AR1 and NP1 model
realizations of Beaver River streamflow. Monthly demand
fractions given by Lall and Miller [1988] were used. Standard-
ized bias and RMSE estimates for both models, relative to the
storage required to support a given yield for the historical
record, are given in Table 2.

bias/Sh 5 S Sh 2
1
nr

O
i51

nr

SsiDYSh (26)

RMSE/Sh 5

F 1n O
i51

nr

~Sh 2 Ssj!
2G 1/ 2

Sh
(27)

where Sh denotes the storage required with the historical
record, Ssi is the storage estimated from the ith AR1 or NP1
realization and nr is the number of realizations.
The bias and RMSE statistics reported in Table 2 indicate

that the NP1 model is better at providing simulations with
storage statistics comparable to the historical data.

7. Discussion and Conclusions
We also computed and checked many other statistical at-

tributes of the NP1 and AR1 simulations, but space limitations
prevent presentation of the results. The simulated autocorre-
lation function (acf) for each month (not shown) showed that
both models do not model correlations higher than lag 1 very
well. In some months lag 2 and 3 correlation was preserved
though both NP1 and AR1 model correlations decrease to
essentially 0 by lag 7. Longer-range dependence quantified in
terms of the annual correlation coefficient or Hurst coefficient
[Hurst, 1951] was not preserved by either model. Although the
bias and errors in the reservoir storages given in Table 2 are
generally smaller for the NP1 simulations than for the AR1
simulations, they are still relatively large, especially for high-
yield fractions, indicating that the order 1 dependence as-
sumed in both models is possibly inadequate to model reser-

Figure 9. Comparison of lag 1 correlations of simulated and
historical flows. The continuous line (and dots for annual
flows) represents the lag 1 correlations in the historical record.

Figure 10. Comparison of skewness of simulated and histor-
ical flows. The continuous line represents the monthly skew-
ness of the historical record. The dot in the right panel is
observed skewness of the annual flows. The dashed line (in
NP1 result) shows model skewness (equation (B12)).
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voir storage for this data. These all indicate the need for
models that capture higher-order dependence, such as multi-
variate or disaggregation models.
The results presented here support the nonparametric ap-

proach as a feasible alternative to parametric approaches used
to model streamflow. The nonparametric approach presented
here is consistent and robust and reproduces not only the
linear statistics modeled by the AR1 model but also a broader
set of properties based on additional distributional informa-
tion. The skewness, bimodality, and dependence of correla-
tions on the flow magnitude, when present in the data, can be
adequately modeled. One could no doubt find better marginal
distributions to use with the AR1 model and improve on some
of the AR1 simulations. However, the NP1 approach is effec-
tive in sidestepping these difficult model and distribution se-

lection issues that are often somewhat arbitrarily resolved and
provides a method that is easy to use and adapts well to the
data.
Although the examples presented here used an order 1 de-

pendence structure, it is easy to extend the model to higher-
order dependence. Cross-validatory procedures [Eubank,
1988] can be applied to evaluate the benefit gleaned from
including additional lags in the model dependence structure.
These are somewhat analogous to use of Akiake’s information
criterion in linear models. We intend to evaluate this further in
future work. Future work will also apply the nonparametric
approach to multivariate problems in stochastic hydrology,
specifically, to the development of nonparametric analogs to
multivariate ARMA and disaggregation models. The purpose
here was to introduce this approach in a simple univariate
setting with order 1 dependence and show that results are
satisfactory when compared to current hydrologic practice.
We are convinced that nonparametric techniques have an

important role to play in improving the synthesis of hydrologic
time series for water resources planning and management.
They can capture the dependence structure present in the
historical data without imposing arbitrary linearity or distribu-
tional assumptions. They have the capability to reproduce non-
linearity, state dependence, and multimodality while remaining
faithful to the historical data and producing synthesized se-
quences statistically indistinguishable from the historical se-
quence.

Figure 12. Monthly state-dependent correlations (refer to Appendix A) for simulated and historical flows.
Continuous lines represent respective correlations in the historical record.

Table 2. Reservoir Capacities Evaluated for 100 AR1 and
NP1 Model Realizations

Yield/Mean
Annual Flow

AR1 NP1

Bias/Sh RMSE/Sh Bias/Sh RMSE/Sh

0.5 0.275 0.312 0.095 0.229
0.6 0.170 0.260 20.010 0.262
0.7 0.111 0.250 20.029 0.287
0.8 0.200 0.310 0.137 0.281
0.9 0.373 0.435 0.373 0.426
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Appendix A: State-Dependent Correlation
Coefficients

This appendix describes the measures we used to quantify
nonlinear dependence in data. The usual estimator of lag 1
correlation is

r 5
1

~n 2 1!sx
2 O
t51

n21

~ xt 2 x̄!~ xt11 2 x̄! (A1)

where x̄ and sx
2 are the mean and variance of xt, t 5 1, z z z , n .

1. Forward, above median correlation (raf) is defined as
the correlation between above median flows and flows in the
subsequent time step. This is calculated by replacing the sum
over all t in the expression above by the sum over those t for
which xt is greater than the median flow xmedian, replacing the
sx
2 by the product of the standard deviations of the above
median flows and flows one time step ahead of above median
flows, replacing x̄ by the mean of the above median and one
time step ahead of above median flows, and adjusting n ac-
cordingly.
2. Forward, below median correlation (rbf) is the correla-

tion between all below median flows and the flow in the sub-
sequent time steps, calculated in a similar manner with the sum
over those t for which xt , xmedian.
3. Backward, above median correlation (rab) is the corre-

lation between above median flows and the preceding time
step’s flow, calculated in a similar manner with the sum over
those t for which xt11 . xmedian.
4. Backward, below median correlation (rbb) is the corre-

lation between below median flows and the preceding time
step’s flow, calculated in a similar manner with the sum over
those t for which xt11 , xmedian.
For a linear Gaussian process the above and below pair of

correlations in either the forward or backward direction should
be the same. Differences indicate nonlinearity or state depen-
dence in the dependence structure. To test the significance of
differences between sample correlation coefficients r1 and r2,
the following test from Kendall and Stuart [1979, p. 315] was
used. The test is based on the transformation of the correlation
coefficient r as

z 5
1
2 log S 1 1 r

1 2 rD (A2)

The quantity z1 2 z2 is closely normally distributed with zero
mean and variance 1/(n1 2 3) 1 1/(n2 2 3), where n1 and
n2 are the sample sizes, under the null hypothesis that z1 and
z2 are calculated from sample correlation coefficients from
populations with the same correlation coefficient. Therefore
the significance test compares ( z1 2 z2)/[1/(n1 2 3) 1
1/(n2 2 3)]1/ 2 to the standard normal distribution. This test
is approximate unless the samples are from independent biva-
riate normal populations. In section 6 we used this test to
investigate the significance of the difference between raf (5 r1)
and rbf (5 r2). Sets of above and below median flows are
effectively censored samples, inconsistent with the indepen-
dence assumptions. Nevertheless, an approximate measure of
whether these quantities are significantly different can be ob-
tained by use of this test.

Appendix B: Derivation of Model Statistics
We derive here the expected values of selected statistics of

the NP1 model. These depend on the observed data xi, kernel
parameters l and S, and the Gaussian kernel function.

Marginal Distribution of Xt
The marginal density of Xt (denoted f̂m(Xt)) is estimated as

f̂m~Xt! 5 E f̂~Xt, Xt21! dXt21 5
1
n O

i51

n

fG~Xt 2 xi, l2S11!

(B1)

where

fG~Xt 2 xi, l2S11! 5
1

~2pl2S11!1/ 2
exp S2

~Xt 2 xi!2

2l2S11
D (B2)

denotes a Gaussian density function with mean xi and variance
l2S11. This follows from (6) with H from (7) and S expressed
as (19). Equation (6) is the sum of n multivariate Gaussians,
each of which when integrated over Xt21 results in the uni-
variate Gaussian given above. This marginal distribution is
used to calculate model mean, covariance, and skewness.

Mean m* of Xt
This can be evaluated using the marginal distribution in

(B1). Since each kernel is symmetric and centered at a data
point, the NP1 model mean (m9) is the sample mean:

m9 5 E@Xt# 5 E Xt f̂m~Xt! dXt 5
1
n O

i51

n

xi (B3)

Standard Deviation of Xt
The variance under the NP1 model can be written as

s92 5 E@~Xt 2 m9!2# 5 E ~Xt 2 m9!2f̂m~Xt! dt (B4)

where the expectation is over the marginal distribution, (B1).
Since f̂m(Xt) from (B1) is a sum of Gaussian probability den-
sity functions (pdf’s) with individual means xi, and variances
l2S11 and the xi have sample variance S11, we get

s92 5 S11~1 1 l2! (B5)

Note the inflation in the underlying variance by the factor
(1 1 l2).

Lag 1 Correlation

The lag 1 correlation (r91) under the NP1 model is expressed
as the ratio

r91 5
E@~Xt 2 m9!~Xt21 2 m9!#

s92
(B6)

where expectation is over the joint density estimate in (6). This
expression simplifies to

r91 5
~1 1 l!2S12

~1 1 l2!~S11S22!1/ 2
5 r (B7)

where r denotes the sample lag 1 correlation:
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r 5
S12

~S11S22!1/ 2
(B8)

Skewness

The coefficient of skewness (g9) under the NP1 model is
defined as the ratio

g9 5
E@~Xt 2 m9!3#

s93
5

E ~Xt 2 m9!3f̂m~Xt! dt

s93
(B9)

where the expectation is over the marginal distribution in (B1).
By integrating over the marginal distribution, the numerator
can be evaluated as

E@~Xt 2 m9!3# 5
1
n O

i51

n

xi
3 1 3l2S11

1
n O

i51

n

xi 2 3m9l2S11

2 3m9
1
n O

i51

n

xi
2 1 3m92

1
n O

i51

n

xi 2 m93 (B10)

Now recognizing (B3), the second and third terms cancel, and
this is equivalent to

E@~Xt 2 m9!3# 5
1
n O

i51

n

~ xi 2 m9!3 (B11)

The expression for g9 then becomes

g9 5

~1/n!O
i51

n

~ xi 2 m9!3

s93
5

g
~1 1 l2!3/ 2

(B12)

where g is the skewness estimator

g 5

~1/n!O
i51

n

~ xi 2 m9!3

S11
3/ 2 (B13)

and S11 is the sample variance. The decrease in skewness is
due to the inflation of variance by (B5). The results derived
here do not account for the cut and normalize boundary cor-
rections applied.
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