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Abstract

We develop (single-pass) streaming algorithms for main-
taining extent measures of a stream S of n points in
R

d. We focus on designing streaming algorithms whose
working space is polynomial in d (poly(d)) and sub-
linear in n. For the problems of computing diameter,
width and minimum enclosing ball of S, we obtain lower
bounds on the worst-case approximation ratio of any
streaming algorithm that uses poly(d) space. On the
positive side, we introduce the notion of blurred ball
cover and use it for answering approximate farthest-
point queries and maintaining approximate minimum
enclosing ball and diameter of S. We describe a stream-
ing algorithm for maintaining a blurred ball cover whose
working space is linear in d and independent of n.

1 Introduction

In many applications, data arrives rapidly as a stream
of points and there is limited space to store the in-
put. Algorithms in the streaming model have to work
with one or few passes over the data, using small space.
Motivated by a wide range of applications, including
networking, databases and geographic information sys-
tems, there is extensive work on streaming algorithms.
Often, it is impossible to compute exact solutions given
the space constraints. Hence most of the work has
focused on developing approximation algorithms and
several novel techniques have been developed. See
books [5, 27] for a comprehensive review. In this paper,
we design streaming algorithms for several geometric
problems in high dimensions.

Problem statement. For a point x ∈ R
d and a value

r > 0, let B(x, r) denote a ball of radius r centered at x.
For a ball B, let c(B), r(B) denote its center and radius
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respectively, and let (1 + ε)B denote the ε-expansion of
B, i.e., B(c(B), (1 + ε)r(B)).

Let S be a (finite) set of points in R
d. We use

MEB(S) to denote the smallest ball that contains S.
For a parameter α > 1, a ball B is called an α-
approximation of the minimum enclosing ball of S, or
α-MEB(S) for brevity, if S ⊂ B and r(B) ≤ α ·
r(MEB(S)). A set C ⊆ S is called an α-coreset(S)
if S ⊂ α · MEB(C). Let diam(S) denote any farthest
pair (diameteral pair) of points in S, and any pair of
points r, s ∈ S such that, for every pair p, q ∈ S, ||pq|| ≤
α · ||rs||, is referred to as α-diam(S) (α-diameteral pair).
For any slab J , which is a region bounded by a pair
(h1, h2) of parallel (d − 1)-dimensional hyperplanes, let
d(J) be the minimum distance between h1 and h2. Let
width(S) be any slab J such that S ⊂ J and d(J) is
minimized. For α > 1, α-width(S) is a slab J ′ such
that S ⊂ J ′ and d(width(S)) ≤ d(J ′) ≤ α ·d(width(S)).
Finally, for a point x ∈ R

d, an α-farthest-neighbor of x,
α-FN(x) is a point q ∈ S such that, for every p ∈ S,
||xp|| ≤ α · ||xq||.

In this paper, we study the problems of maintaining
α-MEB(S), α-coreset(S), α-width(S), and α-diam(S),
and of answering α-FN(x) queries, in the streaming
model. We assume that the input points arrive one by
one, and the algorithm updates the information quickly
using little space. Our goal is to design streaming
algorithms whose working space and update time are
polynomial in d and sub-linear in the size of S.

Related work. There is extensive literature on fast
algorithms for computing various extent measures, such
as diameter, width, and smallest enclosing ball of a
point set in low dimensions [3, 14, 15, 17, 26, 28].
Agarwal et al. [1] have developed approximation algo-
rithms for computing many extent measures of a set
of n points in R

d using coresets whose running time
is O(n + 1/εO(d)); see also [2, 4, 11, 12]. Although
these algorithms work well in small dimensions, the ex-
ponential dependency on d makes them unsuitable for
higher dimensions. This has led to work on develop-
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ing polynomial-time approximation algorithms (in n, d
and 1/ε) for different extent measures and other related
problems. For example, Bădoiu and Clarkson [9] de-
velop an elegant coreset-based algorithm that given a
point set S ∈ R

d computes a (1 + ε)-MEB(S) in time
O(nd/ε+1/ε5). See [10, 21, 23, 24] for other similar re-
sults. Clarkson [16] presented a general framework that
gives coreset-based algorithms for a number of geomet-
ric problems in high dimensions; see also [19]. Goel et
al. [20] describe fast approximation algorithms for sev-
eral proximity problems. For instance, they describe a
data structure that answers

√
2-FN(x) queries in O(d)

time after spending O(nd) time in preprocessing.
There is also some work on streaming algorithms for

extent problems in high dimensions. Chan and Zarrabi-
Zadeh [29] gave a streaming algorithm, which maintains
a (3/2)-MEB(S), for a stream S ∈ R

d, using O(d) space.
They also proved that any deterministic algorithm that
stores only a single ball in its working space cannot

maintain a better than α-MEB(S), for α ≤ 1+
√

2
2 . In-

dyk [22] proposed a streaming algorithm for maintain-

ing α-diam(S) for α >
√

2, using O(dn1/(α2−1) log n)
space. Recently Clarkson and Woodruff [18] described
streaming algorithms for several problems in numerical
algebra.

Our results. We prove upper and lower bounds on the
size of data structures for maintaining various extent
measures under the streaming model. First, we present
in Section 2, a data structure in the streaming model
called the ε-blurred ball cover, for ε > 0, that maintains
a subset K ⊆ S of O((1/ε3) log(1/ε)) points. Roughly
speaking K is the union of a set of {K1, . . . ,Ku}, u =
O((1/ε2) log(1/ε)), of subsets of S each of size O(1/ε)
so that S lies in the union of (1 + ε)MEB(Ki). The
data structure can be updated in O((d/ε2) log(1/ε))
amortized time. We then show in Section 3 that K
can be used to:

(i) compute a α-FN(x), for any query x ∈ R
d and for

α =
√

2 + ε;

(ii) maintain a α-diam(S) for α =
√

2 + ε;

(iii) maintain a α-coreset(S), for α =
√

2 + ε;

(iv) maintain a α-MEB(S) for α = 1+
√

3
2 + ε.

Next, we show in Section 4 that any random-
ized streaming algorithm that maintains α-diam(S), α-
width(S), α-MEB(S), or α-coreset(S) with probability
at least 2/3, requires Ω(min(|S|, exp(d1/3))) space for
certain values of α. In particular, α <

√
2(1 − 2/d1/3)

for α-diam(S) and α-coreset(S), α ≤ d1/3/8 for α-

width(S), and α < 1+
√

2
2 (1−2/d1/3) for α-MEB(S). All

lower bounds are obtained using known lower bounds
on the one-round communication complexity of index-
ing [25]. Communication complexity has been widely
used to prove lower bounds on the size of various data
structures including in the streaming model [6, 7, 18].

Our algorithms for maintaining α-diam(S) and α-
coreset(S) are close to optimal. Note the contrast
between the lower and upper bounds for MEB — a
coreset based algorithm has a lower bound of

√
2,

but we are able to circumvent this bound by, roughly
speaking, maintaining a set of O((1/ε2) log(1/ε)) balls
and returning a ball that contains these balls. We can
regard the centers of these balls as “weighted” points
and thus we can get better results by maintaining a
“weighted weak coreset” — it is not a subset of input
points. Although it is known that weak ε-nets are more
powerful than ε-nets [13], we are unaware of similar
results for coresets of MEB and other extent measures.

2 Blurred Ball Cover

This section defines the notion of blurred ball cover and
describes an algorithm for maintaining such a cover in
the streaming model. For a parameter 0 < ε ≤ 1, an ε-
blurred ball cover of a set S of n points in R

d, denoted
by K = K(S), is a sequence 〈K1,K2, . . . ,Ku〉, where
each Ki ⊆ S is a subset of O(1/ε) points that satisfies
the following three properties; let Bi = MEB(Ki) and
K =

⋃

i≤u Ki.

(P1) For all 1 ≤ i < u, r(Bi+1) ≥ (1 + ε2/8)r(Bi);

(P2) For all i < j, Ki ⊂ (1 + ε)Bj ;

(P3) For every p ∈ S, ∃i ≤ u such that p ∈ (1 + ε)Bi.

Algorithm 1 describes a simple procedure called
Update(K, A), that given K := K(S) and a set of
points A ⊂ R

d, computes K(S ∪ A). If we update K

as each new point arrives, then A consists of a single
point. However, as we will see below, it will be more
efficient for some of our applications to update A in a
batched mode. That is, newly arrived points are stored
in a buffer A and when its size exceeds certain threshold,
Update procedure is called to update K. Update relies
on a procedure Approx-MEB(Z, ε) that takes a set
Z of points and a parameter 0 < ε ≤ 1 and returns
a set G ⊆ Z of O(1/ε) points and B = MEB(G)
such that Z ⊂ (1 + ε)B. Bădoiu and Clarkson [9]
have described such a procedure with O(d|Z|/ε + 1/ε5)
running time. For efficiency reasons, we explicitly
maintain Bi = MEB(Ki) for every Ki ∈ K.

Update procedure. If there is a point in A that does
not lie in the union of the ε-expansions of Bi’s, then the
Update procedure invokes Approx-MEB on K ∪ A
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Figure 1: Proof of Lemma 2.2. (a) ||cic
′|| ≤ 2εri/3, (b)||cic

′|| > 2εri/3.

with approximation ratio ε/3. Let K∗ ⊆ K ∪ A be the
point set and B∗ = MEB(K∗) be the ball returned by
Approx-MEB. The Update procedure adds K∗ to K

and then deletes all Ki’s for which r(Bi) ≤ εr(B∗)/4.

Algorithm 1 Update(K, A)

1: if ∃p ∈ A, ∀i ≤ u, p 6∈ (1 + ε)Bi then

2: K∗, B∗ := Approx-MEB ((K ∪ A), ε/3)
3: KD := {Ki | r(Bi) ≤ εr(B∗)/4}
4: K := (K \ KD) ◦ 〈K∗〉
5: end if

Correctness. The proof of correctness relies on the
following well-known observation; see e.g. [10].

Lemma 2.1. Let P be a set of points in R
d and let

B = MEB(P ). Then any closed halfspace that contains
c(B) also contains at least one point of P that is on ∂B.

Lemma 2.2. For any i < u, r(Bi+1) ≥ (1+ε2/8)r(Bi).

Proof. Update procedure adds Ki+1 to K only if there
is a point q ∈ A such that q 6∈ (1 + ε)Bi. Let
B′ = MEB (K ∪ {q}); r(Bi+1) ≥ r(B′). Let r′ = r(B′),
c′ = c(B′), ci = c(Bi), and ri = r(Bi). We prove that
r′ > (1 + ε2/8)ri. If ||cic

′|| ≤ 2εri/3 (Figure 1(a)), then

r′ ≥ ||c′q||
≥ ||ciq|| − ||c′ci||
≥ (1 + ε)ri − 2εri/3

≥ (1 + ε2/8)ri.

On the other hand, if ||c′ci|| > 2εri/3 (Figure 1(b)),
then let h be the hyperplane passing through ci with the
direction cic

′ as its normal, and let h+ be the halfspace,
bounded by h, that does not contain c′. By Lemma 2.1,
there is a point q′ ∈ Ki ∩ h+ that is at a distance ri

from ci. Therefore

r′ ≥ ||q′c′||

≥ (||cic
′||2 + ||q′ci||2)1/2

≥ ((2εri/3)2 + r2
i )1/2

≥ (1 + ε2/8)ri.

We now prove that (P1)–(P3) are maintained by
Update. If for every p ∈ A, there is an i ≤ u such
that p ∈ (1+ ε)Bi, then the set K does not change, and
(P1)–(P3) continue to hold. Hence, assume that there
is a p ∈ A such that p 6∈ Bi for all i ≤ u. By Lemma 2.2,
property (P1) continues to hold after each update. Note
that if p 6∈ (1 + ε)Bi for all 1 ≤ i ≤ u, then Update

computes a (1+ε/3)-MEB(K∪A). Since K∗ is the only
subset added to K, K ⊆ (1 + ε)B∗ and K∗ is added at
the end of the sequence, Ki ⊆ (1+ε)B∗. Thus property
(P2) holds after each Update. Note that a prefix KD

is deleted from K, so (P3) may be violated. However,
the next two lemmas prove that (P3) is also satisfied.

Lemma 2.3. For i < j, c(Bi) ∈ (1 + ε)Bj.

Proof. Suppose, on the contrary, that c(Bi) 6∈ (1+ε)Bj .
Let γ be a halfspace that contains c(Bi) but γ ∩ (1 +
ε)Bj = ∅. By Lemma 2.1, γ contains a point p ∈ Ki, but
p 6∈ (1+ε)Bj , which contradicts the fact Ki ⊂ (1+ε)Bj

(by (P2)). Hence, c(Bi) ∈ (1 + ε)Bj .

Lemma 2.4. For all Ki ∈ KD, (1 + ε)Bi ⊆ (1 + ε)B∗.

Proof. Let c∗ = c(B∗), r∗ = r(B∗), ci = c(Bi), and
ri = r(Bi). Let Ki ∈ KD, then ri ≤ εr∗/4. Since
Ki ⊂ (1 + ε/3)B∗, the proof of Lemma 2.3 implies
c(Bi) ∈ (1 + ε/3)B∗. For any point x ∈ (1 + ε)Bi,

||xc∗|| ≤ ||c∗ci|| + ||cix||
≤ ||c∗ci|| + (1 + ε)ri

≤ (1 + ε/3)r∗ + ε(1 + ε)r∗/4

≤ (1 + ε)r∗.

Therefore q ∈ (1+ε)B∗ and thus (1+ε)Bi ⊆ (1+ε)B∗.
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Lemma 2.4 immediately implies that for any Ki ∈
KD, if there is a point q ∈ (1+ ε)Bi then q ∈ (1+ ε)B∗.
Hence, for every q ∈ S, there is an i such that q ∈
(1 + ε)Bi, implying (P3).

Size and update time. Let ri = r(Bi). Update

ensures that ru/r1 ≤ 4/ε. By (P1), ri+1 ≥ (1 + ε2/8)ri.
Therefore u ≤ ⌈log1+ε2/8(4/ε)⌉ = O((1/ε2) log(1/ε)).

Hence |K| ≤∑ |Ki| = O((1/ε3) log(1/ε)).
Note that Update spends O(u.|A|) =

O((d|A|/ε2) log(1/ε)) time to test the condition in
line 1. The time spent in computing K∗ and B∗ in line
2 is O((|A| + |K|)d/ε + (1/ε5)) or

O((d|A|/ε) + (d/ε4) log(1/ε) + (1/ε5)).

If we update K after the arrival of each new point,
then the update time is O(d/ε5). However, if we batch
the updates and invoke Update only after O(1/ε3)
points have arrived, the total time spent will be
O((d/ε5) log(1/ε)) which is the time taken by line 1 of
the update procedure. The amortized time for Update

will then be O((d/ε2) log(1/ε)). We thus conclude the
following.

Theorem 2.1. For any 0 < ε ≤ 1, an ε-blurred ball
cover of size O((d/ε3) log(1/ε)) of a stream of points can
be maintained in O((d/ε2) log(1/ε)) amortized time.

3 Applications of Blurred Ball Cover

We now describe streaming algorithms for answering
(
√

2 + ε)-FN(x) queries and for maintaining (
√

2 + ε)-

diam(S), (
√

2 + ε)-MEB(S) and (1+
√

3
2 + ε)-MEB(S)

using the blurred ball cover. We use the following simple
inequality repeatedly. For any x, y ∈ R,

(x + y) ≤
√

2(x2 + y2)1/2.(3.1)

Farthest-neighbor queries. We maintain an ε-
blurred ball cover K and update it in the batched
mode. Let A be the set of newly arrived points in S
that have not been processed yet. Set Q = K ∪ A;
|Q| = O((1/ε3) log(1/ε)). For any query point x ∈ R

d,
we return the point of Q that is farthest from x. We
claim that for any x ∈ R

d,

max
p∈S

||xp|| ≤ (
√

2 + ε)max
q∈Q

||qx||.

Let p′ = arg maxp∈S ||px|| and q′ = arg maxq∈Q ||qx||.
If p′ ∈ A then p′ = q′ and the claim is obviously true. If
p′ ∈ S \A, i.e., p′ has been processed by Update, then,
by (P3), there is an i ≤ u such that p′ ∈ (1 + ε)Bi.
Assuming ci = c(Bi) and ri = r(Bi),

||xp′|| ≤ ||xci|| + ||cip
′|| ≤ ||xci|| + (1 + ε)ri.(3.2)

Let h be the hyperplane passing through ci and
normal to xci and let h+ be the halfspace, bounded
by h, that does not contain x. By Lemma 2.1, there is
a point z ∈ Ki such that ||zci|| = ri. Since ∠xciz is
obtuse,

||xz|| ≥ (||xci||2 + ||ciz||2)1/2

≥ (||xci||2 + r2
i )1/2.(3.3)

By combining (3.2) and (3.3) and using (3.1),

||xp′|| ≤
√

2(||xci||2 + r2
i )1/2 + εri

≤ (
√

2 + ε)||xz||
≤ (

√
2 + ε)||xq′||.

We conclude the following.

Theorem 3.1. For a stream S of points in R
d and

a parameter 0 < ε ≤ 1, there is a data structure of
size O((d/ε3) log(1/ε)) that answers (

√
2 + ε)-FN(x) in

time O((d/ε3) log(1/ε)). The amortized update time is
O((d/ε2) log(1/ε)).

Diameter. For a point set S, we maintain a α-diam(S),
for α =

√
2 + ε, using the above data structure for

answering α-FN(x) queries. Let p, q be the current α-
diameteral pair maintained by the algorithm. When
a new point z arrives, we compute the w = α-FN(z).
If ||wz|| > ||pq||, we replace (p, q) with (w, z). We
conclude the following.

Theorem 3.2. For a stream S of n points in R
d,

there is a data structure of size O((d/ε3) log(1/ε)) that
maintains a (

√
2 + ε)-diam(S). The amortized update

time of this structure is O((d/ε3) log(1/ε)).

Coreset for minimum enclosing ball. For a stream
S of points, we maintain an ε-blurred ball cover K and
update it in the batched mode. Let A be the set of
points not processed by Update and let Q = K ∪ A.
Let B = MEB(Q), c = c(B) and r = r(B). We argue
that for every Ki ∈ K, (1 + ε)Bi ⊆ (

√
2 + ε)B.

Lemma 3.1. For all i ≤ u, (1 + ε)Bi ⊆ (
√

2 + ε)B.

Proof. For any ball Bi in the blurred ball cover, let
ci = c(Bi) and ri = r(Bi). Observe that Ki ⊆ B. Let
t∗ = arg maxt∈(1+ε)Bi

||tc||. ||t∗c|| = ||cci|| + (1 + ε)ri.
By Lemma 2.1, there is a point p ∈ Ki such that
||pc|| ≥

√

||cci||2 + r2
i . But ||pc|| ≤ r. Hence,

||t∗c||
||pc|| ≤ ||cci|| + (1 + ε)ri

√

||cci||2 + r2
i

≤
√

2 + ε,

or ||t∗c|| ≤ (
√

2+ε)||pc|| ≤ (
√

2+ε)r. Thus (1+ε)Bi ⊆
(
√

2 + ε)B.
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Lemma 3.1 in conjunction with property (P3) of
blurred ball cover implies that S ⊂ (

√
2 + ε)B. Thus Q

is a (
√

2 + ε)-coreset(S). We conclude the following.

Theorem 3.3. For a stream S of points in R
d and a

parameter 0 < ε ≤ 1, there is a data structure of size
O((d/ε3) log(1/ε)) that maintains a (

√
2+ε)-coreset(S)

of minimum enclosing ball. The amortized update time
of this structure is O((d/ε2) log(1/ε)).

Minimum enclosing ball. For a stream S of points,
we maintain a (ε/9)-blurred ball cover K of S. K

is updated whenever a new point arrives. Let B =
{B1, . . . , Bu}. Let B∗ = MEB(B). We return (1 +
ε/3)B∗ which can be computed in time O(1/ε5) [23].
Hence the total update time is O(1/ε5). Let r̂ =
r(MEB(S)).

Lemma 3.2. r(B∗) ≤
(

1 +
√

3

2
+ ε/3

)

r̂.

Proof. Let K′ = 〈Ki | Bi ∩ ∂B∗ 6= ∅〉 and B′ =
{Bi | Ki ∈ K′}. Note that any subsequence of K, and
hence K′, satisfies properties (P1) and (P2) of blurred
ball cover. Let Bt be the largest ball in B′. Let
ct = c(Bt), rt = r(Bt), c

∗ = c(B∗), r∗ = r(B∗) and let
k = r∗/rt. Observe that ||ctc

∗|| = r∗ − rt = (k − 1)rt.
Let h be a hyperplane passing through c∗ with a nor-
mal parallel to ctc

∗. Let h+ be the halfspace bounded
by h and that does not contain ct. By Lemma 2.1,
there is a point bi ∈ ∂B∗ ∩ Bi, for some i, such that
||bic

∗|| = r∗ = krt. Since ∠ctc
∗bi is obtuse, we have

||ctbi|| ≥
√

(k − 1)2r2
t + k2r2

t .(3.4)

Since the proof of Lemma 3.1 requires only (P2) of
blurred ball cover, it holds for any subsequence of K.
In particular, it holds for K′. Hence, for all Bi ∈ B′,
Bi ⊆ (

√
2 + ε/9)Bt, implying that

||ctbi|| ≤ (
√

2 + ε/9)rt.(3.5)

Combining (3.4) and (3.5), we have

(k − 1)2r2
t + k2r2

t ≤ (
√

2 + ε/9)2r2
t ≤ 2(1 + ε/9)2r2

t .

Solving this quadratic equation, we can deduce

that, k ≤ 1+
√

3
2 + ε/3.

Thus

r∗ ≤ krt ≤ kr̂ ≤
(

1 +
√

3

2
+ ε/3

)

r̂.

By (P3),

S ⊂
⋃

i≤u

(1 + ε/9)Bi ⊆ (1 + ε/9)B∗.

By Lemma 3.2, we have

r∗ ≤
(

1 +
√

3

2
+ ε/3

)

r̂.

Thus

(1 + ε/3)r∗ ≤
(

1 +
√

3

2
+ ε/3

)

(1 + ε/3)r̂

≤
(

1 +
√

3

2
+ ε

)

r̂,

implying that (1 + ε/3)B∗ is indeed a
(

1+
√

3
2 + ε

)

-

MEB(S). We conclude the following.

Theorem 3.4. Given a stream S of points in R
d,

there is a data structure of size O((d/ε3) log(1/ε)) that

maintains a (
√

3+1
2 + ε)-MEB(S). The (worst-case)

update time of this structure is O(d/ε5).

Remark. A slightly better bound on r∗, the radius
of the ball returned by the above algorithm can be
obtained using a more involved argument. While,
from the lower bounds on α-MEB(S) in Section 4 it

follows that r∗ > 1+
√

2
2 , the following example shows

that one cannot hope to prove r∗ = 1+
√

2
2 + ε. Let

the input be a stream S = 〈p1, p2, p3, p4, . . .〉, where

p1 = ( 1√
2
, 1

2
√

2
,

√
3

2
√

2
), p2 = ( 1√

2
, 1

2
√

2
,−

√
3

2
√

2
), p3 =

( 1√
2
,− 1√

2
, 0), p4 = (−1, 0, 0), and p5, p6, . . . , are points

on a unit sphere in R
3. When the points in S arrive

in this order, the blurred ball cover will consist of
K = {{p1, p2}, {p1, p2, p3}, {p1, p2, p3, p4}}. The three
balls {B1, B2, B3} of K are described by

B1 = B

(

(

1√
2
,

1

2
√

2
, 0

)

,

√
3

2
√

2

)

,

B2 = B

((

1√
2
, 0, 0

)

,
1√
2

)

,

B3 = B ((0, 0, 0), 1) .

Let B′ = MEB(B1 ∪ B2) with r(B′) = (1 +
√

2)/2 and
c(B′) = ((1/

√
2) − (1/2), 0, 0). Let q be the farthest

point of B3 from c(B′). ||qc(B′)|| =
√

3/2 > 1+
√

2
2 . We

evaluate B∗ to be θ-MEB(S) where θ ≥ 1+
√

2
2 + 10−5.
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4 Lower Bounds

In this section we show that any randomized streaming
algorithm that maintains α-diam(S), α-width(S), α-
MEB(S), or α-coreset(S) with probability at least 2/3,
requires Ω(min(|S|, exp(d1/3))) space for certain values
of α. In particular, α <

√
2(1 − 2/d1/3) for α-diam(S)

and α-coreset(S), α ≤ d1/3/8 for α-width(S), and

α < 1+
√

2
2 (1 − 2/d1/3) for α-MEB(S). Let S

d−1 denote
(d − 1)-dimensional unit sphere centered at origin. We
show how to sample points from S

d−1 which will be
crucial for proving our lower bounds.

Sampling in S
d−1. Let u ∈ S

d−1 and ε ∈ (0, 1). Let H
be the hyperplane 〈x, u〉 = ε, i.e., H is the hyperplane
that is at distance ε from the origin and normal to the
vector u. H divides S

d−1 into two spherical regions. We
refer to the smaller spherical region as a spherical cap
and denote it by C(u, ε). We define its measure to be

µ(u, ε) =
SA(C(u, ε))

SA(Sd−1)
,

where SA(X) is the surface area of X. It is well
known [8] that

µ(u, ε) ≤ exp(−dε2/2).(4.6)

Lemma 4.1. There is a centrally symmetric point set
K ⊆ S

d−1 of size Ω(exp(d1/3)) such that for any pair of
distinct points p, q ∈ K if p 6= −q, then

√
2(1 − 2/d1/3) ≤ ||pq|| ≤

√
2(1 + 2/d1/3).

Proof. The set K is constructed incrementally. We
maintain the invariant that if p, q ∈ K and q 6= p
then q 6∈ C(p, 2/d1/3). We also maintain a centrally
symmetric region F = S

d−1 \ ⋃q∈K C(q, 2/d1/3). Ini-

tially K = ∅ and F = S
d−1. If F 6= ∅, we choose an

antipodal pair of points p,−p from F . By construc-
tion, p,−p ∈ C(q, 2/d1/3) for any point q ∈ K. More-
over, by symmetry, no point in K lies in C(p, 2/d1/3) ∪
C(−p, 2/d1/3). We add p and −p to K. We set
F = F \

{

C(p, 2/d1/3) ∪ C(−p, 2/d1/3)
}

to ensure that
the invariant holds after adding p and p′. The algorithm
terminates when F = ∅.

By (4.6), µ(p, 2/d1/3)+µ(−p, 2/d1/3) ≤ exp(−d1/3),
therefore the above algorithm performs Ω(exp(d1/3))
steps before it stops. Hence |K| = Ω(exp(d1/3)). Let
s, t ∈ K be such that s 6= t,−t. By construction, s 6∈
C(t, 2/d1/3)∪C(−t, 2/d1/3). Let t′ (resp. t′′) be a point
on the boundary of C(s, 2/d1/3) (resp. C(−s, 2/d1/3)).
Then ||st′|| ≤ ||st|| ≤ ||st′′||. A simple trignometric
calculation shows that (see Figure 2(a))

||st|| ≤ ||st′′||

≤
(

(1 + 2/d1/3)2 + (1 − 4/d2/3)
)1/2

≤
√

2(1 + 2/d1/3)1/2

≤
√

2(1 + 2/d1/3).

Similarly one can show

||st|| ≥ ||st′|| ≥
√

2(1 − 2/d1/3).

Diameter. The problem Index is defined as follows.
Let Alice and Bob be two players. Suppose Alice has
a binary string σ ∈ {0, 1}k

and Bob has an index
i ∈ [1 : k]. For any j ∈ [1 : k], let σj be the bit that
appears in the jth position of σ. Alice sends a message
to Bob after which Bob needs to determine σi with
probability at least 2/3. It is well-known that the length
of any message sent by Alice that helps Bob determine
σi with probability at least 2/3 is Ω(k) [25].

We choose the smallest d so that k ≤ exp(d1/3).
Hence k = Θ(exp(d1/3)). Let A be a streaming
algorithm that maintains α-diam(S) for α ≤

√
2(1 −

2/d1/3) with probability at least 2/3. We choose
2 exp(d1/3) points on S

d−1 using Lemma 4.1. Let L
be the subset of at least k of these points that lie on the
hemisphere x1 ≥ 0. We sort L in lexicographic order,
which induces a map ϕ : [1 : k] → L. The map ϕ
is independent of the input string σ and the index i.
Hence we can assume that both Alice and Bob know ϕ
without communicating any bits.

For any σ ∈ {0, 1}k
, let ϕ(σ) = {ϕ(x) | σx = 1}.

Alice adds ϕ(σ) as input to A in an arbitrary order.
Then, Alice communicates the working space of A to
Bob. In order to determine the σi, Bob adds as input,
−ϕ(i) to A. Let p, q ∈ S be the pair of points returned
by A at the end of the protocol. If p = −q, Bob
determines σi = 1. Else, Bob determines σi = 0. The
following lemma shows the correctness of this protocol.

Lemma 4.2. For any σ ∈ {0, 1}k
and i ∈ [1 : k]. Let

S = ϕ(σ) ∪ {−ϕ(σi)} and α ≤
√

2(1 − 2/d1/3). Every
α-diam(S) pair is an antipodal pair if and only if σi = 1.

Proof. Since all points in ϕ(σ) lie in one hemisphere,
there is an antipodal pair of points in S if and only if
ϕ(i) ∈ ϕ(σ), i.e. σi = 1. If σi = 0, then ϕ(i) 6∈ ϕ(σ)
and A does not return an antipodal pair of points. On
the other hand, suppose σi = 1 and suppose there is
an α-diameteral pair p, q ∈ S such that p 6= −q. Since
{ϕ(σi),−ϕ(σi)} ⊆ S, diam(S) ≥ 2. From Lemma 4.1,
it follows that ||pq|| ≤

√
2(1 + 2/d1/3), i.e., diam(S) >

α · ||pq|| for α ≤
√

2(1 − 2/d1/3). Thus p, q is not an α-
diameteral pair implying that α-diam(S) is an antipodal
pair of points.
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Figure 2: (a) Proof of Lemma 1, (b) Lower bound for α-MEB(S); here ε = 2/d1/3.

Since A returns an α-diam(S) with probablity at
least 2/3, Bob determines σi correctly with the same
probability. Since the communication complexity of
any randomized algorithm for the indexing problem is
Ω(k) = Ω(exp(d1/3)), it follows that the work space of
A is Ω(exp(d1/3)). We thus conclude the following.

Theorem 4.1. Any streaming algorithm that main-
tains an α-diam(S) of a set S of n points in R

d, for
α <

√
2(1 − 2/d1/3), with probability at least 2/3 re-

quires Ω(min
{

n, exp(d1/3)
}

) bits of storage.

Minimum enclosing ball. Let A be an algorithm

that maintains an α-MEB(S), for α ≤ 1+
√

2
2 (1−2/d1/3)

with probability at least 2/3. The map ϕ is defined as
above. Alice passes points in ϕ(σ) as input to A in an
arbitrary order and communicates the working space
of A to Bob. For index i, let qi be the point that is
in the direction −ϕ(i) and at distance

√
2(1 + 2/d1/3)

(resp. 2 +
√

2(1 + 2/d1/3)) from −ϕ(i)(resp. ϕ(i)); see
Figure 2(b). Bob adds qi as input to A. If A returns
a ball of radius at least (1 + 1√

2
), then Bob declares

σi = 1. Otherwise, Bob declares σi = 0.
Let S = {ϕ(σ) ∪ {qi}}. Note that ||ϕ(i)qi|| =

2 +
√

2(1 + 2/d1/3). Hence if σi = 1, then ϕ(i), qi ∈ S
and hence the radius of any ball containing S must be
at least

||ϕ(i)qi||/2 = (2 +
√

2(1 + 2/d1/3))/2 > 1 +
1√
2
.

On the other hand, if σi = 0, then ϕ(i) 6∈ S. By
Lemma 4.1, all points in ϕ(σ) are within distance

√
2(1+

2/d1/3) from −ϕ(i). Since, ||qi(−ϕ(i))|| =
√

2(1 +
2/d1/3), the radius of MEB(S) is at most

√
2(1+2/d1/3).

In this case, the radius of any α-MEB(S) is at most

α · r(MEB(S)) ≤ (1 + 1√
2
), for α < 1+

√
2

2 (1 − 2/d1/3).

Since A outputs a correct α-MEB(S) with probability
at least 2/3, Bob can determine σi with the same
probability. We can thus conclude that the workspace
of A is Ω(exp(d1/3)) and obtain the following.

Theorem 4.2. Any streaming algorithm that main-
tains an α-MEB(S) of a set S of n points in R

d, for

α < 1+
√

2
2 (1 − 2/d1/3), with probability at least 2/3 re-

quires Ω(min
{

n, exp(d1/3)
}

) bits of storage.

Coreset for minimum enclosing ball. The reduc-
tion to α-MEB(S) can be modified to obtain lower
bounds on α-coreset. Let A be an algorithm that main-
tains a α-coreset(S) for α ≤

√
2(1 − 2/d1/3) with prob-

ability 2/3. Let ϕ be a map as defined previously. Alice
passes points in ϕ(σ) as input to A in an arbitrary order
and communicates the working space of A to Bob. For
index i, qi is the point as defined above; see Figure 2(b).
Let C be α-coreset maintained by A. For index i, Bob
adds qi as input to A and checks whether ϕ(i) ∈ C. If
ϕ(i) ∈ C, Bob reports σi = 1. Otherwise, Bob reports
σi = 0.

The correctness of this reduction follows from the
following lemma.

Lemma 4.3. If C is an α-coreset(ϕ(σ)∪{qi}), for α <√
2(1 − 2/d1/3) then,

(i) qi ∈ C, and

(ii) ϕ(i) ∈ C if and only if σi = 1.

Proof. Let S = ϕ(σ) ∪ {qi}. First, we prove (i).
Suppose, on the contrary, that qi 6∈ C and hence
C ⊆ ϕ(σ). Let B

d be the unit ball centered at origin.
Let β be MEB(C). Since C ⊂ S

d−1, r(β) ≤ 1 and
c(β) ∈ B

d. Observe that, for any point t ∈ B
d,

||tqi|| ≥
√

2(1 + 2/d1/3). Hence,

||c(β)qi|| ≥
√

2(1 + 2/d1/3)

≥
√

2(1 + 2/d1/3)r(β)

> α · r(β),

leading to a contradiction that C is an α-coreset(S).
Now, we prove (ii). If σi = 0, then ϕ(i) 6∈ S and

C ⊆ S implies ϕ(i) 6∈ C. On the other hand, suppose
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σi = 1 but ϕ(i) 6∈ C. Let β = MEB(C). Observe that
all points in C are within a distance

√
2(1+2/d1/3) from

−ϕ(i). Hence r(β) ≤
√

2(1 + 2/d1/3). It follows from
(i) that the center c(β) ∈ β∗, where β∗ = B(qi,

√
2(1 +

2/d1/3)). For any point p ∈ β∗, ||pϕ(i)|| ≥ 2, therefore

||c(β)ϕ(i)|| ≥ 2

≥
√

2(1 − 2/d1/3)
√

2(1 + 2/d1/3)

≥ α · r(β),

for α <
√

2(1 − 2/d1/3), leading to a contradiction that
C is an α-coreset(S).

Hence, we conclude the following.

Theorem 4.3. Any streaming algorithm that main-
tains an α-coreset(S) of a set S of n points in R

d, for
α <

√
2(1−2/d1/3), with probability at least 2/3 requires

Ω(min
{

n, exp(d1/3)
}

) bits of storage.

Width. Let B be a ball centered at origin with
r(B) = 1/2. For any vector u ∈ S

d−1, let hu be a
hyperplane passing through the origin and normal to u,
i.e., 〈x, u〉 = 0. Let Nu ⊂ hu be a set of d points such
that conv(Nu ∪ {−u, u}) contains B; see Figure 3. For

any σ ∈ {0, 1}k
, let −ϕ(σ) = {−p | p ∈ ϕ(σ)}.

−u

u

hu

v2
v3

v1

B

Figure 3: Nu = {v1, v2, v3}, B ⊂ conv(Nu ∪ {−u, u}).

The Index problem can be reduced to α-width(S)
as follows. Let A be a streaming algorithm that
maintains α-width(S), for α < d1/3/8, with probability
at least 2/3. Alice passes points in {ϕ(σ) ∪ −ϕ(σ)}
to A in an arbitrary order and then communicates the
working space of A to Bob. For index i, Bob adds Nϕ(i)

to A. If A reports a slab J such that d(J) is at least
1, then Bob reports σi = 1 and otherwise Bob reports
σi = 0.

The correctness of the reduction follows from the
following observation. Let S = {ϕ(σ)∪−ϕ(σ)∪Nϕ(i)}.
If σi = 1, then {Nϕ(i) ∪ {−ϕ(i), ϕ(i)}} ⊆ S. By
construction of Nϕ(i), B ⊂ conv(Nϕ(i) ∪ {ϕ(i),−ϕ(i)}).
Since r(B) = 1/2, d(J) ≥ d(width(S)) ≥ 1. On the

other hand, if σi = 0, then (−ϕ(i), ϕ(i)) 6∈ S. Let W
be a slab bounded by the two hyperplanes 〈x, ϕ(i)〉 =
2/d1/3 and 〈x, ϕ(i)〉 = −2/d1/3. By Lemma 4.1 and
the fact that Nϕ(i) ⊂ hϕ(i) ⊂ W , we have S ⊂ W and

d(width(S)) ≤ 4/d1/3. For α < d1/3/8,

d(J) ≤ α · d(width(S)) ≤ α · 4/d1/3 ≤ 1/2.

Hence, we conclude the following.

Theorem 4.4. Any streaming algorithm that main-
tains an α-width(S) of a set of n points in R

d, for
α < d1/3/8, with probability at least 2/3, requires
Ω(min

{

n, exp(d1/3)
}

) bits of storage.

5 Conclusion

In this paper, we design streaming algorithms for main-
taining several extent measures on high-dimensional
point sets. Our approach is based on the notion of
blurred ball cover that, for a stream S of points, main-
tains a subset K ⊆ S. K can be interpreted as the union
of a set of {K1, . . . ,Ku}, u = O((1/ε2) log(1/ε)), of sub-
sets of S each of size O(1/ε) so that S lies in the union
of (1 + ε)MEB(Ki). We provide a simple streaming al-
gorithm for maintaing blurred ball cover. We then use
blurred ball cover to provide streaming algorithms for
various extent measures. Finally, we show lower bounds
on the worst-case approximation ratio of any stream-
ing algorithm that uses poly(d) space to maintain these
extent measures. We conclude by stating related prob-
lems.

• Is there a fully dynamic data structure, whose size
is linear in n and poly(d, 1/ε), that maintains a
(1 + ε)-MEB(S)?

• Can the concept of blurred ball cover be general-
ized for maintaining approximate smallest encosing
convex shape of a high dimensional point set, e.g.,
minimum enclosing ellipsoids, under the streaming
model?
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