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Figure 1: Streaming computation of Delaunay triangulations in 2D (Neuse River) and 3D. Blue quadrants or octants are unfinalized space where future points will arrive. Purple

triangles and tetrahedra are in memory. Black points and their triangles and tetrahedra have already been written to disk or piped to the next application.

Abstract

We show how to greatly accelerate algorithms that compute Delau-
nay triangulations of huge, well-distributed point sets in 2D and 3D
by exploiting the natural spatial coherence in a stream of points. We
achieve large performance gains by introducing spatial finalization
into point streams: we partition space into regions, and augment
a stream of input points with finalization tags that indicate when a
point is the last in its region. By extending an incremental algo-
rithm for Delaunay triangulation to use finalization tags and pro-
duce streaming mesh output, we compute a billion-triangle terrain
representation for the Neuse River system from 11.2 GB of LIDAR
data in 48 minutes using only 70 MB of memory on a laptop with
two hard drives. This is a factor of twelve faster than the previous
fastest out-of-core Delaunay triangulation software.

CR Categories: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling—Geometric algorithms
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1 Introduction

New instruments have made huge geometric data sets common
in terrain modeling (LIDAR, synthetic aperture radar), medical
image analysis (magnetic resonance imaging, tomography), and
computer-aided engineering (laser range scanning, finite element
methods). These data sets are often many times larger than the
memories of commodity computers, and overwhelm the algorithms
and data formats used to manage and analyze them. Our expanding
capacity to collect geometric data has inspired a recent burst of re-
search on streaming representations of large-scale geometry [Isen-
burg et al. 2003; Isenburg and Lindstrom 2005; Pajarola 2005].

We detail here how we use streaming computation to construct
a billion-triangle Delaunay triangulation of a planar point set in 48
minutes with an off-the-shelf laptop computer plus a firewire drive,
using 70 MB of memory to produce a 16.9 GB triangulation. This
is about a factor of twelve faster than the previous best out-of-core

for demo software & source code see http://www.cs.unc.edu/∼isenburg/sd/

Delaunay triangulator, by Agarwal, Arge, and Yi [2005]; see Sec-
tion 6. We also construct a nine-billion-triangle, 152 GB triangula-
tion in under seven hours using 166 MB of main memory.

A streaming computation makes a small number of sequential
passes over a data file (ideally, one pass), and processes the data us-
ing a memory buffer whose size is a fraction of the stream length.
We have implemented two- and three-dimensional triangulators that
read streams of points as input, and produce Delaunay triangu-
lations in streaming mesh formats. The memory footprint of the
2D triangulator is typically less than 0.5% of the output mesh size
(sometimes much less). The memory footprint of the 3D triangu-
lator is typically less than 10% of the output mesh size when the
points are roughly uniformly distributed in a volume.

The main new idea in our streaming Delaunay triangulators is
spatial finalization (which differs from the topological finalization
of mesh entities like points and triangles in previous papers). We
partition space into regions, and include finalization tags in the
stream that indicate when no more points in the stream will fall in
specified regions. Our triangulators certify triangles or tetrahedra
as Delaunay when the finalization tags show it is safe to do so. This
make it possible to write them out early, freeing up memory to read
more from the input stream. Because only the unfinalized parts of a
triangulation are resident in memory, the memory footprint remains
small. We created our triangulators by making modest changes to
existing incremental Delaunay triangulation implementations—no
new triangulation algorithm was needed.

Streaming algorithms can succeed only if streams have sufficient
spatial coherence—a correlation between the proximity in space
of geometric entities and the proximity of their representations in
the stream. We present evidence in Section 3 that huge real-world
data sets often do have sufficient spatial coherence. This is not sur-
prising; if they didn’t, the programs that created them would have
bogged down due to thrashing. Moreover, we can add more spatial
coherence to a stream by chunking—reordering points (in memory,
without resorting to an external sort) so that all the points in a re-
gion appear consecutively. Many external memory algorithms sort
the geometry as a first step. One of our contributions is the obser-
vation that spatial coherence often enables us to triangulate a large
point set in the time it takes just to sort it. (See Section 6.)

With these ideas and a laptop, we can process the 11.2 GB of
bare-earth LIDAR data for the Neuse River Basin, comprising over
500 million points (double-precision x, y, and height coordinates).

This data comes from the NC Floodplain Mapping project1, begun
after Hurricane Floyd in 1999. North Carolina was the first state to

1http://www.ncfloodmaps.com
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Figure 2: The finalizer reads the points thrice and pipes a spatially finalized point

stream to the triangulator, which writes out a topologically finalized streaming mesh.

use LIDAR (Light Detection and Ranging, an airborne laser scan-
ning technology) and capture elevation points to assess flood risks,
set insurance premiums, and create disaster plans for an entire state.
The sheer enormity of the models has hindered their processing, de-
laying the project’s completion from 2002 to 2007 [Quillin 2002].

Faced with a half billion points, a typical in-core algorithm, with
perhaps a gigabyte at its disposal, must resort to virtual memory.
Then computations like following pointers through linked lists or
triangulation data structures, maintaining priority queues, and al-
locating and freeing objects produce memory access patterns that
cause thrashing—excessive paging—slowing execution to a crawl.

We triangulate huge point sets with two concurrent programs de-
picted in Figure 2. The finalizer reads a stream of raw points three
times from disk. During the first pass it finds the bounding box,
on which we overlay a grid of rectangular regions. During the sec-
ond pass it counts the number of points in each region. During
the third pass it inserts spatial finalization tags, reorders the points,
and writes a spatially finalized point stream to a pipe. Two finalizer
components reorder points during the third pass: the chunker delays
points so that the points in each region are contiguous, which im-
proves spatial coherence, and the sprinkler promotes representative
points (sampled during the second pass) to earlier positions in the
stream, which averts the risk of quadratic running time. The trian-
gulator reads the finalized point stream from the pipe and triangu-
lates it with an incremental Delaunay algorithm, writing a finalized
mesh stream while still reading the finalized point stream.

The two programs triangulate the 11.2 GB Neuse River Basin
point stream, producing a 16.9 GB mesh, in 48 minutes using 70
MB of memory. The finalizer occupies 60 MB of memory (used
mainly to reorder points), and the triangulator occupies 10 MB—
less than 0.1% of the size of the mesh. If the triangulator can read
an already-finalized point stream from disk, there is no need for the
finalizer, and the triangulator runs in 35 minutes.

The triangulation may be piped directly to another application—
for instance, software for mesh simplification, or for extracting con-
tour lines or drainage networks from terrain. Because stream pro-
cessing modules typically have small memory footprints, we run
chains of them concurrently and stream gigabytes through them.
A major benefit of streaming (without sorting the points as a first
step) is quick feedback: For example, a user can pipe the triangula-
tor’s output to our streaming isocontour extraction module, whose
output is piped to a visualization module. Isocontours begin to ap-
pear within minutes (or seconds), as our processes produce output
while still consuming input. If they look wrong, the user can about
the pipeline and restart all the streaming components with differ-
ent parameters. With other methods, users must wait hours for the
triangulation to finish before glimpsing the results.

We advocate that applications that create huge geometric data
sets, such as scientific simulations, should strive to write their out-
put in the form of spatially coherent, spatially finalized, streaming
geometry. The effort needed to do so is often small, and the reward
is the ability to perform large-scale computations normally thought
to be the exclusive domain of parallel supercomputers.

Unfortunately, our streaming triangulators do not enjoy the same
out-of-core performance for surface point clouds in 3D as they do
for terrains and volume-filling point clouds. The difficulty is caused
by the many large circumspheres in the Delaunay triangulations of
surface point clouds, which thwart spatial finalization from certify-
ing tetrahedra. We believe a more sophisticated finalization tech-
nique can overcome this hurdle. See the Conclusions for details.

2 Processing large geometric data sets

How can we handle large data sets? Powerful computers with large
memories suffice for those who have them (and are often responsi-
ble for producing the data sets). To make large data sets useful to the
wider audience that have commodity processors, however, we need
algorithms that use a small amount of memory wisely. Here we
review general approaches to algorithms for large geometric data
sets, and the literature on computing large Delaunay triangulations.

2.1 Algorithms for large data sets

Several types of algorithms are used to process large geometric
data sets: divide-and-conquer algorithms, which cut a problem
into small subproblems that can be solved independently; cache-
efficient algorithms, which cooperate with the hardware’s mem-
ory hierarchy (caches and virtual memory); external memory al-
gorithms, which exercise control over where, when, and how data
structures are stored on disk (rather than trusting the virtual mem-
ory); and streaming algorithms, which sequentially read a stream
of data (usually once, perhaps in several passes) and retain only a
small portion of the information in memory. All of these algorithms
try to exploit or create spatial coherence.

Divide-and-conquer algorithms for huge data sets are, for some
problems, difficult to design: they often require ingenious algo-
rithms to choose the cuts, necessitate tedious programming to com-
municate across the cuts, or suffer from poor-quality results near the
cuts. For Delaunay triangulations, the very act of choosing cuts so
that no further communication is needed requires a convex hull al-
gorithm that itself can process huge data sets [Blelloch et al. 1999].

Cache-efficient algorithms (which often also cooperate well with
virtual memory) fall into two categories. Some software is opti-
mized for a particular cache architecture—a well-known example
is BLAS (the Basic Linear Algebra Subprograms), optimized by
most microprocessor vendors for their architectures. Some soft-
ware is cache-oblivious, designed to cooperate well with any cache
or virtual memory, regardless of the details of its architecture. This
category includes heuristics for cache-oblivious data layouts that do
well in practice [Yoon et al. 2005], and cache-oblivious algorithms
that offer guaranteed bounds on the amount of traffic between cache
and memory [Kumar 2003] (and sometimes do well in practice).

External memory algorithms use disks for temporary storage of
data structures that do not fit in memory, and explicitly control data
movement and data layout on disk with the goal of minimizing the
number of disk accesses [Vitter 2001]. Like cache-oblivious algo-
rithms, external memory algorithms have received a lot of attention
from theoreticians, who give provable bounds on the number of disk
accesses their algorithms perform. Most of these algorithms build
sophisticated data structures on disk, notably B-trees.

Streaming, the approach we advocate here, differs from external
memory algorithms in that nothing is temporarily paged out to ex-
ternal memory. The disk is used only for input and output. The
algorithm makes one or a few sequential passes over the data and
restricts computations to those parts that are in memory. As it can
neither backtrack nor store more than a small fraction of the stream,
it needs a mechanism to decide what parts of the data to retain and
for how long, and where it can safely complete computations.

Some online algorithms can be remarkably more effective if
the stream includes a small amount of information about the “fu-
ture” of the stream [Karp 1992]. Representations for streaming
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Figure 3: Three terrain data sets: the 6 million-point “grbm” (LIDAR data of Baisman Run at Broadmoor, Maryland, left), the 67 million-point “puget” (middle) and the 0.5

billion-point “neuse” data set (right). Colors illustrate spatial coherence in selected grid cells: each cell’s center is colored by the arrival time of its first point in the stream, and each

cell’s boundary is colored by the arrival time of its last point in the stream, with time increasing from black to white along the color ramp (bottom).

meshes [Isenburg and Gumhold 2003; Isenburg et al. 2003; Isen-
burg and Lindstrom 2005] contain not only points, triangles, and
tetrahedra, but also finalization tags that certify when a topological
entity is seen for the last time. Finalization tags permit a geometric
algorithm to output partial results and discard associated informa-
tion, freeing room in memory for more data to stream in.

2.2 Delaunay triangulations and large data sets

The Delaunay triangulation and its dual Voronoi diagram [Okabe
et al. 2000] have been ubiquitous in geometry processing since
algorithms for them first appeared in the 1970s [Frederick et al.
1970; Shamos and Hoey 1975]. The Delaunay triangulation (or
tetrahedralization) of a set of points has the property that the cir-
cumscribing circle of every triangle, or the circumscribing sphere
of every tetrahedron, encloses no point in the set. Many surveys
of Delaunay triangulations are available: see Fortune [1992] for
mathematical properties, Su and Drysdale [1995] for a summary
of two-dimensional algorithms and their behavior in practice, and
Liu and Snoeyink [2005] for a survey and comparison of five three-
dimensional implementations.

Because of its simplicity, we implemented Lawson’s [1977] in-
cremental insertion algorithm as modified and extended to any di-
mension by Bowyer [1981] and Watson [1981]. Clarkson and
Shor [1989] were first to show that incremental algorithms can run
in optimal time in any dimension if the points are inserted in random
order. Nearly all modern three-dimensional implementations use
incremental insertion, with various strategies for point location—
determining where each new point should be inserted.

Our 2D in-core standard for comparison is the divide-and-
conquer algorithm [Shamos and Hoey 1975] as implemented in Tri-
angle [Shewchuk 1996], which runs in optimal O(nlog n) time and
is the fastest in practice (if the data structures fit in main memory).

Recent papers address the problem of computing Delaunay tri-
angulations too large to fit in memory. Blandford et al. [2005] de-
scribe data structures for dynamically maintaining compressed tri-
angulations in two or three dimensions, thereby increasing the size
of triangulation that fits in memory by a factor of three to five.

For larger triangulations, researchers turn to disk storage. Unfor-
tunately, the randomness that makes incremental insertion fast dis-
tributes data structures randomly through memory, with no spatial
coherence, so the virtual memory thrashes as soon as the physical
memory is exhausted. Amenta, Choi, and Rote [2003] address this
problem (in any dimension) by choosing a point insertion order that
has strong spatial coherence, but retains just enough randomness to
preserve the proof of optimal running time. They call this order a
biased randomized insertion order (BRIO). By using a BRIO, they
increase substantially the size of triangulation they can construct
with a fixed main memory and a large virtual memory.

As an unexpected bonus, their method speeds up point loca-
tion so much that their implementation triangulates most real-world

three-dimensional point sets in linear time, after an O(n logn) sort-
ing step whose hidden constant factor is tiny. Buchin [2005] proves
that incremental insertion, coupled with similar randomization and
point location based on space-filling curves and bucketing, runs in
O(n) time on certain random point sets.

Agarwal, Arge, and Yi [2005] have designed and implemented
an external memory algorithm for constructing constrained Delau-
nay triangulations in the plane, with theoretical bounds on the num-
ber of disk block accesses their algorithm performs. They use a
divide-and-conquer approach in which a small random sample of
the points breaks the problem up into small subproblems, which
are triangulated in-core by Triangle. Their algorithm uses no com-
plicated external data structures (not even B-trees) and is akin to
streaming, but it does many read passes over the points. Our stream-
ing implementation outperforms their external memory implemen-
tation strikingly—see Section 6—but we have not yet implemented
support for constrained Delaunay triangulations.

3 Point streams with spatial finalization

Isenburg and Lindstrom [2005] observe that large mesh data files
have inherent topological coherence (i.e., locality in vertex refer-
ences). It comes as no surprise that geometric data sets also exhibit
inherent spatial coherence (i.e., locality in vertex positions). Fig-
ure 3 illustrates the spatial coherence in three terrain data sets. We
overlay the points with a grid, and color selected cells according
to the time of arrival (in the data stream) of their first point (inner
color) and their last point (outer color). A cell with two contrasting
colors has a large gap between the first and last points. Fortunately,
the proportion of cells with widely contrasting colors is small, indi-
cating that these data sets have good spatial coherence.

The aim of a streaming format is to document coherence so
that algorithms can exploit it. Isenburg and Lindstrom describe a
streaming mesh format consisting of vertices, triangles, and final-
ization tags. A finalization tag finalizes a vertex v after the last
triangle incident on v appears in the stream. The tag tells the appli-
cation processing the streaming mesh that it may complete any local
computation that was waiting for v’s local topology, output partial
results, and free some data structures (probably including the one
representing v). We call this topological finalization, because it de-
pends purely on the connectivity of the mesh.

There is no topology in a stream of points, but one can define
other notions of finalization suited to algorithms that operate on
point sets. Pajarola [2005] globally sorts points along one axis to
derive what we call k-neighbor finalization from the sorted point
stream: a point is finalized after its k nearest neighbors have ar-
rived. We advocate a more general notion of spatial finalization that
provides similar spatial guarantees for stream processing of points
without imposing a strict global order on the points.

We subdivide space into regions, and finalize a region after the
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last point in that region arrives. Finalization injects information
about the future into a stream—in this case, promises that certain
regions contain no additional points. These promises can be used to
certify that a Delaunay circumsphere is empty, and could perhaps
be used in surface reconstruction to certify that all points within a
local neighborhood are known, or in elevation map generation to
certify that all points needed to rasterize a tile have arrived.

Formally, we define a point stream to be a sequence of points,
and a spatially finalized point stream (or a finalized point stream
or simply finalized points) to be a sequence of entities, of which
all but one are points or finalization tags. The first entity in the
stream is special: it specifies a subdivision of space into regions,
such that each point in the stream lies in one of the regions. A
point is finalized when a spatial finalization tag arrives for a region
containing the point. The width of a finalized point stream is the
maximum number of unfinalized points at any time. A stream’s
width is usually a lower bound on the number of points a point
processing algorithm must retain in a buffer at any one time.

Geometric processing tasks whose operations are sufficiently
“local” in space can take advantage of spatial finalization to pro-
cess a point stream in a memory footprint roughly proportional to
the width of the stream, rather than its length. Most large real-world
point sets have enough spatial coherence to be streamed with low
width, but they do not document this fact with spatial finalization
tags. We add them with a program called a finalizer, which makes
three passes over an input point stream and outputs a spatially fi-
nalized point stream. Normally, the output is piped directly to an
application program—in particular, our Delaunay triangulators—so
there is no need to store the finalized point stream on disk.

Our choice of partition is a rectangular 2k
×2k grid of cells. The

finalizer stores cells in a hash table, so only cells that contain points
take up memory. The finalizer’s first pass over the input stream
simply computes the points’ smallest axis-parallel bounding box.
This box is partitioned into equal cells, and the second pass counts
how many points fall into each cell. The third pass is like the second
pass, except that the finalizer decrements these counters instead of
incrementing them. When a cell’s counter reaches zero, the finalizer
inserts a finalization tag for that cell into the stream.

Although real-world point sets usually have a lot of spatial co-
herence, it pays to add more. A finalizer can do more than just final-
ize points—ours (in its default setting) also reorders them. During
the third pass, it buffers all the points in each cell until the cell’s
counter reaches zero, then it releases all the cell’s points into the
output stream, followed by the cell’s finalization tag. We call this
act chunking. Chunking reduces width and increases spatial coher-
ence. It exploits and enhances the coherence already in the data,
but requires far less work than fully sorting the points.

The buffers used for chunking increase the memory footprint of
the finalizer, but that increase is more than offset by the reduced
memory footprint of the stream-based application receiving the fi-
nalizer’s output stream. Buffers filled with points take much less
memory per point than the corresponding triangulation data struc-
ture. We implement the point buffers as linked lists of memory
page-sized blocks, so that if there is insufficient main memory we
use virtual memory efficiently. However, all the data sets we used
in this paper were coherent enough to chunk in main memory.

Sometimes it pays to give up a little spatial coherence. Recall
from Section 2.2 that several Delaunay triangulation algorithms
use random sampling to improve their performance. Adding ran-
domness to the input order is not just a technique for getting the-
oretical results. If a Delaunay triangulator inserts the vertices of
a large square grid in Cartesian order—a natural order for stream
processing—it will degenerate to quadratic running time.

Our streaming implementation borrows ideas from Amenta et
al. [2003] to avoid this danger. The finalizer samples a small frac-
tion of points from the stream, and promotes them to earlier spots in
the stream. On a local level, the finalizer reorders the points within

input
k

time/pass, m:ss
MB

points occupied points per cell

points 1 2 3 buffered cells avg max

puget 6 0:27 0:27 0:41 25 2,018,478 4,096 16,387 41,681

67M pts 7 0:27 0:27 0:39 16 1,101,576 16,384 4,097 12,103

768 MB 8 0:27 0:27 0:40 13 653,058 65,536 1,024 3,290

neuse 8 5:55 5:56 9:12 93 3,842,202 19,892 25,142 66,171

500M pts 9 5:55 5:54 8:23 60 2,249,268 77,721 6,435 20,208

11.2 GB 10 5:55 5:55 8:05 59 1,396,836 306,334 1,633 6,544

neuse 3 ×3 10 52:58 53:18 – : – 136 4,617,984 314,797 14,299 41,135

4.5B pts 11 52:58 53:04 – : – 155 2,169,216 1,234,615 3,645 13,430

110 GB 12 52:58 53:20 – : – 425 978,390 4,880,173 922 4,267

Table 1: Running times (minutes:seconds) and maximum memory footprints (MB)

for the three passes of spfinalize when finalizing three terrain point sets using

2k
× 2k grids. Each pass reads raw points from a firewire drive, and the third pass

simultaneously writes finalized points to the local disk. We also report the maximum

number of points buffered in memory at one time, the number of occupied grid cells,

and the average and maximum points per occupied cell. Third pass timings are omitted

for the “neuse” tiling, because we cannot store 110 GB to disk; but see Table 2.

each cell into a BRIO as a part of chunking. When the last point
in a cell arrives in the input stream, the finalizer moves a sample of
randomly selected points to the front of the chunk before releasing
them into the output stream, thereby averting the possibility of a
quadratic number of changes to the triangulation within the cell.

To be fully effective, points must also be sampled and promoted
globally. During its second pass over the input, our finalizer builds
a quadtree whose leaves are the grid cells, and stores one point from
each quadrant (biased towards points near the quadrant’s center) at
each level of the quadtree. During the third pass, it moves these
sprinkle points to early spots in the output stream. In the manner of
Amenta et al., we could write them out in level order (from the top
to the bottom level of the quadtree) at the front of the stream, but the
number of points we reorder is so large that the width of the stream
would blow up. Instead of releasing them all at once, we “sprinkle”
them into the stream in a lazy fashion: when a cell is finalized, the
sprinkle points associated with all its ancestors and their immediate
children in the quadtree are released (if they haven’t already been)
before the points of the finalized cell are released.

Table 1 documents the time and memory requirements for spatial
finalization of the largest two point sets depicted in Figure 3. The
67 million points of “puget” are the vertices of an unstructured TIN
model of the Puget Sound, generated by Yoon et al. [2005] through
adaptive simplification of a regular triangulation derived from a
USGS digital elevation map. The “neuse” point set is described
in Section 1. The “neuse 3×3” point set is nine tiles of “neuse”
arranged in a non-overlapping grid. The points in all three sets are
distributed fairly uniformly—the maximum number of points in a
grid cell is a small multiple of the average.

From the timings we see that the first two passes are strictly I/O-
bound—our LaCie 5,400 RPM firewire drive has a throughput of 2
GB/min, so it takes six minutes to read the 11.2 GB “neuse” point
set in each pass. The third pass is also I/O-bound, but it is slower
because it simultaneously writes finalized points chunk-by-chunk
to the local disk. If we discard the output instead, the third pass
is almost as fast as the first two passes, with some additional time
spent chunking the points. A finer grid (a largerk) means that points
are finalized more frequently and in smaller chunks. This reduces
the maximum number of points buffered for chunking, but increases
the memory occupied by the quadtree data structure and the sprin-
kles. Of the 425 MB of memory used to finalize “neuse 3×3” with
a 212

× 212 grid, the quadtree and sprinkles take 400 MB.
An observant reader might object that a point-creating applica-

tion could destroy the coherence that our finalizer is expecting sim-
ply by delaying one point in each cell to the end of the stream.
Indeed, the “grbm” data set makes the finalizer buffer many points,
because there is a diagonal stripe across the terrain at the end of the
file. (It appears that the airplane was still collecting data on the way
home.) This vulnerability is not an inherent limitation of stream-
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ing, only of our current implementation of the finalizer. Although
we did not find it necessary with our current data sets, we could re-
order such points by identifying them during the second pass, and
storing them in a memory buffer or a temporary file. If there are too
many points to buffer, then the data set is spatially incoherent, and
any out-of-core triangulator must globally rearrange the data.

4 Streaming 2D Delaunay triangulation

Conventional Delaunay triangulation programs output triangles af-
ter all the input points have been processed. By taking as input
a spatially finalized point stream, our triangulator spdelaunay2d
constructs a Delaunay triangulation incrementally and outputs a tri-
angle whenever it determines that the triangle is final—that its cir-
cumcircle does not touch or enclose an unfinalized cell. Such a
triangle must be in the Delaunay triangulation, since no point arriv-
ing in the future can be inside the triangle’s circumcircle. We call a
triangle active if it is not final.

We created spdelaunay2d by modifying an existing Delaunay
triangulator so that it keeps in memory only the active triangles
and their vertices. This change dramatically reduces the program’s
memory footprint. The main addition to the triangulator is a compo-
nent that discovers when active triangles become final, writes them
to the output stream, and frees their memory. This component uses
a small fraction of the total running time.

Figure 4: A closeup of streaming

Delaunay in 2D. The points on the left

have been processed, and their trian-

gles written out. All triangles in this

figure are active. We have drawn a

few representative circumcircles, all of

which intersect unfinalized space. At

this moment, points are being inserted

into the leftmost cell, which will be fi-

nalized next.

Our triangulator maintains
two data structures: a triangu-
lation, and a dynamic quadtree
that remembers which regions
have been finalized. Both are il-
lustrated in Figure 4. The pur-
pose of the quadtree is to iden-
tify final triangles, as described
in Section 4.2. If the quadtree
were fully expanded, its leaves
would be the cells of the final-
ization grid; but there is no need
to store the descendants of a
quadrant unless it contains both
finalized and unfinalized cells.
Thus, our quadtree’s branches
extend and contract dynami-
cally to maintain the finalization
state without consuming more
memory than necessary.

When spdelaunay2d reads
a point, it inserts it into the
Delaunay triangulation. When
it reads a finalization tag, it
notes the finalized cell in the
quadtree, determines which
active triangles become final,
writes them to the output
stream, and frees their memory.
Before a final triangle is written out, any vertex of that triangle that
has not yet been output is written out. (Each vertex is delayed in
the output stream until the first triangle that depends on it.) After
a final triangle is written out, each of its vertices has its memory
freed if it is no longer referenced by active triangles.

4.1 Delaunay triangulation with finalization

We use a triangle-based (not edge-based) data structure. Each tri-
angle stores pointers to its three corners and its three neighbors. If
a neighboring triangle is final, the corresponding pointer is null.

Standard incremental Delaunay algorithms insert a new point p
in two steps. Point location finds a triangle whose circumcircle en-
closes p. Update finds all the triangles whose circumcircles enclose

p by depth-first search in the triangulation, starting with the triangle
where point location ended. These triangles are deleted. New De-
launay triangles adjoining p are constructed, filling the hole formed
by the deletion [Bowyer 1981; Watson 1981].

The sequential triangulator that we modified performs point lo-
cation by walking a straight line from the most recently created tri-
angle toward the new point. (This strategy is advocated by Amenta
et al. [2003] in conjunction with the BRIO point reordering per-
formed by our chunker.) In a streaming triangulator, however, this
method sometimes fails, because it tries to walk through final trian-
gles, which are no longer in memory. The active triangles do not,
in general, define a convex region.

We modified the walking point locator so when it walks into a
final triangle (i.e., a null pointer), the walk is restarted from a dif-
ferent starting point. For reasons described in the next section, each
leaf of the quadtree maintains a list containing some of the trian-
gles whose circumcircles intersect the leaf’s quadrant. We find the
quadrant enclosing p and start a new walk from one of the triangles
on the quadrant’s list. If this walk fails as well, we first try start-
ing from another triangle, and then from triangles on neighboring
quadrants’ lists, before resorting to an exhaustive search through
all the active triangles. In theory we could do better than exhaustive
search, but in practice these searches account for an insignificant
fraction of our running times. Fewer than 0.001% of point inser-
tions require exhaustive search, and because we retain compara-
tively few triangles in memory and maintain a linked list of them
with the most-recently created triangles at the front of the list, the
exhaustive searches are faster than you would expect.

Final triangles pose no problem for the update operation. We
simply modified the depth-first search so it does not try to follow
null pointers. For numerical robustness, we use the robust geomet-
ric predicates of Shewchuk [1997] to perform circle tests (deciding
whether a circle encloses a point) as well as orientation tests (de-
ciding which side of a line a point lies on). These tests suffice to
produce a robust Delaunay triangulator.

4.2 Identifying final triangles

When spdelaunay2d reads a finalization tag, it needs to check
which active triangles become final—that is, which triangles have
circumcircles that no longer touch or enclose an unfinalized cell.
We first check whether the circumcircle of a triangle is completely
inside the cell that was just finalized—this cheap test certifies many
newly created triangles as final. If that test fails, we use the fast
circle-rectangle intersection checking code by Shaffer [1990] to
test circumcircles against cells. We exploit the quadtree hierarchy
to minimize the number of circle-box intersection tests—if a cir-
cumcircle does not intersect a quadrant, then it cannot intersect the
quadrant’s descendants. When it does intersect, we recurse on each
child quadrant that intersects the circle.

When a triangle’s circumcircle is found to intersect or enclose
an unfinalized cell, it would be wasteful to check the triangle again
before that cell is finalized. Thus, we link the triangle into a list
maintained with the unfinalized cell, and ignore it until the cell’s
finalization tag arrives (or until a point insertion deletes the trian-
gle). When we check the triangle again, we do not test it against the
entire quadtree; we continue searching the quadtree (in preorder
traversal) from the cell it is linked with, where the check last failed.

For our algorithm to be correct, circle-box intersection tests can-
not report false negatives. False positives are acceptable because
they only cause final triangles to stay longer in memory, though we
prefer not to have too many of them. Rather than resorting to exact
arithmetic (which is slow), we make the intersection tests conser-
vative by computing error bounds Ex , Ey , and Er on the center co-
ordinates and radius of a triangle’s circumcircle. Before we invoke
Shaffer’s code (or the test if the circle was inside the last finalized
cell), we enlarge the box by Ex and Ey and the circle by Er.
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Figure 5: Skinny temporary triangles (left) are avoided by lazily sprinkling one

point into each unfinalized quadrant at each level of the evolving quadtree (right).

finalized input points spdelaunay2d output mesh

name
# of points op- max active h:mm:ss

MB
# of triangles

file size tions triangles disk pipe file size

puget

(single)

67,125,109

768 MB

l6 56,163 4:41 5:10 6 (single)

l7 48,946 4:23 4:43 7 134,207,228

l8 49,316 4:24 4:45 7 2.3 GB

neuse

(double)

500,141,313

11.2 GB

l8e4 76,337 37:42 39:41 10 (single)

l9e4 60,338 34:27 36:12 10 1,000,282,528

l10e4 54,802 31:57 33:46 7 16.9 GB

neuse

3 × 3
(double)

4,501,271,817

101 GB

l10e5 75,081 – : – 5:30:56 11 (single)

l11e5 67,497 – : – 4:54:40 11 9,002,543,628

l12e5 68,854 – : – 4:48:47 11 152 GB

Table 2: Performance of spdelaunay2d on large terrains. The spfinalize op-

tion “li” selects a quadtree of depth i, and “e j” finalizes all empty quadrants in the

bottom j levels of the tree at the beginning of the stream. Rows list spdelaunay2d’s

memory footprint (MB) and two timings: one for reading pre-finalized points from

disk, and one for reading finalized points via a pipe from spfinalize. Timings and

memory footprints do not include spfinalize, except that the “pipe” timings include

spfinalize’s third pass, which runs concurrently. For total “pipe” running times, add

pass 1 & 2 timings from Table 1. For total “pipe” memory footprints, add the footprint

from Table 1. For the corresponding totals in “disk” mode, add the running times of

all three finalizer passes, and take the larger memory footprint. Disk timings for the

“neuse” tiling are omitted—we do not have enough scratch disk space.

4.3 Effectiveness of reordering with a BRIO

Recall from Section 3 that our finalizer reorders points both locally
(in the chunker) and globally (in the sprinkler) to avert the quadratic
worst-case behavior that point lattices might produce. Figure 5 de-
picts snapshots of the triangulator without and with global reorder-
ing. Without sprinkling, many very thin, temporary triangles form.
Although few of these triangles typically survive to the final trian-
gulation, their circumcircles are large, so they are more likely to be
deleted by any given vertex insertion.

In practice we get most of the improvement through local re-
ordering, which lowers the average number of deleted triangles per
point insertion from 4.4 to 4.2. Global reordering further lowers
this number to 4.1. (Mathematically, the average for points in com-
pletely random order would be 4.) The margin increases with the
resolution of the finalization grid, but it is not enough to give a mea-
surable improvement in running time on our point streams. Never-
theless, we still prefer the security of knowing that performance
will not degenerate on square point lattices in Cartesian order, for
which the average number of deleted triangles per point insertion
would be proportional to the width of the grid.

4.4 Results

Table 2 summarizes the running times and memory footprints of
spdelaunay2d for triangulating the largest terrain datasets that we
could get our hands on. The measurements were made on a Dell
Inspiron 6000D laptop with a 2.13 GHz mobile Pentium processor
and 1 GB of memory, running Windows XP. The points were read
from a LaCie 5,400 RPM firewire drive with 2 GB/min throughput,
and the meshes were written to the 5,400 RPM local disk.

The table shows that while running times and memory footprints
vary with the resolution of the finalization grid, little fine tuning is
necessary to use our software. Streaming triangulation of 768 MB
of single precision floating-point “puget” data takes about six min-

utes (including preprocessing) for finalization quadtrees of depths
6, 7, and 8. If spdelaunay2d is receiving the point stream via a
pipe from spfinalize, the combined memory footprint of the two
programs is 31 MB at depth 6, or 20 MB at depth 8.

We can triangulate the pre-finalized half-billion-point Neuse
River Basin in as little as 35 minutes and 10 MB of memory at
quadtree depth 9. If the points are not finalized, the finalizer and tri-
angulator together use a combined 70 MB of memory and complete
the task in about 48 minutes. This time includes reading 11.2 GB
of raw points three times and writing a 16.9 GB streaming mesh.
(Our current streaming mesh interface only writes single precision
coordinates; in double precision the output would be 24 GB.)

To test our approach’s scalability, we modified spfinalize to
create a 4.5 billion point stream by reading nine translated copies
of the Neuse River Basin in a 3× 3 tiling. spfinalize and
spdelaunay2d together process 4,501,271,817 points (a number
too large to be represented with an unsigned 32-bit integer) with an
off-the-shelf laptop. Fewer than seven hours suffice to turn 101 GB
of double precision points into a 152 GB terrain composed of 9
billion triangles (double precision output would add 50 GB more).
The two programs occupy 166 MB of memory, of which 155 MB
is used to chunk the points (see Table 1). The first two passes of
spfinalize account for nearly two of the seven hours.

Because we do not have enough external storage available, we
piped the streaming mesh to a program that measures its size. Alter-
natively, we can (and do) pipe the output directly into one or more
stream processing tools. We can attach a stream module that sim-
plifies the mesh, and another that subsequently extracts isocontours
from the simplified mesh. The fact that we produce more data than
we can store hints that a common assumption of external memory
algorithms, that disk space is for practical purposes unlimited, is not
always safe. Whereas most people find their main memory cannot
keep up with their disk storage, we have the opposite problem.

5 Streaming 3D Delaunay triangulation

Figure 6: Points sampled on a

closed curve. Most of space has

been finalized, yet few triangles

are final—most circumcircles in-

tersect the unfinalized region.

From the stunning performance of
streaming Delaunay triangulation
in 2D, one would hope for a similar
success story for tetrahedralizing
points in 3D. Unfortunately, many
gigantic data sets in 3D come from
scans of surface models, and these
are not amenable to a straight-
forward extension of the finaliza-
tion procedures we developed for
2D. Delaunay tetrahedra of 3D sur-
face points often have large cirum-
spheres that touch many cells; only
when all touched cells are final-
ized do such tetrahedra become fi-
nal. Figure 6 illustrates the 2D ana-
log of this circumstance.

Nonetheless, we extended spfinalize to finalize 3D points
with an octree, and implemented a Delaunay tetrahedralizer
spdelaunay3d, using the same techniques described in Sections 3
and 4. Table 3 shows the performance of spdelaunay3d on pre-
finalized points on the laptop described in Section 4.4. The “ppmk”
input points consist of every kth vertex of an isosurface mesh ex-
tracted from one timestep of a simulation of Richtmyer–Meshkov
instability. In this turbulent surface, the points distribute somewhat
evenly over a 3D volume and are more suitable for streaming tetra-
hedralization than surface scans. The table shows that the memory
for spdelaunay3d is 5–10% of the output size.

Results on two smaller data sets, “sf1” and “f16,” appear in
Table 4. Each comes from volumetric data used for finite ele-
ment analysis: points in “sf1” are from a postorder traversal of
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finalized input points spdelaunay3d output mesh

name # of points MB opt max active h:mm:ss MB # tetrahedra GB

ppm16 11,737,698 136 l4 951,683 7:42 137 80,751,131 1.4

ppm8 29,362,621 341 l5 1,903,241 22:19 306 201,721,882 3.5

ppm4 58,725,279 686 l6 4,010,296 56:23 592 405,940,587 7.0

ppm2 117,450,465 1,422 l7 6,907,250 2:41:06 795 815,321,347 14

Table 3: Performance of spdelaunay3d tetrahedralizing pre-finalized 3D points

sampled from the ppm isosurface. The output is a streaming tetrahedral mesh. Option

“li” indicates that the points are spatially finalized with an octree of depth i. The middle

third of the table shows the maximum number of active tetrahedra, the running time

(hours:minutes:seconds), and the memory footprint (MB).

Figure 7: Streaming Delaunay tetrahedralization of the f16 point set. Sprinkle points

are turned off for clarity. Most of this model’s points are clustered near its center.

an adaptive octree mesh used in CMU’s Quake earthquake simu-
lation project. “sf1” is tetrahedralized slowly because its points lie
on a grid, often forcing the robust geometric predicates [Shewchuk
1997] to resort to exact arithmetic. The points in “f16” are the
vertices of a tetrahedral mesh ordered along a space-filling z-order
curve. Figure 7 depicts spdelaunay3d as it triangulates “f16.”

6 Comparisons

Here we compare the performance of our streaming triangulators
with in-core triangulators and with the previous fastest external
memory Delaunay triangulator, by Agarwal, Arge, and Yi [2005],
which also constructs constrained Delaunay triangulations.

Agarwal et al. “process 10 GB of real-life LIDAR data”—the
500 million point Neuse Basin point set (recall Table 2), plus
755,000 segments that constrain the triangulation—“using only 128
MB of main memory in roughly 7.5 hours.” This timing omits a
preprocessing step that sorts the points along a space-filling Hilbert
curve, taking about three additional hours. Their total time is thus
10–11 hours, compared to our 48 minutes to triangulate the un-
sorted points. This comparison is skewed (in opposite directions)
by two differences. First, our triangulator does not read or respect
the segments. We plan to add that capability and expect it will cost
less than 20% more time for the Neuse data. Second, Agarwal et al.
used a slightly faster processor, and much faster disks, than we did.

Our streaming Delaunay triangulators do more work than stan-
dard in-core algorithms, because they must identify final Delau-
nay triangles and tetrahedra. Nevertheless, Table 4 shows that
they can outperform state-of-the-art in-core triangulators even for
data sets that fit in memory. We compare them with the 2D tri-
angulator Triangle [Shewchuk 1996] and the 3D triangulator Pyra-
mid [Shewchuk 1998], modified to read input points from and write
output meshes to the same binary format as our triangulators. Trian-
gle, based on a divide-and-conquer algorithm, is the fastest sequen-
tial 2D implementation. Pyramid uses an incremental algorithm.

We used two laptops for our timings to get a sense of when the
in-core triangulators start to thrash: a newer laptop described in

input spfinalize spdelaunay2d total Triangle output

name MB
opt

old
MB

old
MB

old
MB

old
−I/O MB

MB

# of points new new new new triangles

grbm 69
l6

0:04
15

1:07
3

1:11
18

1:47 1:02
495

208

6,016,883 0:04 0:23 0:27 0:34 0:17 12,018,597

puget5 154
l6

0:10
7

2:17
4

2:27
11

thrash
863

460

13,423,821 0:10 0:55 1:05 3:45 1:22 26,840,720

input spfinalize spdelaunay3d total Pyramid output

name MB
opt

old
MB

old
MB

old
MB

old
−I/O MB

MB

# of points new new new new tetrahedra

f16 13
l9m5

0:01
5

1:16
28

1:17
33

2:53 2:46
262

125

1,124,648 0:01 0:34 0:35 1:37 1:26 7,027,642

sf1 29
l6m5

0:02
16

9:57
29

9:59
45

thrash
537

251

2,461,694 0:02 4:15 4:17 5:16 4:57 13,980,309

Table 4: Running times (minutes:seconds) and memory footprints (MB) of trian-

gulators on an old laptop (top of each time box) with 512 MB memory and a new

laptop (bottom of each time box) with 1 GB memory, for several 2D and 3D point

sets. spfinalize pipes its output to spdelaunay2d or spdelaunay3d; timings for

spfinalize reflect only the first two passes over the input stream, and timings for

spdelaunay2d or spdelaunay3d reflect the combined times for the triangulator and

the finalizer’s third pass. The “total” column lists the start-to-end running time and

memory footprint of the triangulation pipe. For the in-core triangulators Triangle and

Pyramid, we report total running time and the running time excluding I/O (“−I/O”).

Option “m5” means subtrees with less than 5K points are collapsed into their root cell.

Section 4.4, with 1 GB of memory, and an older laptop with a 1.1
GHz mobile Pentium III processor and 512 MB of memory. Four
data sets appear in Table 4. The 2D data sets, “grbm” and “puget,”
are described in Section 3 and depicted in Figure 3. The smaller
“puget5” is obtained by sampling every fifth point from “puget.”
The 3D data sets, “f16” and “sf1,” are described in Section 5.

The most striking differences are the memory footprints.
spdelaunay2d uses less than 1% of the space of Triangle;
spdelaunay2d and spfinalize together use less than 5%.
spdelaunay3d uses less than 11% of the space of Pyramid;
spdelaunay3d and spfinalize together use less than 13%.
Moreover, Triangle and Pyramid’s memory footprints increase lin-
early with the size of the triangulation, whereas the streaming trian-
gulators’ memory footprints increase more slowly with the stream
size. Of course, the in-core triangulators begin thrashing long be-
fore the streaming triangulators would. Triangle begins to thrash on
the new laptop at about 14 million input points. Compare this with
the 4.5 billion points we have triangulated by streaming.

The running times are more surprising. How can the streaming
triangulators, with the extra work of finalization, run faster than
dedicated in-core triangulators? First, they offset the extra work
by overlapping computation with file I/O, whereas Triangle and
Pyramid do not. The speed of the streaming triangulators on pre-
finalized points is almost entirely CPU-bound. If spdelaunay2d,
while triangulating the Neuse Basin point stream (recall Table 2),
discards the 16.9 GB output mesh stream instead of writing it to
disk, it saves only three minutes of the 35-minute processing time.

Second, the streaming triangulators benefit from improved cache
performance because of their much smaller memory footprints.

7 Conclusions

Researchers with whom we have discussed out-of-core Delaunay
triangulation suggest, almost by reflex, sorting the points first. For
data sets with no spatial coherence at all, we too advocate sorting.
But in our experience, large, real-world data sets have plenty of
spatial coherence. The power of exploiting that spatial coherence
is perhaps best illustrated by two facts. First, it takes Agarwal et
al. [2005] three hours to Hilbert sort the same point set we trian-
gulate in 48 minutes. Second, our triangulator runs as quickly on
the original Neuse point data as on the Hilbert-sorted Neuse points,
which were both kindly provided by Agarwal et al. [2005].

We realize the benefits of sorting, at much less cost, by docu-

Streaming Delaunay, Isenburg et al. 7 of 8 appeared in SIGGRAPH’06



menting the existing spatial coherence with spatial finalization and
enhancing it by reordering points. In analogy to aikido, we use the
data’s spatial coherence to control and direct the data with small
efforts, rather than fight it head on (by sorting it). One advantage is
speed. Another advantage is that we can visualize the early output
of a pipeline of streaming modules soon after starting it.

We have described just one method of spatial finalization for
point sets. We choose a depth-k quadtree/octree because we can
describe it succinctly with a bounding box and integer k, and it is
relatively simple to determine which cells a sphere intersects. We
believe it is possible to eliminate the first pass of spfinalize by
computing a quadtree/octree partitioning adaptively—without ad-
vance knowledge of the bounding box—during the second pass. Bi-
nary space partitions, k-d trees, and many other spatial subdivisions
would work too. If a point stream is sorted along a space-filling
curve like a Hilbert or z-order curve, the stream is chunked, and
finalization can be implicit—a cell is finalized when the next point
leaves it. Sweepline algorithms, such as Fortune’s [1992] for De-
launay triangulation, generate a point stream with implicit spatial
finalization: they sort the points by one coordinate, thereby parti-
tioning the plane into slabs. At each event, they finalize a slab, and
could potentially produce partial output and free data structures.
Likewise, Pajarola’s [2005] streaming k-neighbor computation fi-
nalizes slabs of space with a sweep plane. But these methods bring
with them the disadvantages of sorting discussed above.

The Achilles’ heel of our 3D streaming triangulator is that it per-
forms poorly on point clouds sampled from surfaces. The Delaunay
triangulations of these point clouds have many tetrahedra with large
circumspheres, which intersect many cells and are thus long-lived.
We believe this problem can be solved by using more sophisticated,
non-disjoint finalization regions computed by a randomized divide-
and-conquer technique of Clarkson [1988]. Clarkson’s method cov-
ers space with overlapping spherical regions tailored to the point
set, and guarantees that each Delaunay circumsphere is covered by
a constant number of these regions; yet no region contains too many
points. (Agarwal et al. use the same random sampling technique to
divide a constrained Delaunay triangulation into subproblems. We
propose to use it for spatial finalization instead.)

Implementations of traditional 2D divide-and-conquer Delaunay
algorithms [Shamos and Hoey 1975] are faster than incremental
implementations, and even run in expected linear time on random
points from some distributions [Katajainen and Koppinen 1988].
2D divide-and-conquer algorithms seem amenable to a streaming
implementation using our spatial finalization method. The key to
fast streaming is to merge adjacent triangulations in an order dic-
tated by the data, instead of an a priori order. Unfortunately, this
rules out the best-known generalization of the divide-and-conquer
approach to dimensions above two, the Delaunay Wall algorithm
[Cignoni et al. 1998], which constructs tetrahedra in an inflexible,
predetermined order. We do not know how to create a 3D streaming
divide-and-conquer Delaunay algorithm.

As huge data sets become ubiquitous in geometry processing,
we hope that streaming geometry with finalization information and
low width will become common. If point-creating programs would
include finalization tags in their output streams, we could pipe them
directly to our Delaunay triangulators, and begin producing trian-
gles or tetrahedra even before all the points are created. The advan-
tages of stream processing are so strong that we believe the produc-
ers of huge geometric data sets will have a profound incentive to
make the modest efforts required to improve their spatial coherence
and include finalization information.
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