
ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 203

This paper presents a method and architecture to
analyze streaming media and multimedia conferencing
traffic. Our method is based on detecting the transport
protocol and port numbers that are dynamically assigned
during the setup between communicating parties. We then
apply such information to analyze traffic generated by the
most popular streaming media and multimedia
conferencing applications, namely, Windows Media, Real
Networks, QuickTime, SIP and H.323. We also describe a
prototype implementation of a traffic monitoring and
analysis system that uses our method and architecture.

Keywords: Internet management, network traffic
monitoring and analysis, multimedia traffic analysis.

Manuscript received Apr. 28, 2003; revised Jan. 12, 2004.
This work was supported by the Electrical and Computer Engineering Division at

POSTECH under the BK21 program of Ministry of Education, the HY-SDR Research Center
at Hanyang University under the ITRC program of Ministry of Information and
Communication, and the Program for the Training of Graduate Students in Regional
Innovation which was conducted by the Ministry of Commerce, Industry and Energy, Korea.

Hun-Jeong Kang (phone: +82 54 279 5641, email:bluewind@etri.re.kr), Myung-Sup Kim
(email: mount@postech.ac.kr), and James W. Hong (email: jwkhong@postech.ac.kr) are with
the DPNM Laboratory, POSTECH, Pohang, Korea.

I. Introduction

The use of streaming media and multimedia conferencing
applications is growing rapidly. Many Internet sites provide
various rich media broadcasts such as movies, video clips, and
music. Also, video conferencing applications are gaining in
popularity. This trend will accelerate because of an increasing
number of Internet users, high bandwidth connections, and
improved PC performance. These applications are generating a
huge volume of network traffic and thus causing Internet
Service Providers (ISPs) and enterprises to provide more
bandwidth in their networks.

For various purposes, including network planning, most
network administrators wish to have a good understanding of
the traffic usage on their network. Unfortunately, traditional
analysis methods based on well-known port numbers [1]
cannot be used to analyze traffic generated by streaming media
and multimedia conferencing applications. Because these
applications make use of dynamically allocated port numbers
that are assigned during set up sessions, most traditional
methods cannot determine the application of such traffic. As a
result, this traffic is misidentified as unknown traffic in these
methods [2], [3].

To solve this problem, we have developed a method and
real-time system for monitoring and analyzing streaming
media and multimedia conferencing traffic, which are
collectively called multimedia service traffic in this paper. We
have developed a dynamic session analyzer that parses control
protocols. This module analyzes the payload of a packet
associated with a control protocol and extracts information
about transport protocols and port numbers used for
transferring multimedia service data. We use this information
to determine whether or not unknown traffic is a particular type

Streaming Media and Multimedia Conferencing
Traffic Analysis Using Payload Examination

 Hun-Jeong Kang, Myung-Sup Kim, and James W. Hong

204 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

of multimedia service traffic. With this approach, we can
analyze multimedia service traffic and obtain information
about network usage.

This paper is organized as follows. Section II provides an
overview of several popular multimedia service protocols.
Section III presents our analysis method for multimedia service
traffic. Section IV describes the architecture of our multimedia
service traffic monitoring and analysis. Section V describes our
implementation of the monitoring and analysis system. Section
VI discusses related work on traffic monitoring and analysis.
Finally, Section VII summarizes our work and discusses
possible future work.

II. Overview of Multimedia Service Protocols

Streaming media services transfer data as if it is a continuous
flow, that is, an Internet user need not wait to download a large
file before seeing the video or hearing the audio. Streaming
media services use two sessions, control and data, for the
communication and data transfer between a client and server.
Control sessions are used to negotiate the protocol, bandwidth
and data port to be used in a data transfer between a client and a
server. Data sessions are used to stream the multimedia data
from the server to the client. Multimedia data can be transported
over HTTP, but in this paper we do not consider it as streaming
traffic. Many streaming media services have been introduced to
the marketplace, but only three have achieved a substantial user
base [4]: Windows Media Technology (WMT) [5], Real
Networks [6], and QuickTime [7]. These services differ in their
protocols, as illustrated in Table 1.

Most applications of multimedia conferencing are based on
Session Initiation Protocol (SIP) [8] or H.323 [9]. Table 2
describes protocols used in these applications.

During a multimedia service, two types of sessions are
created between a client and a server: a control session and a
data session. The control session is responsible for setting up a
connection and controlling navigation, such as play and pause.
This session uses control protocols such as Real Time
Streaming Protocol (RTSP) [10] and MMS [4]. These control
protocols usually use TCP with well-known ports. The data
session sends the multimedia service contents to the client over
the data session protocol, including Real Networks Data
Transfer [6], Real time Transfer Protocol [11], and
MMST/MMSU (MMS over TCP/UDP) [4]. Both TCP and
UDP are used in these data protocols. We designate each
packet related to the control session and data session as a
control packet and a data packet.

Figure 1 illustrates a process in which control sessions and a
data session are constructed, and then multimedia data is
transferred. To begin, the control session is constructed through

Table 1. Streaming media service protocols.

 QuickTime Real Networks WMT
Control session protocol RTSP RTSP MMS

Data session protocol RTP RTP, RDT MMST/MMSU

Table 2. Multimedia conferencing protocols.

 SIP-based application H.323-based application
Control session protocol SIP RTP

Data session protocol Q.931, H.245 RTP

a well-known port number. As described in Fig. 1(a), streaming
media services (e.g., Real Networks, QuickTime) or
applications based on SIP have one control session. On the
other hand, H.323 applications have two control sessions:
Q.931 and H.245. Next, the control sessions create a new data
session by negotiating a transport protocol and port numbers.
Then, the data session transfers multimedia data through the
dynamically assigned transport protocol and port numbers. In
this paper, we introduce a new term, dynamic session, which
makes use of the transport protocol and port numbers that are
dynamically negotiated by the control session, such as the data
session and second control session, as shown in Fig. 1(b).

When a control session negotiates a dynamic session, the
packet payload of the control session contains the negotiation
results, such as a transport protocol and port numbers used in the
dynamic session. By selecting and analyzing the control packet,
we can discover information about the dynamical session, which
is called dynamic session information in this paper.

III. An Analysis Method for Multimedia Service
Traffic

In this section, we present our proposed method for
analyzing multimedia service traffic.

Figure 2 is a flowchart to illustrate packets being captured
and processed. The overall procedure consists of three major
parts: flow generation, dynamic session analysis, and traffic
analysis.

Flow generation captures packets and analyzes their header.
By collecting and associating related packets, this part
generates flows [14]-[16], which represent a series of packets
traveling between ‘‘interesting’’ end points. By associating
packets that belong to an identical flow, the system overhead of
the processing data can be reduced. Based on this flow

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 205

Fig. 1. A multimedia service control and data session: (a) RealMedia, QuickTime, WMT, SIP, (b) H.323.

(a)

connect

disconnect

control

data

caller

session
negotiation 1

(b)

connect (Q.931)

disconnect

connect (H.245)

dynamic
port

dynamic
port 2

well-known
port

dynamic
port 1

callee

session
negotiation 2

well-known
port

serverclient

session
negotiation

Fig. 2. A flowchart for multimedia service traffic monitoring and analysis.

packet
capture packet

extract header information

generate flow information

flow information
table

dynamic session
table

determine
dynamic

flow

traffic information
table

Dynamic session analysis

Traffic analysis

network
device

Flow generation

analyze
traffic

control packet?

Y extract
dynamic session

information

information, the traffic analyzer generates various traffic
information into the traffic information table.

However, it is insufficient to identify dynamic session traffic
with only a port number. The reason for this is that dynamic
sessions do not use well-known ports. Therefore, we need
dynamic session information to decide whether or not a flow
with an unknown port number is related to multimedia service
traffic. This information can be extracted in the dynamic
session analyzer. When a packet is analyzed by the flow
generation part, the control packet is sent to the dynamic

session analysis part. Then, the packet is analyzed to determine
whether or not it contains dynamic session information. Figure 3
describes our algorithm to discover dynamic session information
from the control packet.

The dynamic session analysis part receives a control message,
including packet header information and a payload of the
transport layer. First, the procedure determines if the FIN flag is
set to identify it as a session disconnect request. If not, the
module analyzes whether the packet contains dynamic session
information. The analysis of the control message is performed

206 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

Fig. 3. A dynamic session analysis algorithm.

1 Procedure DynamicSessionAnalyzer (Msg)
2 if FIN Flag in Msg is NOT set {
3 switch (protocol in Msg) {
4 case RTSP:
5 if SourcePort in Msg = RTSP server port number
6 then result ParseRTSP (payload of Msg);
7 case MMS:
8 if DestinationPort in Msg = MMS server port number
9 then result ParseMMS (payload of Msg);
10 case SIP:
11 result ParseSIP (payload of Msg) ;
12 case Q.931:
13 if SourcePort in Msg = Q.931 receiver port
14 then result ParseQ931 (payload of Msg) ;
15 default: {
16 Match Msg with information in dynamic session table;
17 if Msg is registered in the table and protocol in Msg = H.245
18 then result ParseH245 (payload of Msg);
19 }
20 }
21 if result= TRUE then {
22 create new dynamic session information;
23 insert dynamic session information into dynamic session table;
24 }
25 }
26 else delete session information from dynamic session table;

according to the application-layer protocol that is determined
by the well-known port numbers used by these protocols. Also,
we can reduce the analysis overhead by selecting a packet that
is likely to contain dynamic session information.

Figure 4 illustrates message exchanges of control sessions
during negotiation of the dynamic session. In the case of RTSP,
a client sends a SETUP request to a server along with the
candidates for a data transport protocol and port number (or a
range of port numbers) to be used for receiving multimedia
service data. Next, the RESPONSE contains the protocol and
port numbers chosen by the server. Accordingly, the procedure
ascertains whether the source port of the packet is an RTSP

server port (i.e., 554) (line 5), in order to select the server
response packet. When parsing the payload of a control packet,
the parser receives the information on media tracks. Thus, we
can handle multiple, separate media tracks. However, we do
not include information related to multiple, separate media
tracks because our main purpose is to identify multimedia
traffic applications.

Next, MMS is a proprietary control protocol. Although its
specification is not publicly open, we have discovered by
observing and analyzing packets that the client’s request in
MMS contains the transport protocol and port numbers used for
transferring multimedia service data. Therefore, the destination
port number is checked to verify that it is the MMS server port
number (i.e., 1755) (line 8) for the purpose of choosing the
client request packet. If the server rejects the request, the client
again sends the request with another port number or does not
send any request. In these cases, we do not misinterpret traffic,
including the rejected port as a dynamic session port. We can
identify the active port among the two, as the rejected port will
not have any traffic. We can also identify the application’s traffic
by discerning the server address that is stored with the rejected
port in the dynamic session table. In SIP, dynamic session
information is contained in the invite message of a client or in a
response message from a server. For this reason, the procedure
selects packets with 5060, SIP server port (line 10), and verifies
if they are invite or response messages.

However, services based on H.323 have two dynamic
sessions, as illustrated in Fig. 5. First, Q.931 uses the well-
known receiver port, 1720. Because the information about
H.245 is contained in the connect message, the procedure
determines if the source port is the receiver port (line 13 in Fig. 3).
In the case of H.245, this session uses a port number that is
dynamically allocated by a Q.931 session. Accordingly, we
need to look up the dynamic session table and determine
whether a captured packet is related to a H.245 session by
matching the dynamic session information generated by the

Fig. 4. A dynamic session negotiation: (a) RTSP, (b) MMS, and (c) SIP.

setup
client server

data

(a)

play

response

response

setup
client server

data

play

response

response

invite
client server

data

response

(b) (c)

(554)

(dynamic)

(1755)

(dynamic)

(5060)

(dynamic)

: dynamic session information

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 207

Fig. 5. The dynamic session negotiation in H.323: (a) Q.931, (b) H.245.

setup

caller receiver

H.245

(a)

alerting

connect

terminal capability
terminal capability

(b)

(1720)

master/slave determination

master/slave determination

open logical channel

data

open logical channel ack
(dynamic)

(dynamic)

(dynamic)

caller receiver

: dynamic session information

Q.931 session (lines 16 and 17 in Fig. 3). Then, the procedure
selects an open logical channel or open logical channel ack
message in the H.245 session.

The payload of the selected packet is parsed according to
each control protocol (lines 6, 9, 11, 14, or 16 in Fig. 3).
According to the protocol specification, the procedure matches
the payload with a regular expression, as described in Table 3.
In RTSP, the analyzer parses the payload and searches for the
string components: “Transport:”, “; client_port=”, the number
or range of numbers, and “;”. These string components appear
in the payload of the SETUP request’s response. Although we
have not ascertained the specification of MMS, we can analyze
by searching for strings: “MMS”, ‘URL-string format’, “TCP”
or “UDP,” and the port number. In SIP, the procedure extracts
dynamic session information from a Session Description
Protocol (SDP) [17] part. It finds a media header, which
consists of components such as “M=”, media type, port
number, transport protocol, and payload type.

Contrary to the above text-based protocols such as RTSP,
MMS, and SIP, the procedure searches for the locations of the
port number in Q.931 or H.245 packets. Figure 6 shows parts

of the payload that contains the dynamic session information in
the Q.931 and H.245 packets. In Q.931, the dynamic session
analyzer extracts a dynamically assigned port number from a
port in the User-User info Element information. It can find the
port number of H.245 in the tsap Identifier of a
forwardLogicalChannel, reverseLogicalChannel, or a network
access parameter.

After parsing, the procedure confirms whether or not the
dynamic session information is discovered (line 19 in Fig. 3). If
so, this information is stored into the dynamic session table that
contains information on active dynamic sessions (line 20 and
21 in Fig. 3).

When a multimedia service is completed, information on the
dynamic session must be removed. This information is usually
deleted from the dynamic session table (line 23 in Fig. 3) when
the TCP FIN flag is set. A packet with a FIN flag is generated
when a control session is disconnected by operations such as
TEARDOWN in RTSP in order to terminate a service. Most
terminated services are detected by using the FIN flag.
However, the FIN packet may never be captured because of
such effects as packet losses [3]. In such cases, the information

Table 3. A regular expression of dynamic session information.

Control protocol Regular expression

RTSP [Tt][Rr][Aa][Nn][Ss][Pp][Oo][Rr][Tt]:[a-zA-Z]+[/-][a-zA-Z])*.*;
client_port=[1-9][0-9]{3,4}(-[1-9][0-9]{3,4}){0,1};.*

MMs
[1-9][0-9]{1,2} [1-9][0-9]{1,2} [1-9][0-9]{1,2} [1-9][0-9]{1,2}

[([Tt][Cc][Pp]) ([Uu][Dd][Pp])] [1-9][0-9]{1,2}[0-9][0-9].*

SIP [Mm]=[a-zA-Z]+[1-9][0-9]{3,4}[a-zA-Z]+([/-][a-zA-Z])*. *

. . .

208 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

Fig. 6. The payloads of Q.931 and H.245.

Element length

IP
IP address

Data type, …

Element information

Element information

Element
information

(User-user info)

Message type (CONNECT)

Protocol discriminator (Q.931)

Data type, …

Logical parameter

Logical parameter

tsap
identifier

network
IP address

forwardLogicalChannel-
Parameters

reverseLogicalChannel-
Parameters

networkAccessParameters

Method (request/response open logical channel)

(a) Q.931

(b) H.245

port

is removed from the table by selecting a session, which shows
no activity for a certain period of time. Since some packets are
transferred to hold a connection even when a service is in a
pause state, this method is used only if the timeout period is
longer than the time required to send the packets to hold the
session.

In this paper, we consider only well-known ports used for a
TCP control session establishment. In the future, we want to
incorporate the use of unknown ports for establishing a TCP
control session, although such situations are rare.

IV. An Architecture for Multimedia Service Traffic
Monitoring and Analysis

We have developed a system for monitoring and analyzing
multimedia service traffic. The proposed method is designed

as modules and is added to Next Generation MONitoring
(NG- MON) [12], which is a network traffic monitoring and
analysis system based on flows. As illustrated in Fig. 7, tasks
are divided into several phases, which are serially
interconnected using a pipelined architecture. Each phase can
be executed on separate computer systems and cooperates with
adjacent phases using pipeline processing. These phases can be
composed of a cluster of computers wherever the system load
of the phase is higher than the performance of a single
computer system. Each phase can be replaced with more
optimized modules as long as they provide and use the same
interfaces.

Because of this flexible architecture, we could easily
integrate our modules with NG-MON. As illustrated in Fig. 8,
a dynamic session analyzer has been added between a packet
capturer and a flow generator to perform an analysis on the
dynamic sessions. Also, a dynamic relation mapper is
appended before a traffic analyzer. The other modules, such as
the flow generator and traffic analyzer, have the same
functionality as that of NG-MON. Below, we describe each
phase in detail.

1. Flow Generation

Flow generation consists of a packet capturer, a flow
generator, and a flow store. The packet capturer collects the
packets passing through a probing point. Previously, NG-MON
has captured only the header of the packets. However, NG-
MON for multimedia traffic analysis captures the payload as
well as the header of the packets. Another function of the
packet capturer is to extract information from the packet header
and send it to the flow generator. The format of the packet
header information is also shown in Fig. 9. The time stamp
represents the time when the packet is captured.

By collecting a series of packets, the flow generator creates a
flow which is defined in our system as a sequence of packets
with the same 5-tuple: source IP address, destination IP address,
source port, destination port, and protocol number. Figure 9

Fig. 7. The architecture of NG-MON.

Packet
capturer

Flow
generator

Flow
store

Traffic
analyzer

Network
device

raw packets packet header

information
flow

information

Presenter
(Web server)

User Interface
(Web browser)

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 209

Fig. 8. A multimedia service traffic monitoring architecture.

Packet

capturer
Flow

generator

Dynamic
relation
mapper

Presenter

Network device

Flow generation Traffic analysis & presentation

Flow
store

Traffic
analyzer

packet data

flow data

dynamic session
information

Dynamic
session
analyzer

Dynamic
session
analysis

Dynamic
session

information

Fig. 9. A flow generation module.

Packet capturer Flow store
Network
device Flow generator

raw packet

flow information

total packet size

packet counts

protocol number

destination port

source port

destination IP address

source IP address

time stamp
packet header information

packet size

protocol number

destination port

source port

destination IP address

source IP address

time stamp

flow lookup

update
existing

flow

create
new flow

information

No

Yes
existing
flow?

illustrates the function and parameter of the flow generator. The
flow generator stores the flow data in its memory area for
processing. When receiving the packet header information, the
flow generator searches the corresponding flow data from its
flow table and then updates it, or creates a new flow if one does
not already exist. Packets in the same flow are associated into the
same entry of the table by increasing the packet count and adding
the length to the total packet size. While being collected and
converted to a flow, fragmented packets are reassembled in this
phase. The number of packets or flows to be created depends on
the distribution of packets, how much volume is generated, and
how many packets are in the flow. The flow generator
periodically exports the flow data to the flow store, and the flows
are then stored in a database. Here, the period can be configured
according to the flow time-out in order to associate the flow
information during a predetermined time, such as one minute.
After being sent, the flows are deleted immediately from the

flow generator. However, flow information is stored for three
hours in the flow store for data backup.

Our system mainly analyzes traffic distribution such as traffic
volume, packet counts, and application. Therefore, we only
capture and measure packets passing through the measuring
points. We are not concerned with packets that do not pass
through this probing point (i.e., lost packets). We count only the
number of packets and bytes. Therefore, the out of order
packets do not affect our analysis.

2. Dynamic Session Analysis

Dynamic session analysis provides information for
identifying multimedia service traffic. As shown in Fig. 10, a
dynamic session analyzer is composed of two modules: a
control decider and dynamic parser. The control decider
determines whether a captured packet is a control packet by

210 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

Fig. 10. A dynamic session analyzer.

Packet capturer

Traffic analysis

packet header information
+ payload

dynamic session information

Dynamic
flow

mapper Flow generator

Dynamic session
analysis

Control
decider

Dynamic
parser

Dynamic session analyzer

checking the port numbers (RTSP, MMS, SIP and Q.931) or by
looking up the dynamic session table (H.245). If so, this
module sends the packet to the dynamic parser. By using the
method for dynamic session analysis described in Section III,
the dynamic parser discovers the information on the dynamic
session. This information is stored into the dynamic session
table and referred by the dynamic relation mapper during
traffic analysis.

Table 4 shows the format of the dynamic session information.
In this format, the control server address and control server port
are the IP address and port number of the server in the control
session that created the dynamic session. Similarly, the control
client address and control client port are the IP address and port
number of the client in the control session. With this
information, the system is aware of the relationship between
the control and dynamic sessions. The session start time is the
time when the dynamic session information is newly created,
and the session end time is the time when the control session is
disconnected. The session end time is set either when a TCP FIN
flag of a control packet is set, or when no packet in the same
session is captured during a threshold time. These session time
fields are used to determine whether a dynamic session is active
or inactive. The threshold time is determined by our observation.
After measuring the interval periods in which several
applications send packets to hold the connections, we used the
time that is much longer than the observed interval times.

It may happen that a client first sends a SETUP request to
establish a session with the server and then terminates it
without a DISCONNECT message. That is, if the TCP FIN
flag is not set for some session, then the session is observed by
the system for a predetermined time (currently 60 minutes). If
no packet in the same session is captured during this time, the
session is considered to be inactive, and the session end time is
set in the dynamic session information. Thus, our system can
handle this situation without any inconsistency in port numbers
or increase in the database size. This situation can also be

Table 4. The dynamic session information format.

control server
address

control server
port

control client
address

control client
port

data client address data client port

transport protocol session start time session end time

handled by our system because we observe the session for a
predetermined threshold time to decide whether the session is
active or inactive.

3. Traffic Analysis and Presentation

To identify the multimedia service application of traffic, a
dynamic session mapper is added between a flow store and
traffic analyzer of NG-MON. Only multimedia service traffic
is selected by this mapper and sent to the traffic analyzer.

The dynamic relation mapper decides the relation between
a dynamic flow and a control flow. This module identifies
whether a flow with an unknown port number is related to a
dynamic session. As illustrated in Fig. 11, this module
matches the flow information with the dynamic session
information. The tuples to be compared are as follows:
destination (or source) IP address and dynamic client address;
destination (or source) port and dynamic client port; and
protocol number and transport protocol. If the compared
tuples are equal, some fields are added to flow information,
such as the IP address and port number of the control session.
By adding these fields, we can map the dynamic flow and the
control flow that creates the dynamic flow. In the case of
control flows, the control server and client information are
filled up with its own IP address and port number. Otherwise,
the flow information is sent again to the mapper to be
compared again in the next period.

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 211

Fig. 11. A dynamic relation mapper.

Traffic analyzer

flow info. + control session info.

flow info. + control session (own flow) info.

flow info. Y

Y

N

N

Dynamic relation mapper

match
flow*

protocol number destination (or source) port destination (or source) address

transport protocol dynamic client port dynamic client address

*Information matching

dynamic
session info.

flow
info.

flow info.

dynamic
session info.

control
flow?

dynamic
flow?

server IP address + port of control session, or
client IP address + port of control session

Flow
 store

Dynamic
session
analyzer

Fig. 12. An active session duration.

session start
time

session
end time

extra delay timeflow arrival time

active session duration

time

Because dynamic sessions are frequently created and
destroyed, we need to validate whether the dynamic session is
active. Figure 12 illustrates the times used to denote the session
duration. The session start and session end times can be obtained
from the dynamic session information. The flow arrival time is
the time it takes for a flow to travel from the packet capturer to
the relation mapper, which is the summation of the following
two periods: the time required in the flow generator (one minute
for our system) and the time required in the flow store (one
minute for our system). The flow arrival time is not changed
unless the system configuration is changed. Generally, the traffic
analyzer determines that a session is active when the present time
lies between two time fields, (session start time + flow arrival
time) and (session end time+ flow arrival time).

Although the probability is small, it is possible to commit a
false-rejecting error, where the real data packet is misidentified
as being unassociated with the multimedia service session. This
problem is caused by delays when the information in the
dynamic session table is applied too early or too late. For
example, some data packets may pass a probing point before a
control packet that contains the dynamic session information

because of the different routing paths. Conversely, data packers
may follow the control packet that disconnects the sessions
after terminating the service.

We have developed two schemes to solve this problem. For
the prevention of a too-late application, we leave the unknown
traffic in the flow table, although it was previously judged as
not being multimedia service traffic. This flow is again
matched with the dynamic session information in the next
database update time. As a result, the flow has the opportunity
to be double-checked to verify that it is a dynamic session of
the multimedia service traffic. Because the false-rejecting
phenomenon occurs in a short delay relative to the period of
updating the database, this scheme gives sufficient time to
apply the information in the streaming session table. For the
prevention of a too-early application, we leave the information
in the dynamic session table during the extra delay time after
the point when the session end time is set. We have observed
that some packets pass the probing point even though the
session has been terminated. This phenomenon may occur
because of different routing paths that the packets travel
through. While maintaining the dynamic session information
for a while (e.g., 10 seconds), we apply it to the packets that
arrive late. As this delay is short, the port might not be assigned
to another application. Even if the port is assigned to another
application, there is no confusion about the application using
the port because we check the port number with the other
parameters such as the server address.

The traffic analyzer performs an analysis of the traffic by
querying the flow data stored in the database. It can analyze

212 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

multimedia service traffic at the session level. Multimedia
services are likely to open several sessions. The traffic analyzer
can discover and analyze sessions separately. By identifying
the type of the session, such as a control or data session, it
generates such information per session as the transferred packet
count. In addition, it integrates the information of the sessions
that belong to the same multimedia service. For example, it can
analyze the traffic volume exchanged in the control and data
sessions related to the same multimedia service.

The presenter shows the analyzed data corresponding to the
request of a user through the web server. Employing traffic
prepared by the traffic analyzer, it can provide a user with
information in a fast access time.

V. Implementation

In this section, we present system implementation and
performance tests of the proposed system. The deployed
system and environments are illustrated in Fig. 13.

Network traffic is injected into a packet capturer in our
gigabit campus backbone network through a network splitter,
which can copy network traffic passively. The packet headers
are analyzed and converted into flows every minute. In the case
of a control packet, the dynamic session analyzer parses its
payload and extracts the dynamic session information from it.
Using this information, the dynamic relation mapper identifies
the dynamic flows and stores the traffic information into the
database. According to the user requests, the presenter shows
this traffic information through the Web. The Network Time

Protocol [18] is used to synchronize the time of the machines
involved.

By applying our proposed method, we can monitor and
analyze multimedia service traffic. Our method can identify
dynamic flows that were formerly identified as unknown traffic.
As an example of our analysis results, Fig. 14 illustrates the
information on WMT traffic that appeared during a one-minute
period. The table on the left summarizes information such as
total packets and bytes. The graph plots WMT traffic every
minute during a one hour span. The graph shows 0 to 33 min
only, as the output was taken at 3 hr 33 min. This presenter
collects and shows several flows generated by the identical
WMT service between two hosts. The below table discerns the
flows as control and data sessions. As shown in the table, the
majority of multimedia service traffic is the data flow which is
classified previously as unknown traffic.

While working with our gigabit campus backbone network,
the system handles 15,000 flows, 2,500,000 packets, and 1.5
GB per minute on average. It can also deal with a maximum of
50,000 flows, 5,000,000 packets, and 3.5 GB per minute.
Additionally, we have verified our system performance,
particularly of the dynamic session analyzer, by measuring the
resource utilization in each phase, as shown in Fig. 15. The test
environment is as follows. The packet capturer, dynamic session
analyzer, and flow generator are executed in the same machine,
which has a 2.4-GHz CPU, 1 GB of memory, and a 1 gigabit
network interface card with Red Hat Linux 8.0 as an operating
system. This machine is connected to a traffic generator by a
gigabit network link. We transfer 50,000 packets per second,

Fig. 13. The system implementation architecture.

Flow
generator

Presenter

Flow
generator

Internet Intranet

Internet Intranet

Router

Switch

Splitter

Internet

1Gbps
optical link

Flow store

Traffic analyzer

Dynamic
session
analyzer

Dynamic
session
analyzer Dynamic

relation
mapper

Packet
capturer

Packet
capturer

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 213

Fig. 14. An analysis on WMT streaming service.

Fig. 15. Phases in testing performance.

capture
packet

decide
control
packet

analyze
packet
header

parse
payload

Packet capturer Dynamic session analyzer

generate

flow

Flow generator

Flow store Relation mapper
traffic analyzer

Packets

Gigabit networks
20000 pps

CPU: 2.4 GHz Memory: 1 GB NIC: 1 Gb

generated by 15,000 flows by using SmartBits [20].

First, we measure the additional system overhead caused by
capturing packets with payloads. This overhead depends on the
performance of the capture filter, libpcap [19]. We generate
packets of 1,500 B in size and capture packets of varying sizes.
Figure 16 presents the changes in CPU utilization according to
changes in the captured packet size. The memory utilization
has a constant value of 0.6% for all captured packet sizes. As
the captured packet size increases, the system overhead (in
terms of CPU utilization) also increases. Thus we wish to
capture packets with the smallest size possible. In most cases,
the dynamic session information is contained in the first 120 B
of payload in a control packet. Therefore, we capture packets of
200 B in size, which is the summation of the packet header
length (64 B) and payload (120 B).

Next, we create the following test environment to measure
performance of each phase in identical conditions. We transmit
50,000 packets of 1,500 B in size per second, utilizing a 600

Mbps bandwidth. As SmartBits cannot generate packets with a
payload that contains dynamic session information, we should
simulate an invocation of payload parsing modules. A parsing
module is executed for every N packets, where N depends on
the percentage of control protocol packets. For example, if
1,000 packets are captured and N for RTSP is 20, the RTSP
parsing module will be executed 50 times (1,000/20 = 50). The
CPU overhead due to changes in the number of executions of
the parsing module is shown in Fig. 17. In every test, each
protocol is parsed at the following rates: RTSP at 30%, MMS
at 50%, SIP at 5%, Q.931 at 10%, and H.245 at 5%, which
reflects our monitoring results of the POSTECH campus
network. The CPU overhead gradually increases with an
increase in the percentage of control packets. But when all the
packets are control packets, the maximum overhead is not
more than 20%. Memory overhead by this parsing module is
close to zero. In fact, we have observed that the POSTECH
campus network has a small number of control packets, which

214 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

Fig. 16. CPU utilization in packet capturing.

0

20

40
60

80

100

64 100 200 300 500 700 1000 1300 1500

captured packet size (B)

C
P

U
 u

til
iz

at
io

n
(%

)

Fig. 17. CPU overhead due to parsing execution.

0

20

40

60

80

100

1 10 20 30 40 50 60 70 80 90 100
the number of execution of parsing

over 100 packets received

C
P

U
 u

til
iz

at
io

n
(%

)

is less than 0.1% out of all the packets. Therefore, the parsing
payload does not largely affect the overall system overhead.

Table 5 indicates the system overhead in each phase. The
second row represents the memory utilization of each phase.
Memory is used significantly in the packet capture and flow
generation phases. The remaining phases have negligible
memory consumption. The CPU utilization at each phase is
presented in the third row. The CPU is consumed mostly
during the packet capture (30 %), packet header analysis (8 %),
and flow generation (35 %) phases. CPU utilization increases
when we capture packets with a payload (200 B) due to the

dynamic session analysis.
If an application does not use a well-known port number as a

control channel, we cannot monitor multimedia traffic. Therefore,
we considered parsing N bytes of each packet. However, this
resulted in a severe system overhead because we had to parse
N bytes of all the captured packets according to the
specifications of all the control protocols. The results of our
performance test indicates that this method suffers from a
severe system overhead. It consumed 100% of the CPU
utilization and lost processing data. As a result, we determined
to parse only the control packets by checking the packet header
information. At the control decision phase, the decision is made
by only checking the port number of the control packets that
use well known-port numbers or by validating the hashed
values in the dynamic session table. As this phase involves only
a few operations, it does not lead to a large CPU overhead.
Similarly, payload parsing does not cause significant system
overhead because of the small number of control packets. The
fourth row shows additional CPU overhead due to the dynamic
session analyzer, which includes the overhead of capturing
payloads of the packets, the control decision, and payload
parsing. These results show that these modules do not induce a
large system overhead.

We deployed our system in the campus network and collected
traffic over a period of one day. Table 6 demonstrates the overall
statistics of an application layer traffic analysis. The first column
describes the total number of flows captured by the system from
the campus network over one day. Columns 2 and 3 show the
total number of packets and total number of bytes captured.

Table 7 describes the percentage distribution of applications
detected by our system over the one day period. The first row
represents the distribution for applications (Real Networks and
QuickTime) that use the RTSP protocol. The total number of

Table 5. The system overhead in each phase.

Utilization Packet capture Packet header analysis Control decision Payload parsing Flow generation

Memory (%) 0.6 0≅ 0≅ 0≅ 2

30 (64 bytes)
CPU (%)

33 (200 bytes)
8 1 0≅ 35

CPU (%) (Additional) 3 N.A. 1 0≅ N.A.

N.A. : not available

Table 6. The overall statistics of an application layer traffic analysis.

Total flows Total packets Total bytes

151,059,362 3,225,390,089 2,044,744,537,573

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 215

Table 7. The percentage distribution of applications detected.

Application Flows Packets Bytes

RTSP 23,409 0.02% 9,021,694 0.28% 9,525,109,414 0.47%

H.323 217,615 0.14% 851,592 0.03% 58,943,437 0%

WMedia 141,316 0.09% 34,774,078 1.08% 37,075,008,767 1.81%

flows captured for RTSP are 23,409, which is 0.02% of the
total flows captured. Similarly, the total number of packets
captured for RTSP is 9,021,694. RTSP packets are 0.28% out
of the total packets captured, and the total number of bytes for
RTSP is 9,525,109,414, which makes up 0.47% of the total
bytes captured. Similarly, the second and third rows represent
the distribution for H.323 and Windows Media player. This
analysis shows that the users in the campus network use
Windows media more than RTSP and H.323, which is four
times the byte percentage of RTSP.

VI. Related Work

In this section, we describe two multimedia service traffic
analysis methods, namely a heuristic method and a selective
capturing method, and two traffic identification methods. As
mmdump [3] is proprietary, we could not get the source code
from the authors. Therefore, we have compared it with the
method used by mmdump. We tested it by changing a capture
filter whenever new dynamic session information was found in
our system.

A heuristic method works as follows. First, it records
ongoing control sessions. When a flow is seen with an
unknown port number on two hosts, it checks to verify whether
an active control connection exists between the same hosts. If
so, it assumes that the flow corresponds to a dynamic session.
This method is adopted by Flowscan [13], a flow-based traffic
analysis system.

A selective capturing method is used by mmdump [3], a tool
for monitoring multimedia traffic on the Internet. This method
parses the control messages to extract the dynamically assigned
port numbers. The parsing module then dynamically changes a
packet filter to allow packets associated with these ports to be
captured.

Table 8 presents the comparison results of different methods
of a multimedia service analysis. The heuristic method can
analyze traffic by capturing only the packet header, but it must
capture all the packets passing through a probing point. This
analysis may provide inaccurate information. In a false-positive
problem, traffic seen with an unknown port number may not be

related to the active control connection that exists between two
connected hosts. For example, in scanning, many data sessions
are created between the two hosts, but none of these relates to
the active control connection between them. In a false-negative
problem, some multimedia service data can be transferred from
another source that does not participate in the active control
connection. In this case, the heuristic method misidentifies the
multimedia service traffic as unknown-traffic because no active
control connection exists between the hosts transferring
multimedia service data.

The selective capturing method suffers from a system
overhead because it captures an entire packet including the
payload. On the other hand, it can reduce the resource
requirements and capture overhead by capturing only packets
that contain listed port numbers. Because this module parses
the payload and extracts the exact port numbers to be used in a
dynamic session, it does not cause false-positive problems.
However, it may generate false-rejecting errors. As mentioned
in mmdump [3], this method misses packets while changing a
capture filter. The results are even worse if a missed packet
contains dynamic session information. As a result, many
packets which belong to a data session negotiated by the
missed packet may pass the probing point without being
captured. This method also cannot hold dynamic port
information after changing a filter. Once a filter is changed, the
previous port number is useless. Thus, it cannot capture packets
that arrive late after deleting the dynamic port information.
Furthermore, it cannot handle IP-fragmentation. During our
tests we observed that about 40 to 70% of WMT packets are
fragmented. Similarly, some applications send large
fragmented data streams into the network. However, capturing
libraries such as libpcap [19] used in this method cannot
identify the port numbers of fragmented packets because the
port numbers are contained in other packets. As a result, this
method misses fragmented packets even though they are
multimedia service packets.

Another related study is the Signature Mapping-Based
Method [21], which performs traffic identification by
considering all IP level traffic and does not concentrate on
streaming traffic alone. In a Signature Mapping-Based Method,

216 Hun-Jeong Kang et al. ETRI Journal, Volume 26, Number 3, June 2004

Table 8. Comparisons of multimedia service analysis methods.

Method Heuristic method Selective capturing method Proposed method

Capturing overhead (packet size) High Low High

Capturing overhead (packet number) Low High High

Accuracy Inaccurate Accurate Accurate

Packet loss No Yes No

Fragment handling Can handle Cannot handle Can handle

the portion of the payload data that is static, unique, and
distinguishable from other packets is examined for all
applications regardless of the protocol they are using, standard
or proprietary, and is marked as a signature for an application.
By comparing every packet payload with pre-determined
signatures, this method can identify application traffic more
accurately than the traditional method.

However, this method requires a lot of offline work to
discover the signatures of individual applications. This method
can be used to identify streaming media traffic. However, some
difficulties exist in using it. While identifying streaming media
traffic, this method causes severe system overhead in the
process of packet capture and payload examination because we
need to compare the pre-determined signature with the payload
of all the packets. Also, to apply this method to the on-line and
real-time traffic analysis system, it is necessary to refine and
fine-tune the basic algorithm for the target environment.

The proposed payload examination method can be applied to
P2P traffic identification [22], because most of the P2P
applications use dynamically generated port numbers for
content delivery. However, difficulty arises due to the use of
proprietary protocols. Also, some P2P applications transfer
encrypted data which makes the payload examination
impossible. Recent research [23] on the identification of traffic
type gave up identifying the traffic according to application.
Instead, they proposed a new traffic type, called TCP-Big,
which is the aggregation of unknown flows that transmit more
than 100kB in less than 30 minutes, and showed that the TCP-
Big traffic has almost the same properties as P2P traffic (2003).
Our proposed method suffers from capturing overhead since it
captures all packets with each packet’s payload. However, our
method provides accurate information by extracting the exact
dynamic session information through a parsing of the payload.
It does not stop the capturing process because it does not
change the packet filter. Further, the method considers IP-
fragmentation. Because the method reassembles fragmented
packets in a flow generator, it can identify the port numbers of
fragmented packets.

VII. Concluding Remarks

In this paper, we presented a method and system for
monitoring and analyzing multimedia service traffic. This
method analyzes control protocol messages and extracts
information on dynamic sessions. The extracted information
includes dynamically selected protocol and port numbers,
which are used to determine whether or not the unknown
traffic is multimedia traffic. This approach makes it practical to
monitor previously unknown multimedia service traffic and
other services.

This method boosts the analysis of traffic from the packet
level to the session level. It does not simply extract the header
information of a packet but also makes it possible to analyze
traffic per session by acquiring session information. In addition,
it overcomes problems with existing approaches that use only
well-known port numbers of TCP or UDP for identifying the
application of traffic. By analyzing application messages, this
method discovers the status of the application and raises the
analysis to the application level.

Our multimedia service traffic analysis method is integrated
with NG-MON, through which we are currently monitoring
Internet traffic between our campus and the Internet. Although
we have not yet applied our system to ISP networks, we leave
this as future work.

The packet payload examination becomes difficult in secure
channel streaming due to the use of encrypted data. In the
future, we want to extend the proposed analysis method to
support streaming over secure channels as well. Also, we are
planning to provide support for other types of traffic that create
and use dynamic sessions.

References

[1] Internet Assigned Numbers Authority, http://www.iana.org/.
[2] James W. Hong, Soon-Sun Kwon, and Jae-Young Kim,

“WebTrafMon: Web-Based Internet/Intranet Network Traffic
Monitoring and Analysis System,” Computer Comm., Elsevier
Science, vol. 22, no. 14, Sept. 1999, pp. 1333-1342.

ETRI Journal, Volume 26, Number 3, June 2004 Hun-Jeong Kang et al. 217

[3] Jacobus van der Merwe, Ramon Caceres, Yang-hua Chu, and
Cormac Sreenan “mmdump–A Tool for Monitoring Internet
Multimedia Traffic,” ACM Computer Comm. Review, vol. 30, no.
4, Oct. 2000.

[4] J.Craig Lowery, “Using Dell PowerApp.cache for Caching and
Splitting Media Streams,” http://www.dell.com/us/en/esg/
topics/power_ps3q01-lowery.htm, May 2001.

[5] Microsoft, Windows Media Technology, http://www.microsoft.
com/windows/windowsmedia/default.asp.

[6] Real Networks, Real Media Technology, http://www.
realnetworks.com/.

[7] Apple, QuickTime, http://www.apple.com/quicktime.
[8] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP:

Session Initiation Protocol,” RFC 2543, Mar. 1999.
[9] ITU-T, “Recommendation H.323: Visual Telephone Systems and

Equipment for Local Area Networks Which Provide a Non-
Guaranteed Quality of Service,” 1996.

[10] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming
Protocol (RTSP),” RFC 2336, Apr. 1998.

[11] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC1889, Jan.
1996.

[12] Se-Hee Han, Myung-Sup Kim, Hong-Taek Ju, and James W.
Hong, “The Architecture of NG-MON: A Passive Network
Monitoring System”, Lecture Notes in Computer Science 2506,
13th IFIP/IEEE Int’l Workshop on Distributed Systems:
Operations and Management (DSOM 2002), Montreal, Canada,
Oct. 2002, pp. 16-27.

[13] Dave Plonka, FlowScan, http://net.doit.wisc.edu/~plonka/FlowScan/.
[14] Siegfried Lifler, “Using Flows for Analysis and Measurement of

Internet Traffic,” Diploma Thesis, Institute of Comm. Networks
and Computer Engineering, University of Stuttgart, 1997.

[15] J.Quittek, T. Zseby, B. Claise, and K.C. Norsth, “IPFIX
Requirements,” Internet Draft, http://norseth.org/ietf/ipfix/draft-
ietf-ipfix-architecture-00.txt.

[16] CAIDA, “Preliminary Measurement Spec for Internet Routers,”
http://www.caida.org/tools/measurement/measurementspec/.

[17] M. Handley and V. Jacobson, “SDP: Session Description
Protocol,” RFC 2327, Apr. 1998.

[18] NTP, http://www.ntp.org/.
[19] libpcap, http://www.tcpdump.org/.
[20] SmartBits, http://www.spirentcom.com/.
[21] T. S. Choi et. al., “Rate-Based Internet Accounting System Using

Application-aware Traffic Measurement,” Proc. of 2003 Asia-
Pacific Network Operations and Management Symp.(APNOMS
2003), Fukuoka, Japan, Oct. 1-3, 2003, pp.404-415.

[22] Subhabrata Sen and Jia Wang, “Analyzing Peer-to-Peer Traffic
across Large Networks,” Proc. of the second ACM SIGCOMM
Workshop on Internet Measurement Workshop, Nov. 2002.

[23] Alexandre Gerber, Joseph Houle, Han Nguyen, Matthew
Roughan, and Subhabrata Sen, “P2P The Gorilla in the Cable,”
National Cable & Telecommunications Association (NCTA) 2003
National Show, Chicago, IL, June 8-11, 2003.

Hun-Jeong Kang received his BS and MS
degrees in computer science and engineering
from Pohang University of Science and
Technology (POSTECH) in 2001 and 2003,
respectively. Currently, he is a Researcher in the
Department of Computer Science and
Engineering, POSTECH. His research interests

include network traffic monitoring and network security. He is a
Member of KNOM.

Myung-Sup Kim received his BS and MS
degrees in computer science and engineering
from POSTECH in 1998 and 2000, respectively.
Currently, he is a PhD candidate in the
Department of Computer Science and
Engineering, POSTECH. His research interests
include Internet traffic monitoring and analysis,

application-lay traffic analysis, and network security attack detection
and prevention. He is a Member of IEEE and KNOM.

James W. Hong is an Associate Professor in
the Department of Computer Science and
Engineering, POSTECH, Pohang, Korea. He
has been with POSTECH since May 1995.
Prior to joining POSTECH, he was a Research
Professor in the Department of Computer
Science, University of Western Ontario, London,

Canada. Dr. Hong received the BS and MS degrees from the
University of Western Ontario in 1983 and 1985, respectively, and the
PhD degree from the University of Waterloo, Waterloo, Canada in
1991. He has been very active as a Participant, Program Committee
Member and Organizing Committee Member for IEEE CNOM
sponsored symposiums such as NOMS, IM, DSOM and APNOMS.
For the last few years, he has been working on various research
projects on network and systems management, which utilize Web, Java,
CORBA and XML technologies. He is IEEE Comsoc CNOM Vice
Chair and KICS KNOM Chair. His research interests include network
and systems management, traffic monitoring and analysis, and security
management. He is a Member of IEEE, KICS, KNOM, and KISS.

	I. Introduction
	II. Overview of Multimedia Service Protocols
	III. An Analysis Method for Multimedia Service Traffic
	IV. An Architecture for Multimedia Service Traffic Monitoring and Analysis
	V. Implementation
	VI. Related Work
	VII. Concluding Remarks
	References

