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This paper presents a method and architecture to 
analyze streaming media and multimedia conferencing 
traffic. Our method is based on detecting the transport 
protocol and port numbers that are dynamically assigned 
during the setup between communicating parties. We then 
apply such information to analyze traffic generated by the 
most popular streaming media and multimedia 
conferencing applications, namely, Windows Media, Real 
Networks, QuickTime, SIP and H.323. We also describe a 
prototype implementation of a traffic monitoring and 
analysis system that uses our method and architecture. 
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I. Introduction 

The use of streaming media and multimedia conferencing 
applications is growing rapidly. Many Internet sites provide 
various rich media broadcasts such as movies, video clips, and 
music. Also, video conferencing applications are gaining in 
popularity. This trend will accelerate because of an increasing 
number of Internet users, high bandwidth connections, and 
improved PC performance. These applications are generating a 
huge volume of network traffic and thus causing Internet 
Service Providers (ISPs) and enterprises to provide more 
bandwidth in their networks. 

For various purposes, including network planning, most 
network administrators wish to have a good understanding of 
the traffic usage on their network. Unfortunately, traditional 
analysis methods based on well-known port numbers [1] 
cannot be used to analyze traffic generated by streaming media 
and multimedia conferencing applications. Because these 
applications make use of dynamically allocated port numbers 
that are assigned during set up sessions, most traditional 
methods cannot determine the application of such traffic. As a 
result, this traffic is misidentified as unknown traffic in these 
methods [2], [3]. 

To solve this problem, we have developed a method and 
real-time system for monitoring and analyzing streaming 
media and multimedia conferencing traffic, which are 
collectively called multimedia service traffic in this paper. We 
have developed a dynamic session analyzer that parses control 
protocols. This module analyzes the payload of a packet 
associated with a control protocol and extracts information 
about transport protocols and port numbers used for 
transferring multimedia service data. We use this information 
to determine whether or not unknown traffic is a particular type 
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of multimedia service traffic. With this approach, we can 
analyze multimedia service traffic and obtain information 
about network usage. 

This paper is organized as follows. Section II provides an 
overview of several popular multimedia service protocols. 
Section III presents our analysis method for multimedia service 
traffic. Section IV describes the architecture of our multimedia 
service traffic monitoring and analysis. Section V describes our 
implementation of the monitoring and analysis system. Section 
VI discusses related work on traffic monitoring and analysis. 
Finally, Section VII summarizes our work and discusses 
possible future work. 

II. Overview of Multimedia Service Protocols 

Streaming media services transfer data as if it is a continuous 
flow, that is, an Internet user need not wait to download a large 
file before seeing the video or hearing the audio. Streaming 
media services use two sessions, control and data, for the 
communication and data transfer between a client and server. 
Control sessions are used to negotiate the protocol, bandwidth 
and data port to be used in a data transfer between a client and a 
server. Data sessions are used to stream the multimedia data 
from the server to the client. Multimedia data can be transported 
over HTTP, but in this paper we do not consider it as streaming 
traffic. Many streaming media services have been introduced to 
the marketplace, but only three have achieved a substantial user 
base [4]: Windows Media Technology (WMT) [5], Real 
Networks [6], and QuickTime [7]. These services differ in their 
protocols, as illustrated in Table 1. 

Most applications of multimedia conferencing are based on 
Session Initiation Protocol (SIP) [8] or H.323 [9]. Table 2 
describes protocols used in these applications. 

During a multimedia service, two types of sessions are 
created between a client and a server: a control session and a 
data session. The control session is responsible for setting up a 
connection and controlling navigation, such as play and pause. 
This session uses control protocols such as Real Time 
Streaming Protocol (RTSP) [10] and MMS [4]. These control 
protocols usually use TCP with well-known ports. The data 
session sends the multimedia service contents to the client over 
the data session protocol, including Real Networks Data 
Transfer [6], Real time Transfer Protocol [11], and 
MMST/MMSU (MMS over TCP/UDP) [4]. Both TCP and 
UDP are used in these data protocols. We designate each 
packet related to the control session and data session as a 
control packet and a data packet. 

Figure 1 illustrates a process in which control sessions and a 
data session are constructed, and then multimedia data is 
transferred. To begin, the control session is constructed through 

Table 1. Streaming media service protocols. 

 QuickTime Real Networks WMT 
Control session protocol RTSP RTSP MMS 

Data session protocol RTP RTP, RDT MMST/MMSU

  
 

Table 2. Multimedia conferencing protocols. 

 SIP-based application H.323-based application
Control session protocol SIP RTP 

Data session protocol Q.931, H.245 RTP 

 

 
a well-known port number. As described in Fig. 1(a), streaming 
media services (e.g., Real Networks, QuickTime) or 
applications based on SIP have one control session. On the 
other hand, H.323 applications have two control sessions: 
Q.931 and H.245. Next, the control sessions create a new data 
session by negotiating a transport protocol and port numbers. 
Then, the data session transfers multimedia data through the 
dynamically assigned transport protocol and port numbers. In 
this paper, we introduce a new term, dynamic session, which 
makes use of the transport protocol and port numbers that are 
dynamically negotiated by the control session, such as the data 
session and second control session, as shown in Fig. 1(b). 

When a control session negotiates a dynamic session, the 
packet payload of the control session contains the negotiation 
results, such as a transport protocol and port numbers used in the 
dynamic session. By selecting and analyzing the control packet, 
we can discover information about the dynamical session, which 
is called dynamic session information in this paper. 

III. An Analysis Method for Multimedia Service 
Traffic 

In this section, we present our proposed method for 
analyzing multimedia service traffic. 

Figure 2 is a flowchart to illustrate packets being captured 
and processed. The overall procedure consists of three major 
parts: flow generation, dynamic session analysis, and traffic 
analysis. 

Flow generation captures packets and analyzes their header. 
By collecting and associating related packets, this part 
generates flows [14]-[16], which represent a series of packets 
traveling between ‘‘interesting’’ end points. By associating 
packets that belong to an identical flow, the system overhead of 
the processing data can be reduced. Based on this flow 
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Fig. 1. A multimedia service control and data session: (a) RealMedia, QuickTime, WMT, SIP, (b) H.323. 
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Fig. 2. A flowchart for multimedia service traffic monitoring and analysis. 
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information, the traffic analyzer generates various traffic 
information into the traffic information table. 

However, it is insufficient to identify dynamic session traffic 
with only a port number. The reason for this is that dynamic 
sessions do not use well-known ports. Therefore, we need 
dynamic session information to decide whether or not a flow 
with an unknown port number is related to multimedia service 
traffic. This information can be extracted in the dynamic 
session analyzer. When a packet is analyzed by the flow 
generation part, the control packet is sent to the dynamic 

session analysis part. Then, the packet is analyzed to determine 
whether or not it contains dynamic session information. Figure 3 
describes our algorithm to discover dynamic session information 
from the control packet. 

The dynamic session analysis part receives a control message, 
including packet header information and a payload of the 
transport layer. First, the procedure determines if the FIN flag is 
set to identify it as a session disconnect request. If not, the 
module analyzes whether the packet contains dynamic session 
information. The analysis of the control message is performed 
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Fig. 3. A dynamic session analysis algorithm. 

1  Procedure DynamicSessionAnalyzer ( Msg ) 
2  if FIN Flag in Msg is NOT set { 
3   switch (protocol in Msg) { 
4     case RTSP: 
5     if SourcePort in Msg = RTSP server port number 
6     then result  ParseRTSP (payload of Msg); 
7    case MMS: 
8     if DestinationPort in Msg = MMS server port number 
9     then result  ParseMMS (payload of Msg); 
10    case SIP: 
11     result  ParseSIP (payload of Msg ) ; 
12    case Q.931: 
13     if SourcePort in Msg = Q.931 receiver port 
14     then result  ParseQ931 (payload of Msg ) ; 
15    default: { 
16     Match Msg with information in dynamic session table; 
17     if Msg is registered in the table and protocol in Msg = H.245 
18     then result  ParseH245 (payload of Msg); 
19    } 
20   } 
21   if result= TRUE then { 
22    create new dynamic session information; 
23    insert dynamic session information into dynamic session table;
24   } 
25  } 
26  else  delete session information from dynamic session table; 

 
according to the application-layer protocol that is determined 
by the well-known port numbers used by these protocols. Also, 
we can reduce the analysis overhead by selecting a packet that 
is likely to contain dynamic session information. 

Figure 4 illustrates message exchanges of control sessions 
during negotiation of the dynamic session. In the case of RTSP, 
a client sends a SETUP request to a server along with the 
candidates for a data transport protocol and port number (or a 
range of port numbers) to be used for receiving multimedia 
service data. Next, the RESPONSE contains the protocol and 
port numbers chosen by the server. Accordingly, the procedure 
ascertains whether the source port of the packet is an RTSP 
 

server port (i.e., 554) (line 5), in order to select the server 
response packet. When parsing the payload of a control packet, 
the parser receives the information on media tracks. Thus, we 
can handle multiple, separate media tracks. However, we do 
not include information related to multiple, separate media 
tracks because our main purpose is to identify multimedia 
traffic applications. 

Next, MMS is a proprietary control protocol. Although its 
specification is not publicly open, we have discovered by 
observing and analyzing packets that the client’s request in 
MMS contains the transport protocol and port numbers used for 
transferring multimedia service data. Therefore, the destination 
port number is checked to verify that it is the MMS server port 
number (i.e., 1755) (line 8) for the purpose of choosing the 
client request packet. If the server rejects the request, the client 
again sends the request with another port number or does not 
send any request. In these cases, we do not misinterpret traffic, 
including the rejected port as a dynamic session port. We can 
identify the active port among the two, as the rejected port will 
not have any traffic. We can also identify the application’s traffic 
by discerning the server address that is stored with the rejected 
port in the dynamic session table. In SIP, dynamic session 
information is contained in the invite message of a client or in a 
response message from a server. For this reason, the procedure 
selects packets with 5060, SIP server port (line 10), and verifies 
if they are invite or response messages. 

However, services based on H.323 have two dynamic 
sessions, as illustrated in Fig. 5. First, Q.931 uses the well-
known receiver port, 1720. Because the information about 
H.245 is contained in the connect message, the procedure 
determines if the source port is the receiver port (line 13 in Fig. 3). 
In the case of H.245, this session uses a port number that is 
dynamically allocated by a Q.931 session. Accordingly, we 
need to look up the dynamic session table and determine 
whether a captured packet is related to a H.245 session by 
matching the dynamic session information generated by the 
 

 

Fig. 4. A dynamic session negotiation: (a) RTSP, (b) MMS, and (c) SIP. 
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Fig. 5. The dynamic session negotiation in H.323: (a) Q.931, (b) H.245. 
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Q.931 session (lines 16 and 17 in Fig. 3). Then, the procedure 
selects an open logical channel or open logical channel ack 
message in the H.245 session. 

The payload of the selected packet is parsed according to 
each control protocol (lines 6, 9, 11, 14, or 16 in Fig. 3). 
According to the protocol specification, the procedure matches 
the payload with a regular expression, as described in Table 3. 
In RTSP, the analyzer parses the payload and searches for the 
string components: “Transport:”, “; client_port=”, the number 
or range of numbers, and “;”. These string components appear 
in the payload of the SETUP request’s response. Although we 
have not ascertained the specification of MMS, we can analyze 
by searching for strings: “MMS”, ‘URL-string format’, “TCP” 
or “UDP,” and the port number. In SIP, the procedure extracts 
dynamic session information from a Session Description 
Protocol (SDP) [17] part. It finds a media header, which 
consists of components such as “M=”, media type, port 
number, transport protocol, and payload type. 

Contrary to the above text-based protocols such as RTSP, 
MMS, and SIP, the procedure searches for the locations of the 
port number in Q.931 or H.245 packets. Figure 6 shows parts 
 

 
of the payload that contains the dynamic session information in 
the Q.931 and H.245 packets. In Q.931, the dynamic session 
analyzer extracts a dynamically assigned port number from a 
port in the User-User info Element information. It can find the 
port number of H.245 in the tsap Identifier of a 
forwardLogicalChannel, reverseLogicalChannel, or a network 
access parameter. 

After parsing, the procedure confirms whether or not the 
dynamic session information is discovered (line 19 in Fig. 3). If 
so, this information is stored into the dynamic session table that 
contains information on active dynamic sessions (line 20 and 
21 in Fig. 3). 

When a multimedia service is completed, information on the 
dynamic session must be removed. This information is usually 
deleted from the dynamic session table (line 23 in Fig. 3) when 
the TCP FIN flag is set. A packet with a FIN flag is generated 
when a control session is disconnected by operations such as 
TEARDOWN in RTSP in order to terminate a service. Most 
terminated services are detected by using the FIN flag. 
However, the FIN packet may never be captured because of 
such effects as packet losses [3]. In such cases, the information 
 

Table 3. A regular expression of dynamic session information. 

Control protocol Regular expression 

RTSP [Tt][Rr][Aa][Nn][Ss][Pp][Oo][Rr][Tt]:[a-zA-Z]+[/-][a-zA-Z])*.*; 
client_port=[1-9][0-9]{3,4}(-[1-9][0-9]{3,4}){0,1};.* 

MMs 
[1-9][0-9]{1,2}  [1-9][0-9]{1,2}  [1-9][0-9]{1,2}  [1-9][0-9]{1,2} 

[([Tt][Cc][Pp]) ([Uu][Dd][Pp])]  [1-9][0-9]{1,2}[0-9][0-9].* 

SIP [Mm]=[a-zA-Z]+[1-9][0-9]{3,4}[a-zA-Z]+([/-][a-zA-Z])*. * 
 

. . . 
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Fig. 6. The payloads of Q.931 and H.245. 
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is removed from the table by selecting a session, which shows 
no activity for a certain period of time. Since some packets are 
transferred to hold a connection even when a service is in a 
pause state, this method is used only if the timeout period is 
longer than the time required to send the packets to hold the 
session. 

In this paper, we consider only well-known ports used for a 
TCP control session establishment. In the future, we want to 
incorporate the use of unknown ports for establishing a TCP 
control session, although such situations are rare. 

IV. An Architecture for Multimedia Service Traffic 
Monitoring and Analysis 

We have developed a system for monitoring and analyzing 
multimedia service traffic. The proposed method is designed 
 

as modules and is added to Next Generation MONitoring 
(NG- MON) [12], which is a network traffic monitoring and 
analysis system based on flows. As illustrated in Fig. 7, tasks 
are divided into several phases, which are serially 
interconnected using a pipelined architecture. Each phase can 
be executed on separate computer systems and cooperates with 
adjacent phases using pipeline processing. These phases can be 
composed of a cluster of computers wherever the system load 
of the phase is higher than the performance of a single 
computer system. Each phase can be replaced with more 
optimized modules as long as they provide and use the same 
interfaces. 

Because of this flexible architecture, we could easily 
integrate our modules with NG-MON. As illustrated in Fig. 8, 
a dynamic session analyzer has been added between a packet 
capturer and a flow generator to perform an analysis on the 
dynamic sessions. Also, a dynamic relation mapper is 
appended before a traffic analyzer. The other modules, such as 
the flow generator and traffic analyzer, have the same 
functionality as that of NG-MON. Below, we describe each 
phase in detail. 

1. Flow Generation 

Flow generation consists of a packet capturer, a flow 
generator, and a flow store. The packet capturer collects the 
packets passing through a probing point. Previously, NG-MON 
has captured only the header of the packets. However, NG-
MON for multimedia traffic analysis captures the payload as 
well as the header of the packets. Another function of the 
packet capturer is to extract information from the packet header 
and send it to the flow generator. The format of the packet 
header information is also shown in Fig. 9. The time stamp 
represents the time when the packet is captured. 

By collecting a series of packets, the flow generator creates a 
flow which is defined in our system as a sequence of packets 
with the same 5-tuple: source IP address, destination IP address, 
source port, destination port, and protocol number. Figure 9 
 

 

Fig. 7. The architecture of NG-MON. 
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Fig. 8. A multimedia service traffic monitoring architecture. 
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Fig. 9. A flow generation module. 
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illustrates the function and parameter of the flow generator. The 
flow generator stores the flow data in its memory area for 
processing. When receiving the packet header information, the 
flow generator searches the corresponding flow data from its 
flow table and then updates it, or creates a new flow if one does 
not already exist. Packets in the same flow are associated into the 
same entry of the table by increasing the packet count and adding 
the length to the total packet size. While being collected and 
converted to a flow, fragmented packets are reassembled in this 
phase. The number of packets or flows to be created depends on 
the distribution of packets, how much volume is generated, and 
how many packets are in the flow. The flow generator 
periodically exports the flow data to the flow store, and the flows 
are then stored in a database. Here, the period can be configured 
according to the flow time-out in order to associate the flow 
information during a predetermined time, such as one minute. 
After being sent, the flows are deleted immediately from the 

 
flow generator. However, flow information is stored for three 
hours in the flow store for data backup. 

Our system mainly analyzes traffic distribution such as traffic 
volume, packet counts, and application. Therefore, we only 
capture and measure packets passing through the measuring 
points. We are not concerned with packets that do not pass 
through this probing point (i.e., lost packets). We count only the 
number of packets and bytes. Therefore, the out of order 
packets do not affect our analysis. 

2. Dynamic Session Analysis 

Dynamic session analysis provides information for 
identifying multimedia service traffic. As shown in Fig. 10, a 
dynamic session analyzer is composed of two modules: a 
control decider and dynamic parser. The control decider 
determines whether a captured packet is a control packet by 
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Fig. 10. A dynamic session analyzer. 
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checking the port numbers (RTSP, MMS, SIP and Q.931) or by 
looking up the dynamic session table (H.245). If so, this 
module sends the packet to the dynamic parser. By using the 
method for dynamic session analysis described in Section III, 
the dynamic parser discovers the information on the dynamic 
session. This information is stored into the dynamic session 
table and referred by the dynamic relation mapper during 
traffic analysis. 

Table 4 shows the format of the dynamic session information. 
In this format, the control server address and control server port 
are the IP address and port number of the server in the control 
session that created the dynamic session. Similarly, the control 
client address and control client port are the IP address and port 
number of the client in the control session. With this 
information, the system is aware of the relationship between 
the control and dynamic sessions. The session start time is the 
time when the dynamic session information is newly created, 
and the session end time is the time when the control session is 
disconnected. The session end time is set either when a TCP FIN 
flag of a control packet is set, or when no packet in the same 
session is captured during a threshold time. These session time 
fields are used to determine whether a dynamic session is active 
or inactive. The threshold time is determined by our observation. 
After measuring the interval periods in which several 
applications send packets to hold the connections, we used the 
time that is much longer than the observed interval times. 

It may happen that a client first sends a SETUP request to 
establish a session with the server and then terminates it 
without a DISCONNECT message. That is, if the TCP FIN 
flag is not set for some session, then the session is observed by 
the system for a predetermined time (currently 60 minutes). If 
no packet in the same session is captured during this time, the 
session is considered to be inactive, and the session end time is 
set in the dynamic session information. Thus, our system can 
handle this situation without any inconsistency in port numbers 
or increase in the database size. This situation can also be 

Table 4. The dynamic session information format. 

control server
address 

control server
port 

control client 
address 

control client 
port 

data client address data client port 

transport protocol session start time session end time

  
 
handled by our system because we observe the session for a 
predetermined threshold time to decide whether the session is 
active or inactive. 

3. Traffic Analysis and Presentation 

To identify the multimedia service application of traffic, a 
dynamic session mapper is added between a flow store and 
traffic analyzer of NG-MON. Only multimedia service traffic 
is selected by this mapper and sent to the traffic analyzer. 

The dynamic relation mapper decides the relation between 
a dynamic flow and a control flow. This module identifies 
whether a flow with an unknown port number is related to a 
dynamic session. As illustrated in Fig. 11, this module 
matches the flow information with the dynamic session 
information. The tuples to be compared are as follows: 
destination (or source) IP address and dynamic client address; 
destination (or source) port and dynamic client port; and 
protocol number and transport protocol. If the compared 
tuples are equal, some fields are added to flow information, 
such as the IP address and port number of the control session. 
By adding these fields, we can map the dynamic flow and the 
control flow that creates the dynamic flow. In the case of 
control flows, the control server and client information are 
filled up with its own IP address and port number. Otherwise, 
the flow information is sent again to the mapper to be 
compared again in the next period. 
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Fig. 11. A dynamic relation mapper. 
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Fig. 12. An active session duration. 
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Because dynamic sessions are frequently created and 
destroyed, we need to validate whether the dynamic session is 
active. Figure 12 illustrates the times used to denote the session 
duration. The session start and session end times can be obtained 
from the dynamic session information. The flow arrival time is 
the time it takes for a flow to travel from the packet capturer to 
the relation mapper, which is the summation of the following 
two periods: the time required in the flow generator (one minute 
for our system) and the time required in the flow store (one 
minute for our system). The flow arrival time is not changed 
unless the system configuration is changed. Generally, the traffic 
analyzer determines that a session is active when the present time 
lies between two time fields, (session start time + flow arrival 
time) and (session end time+ flow arrival time). 

Although the probability is small, it is possible to commit a 
false-rejecting error, where the real data packet is misidentified 
as being unassociated with the multimedia service session. This 
problem is caused by delays when the information in the 
dynamic session table is applied too early or too late. For 
example, some data packets may pass a probing point before a 
control packet that contains the dynamic session information 

 
because of the different routing paths. Conversely, data packers 
may follow the control packet that disconnects the sessions 
after terminating the service. 

We have developed two schemes to solve this problem. For 
the prevention of a too-late application, we leave the unknown 
traffic in the flow table, although it was previously judged as 
not being multimedia service traffic. This flow is again 
matched with the dynamic session information in the next 
database update time. As a result, the flow has the opportunity 
to be double-checked to verify that it is a dynamic session of 
the multimedia service traffic. Because the false-rejecting 
phenomenon occurs in a short delay relative to the period of 
updating the database, this scheme gives sufficient time to 
apply the information in the streaming session table. For the 
prevention of a too-early application, we leave the information 
in the dynamic session table during the extra delay time after 
the point when the session end time is set. We have observed 
that some packets pass the probing point even though the 
session has been terminated. This phenomenon may occur 
because of different routing paths that the packets travel 
through. While maintaining the dynamic session information 
for a while (e.g., 10 seconds), we apply it to the packets that 
arrive late. As this delay is short, the port might not be assigned 
to another application. Even if the port is assigned to another 
application, there is no confusion about the application using 
the port because we check the port number with the other 
parameters such as the server address. 

The traffic analyzer performs an analysis of the traffic by 
querying the flow data stored in the database. It can analyze 
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multimedia service traffic at the session level. Multimedia 
services are likely to open several sessions. The traffic analyzer 
can discover and analyze sessions separately. By identifying 
the type of the session, such as a control or data session, it 
generates such information per session as the transferred packet 
count. In addition, it integrates the information of the sessions 
that belong to the same multimedia service. For example, it can 
analyze the traffic volume exchanged in the control and data 
sessions related to the same multimedia service. 

The presenter shows the analyzed data corresponding to the 
request of a user through the web server. Employing traffic 
prepared by the traffic analyzer, it can provide a user with 
information in a fast access time. 

V. Implementation 

In this section, we present system implementation and 
performance tests of the proposed system. The deployed 
system and environments are illustrated in Fig. 13. 

Network traffic is injected into a packet capturer in our 
gigabit campus backbone network through a network splitter, 
which can copy network traffic passively. The packet headers 
are analyzed and converted into flows every minute. In the case 
of a control packet, the dynamic session analyzer parses its 
payload and extracts the dynamic session information from it. 
Using this information, the dynamic relation mapper identifies 
the dynamic flows and stores the traffic information into the 
database. According to the user requests, the presenter shows 
this traffic information through the Web. The Network Time 
 

Protocol [18] is used to synchronize the time of the machines 
involved. 

By applying our proposed method, we can monitor and 
analyze multimedia service traffic. Our method can identify 
dynamic flows that were formerly identified as unknown traffic. 
As an example of our analysis results, Fig. 14 illustrates the 
information on WMT traffic that appeared during a one-minute 
period. The table on the left summarizes information such as 
total packets and bytes. The graph plots WMT traffic every 
minute during a one hour span. The graph shows 0 to 33 min 
only, as the output was taken at 3 hr 33 min. This presenter 
collects and shows several flows generated by the identical 
WMT service between two hosts. The below table discerns the 
flows as control and data sessions. As shown in the table, the 
majority of multimedia service traffic is the data flow which is 
classified previously as unknown traffic. 

While working with our gigabit campus backbone network, 
the system handles 15,000 flows, 2,500,000 packets, and 1.5 
GB per minute on average. It can also deal with a maximum of 
50,000 flows, 5,000,000 packets, and 3.5 GB per minute. 
Additionally, we have verified our system performance, 
particularly of the dynamic session analyzer, by measuring the 
resource utilization in each phase, as shown in Fig. 15. The test 
environment is as follows. The packet capturer, dynamic session 
analyzer, and flow generator are executed in the same machine, 
which has a 2.4-GHz CPU, 1 GB of memory, and a 1 gigabit 
network interface card with Red Hat Linux 8.0 as an operating 
system. This machine is connected to a traffic generator by a 
gigabit network link. We transfer 50,000 packets per second, 
 

 

Fig. 13. The system implementation architecture. 
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Fig. 14. An analysis on WMT streaming service. 

 

 

Fig. 15. Phases in testing performance. 
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generated by 15,000 flows by using SmartBits [20]. 

First, we measure the additional system overhead caused by 
capturing packets with payloads. This overhead depends on the 
performance of the capture filter, libpcap [19]. We generate 
packets of 1,500 B in size and capture packets of varying sizes. 
Figure 16 presents the changes in CPU utilization according to 
changes in the captured packet size. The memory utilization 
has a constant value of 0.6% for all captured packet sizes. As 
the captured packet size increases, the system overhead (in 
terms of CPU utilization) also increases. Thus we wish to 
capture packets with the smallest size possible. In most cases, 
the dynamic session information is contained in the first 120 B 
of payload in a control packet. Therefore, we capture packets of 
200 B in size, which is the summation of the packet header 
length (64 B) and payload (120 B). 

Next, we create the following test environment to measure 
performance of each phase in identical conditions. We transmit 
50,000 packets of 1,500 B in size per second, utilizing a 600 

Mbps bandwidth. As SmartBits cannot generate packets with a 
payload that contains dynamic session information, we should 
simulate an invocation of payload parsing modules. A parsing 
module is executed for every N packets, where N depends on 
the percentage of control protocol packets. For example, if 
1,000 packets are captured and N for RTSP is 20, the RTSP 
parsing module will be executed 50 times (1,000/20 = 50). The 
CPU overhead due to changes in the number of executions of 
the parsing module is shown in Fig. 17. In every test, each 
protocol is parsed at the following rates: RTSP at 30%, MMS 
at 50%, SIP at 5%, Q.931 at 10%, and H.245 at 5%, which 
reflects our monitoring results of the POSTECH campus 
network. The CPU overhead gradually increases with an 
increase in the percentage of control packets. But when all the 
packets are control packets, the maximum overhead is not 
more than 20%. Memory overhead by this parsing module is 
close to zero. In fact, we have observed that the POSTECH 
campus network has a small number of control packets, which 
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Fig. 16. CPU utilization in packet capturing. 
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Fig. 17. CPU overhead due to parsing execution. 
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is less than 0.1% out of all the packets. Therefore, the parsing 
payload does not largely affect the overall system overhead. 

Table 5 indicates the system overhead in each phase. The 
second row represents the memory utilization of each phase. 
Memory is used significantly in the packet capture and flow 
generation phases. The remaining phases have negligible 
memory consumption. The CPU utilization at each phase is 
presented in the third row. The CPU is consumed mostly 
during the packet capture (30 %), packet header analysis (8 %), 
and flow generation (35 %) phases. CPU utilization increases 
when we capture packets with a payload (200 B) due to the 
 

dynamic session analysis. 
If an application does not use a well-known port number as a 

control channel, we cannot monitor multimedia traffic. Therefore, 
we considered parsing N bytes of each packet. However, this 
resulted in a severe system overhead because we had to parse 
N bytes of all the captured packets according to the 
specifications of all the control protocols. The results of our 
performance test indicates that this method suffers from a 
severe system overhead. It consumed 100% of the CPU 
utilization and lost processing data. As a result, we determined 
to parse only the control packets by checking the packet header 
information. At the control decision phase, the decision is made 
by only checking the port number of the control packets that 
use well known-port numbers or by validating the hashed 
values in the dynamic session table. As this phase involves only 
a few operations, it does not lead to a large CPU overhead. 
Similarly, payload parsing does not cause significant system 
overhead because of the small number of control packets. The 
fourth row shows additional CPU overhead due to the dynamic 
session analyzer, which includes the overhead of capturing 
payloads of the packets, the control decision, and payload 
parsing. These results show that these modules do not induce a 
large system overhead. 

We deployed our system in the campus network and collected 
traffic over a period of one day. Table 6 demonstrates the overall 
statistics of an application layer traffic analysis. The first column 
describes the total number of flows captured by the system from 
the campus network over one day. Columns 2 and 3 show the 
total number of packets and total number of bytes captured. 

Table 7 describes the percentage distribution of applications 
detected by our system over the one day period. The first row 
represents the distribution for applications (Real Networks and 
QuickTime) that use the RTSP protocol. The total number of 
 

Table 5. The system overhead in each phase. 

Utilization Packet capture Packet header analysis Control decision Payload parsing Flow generation 

Memory (%) 0.6 0≅  0≅  0≅  2 

30 (64 bytes) 
CPU (%) 

33 (200 bytes) 
8 1 0≅  35 

CPU (%) (Additional) 3 N.A. 1 0≅  N.A. 

N.A. : not available 

Table 6. The overall statistics of an application layer traffic analysis. 

Total flows Total packets Total bytes 

151,059,362 3,225,390,089 2,044,744,537,573 
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Table 7. The percentage distribution of applications detected. 

Application Flows Packets Bytes 

RTSP 23,409 0.02% 9,021,694 0.28% 9,525,109,414 0.47% 

H.323 217,615 0.14% 851,592 0.03% 58,943,437 0% 

WMedia 141,316 0.09% 34,774,078 1.08% 37,075,008,767 1.81% 
 

 
flows captured for RTSP are 23,409, which is 0.02% of the 
total flows captured. Similarly, the total number of packets 
captured for RTSP is 9,021,694. RTSP packets are 0.28% out 
of the total packets captured, and the total number of bytes for 
RTSP is 9,525,109,414, which makes up 0.47% of the total 
bytes captured. Similarly, the second and third rows represent 
the distribution for H.323 and Windows Media player. This 
analysis shows that the users in the campus network use 
Windows media more than RTSP and H.323, which is four 
times the byte percentage of RTSP. 

VI. Related Work 

In this section, we describe two multimedia service traffic 
analysis methods, namely a heuristic method and a selective 
capturing method, and two traffic identification methods. As 
mmdump [3] is proprietary, we could not get the source code 
from the authors. Therefore, we have compared it with the 
method used by mmdump. We tested it by changing a capture 
filter whenever new dynamic session information was found in 
our system. 

A heuristic method works as follows. First, it records 
ongoing control sessions. When a flow is seen with an 
unknown port number on two hosts, it checks to verify whether 
an active control connection exists between the same hosts. If 
so, it assumes that the flow corresponds to a dynamic session. 
This method is adopted by Flowscan [13], a flow-based traffic 
analysis system. 

A selective capturing method is used by mmdump [3], a tool 
for monitoring multimedia traffic on the Internet. This method 
parses the control messages to extract the dynamically assigned 
port numbers. The parsing module then dynamically changes a 
packet filter to allow packets associated with these ports to be 
captured. 

Table 8 presents the comparison results of different methods 
of a multimedia service analysis. The heuristic method can 
analyze traffic by capturing only the packet header, but it must 
capture all the packets passing through a probing point. This 
analysis may provide inaccurate information. In a false-positive 
problem, traffic seen with an unknown port number may not be 

related to the active control connection that exists between two 
connected hosts. For example, in scanning, many data sessions 
are created between the two hosts, but none of these relates to 
the active control connection between them. In a false-negative 
problem, some multimedia service data can be transferred from 
another source that does not participate in the active control 
connection. In this case, the heuristic method misidentifies the 
multimedia service traffic as unknown-traffic because no active 
control connection exists between the hosts transferring 
multimedia service data. 

The selective capturing method suffers from a system 
overhead because it captures an entire packet including the 
payload. On the other hand, it can reduce the resource 
requirements and capture overhead by capturing only packets 
that contain listed port numbers. Because this module parses 
the payload and extracts the exact port numbers to be used in a 
dynamic session, it does not cause false-positive problems. 
However, it may generate false-rejecting errors. As mentioned 
in mmdump [3], this method misses packets while changing a 
capture filter. The results are even worse if a missed packet 
contains dynamic session information. As a result, many 
packets which belong to a data session negotiated by the 
missed packet may pass the probing point without being 
captured. This method also cannot hold dynamic port 
information after changing a filter. Once a filter is changed, the 
previous port number is useless. Thus, it cannot capture packets 
that arrive late after deleting the dynamic port information. 
Furthermore, it cannot handle IP-fragmentation. During our 
tests we observed that about 40 to 70% of WMT packets are 
fragmented. Similarly, some applications send large 
fragmented data streams into the network. However, capturing 
libraries such as libpcap [19] used in this method cannot 
identify the port numbers of fragmented packets because the 
port numbers are contained in other packets. As a result, this 
method misses fragmented packets even though they are 
multimedia service packets. 

Another related study is the Signature Mapping-Based 
Method [21], which performs traffic identification by 
considering all IP level traffic and does not concentrate on 
streaming traffic alone. In a Signature Mapping-Based Method, 
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Table 8. Comparisons of multimedia service analysis methods. 

Method Heuristic method Selective capturing method Proposed method 

Capturing overhead (packet size) High Low High 

Capturing overhead (packet number) Low High High 

Accuracy Inaccurate Accurate Accurate 

Packet loss No Yes No 

Fragment handling Can handle Cannot handle Can handle 
 

 
the portion of the payload data that is static, unique, and 
distinguishable from other packets is examined for all 
applications regardless of the protocol they are using, standard 
or proprietary, and is marked as a signature for an application. 
By comparing every packet payload with pre-determined 
signatures, this method can identify application traffic more 
accurately than the traditional method. 

However, this method requires a lot of offline work to 
discover the signatures of individual applications. This method 
can be used to identify streaming media traffic. However, some 
difficulties exist in using it. While identifying streaming media 
traffic, this method causes severe system overhead in the 
process of packet capture and payload examination because we 
need to compare the pre-determined signature with the payload 
of all the packets. Also, to apply this method to the on-line and 
real-time traffic analysis system, it is necessary to refine and 
fine-tune the basic algorithm for the target environment. 

The proposed payload examination method can be applied to 
P2P traffic identification [22], because most of the P2P 
applications use dynamically generated port numbers for 
content delivery. However, difficulty arises due to the use of 
proprietary protocols. Also, some P2P applications transfer 
encrypted data which makes the payload examination 
impossible. Recent research [23] on the identification of traffic 
type gave up identifying the traffic according to application. 
Instead, they proposed a new traffic type, called TCP-Big, 
which is the aggregation of unknown flows that transmit more 
than 100kB in less than 30 minutes, and showed that the TCP-
Big traffic has almost the same properties as P2P traffic (2003). 
Our proposed method suffers from capturing overhead since it 
captures all packets with each packet’s payload. However, our 
method provides accurate information by extracting the exact 
dynamic session information through a parsing of the payload. 
It does not stop the capturing process because it does not 
change the packet filter. Further, the method considers IP- 
fragmentation. Because the method reassembles fragmented 
packets in a flow generator, it can identify the port numbers of 
fragmented packets. 

 
VII. Concluding Remarks 

In this paper, we presented a method and system for 
monitoring and analyzing multimedia service traffic. This 
method analyzes control protocol messages and extracts 
information on dynamic sessions. The extracted information 
includes dynamically selected protocol and port numbers, 
which are used to determine whether or not the unknown 
traffic is multimedia traffic. This approach makes it practical to 
monitor previously unknown multimedia service traffic and 
other services. 

This method boosts the analysis of traffic from the packet 
level to the session level. It does not simply extract the header 
information of a packet but also makes it possible to analyze 
traffic per session by acquiring session information. In addition, 
it overcomes problems with existing approaches that use only 
well-known port numbers of TCP or UDP for identifying the 
application of traffic. By analyzing application messages, this 
method discovers the status of the application and raises the 
analysis to the application level. 

Our multimedia service traffic analysis method is integrated 
with NG-MON, through which we are currently monitoring 
Internet traffic between our campus and the Internet. Although 
we have not yet applied our system to ISP networks, we leave 
this as future work. 

The packet payload examination becomes difficult in secure 
channel streaming due to the use of encrypted data. In the 
future, we want to extend the proposed analysis method to 
support streaming over secure channels as well. Also, we are 
planning to provide support for other types of traffic that create 
and use dynamic sessions. 
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