

Streaming memory consistency for efficient MPSoC design

Citation for published version (APA):
Brand, van den, J. W., Bekooij, M. J. G., & Moonen, A. J. M. (2007). Streaming memory consistency for efficient
MPSoC design. (ES reports; Vol. 2007-03). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/2f35f6c4-2695-4b9e-a427-58bcfea8f4f2

Streaming memory consistency for
efficient MPSoC design

Jan Willem van den Brand, Marco Bekooij and Arno Moonen

ES Reports
ISSN 1574-9517

ESR-2007-03
11 April 2007

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2007 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

Streaming memory consistency for efficient MPSoC design

J.W. van den Brand1, M. Bekooij1 and A. Moonen2
1 NXP Research,2 Eindhoven University of Technology

contact: jan.willem.v.d.brand@nxp.com

Abstract

Multiprocessor systems-on-chip (MPSoC) with dis-
tributed shared memory and caches are flexible when it
comes to inter-processor communication but require an ef-
ficient memory consistency and cache coherency solution.

In this paper we present a novel consistency model,
streaming consistency, for the streaming domain in which
tasks communicate through circular buffers. The model al-
lows more reordering than release consistency and, among
other optimizations, enables an efficient software cache co-
herency solution and posted writes.

We also present a software cache coherency implemen-
tation and discuss a software circular buffer administration
that does not need an atomic read-modify-write instruction.

A small experiment demonstrates the potential perfor-
mance increase of posted writes in MPSoCs with high com-
munication latencies.

1 Introduction
In this paper, we consider heterogeneous Multiprocessor

Systems-on-Chip (MPSoCs) with distributed shared memory
(DSM) and caches. In DSM, a single shared address space
is distributed over multiple physical memories. Processors
communicate through shared memory.

A typical example of an architecture with a number of
processorsP with caches$ and with multiple physical mem-
ories is shown in Figure 1. The processors communicate
through an interconnect which can be a bus or a Network-
on-Chip (NoC). Examples of real architectures with a sim-
ilar structure are the TI OMAP platform [5], Philips Semi-
conductors’ Viper [8] and Silicon Hive architectures [3].

Multiprocessor systems in which processors communi-
cate through shared memory via caches require a cache co-
herency solution and a memory consistency model. Cache
coherency assures that processors observe up-to-date data in
the cache. We are not aware of efficient hardware cache co-
herency solutions for MPSoCs with NoCs. Therefore, we
use a software cache coherency solution for such systems.

A memory consistency model defines the order in which
memory operations from one processor appears to other
processors. It affects both performance and programming
model. Many consistency models have been proposed
for high performance computers. Sequential consistency
(SC) [15] is a model that allows no reordering of memory op-

P

$

interconnect

mem

P

$
memory

P

mem

P

mem

P

Figure 1. Multiprocessor system with background
memory.

erations. No reordering is natural from a programmers point
of view. Relaxing the ordering constraints enables pipelining
of shared memory accesses, which can significantly improve
performance, especially for high communication latencies.

The release consistency model (RC) [11] relaxes many of
the SC ordering constraints. RC requires a programmer to
use acquire and release synchronization sections. It allows
many hardware optimizations compared to SC [1].

In this paper, we propose a new consistency model,
streaming consistency (StrC), which is targeted at the
streaming domain. Examples of streaming applications are
MPEG4 [7], Digital Radio Mondiale [13] and face recog-
nition [14]. StrC allows more reordering and thus more
pipelining than RC. Furthermore, it enables optimizations
such as efficient software cache coherency and posted writes.
These optimizations are desirable for MPSoCs, especially
when a NoC interconnect is used.

The key contribution of this paper is the introduction of a
new consistency model, StrC, which allows more reordering
than RC and which enables optimizations.

This paper is organized as follows. In Section 2 we dis-
cuss related work. Then, in Section 3 we give a brief intro-
duction to cache coherency and memory consistency. Ex-
isting consistency models and hardware solutions are dis-
cussed and we show why these solutions are not well suited
for MPSoCs. In Section 4 we present the StrC model that
fits such systems. In Section 5 we present software solutions
for cache coherency and circular buffer administration. Sec-
tion 6 shows the potential performance increase of StrC by
means of an experiment. Section 7 concludes.

2 Related work
Memory consistency for MPSoCs is discussed in [17].

Release consistency (RC) is chosen as consistency model but
it is not made clear why this model fits their purposes. Our
consistency model allows more reordering than RC and en-
ables several optimizations.

In [18], a heterogeneous architecture is presented to
which applications modeled as Kahn Process Networks
(KPN) are mapped. Buffers are mapped to background
memory. The work allows caches to be placed in so called
shells and argues, as we do, that a more efficient cache co-
herency mechanism is possible due to explicit communica-
tion. The used caches are dedicated to streaming data. We
use a generic cache with minor adjustments that is used for
streaming data as well as program data and instructions.

Experimental results in [10] show, in the context of high
performance computing, that the performance gain of us-
ing relaxed models can be significant (10-40%) compared
to strict models in systems with networks.

In [6], the coupling between memory abstraction and in-
terconnect is discussed. Cache coherency for NoC based
MPSoCs is identified as a challenging issue. Snooping and
directory based solutions are mentioned as unlikely candi-
dates. We also discard these hardware solutions (see Sec-
tion 3.4). We use a software cache coherency solution.

Experiments in [1] show that performance of software
cache coherency solutions in shared memory systems per-
forms comparable to hardware solutions for a broad class of
programs. It is shown that for well-structured programs the
software based approaches out-perform hardware based ap-
proaches.

3 Cache coherency and memory consistency
In this section we give a short introduction to cache co-

herency and memory consistency. We give examples of po-
tential coherency and consistency problems and we discuss
existing consistency models. Finally we describe widely
used hardware solutions for cache coherency and memory
consistency and we explain why we think that they are not
well suited for MPSoCs with NoCs.

3.1 Cache coherency
Processors in a cached shared memory multiprocessor en-

vironment can observe different data for the same memory
address. This occurs when writes from one processor are not
propagated to caches of other processors. For instance, in
case of a write-back cache, write data goes by default to the
cache and not to background memory. Without a cache co-
herency policy, this data is only visible for the processor that
performed the write.

Caches that have a write through policy propagate all
writes to shared memory. That does not mean that no cache
coherency policy is required. On a read, the cache controller
marks the fetched line associated to the read address as valid.
The write of another processor to the same address is not vis-
ible to the first processor without a cache coherency policy.

We illustrate cache coherency with the following exam-
ple. Consider the communicating tasks in Figure 2 which

are mapped on two cached processors,P1 andP2. Note that
the print instruction implies a read operation. First the task
of P1 writes to A. The value of A is propagated to shared
memory if the cache ofP1 has a write through policy. Next,
on the read action ofP2, its cache fetches the value of A
from shared memory marking the associated cache line as
valid and the task prints the resultA = 1. ThenP1 writes
another value to A which is again propagated to shared mem-
ory. However, on the next read, the cache ofP2 will return
the old value of A,A = 1, because its line was marked valid.

A similar problem occurs if the cache ofP1 has a write
back policy. The value of A would then not be propagated
to shared memory in the first place and the cache ofP2 will
read a unknown value from memory.

P
1

A = 1;

A = 2;

P
2

print A;

print A;

Figure 2. Cache coherency problem.

In a cache coherent system, data of all memory addresses
that involve interprocessor communication must be observed
with the same value for all involved processors. A cache
coherency policy is necessary to assure this.

3.2 Memory consistency
Every multiprocessor system in which processors com-

municates through a shared memory should have a memory
consistency model that defines how ordering of memory ac-
cesses are handled. Shared memory accesses can be conflict-
ing and non-conflicting. Accesses to a shared address are
said to be conflicting if they come from different processors
and at least one of them is a write. The behavior of a pro-
gram on a conflicting access depends on the order in which
the accesses are observed between processors. In order to
write a program that exhibits correct functional behavior, a
programmer must know what the ordering behavior of the
system is. Reordering of memory operations is only allowed
if local program order of the processor is maintained (e.g a
write followed by a read from the same address can never be
reordered).

The memory consistency model of a shared memory sys-
tem specifies the order in which memory operations will ap-
pear to execute to the programmer. Consider for example the
tasks in Figure 3, taken from [4], where the ordering of op-
erations influences functional behavior. The intention of this
program is clear; processorP1 communicates variable A to
processorP2 through shared memory and uses a flag (shared
variable) for synchronization. The underlying assumption is
that the write of A becomes visible toP2 before the write to
flag. If this assumption fails, the program will not fulfill the
programmer’s expectation.

The consistency model determines the programmer’s
view on shared memory and therefore has a major influence
on the programming model.

2

P
1

A = 1;

flag = 1;

P
2

while(flag == 0);

print A;

Figure 3. Event synchronization through a flag.

3.3 Existing consistency models
There are many different memory consistency models

proposed in literature (see for instance [2, 4]). These con-
sistency models target off-chip multiprocessor systems such
as high performance computers with limited resource and en-
ergy consumption constraints.

Here we discuss sequential consistency [15] (SC), proces-
sor consistency [1] (PC) and release consistency [11] (RC).
The models differ in the amount of reordering that is al-
lowed. Reordering can enable pipelining of shared memory
accesses. A model is relaxed compared to another model if
it allows more reordering and thus enables more pipelining
of shared memory accesses. More relaxed models are intro-
duced to allow more pipelining.

SC requires program order to be maintained among all
operations. Every task appears to issue complete memory
operations one at a time and atomically in program order [4].
Writes issued by different processors appear in the same or-
der to all processors (write atomicity). This is very natu-
ral from a programmer’s point of view. For instance, the
example from Figure 3 executes perfectly in a SC system.
Unfortunately, this very intuitive model poses restrictions on
hardware and compiler optimizations [2].

The PC model relaxes the ordering rules defined by the
SC model. In this model, writes issued by a single proces-
sor are observed at another processor in the same order as
they are issued. However, writes issued by different proces-
sors do not appear in the same order to all processors and
therefore it does not satisfy write atomicity. It reflects the re-
ality of complex interconnects where the latencies between
nodes differ for different processor pairs. Because writes in
the PC model are guaranteed to appear in order, the example
in Figure 3 will work correctly. However, programs written
with the SC model in mind are not guaranteed to work in a
processor consistent system. The example in Figure 4 taken
from [4] shows a program that can fail under PC but works
under SC due to write atomicity.P2 reads A which is writ-
ten byP1 and then writes B which in turn is used byP3 as
synchronization flag. Without write atomicity There is no
guarantee that the latest version of A,A = 1, is visible toP3

beforeB = 1 is visible toP3. The wrong value is printed
even if all processors receive write data in the order issued
by the processors.

PC also allows reads that follow a write to a different ad-
dress on the same processor to be reordered with respect to
each other. Reads can be issued while a write is still in trans-
fer.

RC, introduced in [11], is an even more relaxed model.
For this model, shared memory accesses are categorized and
different ordering requirements can apply to different cate-
gories. In RC terminology, a conflicting access iscompet-
ing if there is a chance that a read and write occur simulta-
neously; otherwise it’s anon-competingaccess. A conflict-

P
1

A = 1;

P
2

while(A == 0);

B = 1;

P
3

while(B == 0);

print A;

Figure 4. Importance of write atomicity for SC.

ing access is madenon-competingby using synchronization.
There are two types ofsynchronizationaccesses; acquire and
release.

A system is RC if the following conditions hold (taken
from [11]):

(a) Before a non-competing load or store access is al-
lowed to perform with respect to another processor, all pre-
vious acquire accesses must be performed and,

(b) before a release access is allowed to perform with re-
spect to any other processor, all previous non-competing load
and store accesses must be performed, and

(c) competing accesses (e.g. acquire and release accesses)
are processor consistent with respect to one another.

The conditions give ordering requirements between non-
competing and competing accesses and between competing
accesses. There are no ordering requirements between non-
competing accesses.

A program written with PC in mind is not guaranteed to
work on a system with RC. The example of Figure 3 which
executed perfectly under PC will have consistency problems
because the shared memory accesses are not categorized and
no synchronization is added to resolve undesired competing
accesses.

The diagram in Figure 5 taken from [12] shows the or-
dering requirements for shared memory accesses to different
addresses from a processor in a multiprocessor system for
different consistency models. For each model, a program
is shown with shared memory accesses. The arrows denote
ordering constraints. SC allows no reordering, PC allows re-
ordering of writes followed by a read. RC allows reordering
of all shared memory accesses to different addresses outside
the synchronization section and inside synchronization sec-
tions.

RC offers extensive pipelining possibilities. In Section 4
we present a consistency model targeted at streaming ap-
plications that is more relaxed than RC to allow even more
pipelining.

3.4 Hardware solutions
Shared memory architectures that constantly monitor a

bus for transactions (snooping bus) have an advantage when
it concerns cache coherency and memory consistency solu-
tions. The bus provides a global view on all memory opera-
tions. Caches can observe all memory transactions by snoop-
ing the bus and take appropriate action when a transaction
takes place that concerns data in the cache. Also, ordering of
reads and writes according to the selected consistency model
can be assured by stalling bus transactions.

However, buses pose limitations on bandwidth. In prac-
tice no more than 16 processors are connected to a single
shared bus. Moreover, we consider MPSoCs with NoC inter-
connects. Such interconnects do not provide global observ-

3

Sequential

consistency

= A

B =

acquire (S);

C =

= D

release (S);

E =

F =

Processor

consistency

= A

B =

acquire (S);

C =

= D

release (S);

E =

F =

Release

consistency

= A

B =

acquire (S);

C =

= D

release (S);

E =

F =

Figure 5. Comparison of three different consistency
models.

ability of memory transactions. To the best of our knowl-
edge, there are no snooping solutions for NoCs and it seems
unlikely that efficient solutions will be found.

Directory based cache coherency approaches are better
suited for network interconnects. In a directory based sys-
tem, processors and caches assure that they do not violate
cache coherency and memory consistency by issuing re-
quests and notifications to a storage place (directory) that
maintains state of all relevant transactions. For cache co-
herency, the directory is notified of all relevant changes of
cache state by processors and is therefore capable of deter-
mining which cache contains the requested data.

The request and notification communication consume a
significant amount of bandwidth, especially when a strict
consistency model is used such as SC. The directory mem-
ory and control makes the hardware significantly more ex-
pensive than bus snooping hardware. Finally, the communi-
cation from cache to directory and back and then from cache
to cache or from memory to cache introduces more latency.
This latency results in additional processor stall cycles.

Therefore we conclude that both bus snooping and
directory-based approaches are not well suited for MPSoC
embedded systems with NoC interconnects. In the next sec-
tion we present a consistency model that enables an efficient
software solution.

4 Streaming consistency

The previous section discussed existing consistency mod-
els which were designed for high performance computers.
This section presents a novel consistency model, stream-
ing consistency (StrC), targeted at the streaming domain. It
allows more pipelining than RC and enables optimizations
such as an efficient software cache coherency solution which
fits MPSoCs with NoCs. First we give a definition of StrC.
Then, in Section 4.2 optimizations enabled by StrC are pre-
sented.

4.1 Streaming consistency model
StrC targets systems that run streaming applications. In-

terprocessor communication in such systems is performed by
sharing units of data through circular buffers that are located
in shared memory. These circular buffers can have multiple
producers and consumers.

As for RC, StrC only has ordering constraints with respect
to acquire and release calls. However, StrC associates these
synchronization variables to circular buffers. A system is
streaming consistent if the following conditions hold:

(a) before an access to a circular bufferb is allowed to be
performed with respect to any other processor, the associated
acquire access,acquire(b), must be performed, and

(b) before arelease(b) access is allowed to perform with
respect to any other processor, the access to the circular
bufferb to which the release is associated must be performed,
and

(c) acquire and release accesses for a certain circular
buffer are processor consistent with respect to one another,
and

(d) circular buffers are only allowed to be accessed within
synchronization sections.

StrC allows reordering of synchronization sections that
are associated to different buffers, i.e. such synchronization
sections are allowed to overtake each other. This is differ-
ent from RC where synchronization sections can overlap but
can never overtake each other. RC conditions allow overlap
as long as all accesses are performed before the following
release and after the preceding acquire. Figure 6(a), taken
from cite [11], shows the overlap possibilities for RC. Syn-
chronization sections can never overtake preceding synchro-
nization sections.

acquire

release

memory
access

acquire

release

memory
access

memory
access

(a) RC

acquire(S1)

release(S1)

shared mem
access

acquire(S2)

release(S2)

shared mem
access

(b) StrC

Figure 6. Overlap possibilities for SC, RC and StrC.

The example in Figure 7 illustrates why these ordering
constraints are crucial for RC. The example shows two pro-
cesses,P1 andP2. P1 writes a value toa outside a synchro-

4

nization section and writes a value tob inside a synchroniza-
tion section. The RC conditions guarantee that the write toa

is visible to other processors after the release.P2 usesa and
b. Availability of a after the release is guaranteed by the RC
conditions. This kind of implicit synchronization is not al-
lowed in StrC as every write or read to shared memory must
take place inside a synchronization section and is associated
to that section. Therefore, StrC has no ordering constraints
between synchronization sections that are associated to dif-
ferent buffers as shown in Figure 6(b).

P
1

a = 1

acquire(S1)

b = 2

release(S1)

P
2

acquire(S1)

c = b

release(S1)

d = a + c

Figure 7. Implicit synchronization in RC.

An example of an application that can exploit the overtake
possibility of StrC is shown in Figure 8. It shows a streaming
application where data is read from buffer1 followed by a
computation with the obtained data followed by a write of
the new value to buffer2 over and over again. StrC allows us
to completely parallelize the write to buffer2 with the read
from buffer1 and the computation. On a RC system, the read
can start before the write is released. RC does however not
allow the release of the read before the release of the write.

while (true)

{

acquire(buffer1); //data available?

a=read(buffer1);

release(buffer1); //release space

b=computation(a);

acquire(buffer2); //space available?

write(buffer2,b);

release(buffer2); //release data

}

(a) Code

time

comp.

w(buf2)r(buf1)

computation:

communication:
r(buf1)

comp.

(b) Overlap

Figure 8. StrC overlap example.

StrC relaxes RC. In StrC, the ordering constraints only
have to be obeyed with respect to a certain circular buffer. A

program written for StrC will run properly on a RC system
because a program written for a more relaxed model executes
properly on a system with a stricter model.

Concerning the programming model, StrC requires pro-
grammers to explicitly program shared memory communi-
cation through circular buffers in synchronization sections.
Streaming applications expose this explicit communication.
StrC does therefore not complicate programming.

Besides more pipelining possibilities, StrC also enables
optimizations which are presented in the next section.

4.2 Optimization possibilities
StrC enables several optimizations. These optimizations

require StrC and have additional requirements. In this sec-
tion we discuss three optimizations: efficient software cache
coherency, deterministic functional behavior and posting of
writes.

4.2.1 Efficient software cache coherency

In Section 3.4 we discussed the limitations of hardware
cache coherency solutions. StrC enables an efficient soft-
ware cache coherency solution. Software cache coherency
adds cache line flush calls after writes to shared memory and
cache line invalidate calls before reads from shared memory.
These calls can be added to acquires and releases. Invalidates
of all shared addresses from which is read after an acquire
must be executed before the reads that follow the acquire.
Flushes of all shared addresses to which is written prior to a
release must be executed before the following release.

RC allows programmers to program shared memory com-
munication everywhere in a program. Every memory ac-
cess is potentially a shared memory access. Shared memory
accesses are not directly linked to acquire and release calls
which makes it hard to determine which cache lines should
be invalidated on acquire and flushed on release.

In StrC, shared data is communicated in synchronization
sections through circular buffers that are linked to these sec-
tions. Therefore, flush and invalidate calls can easily be
added to acquire and release calls.

Caches communicate at the granularity of cache lines
which typically consist of multiple words. Multiple proces-
sors can access different words in the same cache line. This
is known as false sharing. Flushing of a line by one processor
affects data in shared memory for another processor. False
sharing can be eliminated by not allowing multiple proces-
sors to access different words of the same cache line.

For StrC, false sharing can be prevented by only allow-
ing a single circular buffer per cache line. This solution
leads to inefficient cache use if shared data is scattered in
shared memory because this leads to many partially used
cache lines. Therefore a circular buffer should be located
in a consecutive address range. For RC, it is difficult to pre-
vent false sharing because shared accesses are not explicit in
the program.

In Section 5 we discuss a software cache coherency solu-
tion.

5

4.2.2 Deterministic functional behavior

The functional behavior of a task often depends on the re-
ceived data. We assume that tasks that run on different pro-
cessors are scheduled independently. The circular buffer in
Figure 9(a) has multiple producing and multiple consuming
tasks. All consuming tasks access the same data before space
is released. What data is put in the buffer by the producers
in what order depends on the execution order of the produc-
ing tasks and on the communication latency (i.e. data from
a task that is scheduled earlier than another task can arrive
later at the buffer then data from the second task due to com-
munication latency). This limits the extend to which one can
reason about the functional behavior of an application at de-
sign time.

pc1

pcm

c1

cn

circular
buffer

(a) Multiple producers

pc

c1

cn

circular
buffer

(b) Single producer

Figure 9. Number of producers and consumers per
circular buffer.

Reasoning about functional behavior at design time is en-
abled for the StrC model by only allowing a single producer
per circular buffer as depicted in Figure 9(b). For RC, it is
hard to determine whether a shared address has multiple pro-
ducers because shared accesses are not explicit.

4.2.3 Posting of writes

A posted write is a write that allows operations that follow
the write to be executed without confirmation of the write.

The SC model does not support posting of writes because
reordering of memory transactions is not allowed. A write
has to be completed before the following operation is al-
lowed to execute.

For RC, all writes that precede a release call have to be
finished before the release call is allowed to finish because
writes are not allowed to be reordered with respect to a fol-
lowing release. In order delivery at shared memory of writes
to shared data and the write to the synchronization variable
(i.e. FIFO behavior) is sufficient. However, RC says noth-
ing about where the different addresses that is being written
to are physically located. In a DSM system, it is likely that
these addresses are distributed over different physical mem-
ories. If this is the case, in order delivery of writes to shared
data and the synchronization variable is hard to guarantee.
In this case RC requires writes to be confirmed and does not
support posted writes.

For StrC, a synchronization section is associated to a cir-
cular buffer. If the circular buffer is located in the same mem-

ory as its synchronization variable, in order delivery is feasi-
ble. StrC then supports posted writes.

Furthermore, a write followed by a read from the same
address requires a system to assure that the write has per-
formed before the read in order to continue with the read. RC
allows a combination of reads and writes to the same shared
address. Therefore, a mechanism such as a write buffer is
required to assure that correct data is returned on a read fol-
lowing a write.

StrC also allows a combination of reads and writes from
and to the same circular buffer in a synchronization section.
Special hardware support such as write buffers is not nec-
essary if we do not allow a combination of reads and writes
from/to the same circular buffer inside a synchronization sec-
tion.

5 Software solution
In this section we present a software cache coherency so-

lution. This approach is enabled by StrC, presented in the
previous section. As opposed to hardware bus snooping and
directory based solutions described in Section 3.4, this solu-
tion is well suited for NoC based MPSoCs.

We also discuss a solution for implementing the circular
buffer administration in software.

5.1 Cache coherency
In StrC, the interprocessor communication is more ex-

plicit than in RC. It is known what address range is com-
municated and the moments before and after communication
of shared data are clearly marked by acquire and release.

This explicit communication allows us to add invalidate
and flush instructions when buffer data is read or written. On
an acquire, before data is read, all cache lines that contain old
data for the involved shared addresses are marked as invalid.
This ensures that the latest data is observed. The software
cache coherency approach flushes cache lines that contain
data of writes to shared memory before the release call to
ensure that the shared memory has the most recent copy.

The approach requires caches to have a means to invali-
date cache lines by address. Such functionality is present in
many caches, ARM11 and TriMedia are examples of cached
processors that support invalidation and flushing of cache
lines.

5.2 Circular buffer administration
We use a software circular buffer administration to assure

that no data is read if no data is available and that no data is
written if no space is available. For this purpose, we use the
C-HEAP protocol [9, 16]. In this protocol a buffer adminis-
tration is maintained for number of reads and writes from and
to the buffer (read counter and write counter). No hardware
support is needed and no atomic read-modify-write opera-
tion is required. The read and write pointers are increased
after data is read or written. Wrap around of a pointer oc-
curs if a pointer would fall outside the memory range of the
buffer. The amount of data or space in a buffer can be de-
duced from the values of the read and write pointer and the
size of the buffer.

6

Figure 10 shows the steps that are performed on a buffer
write and read for software cache coherency (see previous
section) and circular buffer administration. A write starts by
polling the buffer administration to check whether there is
space available in the buffer (1). If this is the case the data
is written (2). The data is flushed from the cache after it is
written (3). Then, the buffer administration is updated (4). A
read to a buffer starts by checking whether there is data in the
buffer (5). Next the cache lines that are associated with the
data are invalidated (6). Then the data is read from shared
memory (7) and the buffer administration is updated (8).

P
1

$

network-on-chip

admin.

buffer

P
n

$

2. write

1
. p

o
ll

3. flush

5
.
p
o
ll

6.
invalidate

7. read

4
. u

p
d
a
te

8
.

u
p
d
a
te

Figure 10. Software cache coherency and memory
consistency.

Performing cache coherency instructions adds cycles.
However, software approaches remove hardware cost by
transferring the cost of detecting coherency problems (pro-
tocol overhead) from hardware to software.

6 Experimental results
In this section we show the potential performance in-

crease of using the StrC model by means of an experi-
ment. We focus on the posted write optimization from Sec-
tion 4.2.3. The experiment shows the negative effect of NoC
latency for systems that do not allow posting of writes. SC
does not support posting of writes and RC does not support
it by default.

A small producer consumer example is used as test ap-
plication. Each tasks runs on its own ARM7 processor with
local memory. The processor runs at 100 MHz. The pro-
duced token (data) is put in a buffer that is located in the
local memory of the consumer processor. We measure the
execution time with and without posed write. In the system
without posted write, each write has to be acknowledged .

Figure 11 shows a bar-plot of the execution times of the
producer with and without posted write for different NoC la-
tencies and for two different token sizes: 16 and 4 words.
The NoC latency is given for the forward connection from
producer to consumer. In case of acknowledged writes, the
latency of the reverse connection is the same as that of the
forward connection. Note that communication from pro-
ducer to consumer is word-based and that every word has
to be acknowledged.

For the system without posted writes, the execution time

of the producing task grows linear with NoC latency and
message size. The producer is slowed down because it has
to wait for acknowledges. For the system with posted writes,
NoC latency has no effect and the token size has a minor ef-
fect (additional instructions for sending additional words to
the consumer).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

200 700 1200 1600 2300 3200 4200 5200

latency of forward connection (ns)

e
x

e
c

u
ti

o
n

 t
im

e
 (

A
R

M
7

 c
y

c
le

s
)

posted write / 16 words

posted write / 4 words

ack. write / 16 words

ack. write / 4 words

Figure 11. Normalized execution time of SC and
StrC for different network latencies.

The experiment shows that posted writes are crucial in
realistic MPSoCs with NoCs. Posted writes are always pos-
sible in a StrC system if synchronization sections do not con-
tain a combination of reads and writes.

7 Conclusion
Consistency models influence both performance and pro-

gramming model. A multiprocessor system should support a
consistency model that fits the targeted domain.

We have presented the streaming consistency model
(StrC) which fits the streaming domain. StrC does not com-
plicate programming. As opposed to RC, StrC allows syn-
chronization sections to overtake each other and thus allows
more pipelining.

Besides more pipelining possibilities, StrC also enables
optimizations. The efficient software cache coherency so-
lution enabled by StrC overcomes the limitations of well
known hardware solutions (bus snooping and directory
based). StrC allows reasoning about functional behavior if
there is no more than one producer per circular buffer. Posted
writes are supported by StrC with little effort.

Our producer-consumer experiment shows that these
posted writes are desirable in MPSoCs with NoCs, especially
for high communication latencies. Without posted writes,
the producer is severely slowed down because it has to wait
for acknowledges.

References
[1] S. Adve, V. Adve, M. Hill, and M. Vernon. Comparison of

hardware and software cache coherence schemes. InProc.
Int’l Symposium on Computer Architectures, pages 298–308,
May 1991.

[2] S. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, Dec
1996.

7

[3] G. Burns, M. Jacobs, M. Lindwer, and B. Vandewiele. Sil-
icon hive’s scalable and modular architecture template for
high-performance multi-core systems. InProc. Int’l Signal
Processing Conference and Expo, 2005.

[4] D. Culler and J. Singh.Parallel Computer Architecture. Mor-
gan Kaufmann, 1999.

[5] P. Cumming. Winning the SoC Revolution, chapter The TI
OMAP Platform Approach to SoC. Kluwer, 2005.

[6] G. De Micheli and L. Benini.Networks-on-Chip: Technology
and Tools. Elsevier, 2006.

[7] K. Denolf, A. Chirila-Rus, and D. Verkest. Low-power
MPEG-4 video encoder design. InProc. Workshop on Sig-
nal Processing Systems Design and Implementation, pages
284–289, 2005.

[8] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multipro-
cessor SOC for advanced set-top box and digital TVsystems.
IEEE Design and Test of Computers, 18:21–31, 2001.

[9] O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and
flexible data synchronization scheme for embedded hw-sw
shared-memory systems. InInt’l Symposium on System Syn-
thesis (ISSS), pages 1–6, Oct 2001.

[10] K. Gharachorloo, A. Gupta, and J. Hennessy. Perfor-
mance evaluation of memory consistency models for shared-
memory memory multiprocessors. InProc. of the Int’l
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 245–257,
Apr 1991.

[11] K. Gharachorloo, D. Lenoski, J. Ludon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In
Proc. Int’l Symposium on Computer Architectures, pages 15–
26, Jun 1990.

[12] J. Hennesy and D. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, San Francisco,
2nd edition, 2003.

[13] F. Hofmann, C. Hansen, and W. Schfer. Digital radio mondi-
ale (DRM) digital sound broadcasting in the AM bands.IEEE
Trans. on Broadcasting, 49:319–328, 2003.

[14] V. Kianzad, S. Saha, J. Schlessman, G. Aggarwal, S. Bhat-
tacharyya, W. Wolf, and R. Chellappa. An architectural level
design methodology for embedded face detection. InInt’l
Workshop on Hardware/Software Codesign (CODES), pages
136–141, 2005.

[15] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs.IEEE Trans. on
Computers, C-28:690–691, Sept 1979.

[16] A. Nieuwland, J. Kang, O. Gangwal, R. Sethuraman,
N. Busa, K. Goossens, R. Llopis, and P. Lippens. C-heap:
A heterogeneous multi-processor architecture template and
scalable and flexible protocol for the design of embedded sig-
nal processing systems. InProc. Int’l Conference on Hard-
ware Software Codesign (CODES), pages 206–217, Sept
2004.

[17] F. Petrot, A. Greiner, and P. Gomez. On cache coherency
and memory consistency issues in NoC based shared mem-
ory multiprocessor SoC architectures. InProc. Euromicro
Conference on Digital System Design (DSD), Aug 2006.

[18] M. Rutten, J. van Eijndhoven, and E. Pol. Caching tech-
niques for multi-processor streaming architectures. InWork-
shop on Media and Signal Processors for Embedded Systems
and SoCs (MASES), Sept 2004.

8

